
The classification of semistable plane
sheaves supported on sextic curves

Mario Maican

Abstract We classify all Gieseker semistable sheaves on the complex projective plane

that have dimension 1 andmultiplicity 6. We decompose their moduli spaces into strata

which occur naturally as quotients modulo actions of certain algebraic groups. In most

cases we give concrete geometric descriptions of the strata.

1. Introduction and summary of results

Let MP2(r,χ) denote the moduli space of Gieseker semistable sheaves on P2(C)
with Hilbert polynomial P(m) = rm+ χ, r and χ being fixed integers, r ≥ 1. Le

Potier [7] found that MP2(r,χ) is an irreducible projective variety of dimension

r2+1, smooth at points given by stable sheaves and rational if χ≡ 1 or 2 mod r.

In [3] and [10] were classified all semistable sheaves giving points in MP2(4, χ) and

MP2(5, χ), for all values of χ. These moduli spaces were shown to have natural

stratifications given by cohomological conditions on the sheaves involved. In this

paper we apply the same methods to the study of sheaves giving points in the

moduli spaces MP2(6, χ), and we succeed in finding a complete classification for

such sheaves. We refer to the introductory section of [3] for a motivation of

the problem and for a brief historical context. We refer to [3, Section 2] for an

account of the techniques we shall use. Section 2.4 of [3] contains a discussion

about Kronecker modules and their moduli spaces.

In view of the obvious isomorphism MP2(r,χ) � MP2(r,χ + r) and of the

duality isomorphism MP2(r,χ)�MP2(r,−χ) of [9], it is enough, when r = 6, to

consider only the cases when χ = 1,2,3,0. These cases are dealt with in Sec-

tions 3, 4, 5, and 6, respectively. In Section 2 we gather some general results for

later use and, for the convenience of the reader, we review the Beilinson monad

and spectral sequences. In the remaining part of this section we summarize our

classification results.
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1.1. Notations

MP2(r,χ) = the moduli space of Gieseker semistable sheaves on P2

with Hilbert polynomial P(m) = rm+ χ;

N(n,p, q) = the Kronecker moduli space of semistable (q× p)-matrices

with entries in Cn (cf. [3, Section 2.4]);

HilbP2(n) = the Hilbert scheme of n points in P2;

HilbP2(d,n) = the flag Hilbert scheme of curves of degree d in P2

containing n points;

V = a fixed vector space of dimension 3 over C;

P2 = the projective plane of lines in V ;

O(d) = the structure sheaf of P2 twisted by d;

nA= the direct sum of n copies of the sheaf A;

{X,Y,Z}= basis of V ∗;

{R,S,T}= basis of V ∗;

[F ] = the stable equivalence class of a sheaf F ;

FD = Ext1(F , ωP2) if F is a one-dimensional sheaf on P2;

XD = the image in MP2(r,−χ) or in MP2(r, r− χ), as may be the case,

of a set X ⊂MP2(r,χ) under the duality morphism;

Xs = the open subset of points given by stable sheaves inside a set X;

PF = the Hilbert polynomial of a sheaf F ;

p(F) = χ/r, the slope of a sheaf F , where PF (m) = rm+ χ;

Cx,Cy,Cz = the structure sheaves of closed points x, y, z ∈ P2;

OL = the structure sheaf of a line L⊂ P2.

1.2. The moduli space MP2(6,1)

This moduli space can be decomposed into five strata: an open stratum X0;

two locally closed irreducible strata X1,X2 of codimension 2, respectively, 4;

a locally closed stratum that is the disjoint union of two irreducible locally closed

subsets X3 and X4, each of codimension 6; and a closed irreducible stratum X5

of codimension 8. The stratum X0 is an open subset inside a fiber bundle with

fiber P17 and base N(3,5,4); X2 is an open subset inside a fiber bundle with fiber

P21 and base Y × P2, where Y is the smooth projective variety of dimension 10

constructed at Claim 3.2.1; X3 is an open subset inside a fiber bundle with fiber

P23 and base P2×N(3,2,3). The closed stratum X5 is isomorphic to HilbP2(6,2).
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Table 1. Summary for M
P2 (6,1)

Cohomological Classification of sheaves F giving points in Xi

conditions

X0

h0(F(−1)) = 0

h1(F) = 0

h0(F ⊗Ω1(1)) = 0

0−→ 5O(−2)
ϕ−→ 4O(−1)⊕O −→F −→ 0

ϕ11 is semistable as a Kronecker module
0

X1

h0(F(−1)) = 0

h1(F) = 1

h0(F ⊗Ω1(1)) = 0

0−→O(−3)⊕ 2O(−2)
ϕ−→O(−1)⊕ 2O −→F −→ 0

ϕ is not equivalent to a morphism of the form[
� 0 0

� � �

� � �

]
,

[
� � 0

� � 0

� � �

]
,

[
� � �

� � �

� 0 0

]
,

[
0 0 �

� � �

� � �

] 2

X2

h0(F(−1)) = 0

h1(F) = 1

h0(F ⊗Ω1(1)) = 1

0→O(−3)⊕ 2O(−2)⊕O(−1)
ϕ→ 2O(−1)⊕ 2O→F → 0

ϕ=

[
q1 l11 l12 0
q2 l21 l22 0
f1 q11 q12 l1
f2 q21 q22 l2

]

l1, l2 are linearly independent, d= l11l22 − l12l21 �= 0,∣∣∣ q1 l11
q2 l21

∣∣∣, ∣∣∣ q1 l12
q2 l22

∣∣∣ are linearly independent modulo d

4

X3

h0(F(−1)) = 0

h1(F) = 2

h0(F ⊗Ω1(1)) = 2

0−→ 2O(−3)⊕ 2O(−1)
ϕ−→O(−2)⊕ 3O −→F −→ 0

ϕ11 has linearly independent entries

ϕ22 has linearly independent maximal minors

6

X4

h0(F(−1)) = 1

h1(F) = 2

h0(F ⊗Ω1(1)) = 3

0→ 2O(−3)⊕O(−2)
ϕ→O(−2)⊕O(−1)⊕O(1)→F → 0

ϕ=

[
0 0 1

q1 q2 0

g1 g2 0

]
,

where q1, q2 have no common factor or

ϕ=

[
l1 l2 0
q1 q2 l
g1 g2 h

]
,ϕ�

[
� � 0

0 0 �

� � �

]
,

where l1, l2 are linearly independent, l �= 0

6

X5

h0(F(−1)) = 1

h1(F) = 3

h0(F ⊗Ω1(1)) = 4

0−→O(−4)⊕O(−1)
ϕ−→O⊕O(1)−→F −→ 0

ϕ12 �= 0, ϕ12 � ϕ22
8

Each locally closed subset Xi ⊂ MP2(6,1) is defined by the cohomological

conditions listed in the second column of Table 1 above. We equip Xi with

the canonical induced reduced structure. In the third column of Table 1 we

describe, by means of locally free resolutions of length 1, all semistable sheaves

F on P2 whose stable equivalence class is in Xi. Thus, for each Xi there are

sheaves Ai, Bi on P2 that are direct sums of line bundles, such that each sheaf
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F giving a point in Xi is the cokernel of some morphism ϕ ∈Hom(Ai,Bi). The

linear algebraic group Gi = (Aut(Ai)×Aut(Bi))/C∗ acts by conjugation on the

finite-dimensional vector space Wi = Hom(Ai,Bi). Here C∗ is identified with

the subgroup of homotheties of Aut(Ai)×Aut(Bi). Let Wi ⊂Wi be the locally

closed subset of injective morphisms ϕ satisfying the conditions from the third

column of the table. We equip Wi with the canonical induced reduced structure.

In each case we shall prove that the map Wi →Xi defined by ϕ �→ [Coker(ϕ)] is
a geometric quotient map for the action of Gi.

1.3. The moduli space MP2(6,2)

This moduli space can also be decomposed into five strata: an open stratum

X0; a locally closed stratum that is the disjoint union of two irreducible locally

closed subsets X1 and X2, each of codimension 3; a locally closed stratum that

is the disjoint union of two irreducible locally closed subsets X3 and X4, each of

codimension 5; an irreducible locally closed stratum X5 of codimension 7; and a

closed irreducible stratum X6 of codimension 9. For some of these sets we have

concrete geometric descriptions: X1 is a certain open subset inside a fiber bundle

with fiber P20 and base N(3,4,3)×P2; X3 is an open subset of a fiber bundle with

fiber P22 and base HilbP2(2)×N(3,2,3); X5 is an open subset of a fiber bundle

with fiber P24 and base P2 ×HilbP2(2); the closed stratum X6 is isomorphic to

the universal sextic in P2 ×P(S6V ∗). The classification of sheaves in MP2(6,2) is

summarized in Table 2 below, which is organized in the same way as Table 1.

1.4. The moduli space MP2(6,3)

Here we have seven strata, compare Table 3 below. The open stratum X0 is

isomorphic to an open subset of N(6,3,3). The locally closed stratum X1 has

codimension 1 and is birational to P36. The codimension 4 stratum is the union

of three irreducible locally closed subsets X2, X3, X
D
3 . Here X2 is an open subset

of a fiber bundle over N(3,3,2)×N(3,2,3) with fiber P21 and Xs
3 isomorphic to an

open subset of a fiber bundle over N(3,3,4) with fiber P21. The open subset Xs
4

of the locally closed stratum X4 of codimension 5 is isomorphic to an open subset

of a tower of bundles with fiber P21 and base a fiber bundle over P5 with fiber P6.

The locally closed stratum X5 of codimension 6 is isomorphic to an open subset

of a fiber bundle over HilbP2(2) × HilbP2(2) with fiber P23. The locally closed

stratum X6 is an open subset of a fiber bundle over P2 × P2 with fiber P25 and

has codimension 8. Finally, we have a closed stratum X7 consisting of all sheaves

of the form OC(2) for C ⊂ P2 a sextic curve. ThusX7 � P27. The mapW0 →X0 is

a good quotient map. The map W1 →X1 is a categorical quotient map. The maps

W s
3 →Xs

3, (W
D
3 )

s → (XD
3 )

s, W s
4 →Xs

4, and Wi →Xi, i= 2,5,6,7, are geometric

quotient maps. The sheaves inX0, X1, X2, X3, and XD
3 have been classified in [8].

1.5. The moduli space MP2(6,0)

Here we have five strata: X0, X1, X2, X3 ∪XD
3 , and X4, of codimension given

in Table 4. The map W0 → X0 is a good quotient map. The maps W1 → X1
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Table 2. Summary for M
P2 (6,2)

Cohomological Classification of sheaves F giving points in Xi

conditions

X0

h0(F(−1)) = 0

h1(F) = 0

h0(F ⊗Ω1(1)) = 0

0−→ 4O(−2)
ϕ−→ 2O(−1)⊕ 2O −→F −→ 0

ϕ is not equivalent to a morphism of any of the forms[
� 0 0 0
� � � �
� � � �
� � � �

]
,

[
� � 0 0
� � 0 0
� � � �
� � � �

]
,

[
� � � 0
� � � 0
� � � 0
� � � �

] 0

X1

h0(F(−1)) = 0

h1(F) = 0

h0(F ⊗Ω1(1)) = 1

0−→ 4O(−2)⊕O(−1)
ϕ−→ 3O(−1)⊕ 2O −→F −→ 0

ϕ12 = 0,

ϕ11 and ϕ22 are semistable as Kronecker modules

3

X2

h0(F(−1)) = 0

h1(F) = 1

h0(F ⊗Ω1(1)) = 1

0−→O(−3)⊕O(−2)⊕O(−1)
ϕ−→ 3O −→F −→ 0

(ϕ12,ϕ13) has linearly independent maximal minors
3

X3

h0(F(−1)) = 0

h1(F) = 1

h0(F ⊗Ω1(1)) = 2

0→O(−3)⊕O(−2)⊕ 2O(−1)
ϕ→O(−1)⊕ 3O→F → 0

ϕ13 = 0, ϕ12 �= 0 and does not divide ϕ11

ϕ23 has linearly independent maximal minors

5

X4

h0(F(−1)) = 1

h1(F) = 1

h0(F ⊗Ω1(1)) = 3

0−→O(−3)⊕ 2O(−2)
ϕ−→ 2O(−1)⊕O(1)−→F −→ 0

ϕ is not equivalent to a morphism of any of the forms[
� 0 0

� � �

� � �

]
,

[
� � 0

� � 0

� � �

]
,

[
0 0 �

� � �

� � �

]
,

[
0 � �

0 � �

� � �

] 5

X5

h0(F(−1)) = 1

h1(F) = 2

h0(F ⊗Ω1(1)) = 4

0−→ 2O(−3)⊕O(−1)
ϕ−→O(−2)⊕O⊕O(1)−→F −→ 0

ϕ11 has linearly independent entries

ϕ22 �= 0 and does not divide ϕ32

7

X6

h0(F(−1)) = 2

h1(F) = 3

h0(F ⊗Ω1(1)) = 6

0−→O(−4)⊕O −→ 2O(1)−→F −→ 0

ϕ12 has linearly independent entries
9

and W2 →X2 are categorical quotient maps away from the points of the form

[OC1 ⊕OC2 ], where C1, C2 are cubic curves. The maps W3 →X3, W
D
3 →XD

3 ,

and W4 →X4 are geometric quotient maps away from properly semistable points,

that is, points of the form [OL(−1)⊕OQ(1)], where L is a line and Q is a quintic

curve. Thus Xs
3 and (XD

3 )
s are isomorphic to the open subset of HilbP2(6,3) of

pairs (C,Z), where C is a sextic curve and Z ⊂ C is a zero-dimensional sub-

scheme of length 3 that is not contained in a line. Moreover, Xs
4 is isomorphic
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Table 3. Summary for M
P2 (6,3)

Cohomological Classification of sheaves F giving points in Xi

conditions

X0

h0(F(−1)) = 0

h1(F) = 0

h0(F ⊗Ω1(1)) = 0

0−→ 3O(−2)
ϕ−→ 3O −→F −→ 0 0

X1

h0(F(−1)) = 0

h1(F) = 0

h0(F ⊗Ω1(1)) = 1

0−→ 3O(−2)⊕O(−1)
ϕ−→O(−1)⊕ 3O−→F −→ 0

ϕ12 = 0

ϕ is not equivalent to a morphism of any of the forms[
� 0 0 0
� � � �
� � � �
� � � �

]
,

[
� � 0 0
� � 0 0
� � � �
� � � �

]
,

[
� � � 0
� � � 0
� � � 0
� � � �

] 1

X2

h0(F(−1)) = 0

h1(F) = 0

h0(F ⊗Ω1(1)) = 2

0−→ 3O(−2)⊕ 2O(−1)
ϕ−→ 2O(−1)⊕ 3O−→F −→ 0

ϕ12 = 0

ϕ11 and ϕ22 are semistable as Kronecker modules

4

X3

h0(F(−1)) = 0

h1(F) = 1

h0(F ⊗Ω1(1)) = 3

0−→O(−3)⊕ 3O(−1)
ϕ−→ 4O−→F −→ 0

ϕ12 is semistable as a Kronecker module
4

XD
3

h0(F(−1)) = 1

h1(F) = 0

h0(F ⊗Ω1(1)) = 3

0−→ 4O(−2)
ϕ−→ 3O(−1)⊕O(1)−→F −→ 0

ϕ11 is semistable as a Kronecker module
4

X4

h0(F(−1)) = 1

h1(F) = 1

h0(F ⊗Ω1(1)) = 3

0−→O(−3)⊕O(−2)
ϕ−→O⊕O(1)−→F −→ 0

ϕ12 �= 0
5

X5

h0(F(−1)) = 1

h1(F) = 1

h0(F ⊗Ω1(1)) = 4

O(−3)⊕O(−2)⊕O(−1)
ϕ
↪→O(−1)⊕O⊕O(1)�F

ϕ13 = 0, ϕ12 �= 0, ϕ23 �= 0, ϕ12 � ϕ11, ϕ23 � ϕ33

6

X6

h0(F(−1)) = 2

h1(F) = 2

h0(F ⊗Ω1(1)) = 6

0−→ 2O(−3)⊕O ϕ−→O(−2)⊕ 2O(1)−→F −→ 0

ϕ11 has linearly independent entries

ϕ22 has linearly independent entries

8

X7

h0(F(−1)) = 3

h1(F) = 3

h0(F ⊗Ω1(1)) = 8

0−→O(−4)
ϕ−→O(2)−→F −→ 0 10

to the locally closed subscheme of HilbP2(6,3) given by the condition that Z be

contained in a line L that is not a component of C.
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Table 4. Summary for M
P2 (6,0)

Cohomological Classification of sheaves F giving points in Xi

conditions

X0

h0(F(−1)) = 0

h1(F) = 0

h1(F(1)) = 0

0−→ 6O(−2)
ϕ−→ 6O(−1)−→F −→ 0 0

X1

h0(F(−1)) = 0

h1(F) = 1

h1(F(1)) = 0

0−→O(−3)⊕ 3O(−2)
ϕ−→ 3O(−1)⊕O −→F −→ 0

ϕ12 is semistable as a Kronecker module
1

X2

h0(F(−1)) = 0

h1(F) = 2

h1(F(1)) = 0

2O(−3)⊕O(−2)⊕O(−1)
ϕ
↪→O(−2)⊕O(−1)⊕ 2O�F

see the conditions on ϕ at Proposition 6.1.3
4

X3

h0(F(−1)) = 0

h1(F) = 3

h1(F(1)) = 1

0−→O(−4)⊕ 2O(−1)
ϕ−→ 3O−→F −→ 0

ϕ12 has linearly independent maximal minors
7

XD
3

h0(F(−1)) = 1

h1(F) = 3

h1(F(1)) = 0

0−→ 3O(−3)
ϕ−→ 2O(−2)⊕O(1)−→F −→ 0

ϕ11 has linearly independent maximal minors
7

X4

h0(F(−1)) = 1

h1(F) = 3

h1(F(1)) = 1

0−→O(−4)⊕O(−2)
ϕ−→O(−1)⊕O(1)−→F −→ 0

ϕ12 �= 0
8

2. Preliminaries

2.1. The Beilinson monad and spectral sequences
In this subsection F will be a coherent sheaf on P2 with support of dimension 1.

The E1-term of the Beilinson spectral sequence I converging to F has display

diagram

H1
(
F(−2)

)
⊗O(−1)

ϕ1
H1

(
F(−1)

)
⊗Ω1(1)

ϕ2
H1(F)⊗O

(2.1.1)

H0
(
F(−2)

)
⊗O(−1)

ϕ3
H0

(
F(−1)

)
⊗Ω1(1)

ϕ4
H0(F)⊗O.

The spectral sequence degenerates at E3, which shows that ϕ2 is surjective and

that we have the exact sequences

(2.1.2) 0−→H0
(
F(−2)

)
⊗O(−1)

ϕ3−→H0
(
F(−1)

)
⊗Ω1(1)

ϕ4−→H0(F)⊗O −→Coker(ϕ4)−→ 0,

(2.1.3) 0 −→ Ker(ϕ1)
ϕ5−→ Coker(ϕ4) −→ F −→ Ker(ϕ2)/Im(ϕ1) −→ 0.
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The E1-term of the Beilinson spectral sequence II converging to F has display

diagram

H1
(
F(−1)

)
⊗O(−2)

ϕ1
H1

(
F ⊗Ω1(1)

)
⊗O(−1)

ϕ2
H1(F)⊗O

(2.1.4)
H0

(
F(−1)

)
⊗O(−2)

ϕ3
H0

(
F ⊗Ω1(1)

)
⊗O(−1)

ϕ4
H0(F)⊗O.

As above, this spectral sequence degenerates at E3 and yields the exact sequences

(2.1.5) 0−→H0
(
F(−1)

)
⊗O(−2)

ϕ3−→H0
(
F ⊗Ω1(1)

)
⊗O(−1)

ϕ4−→H0(F)⊗O −→Coker(ϕ4)−→ 0,

(2.1.6) 0 −→ Ker(ϕ1)
ϕ5−→ Coker(ϕ4) −→ F −→ Ker(ϕ2)/Im(ϕ1) −→ 0.

The Beilinson free monad associated to F is a sequence

0−→C−2 −→C−1 −→C0 −→C1 −→C2 −→ 0,
(2.1.7)

Cp =
⊕

i+j=p

Hj
(
F ⊗Ω−i(−i)

)
⊗O(i),

which is exact, except at C0, where the cohomology is F . Note that C2 = 0 because

F is assumed to have dimension 1. The maps

H0
(
F ⊗Ω−i(−i)

)
⊗O(i)−→H1

(
F ⊗Ω−i(−i)

)
⊗O(i),

i= 0,−1,−2, occurring in the monad are zero (cf., for instance, [9, Lemma 1]).

2.2. Cohomology bounds
PROPOSITION 2.2.1

(i) Let F give a point in MP2(r,χ), where 0 ≤ χ < r. Assume that

h1(F)> 0. Then h1(F(1))> 2h1(F)− h1(F(−1)).

(ii) Let F give a point in MP2(r,χ), where 0 < χ ≤ r. Assume that

h0(F(−1))> 0. Then h0(F(−2))> 2h0(F(−1))− h0(F).

Proof

Part (ii) is equivalent to (i) by duality, so we concentrate on (i). Write p= h1(F),

q = h0(F(−1)), m= h0(F ⊗Ω1(1)). The Beilinson free monad (2.1.7) for F takes

the form

0−→ qO(−2)
ψ−→ (q+ r− χ)O(−2)⊕mO(−1)

−→ (m+ r− 2χ)O(−1)⊕ (p+ χ)O η−→ pO −→ 0

and yields a resolution

0−→ (q+ r− χ)O(−2)⊕Coker(ψ21)
ϕ−→Ker(η11)⊕ (p+ χ)O −→F −→ 0
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in which ϕ12 = 0. Since F maps surjectively to Coker(ϕ11) we have the inequal-

ity

m+ r− 2χ− p= rank
(
Ker(η11)

)
≤ q+ r− χ.

If the inequality is not strict, then Coker(ϕ11) has negative slope, contradicting

the semistability of F . Thus m< p+ q+ χ. We have

h0
(
F(1)

)
= h0

(
(p+ χ)O(1)

)
+h0

(
Ker(η11)(1)

)
− h0

(
Coker(ψ21)(1)

)
≥ h0

(
(p+ χ)O(1)

)
− h0

(
Coker(ψ21)(1)

)
= 3p+ 3χ−m

> 2p+ 2χ− q,

h1
(
F(1)

)
= h0

(
F(1)

)
− r− χ> 2p+ χ− q− r = 2h1(F)− h1

(
F(−1)

)
. �

COROLLARY 2.2.2

There are no sheaves F giving points

(i) in MP2(6,1) and satisfying h0(F(−1))≤ 1, h1(F)≥ 3, h1(F(1)) = 0;

(ii) in MP2(6,1) and satisfying h0(F(−1)) = 1, h1(F) = 1;

(iii) in MP2(6,1) and satisfying h0(F(−1)) = 2, h1(F(1)) = 0;

(iv) in MP2(6,2) and satisfying h0(F(−1))≤ 1, h1(F)≥ 3, h1(F(1)) = 0;

(v) in MP2(6,2) and satisfying h0(F(−1)) = 0, h1(F) = 2, h1(F(1)) = 0;

(vi) in MP2(6,3) and satisfying h0(F(−1))≤ 1, h1(F)≥ 2, h1(F(1)) = 0;

(vii) in MP2(6,0) and satisfying h0(F(−1)) = 0, h1(F)≥ 3, h1(F(1)) = 0.

Proof

LetF give a point in MP2(6,1). According to [3, Proposition 2.1.3], h0(F(−2)) = 0.

In view of Proposition 2.2.1(ii) we have h0(F) > 2h0(F(−1)). This proves (ii).

Assume now thatF satisfies the conditions from (iii). Then h1(F) = h0(F)−1≥ 4.

On the other hand, by Proposition 2.2.1(i), we have 7 = h1(F(−1)) > 2h1(F).

This yields a contradiction and proves (iii). All other parts of the corollary are

direct applications of Proposition 2.2.1(i). �

2.3. Stability criteria
PROPOSITION 2.3.1

Let n be a positive integer, and let d1 ≤ · · · ≤ dn, e1 ≤ · · · ≤ en be integers satis-

fying the relations

e1 − d1 ≥ e2 + · · ·+ en − d2 − · · · − dn,(i)

e1 + d1 ≤
e22 + · · ·+ e2n − d22 − · · · − d2n
e2 + · · ·+ en − d2 − · · · − dn

.(ii)

Let F be a sheaf on P2 having resolution

0−→O(d1)⊕ · · · ⊕O(dn)
ϕ−→O(e1)⊕ · · · ⊕O(en)−→F −→ 0.
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Assume that the maximal minors of the restriction of ϕ to O(d2)⊕ · · · ⊕ O(dn)

have no common factor and that none of them has degree zero. Then F is stable,

unless the ratio

r =
e21 + · · ·+ e2n − d21 − · · · − d2n
e1 + · · ·+ en − d1 − · · · − dn

is an integer and F has a subsheaf S given by a resolution

0−→O(d1)−→O(r− d1)−→S −→ 0.

In this case p(S) = p(F) and F is properly semistable. Note that condition (ii)

can be replaced by the requirement that ei ≥ di for 2≤ i≤ n.

Proof

Let C ⊂ P2 be the curve given by the equation det(ϕ) = 0. Its degree is d= e1 +

· · ·+ en − d1 − · · · − dn. Let ψ denote the restriction of ϕ to O(d2)⊕ · · · ⊕O(dn),

and let ζi be the maximal minor of the matrix representing ψ obtained by deleting

row i. We have an exact sequence

0−→O(d2)⊕ · · · ⊕O(dn)
ψ−→O(e1)⊕ · · · ⊕O(en)

ζ−→O(e)−→C −→ 0,

ζ =
[
ζ1 −ζ2 · · · (−1)n+1ζn

]
, e= d+ d1.

The Hilbert polynomial of C is a constant, namely, d2

2 + dd1 +
∑n

i=1
d2
i−e2i
2 , show-

ing that C is the structure sheaf of a zero-dimensional scheme Z ⊂ P2 and that

Coker(ψ)� IZ(e) and F � JZ(e), where JZ ⊂OC is the ideal sheaf of Z in C.

Clearly F has no zero-dimensional torsion. Let S ⊂ F be a subsheaf of multi-

plicity at most d− 1. According to [8, Lemma 6.7] there is a sheaf A such that

S ⊂A⊂OC(e), A/S is supported on finitely many points, and OC(e)/A�OS(e)

for a curve S ⊂ P2 of degree s, 1≤ s≤ d− 1. We have the relations

PS(m) = POC(e)(m)−POS(e)(m)− h0(A/S)

= dm+ de− d(d− 3)

2
− sm− se+

s(s− 3)

2
− h0(A/S),

p(S) = e+
3

2
− d+ s

2
− h0(A/S)

d− s
,

PF (m) = dm+
3d

2
+

n∑
i=1

e2i − d2i
2

,

p(F) =
3

2
+

n∑
i=1

e2i − d2i
2d

.

In order to show that F is semistable we will prove that p(S) ≤ p(F). This is

equivalent to the inequality

d1 +
d

2
+

n∑
i=1

d2i − e2i
2d

≤ s

2
+

h0(A/S)
d− s

.
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Assume that

s

2
< d1 +

d

2
+

n∑
i=1

d2i − e2i
2d

and

h0(A/S)≤ (d− s)
(
d1 +

d

2
− s

2
+

n∑
i=1

d2i − e2i
2d

)
.

We have a commutative diagram

0 A/S OC(e)/S OS(e) 0

A/S OZ OY 0

in which Y is a subscheme of Z of length at least

d2

2
+ dd1 +

n∑
i=1

d2i − e2i
2

− (d− s)
(
d1 +

d

2
− s

2
+

n∑
i=1

d2i − e2i
2d

)

= s
(
d+ d1 −

s

2
+

n∑
i=1

d2i − e2i
2d

)
.

We claim that length(Y )> sdeg(ζ1) = s(d−e1+d1). This follows from the equiv-

alent inequalities

d+ d1 −
s

2
+

n∑
i=1

d2i − e2i
2d

> d− e1 + d1,

e1 +

n∑
i=1

d2i − e2i
2d

>
s

2
,

which follow from the inequality

e1 +
n∑

i=1

d2i − e2i
2d

≥ d1 +
d

2
+

n∑
i=1

d2i − e2i
2d

.

The latter is equivalent to condition (i) from the hypothesis. This proves the

claim. Since Y is a subscheme of S and also of the curve given by the equation

ζ1 = 0, we can apply Bézout’s theorem to deduce that S and the curve given

by the equation ζ1 = 0 have a common component. Since gcd(ζ1, . . . , ζn) = 1, we

may perform elementary row operations on the matrix representing ϕ to ensure

that ζ1 is irreducible. Thus ζ1 divides the equation defining S. In particular,

deg(ζ1)≤ s. It follows that

d− e1 + d1 = deg(ζ1)< 2d1 + d+

n∑
i=1

d2i − e2i
d

,
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n∑
i=1

(e2i − d2i )< d(d1 + e1) = e21 − d21 + (d1 + e1)

n∑
i=2

(ei − di),

n∑
i=2

(e2i − d2i )< (d1 + e1)

n∑
i=2

(ei − di).

The last inequality contradicts condition (ii) from the hypothesis. The above

discussion shows that p(S)< p(F) unless S =A and

s

2
= d1 +

d

2
+

n∑
i=1

d2i − e2i
2d

,

in which case p(S) = p(F) and F is semistable but not stable. Clearly we have

an exact sequence

0−→O(e− d)−→O(e− s)−→S −→ 0.

Note that e− d= d1, e− s= r− d1. �

COROLLARY 2.3.2

Let d1 ≤ d2 < e1 ≤ e2 be integers satisfying the condition e1 − d1 ≥ e2 − d2. Let

F be a sheaf on P2 having resolution

0−→O(d1)⊕O(d2)
ϕ−→O(e1)⊕O(e2)−→F −→ 0.

Assume that ϕ12 and ϕ22 have no common factor. Then F is stable, unless

e1 − d1 = e2 − d2 and ϕ∼ [ 0 �
� � ], in which case F is semistable but not stable.

Proof

According to the proposition above, F is stable unless the ratio

r =
e21 + e22 − d21 − d22
e1 + e2 − d1 − d2

is an integer and F has a subsheaf S given by a certain resolution. We have a

commutative diagram

0 O(d1)

β

O(r− d1)

α

S 0

0 O(d1)⊕O(d2)
ϕ O(e1)⊕O(e2) F 0

in which α and β are injective. Thus r− d1 ≤ e2; that is,

e21 + e22 − d21 − d22 ≤ (e1 + e2 − d1 − d2)(d1 + e2),

(e1 − d2)(e1 + d2)≤ (e1 − d2)(d1 + e2),

e1 + d2 ≤ d1 + e2.

Thus e1 − d1 = e2 − d2, r− d1 = e2, and ϕ has the special form given above. �
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3. The moduli space MP2(6,1)

3.1. Classification of sheaves
PROPOSITION 3.1.1

Every sheaf F giving a point in MP2(6,1) and satisfying the condition h1(F) = 0

also satisfies the condition h0(F(−1)) = 0. These sheaves are precisely the sheaves

having a resolution of the form

0−→ 5O(−2)
ϕ−→ 4O(−1)⊕O −→F −→ 0,

where ϕ11 is semistable as a Kronecker module.

Proof

The statement follows by duality from [8, Claim 4.2]. �

CLAIM 3.1.2

Consider an exact sequence of sheaves on P2:

0−→O(−3)⊕ 2O(−2)
ϕ−→ 2O(−1)⊕O(1)−→F −→ 0,

ϕ=

⎡
⎣q1 l11 l12
q2 l21 l22
f g1 g2

⎤
⎦ ,

where l11l22 − l12l21 �= 0 and the images of q1l21 − q2l11 and q1l22 − q2l12 in

S3V ∗/(l11l22 − l12l21)V
∗ are linearly independent. Then F gives a stable point

in MP2(6,2).

Proof

By hypothesis the maximal minors of the matrix

ψ =

[
q1 l11 l12
q2 l21 l22

]

cannot have a common quadratic factor. If they have no common factor, then

the claim follows by duality from Proposition 2.3.1. Assume that they have a

common linear factor. Then Ker(ψ) � O(−4) and Coker(ψ) is supported on a

line L. From the snake lemma we get an extension

0−→OC(1)−→F −→Coker(ψ)−→ 0,

where C is a quintic curve. Because of the conditions on ψ it is easy to check that

Coker(ψ) has zero-dimensional torsion of length at most 1. Assume that Coker(ψ)
has no zero-dimensional torsion, that is, Coker(ψ) � OL(1). Let F ′ ⊂ F be a

nonzero subsheaf of multiplicity at most 5. Denote by C its image in OL(1), and

put K=F ′ ∩OC(1). If C = 0, then p(F ′)≤ 0 because OC is stable. Assume that

C �= 0; that is, C has multiplicity 1. If K= 0 and F ′ destabilizes F , then F ′ �OL

or F ′ � OL(1). Both situations can be ruled out using diagrams analogous to

diagram (8) at Proposition 3.1.3 below. Thuswemay assume that 1≤mult(K)≤ 4.

According to [8, Lemma 6.7], there is a sheaf A such that K⊂A⊂OC(1), A/K
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is supported on finitely many points, and OC(1)/A�OS(1) for a curve S ⊂ P2

of degree s, 1≤ s≤ 4. Thus

PF ′(m) = PK(m) + PC(m)

= PA(m)− h0(A/K) + POL(1)(m)− h0
(
OL(1)/C

)
= (5− s)m+

s2 − 5s

2
+m+ 2− h0(A/K)− h0

(
OL(1)/C

)
,

p(F ′) =
1

6− s

(s2 − 5s

2
+ 2− h0(A/K)− h0

(
OL(1)/C

))

≤ s2 − 5s+ 4

2(6− s)
<

1

3
= p(F).

We see that in this case F is stable. Assume next that Coker(ψ) has a zero-

dimensional subsheaf T of length 1. Let E be the preimage of T in F . According

to [10, Proposition 3.1.5], E gives a point in MP2(5,1). Let F ′ and C be as above.

If C ⊂ T , then F ′ ⊂ E , and hence p(F ′)≤ p(E)< p(F). If C is not a subsheaf of

T , then we can estimate p(F ′) as above, concluding again that it is less than the

slope of F . �

PROPOSITION 3.1.3

The sheaves F giving points in MP2(6,1) and satisfying the conditions

h0(F(−1)) = 0, h1(F) = 1, h1(F(1)) = 0 are precisely the sheaves having a reso-

lution of the form

0−→O(−3)⊕ 2O(−2)
ϕ−→O(−1)⊕ 2O−→F −→ 0,(i)

ϕ=

⎡
⎣ q l1 l2
f1 q11 q12
f2 q21 q22

⎤
⎦ ,

where ϕ is not equivalent to a morphism represented by a matrix of one of the

following four forms:

ϕ1 =

⎡
⎣
 0 0


 
 



 
 


⎤
⎦ , ϕ2 =

⎡
⎣
 
 0


 
 0


 
 


⎤
⎦ ,

ϕ3 =

⎡
⎣
 
 



 
 



 0 0

⎤
⎦ , ϕ4 =

⎡
⎣0 0 



 
 



 
 


⎤
⎦ ,

or the sheaves having a resolution of the form

0−→O(−3)⊕ 2O(−2)⊕O(−1)
ϕ−→ 2O(−1)⊕ 2O−→F −→ 0,(ii)

ϕ=

⎡
⎢⎢⎣
q1 l11 l12 0

q2 l21 l22 0

f1 q11 q12 l1
f2 q21 q22 l2

⎤
⎥⎥⎦ ,



The classification of semistable plane sheaves supported on sextics 753

where l1, l2 are linearly independent one-forms, l11l22− l12l21 �= 0, and the images

of q1l21− q2l11 and q1l22− q2l12 in S3V ∗/(l11l22− l12l21)V
∗ are linearly indepen-

dent.

Proof

Let F give a point in MP2(6,1) and satisfy the above cohomological conditions.

Display diagram (2.1.1) for the Beilinson spectral sequence I converging to F(1)

reads

5O(−1)
ϕ1

Ω1(1) 0

0 2Ω1(1)
ϕ4

7O.

Resolving Ω1(1) yields the exact sequence

0−→Ker(ϕ1)−→O(−2)⊕ 5O(−1)
σ−→ 3O(−1)−→Coker(ϕ1)−→ 0.

Notice that F(1) maps surjectively to Coker(ϕ1). Thus rank(σ12) = 3; otherwise

Coker(ϕ1) would have positive rank or would be isomorphic to OL(−1) violating

the semistability of F(1). We have shown that Coker(ϕ1) = 0 and Ker(ϕ1) �
O(−2)⊕ 2O(−1). Combining the exact sequences (2.1.2) and (2.1.3) we obtain

the resolution

0−→O(−2)⊕ 2O(−1)⊕ 2Ω1(1)−→ 7O−→F(1)−→ 0,

hence a resolution

0−→O(−2)⊕ 2O(−1)⊕ 6O ρ−→ 7O⊕ 2O(1)−→F(1)−→ 0.

Notice that rank(ρ13)≥ 5; otherwise F(1) would map surjectively to the cokernel

of a morphism O(−2)⊕ 2O(−1)→ 3O, in violation of semistability. Canceling

5O and tensoring with O(−1) we arrive at the resolution

0−→O(−3)⊕ 2O(−2)⊕O(−1)
ϕ−→ 2O(−1)⊕ 2O−→F −→ 0.

From this we get resolution (i) or (ii), depending on whether ϕ13 �= 0 or ϕ13 = 0.

Conversely, we assume that F has resolution (i) and we need to show that

there are no destabilizing subsheaves E . We argue by contradiction; that is, we

assume that there is such a subsheaf E . We may assume that E is semistable.

As h0(E) ≤ 2, E gives a point in MP2(r,1) or MP2(r,2) for some r, 1 ≤ r ≤ 5.

The cohomology groups H0(E(−1)) and H0(E ⊗ Ω1(1)) vanish because the cor-

responding cohomology groups for F vanish. From the description of MP2(r,1)

and MP2(r,2), 1≤ r ≤ 5, found in [3] and [10], we see that E may have one of the

following resolutions:

0−→O(−2)−→O−→E −→ 0,(1)

0−→ 2O(−2)−→O(−1)⊕O −→E −→ 0,(2)

0−→ 3O(−2)−→ 2O(−1)⊕O −→E −→ 0,(3)
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0−→ 2O(−2)−→ 2O−→E −→ 0,(4)

0−→ 4O(−2)−→ 3O(−1)⊕O −→E −→ 0,(5)

0−→O(−3)⊕O(−2)−→ 2O−→E −→ 0,(6)

0−→ 3O(−2)−→O(−1)⊕ 2O−→E −→ 0.(7)

Resolution (1) must fit into a commutative diagram

(8)

0 O(−2)
ψ

β

O

α

E 0

0 O(−3)⊕ 2O(−2)
ϕ O(−1)⊕ 2O F 0

in which α is injective (being injective on global sections). Thus β is injective, too,

and ϕ∼ ϕ2, contradicting our hypothesis on ϕ. Similarly, every other resolution

must fit into a commutative diagram in which α and α(1) are injective on global

sections. This rules out resolution (7) because in that case α must be injective;

hence Ker(β) = 0, which is absurd. If E has resolution (5), then α is equivalent

to a morphism represented by a matrix having one of the following two forms:⎡
⎣1 0 0 0

0 u1 u2 0

0 0 0 1

⎤
⎦ or

⎡
⎣ 0 0 0 0

u1 u2 u3 0

0 0 0 1

⎤
⎦ ,

where u1, u2, u3 are linearly independent one-forms. In the first case Ker(β) �
O(−2), and in the second case Ker(β)�Ω1. Both situations are absurd. Assume

that E has resolution (3). Since β cannot be injective, we see that α is equivalent

to a morphism represented by a matrix of the form⎡
⎣ 0 0 0

u1 u2 0

0 0 1

⎤
⎦ ;

hence Ker(α)�O(−2), and hence ϕ∼ ϕ1, which is a contradiction. For resolu-

tions (2), (4), and (6), α and β must be injective, and we get the contradictory

conclusions that ϕ∼ ϕ3, ϕ∼ ϕ1, or ϕ∼ ϕ4.

Assume now that F has resolution (ii). The sheaf G =FD(1) is the cokernel

of the transpose of ϕ. From the snake lemma we have an extension

0−→G′ −→G −→Cx −→ 0,

where G′ is the cokernel of a morphism ψ : O(−3)⊕ 2O(−1)→ 2O⊕O(1),

ψ =

⎡
⎣
 l22 l12

 l21 l11

 q2 q1

⎤
⎦ .

From Claim 3.1.2 we know that G′ gives a stable point in MP2(6,4). It is now

straightforward to check that any destabilizing subsheaf E of G must give a point
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in MP2(1,1) or MP2(2,2). The existence of such sheaves can be ruled out as above

using diagrams analogous to diagram (8). �

CLAIM 3.1.4

Let F be a sheaf having a resolution

0−→O(−4)⊕ 2O(−1)
ψ−→ 3O−→F −→ 0

in which ψ12 has linearly independent maximal minors. Then F gives a point

in MP2(6,0). If the maximal minors of ψ12 have no common factor, then F is

stable. If they have a common linear factor l, then OL(−1) ⊂ F is the unique

proper subsheaf of slope zero, where L⊂ P2 is the line with equation l= 0.

Proof

When the maximal minors of ψ12 have no common factor the claim follows from

Proposition 2.3.1. Assume that the maximal minors of ψ12 have a common linear

factor l. We have an extension

0−→OL(−1)−→F −→OC(1)−→ 0,

where L is the line with equation l = 0 and C is a quintic curve. Thus F is

semistable and OL(−1), OC(1) are its stable factors. The latter cannot be a

subsheaf of F because H0(F(−1)) vanishes. �

PROPOSITION 3.1.5

The sheaves F giving points in MP2(6,1) and satisfying the conditions

h0(F(−1)) = 0, h1(F) = 2, h1(F(1)) = 0 are precisely the sheaves having a reso-

lution

0−→ 2O(−3)⊕ 2O(−1)
ϕ−→O(−2)⊕ 3O−→F −→ 0

in which ϕ11 has linearly independent entries and ϕ22 has linearly independent

maximal minors.

Proof

Let F give a point in MP2(6,1) and satisfy the above cohomological conditions.

Display diagram (2.1.1) for the Beilinson spectral sequence I converging to F(1)

reads

5O(−1)
ϕ1

2Ω1(1) 0

0 3Ω1(1)
ϕ4

7O.

Resolving 2Ω1(1) yields the exact sequence

0−→Ker(ϕ1)−→ 2O(−2)⊕ 5O(−1)
σ−→ 6O(−1)−→Coker(ϕ1)−→ 0.
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Arguing as in the proof of Proposition 3.1.3, we see that rank(σ12) = 5; therefore,

Ker(ϕ1)�O(−3), and Coker(ϕ1)�Cx. From (2.1.2) we get the exact sequence

0−→O(−3)⊕ 3Ω1(1)−→ 7O−→Coker(ϕ5)−→ 0,

hence the resolution

0−→O(−3)⊕ 9O−→ 7O⊕ 3O(1)−→Coker(ϕ5)−→ 0.

From (2.1.3) we get the extension

0−→Coker(ϕ5)−→F(1)−→Cx −→ 0.

We apply the horseshoe lemma to the above extension, to the above resolution

of Coker(ϕ5), and to the standard resolution of Cx tensored with O(−1). We

obtain the exact sequence

0−→O(−3)−→O(−3)⊕2O(−2)⊕9O −→O(−1)⊕7O⊕3O(1)−→F(1)−→ 0.

The map O(−3) → O(−3) is nonzero because h1(F(1)) = 0. Canceling O(−3)

and tensoring with O(−1) yields the resolution

0−→ 2O(−3)⊕ 9O(−1)
ρ−→O(−2)⊕ 7O(−1)⊕ 3O−→F −→ 0.

Notice that rank(ρ22) = 7; otherwise F would map surjectively to the cokernel of

a morphism 2O(−3)→O(−2)⊕O(−1), in violation of semistability. Canceling

7O(−1) we arrive at a resolution as in the proposition.

Conversely, we assume that F has a resolution as in the proposition and we

need to show that there are no destabilizing subsheaves. From the snake lemma

we get an extension

0−→F ′ −→F −→Cx −→ 0,

where F ′ has a resolution

0−→O(−4)⊕ 2O(−1)
ψ−→ 3O−→F ′ −→ 0

in which ψ12 = ϕ22. According to Claim 3.1.4, F ′ is semistable and the only

possible subsheaf of F ′ of slope zero must be of the form OL(−1). It follows that

for every subsheaf E ⊂ F we have p(E)≤ 0 excepting, possibly, subsheaves that

fit into an extension of the form

0−→OL(−1)−→E −→Cx −→ 0.

In this case E � OL because E has no zero-dimensional torsion, and we have a

diagram similar to diagram (8), leading to a contradiction. �

PROPOSITION 3.1.6

The sheaves F giving points in MP2(6,1) and satisfying the conditions

h0(F(−1)) = 1, h1(F) = 2 are precisely the sheaves having a resolution of the

form

0−→ 2O(−3)
ϕ−→O(−1)⊕O(1)−→F −→ 0,(i)



The classification of semistable plane sheaves supported on sextics 757

ϕ=

[
q1 q2
g1 g2

]
,

where q1, q2 have no common factor, or the sheaves having a resolution of the

form

0−→ 2O(−3)⊕O(−2)
ϕ−→O(−2)⊕O(−1)⊕O(1)−→F −→ 0,(ii)

ϕ=

⎡
⎣ l1 l2 0

q1 q2 l

g1 g2 h

⎤
⎦ , where ϕ�

⎡
⎣
 
 0

0 0 



 
 


⎤
⎦ ,

l1, l2 are linearly independent one-forms, and l �= 0.

Proof

Let F give a point in MP2(6,1) and satisfy the above cohomological conditions.

Denote m= h0(F⊗Ω1(1)). The Beilinson tableau (2.1.4) for the sheaf G =FD(1)

reads

3O(−2)
ϕ1

mO(−1)
ϕ2 O

2O(−2)
ϕ3

(m+ 4)O(−1)
ϕ4

6O.

Since ϕ2 is surjective, m≥ 3. Since G maps surjectively to C =Ker(ϕ2)/Im(ϕ1),

m≤ 4. If m= 4, then p(C) =−1/2, violating the semistability of G. Thus m= 3.

As at [10, Proposition 2.2.4], we have Ker(ϕ2) = Im(ϕ1) and Ker(ϕ1)�O(−3).

As at [10, Proposition 3.2.5], it can be shown that Coker(ϕ3)� 2Ω1(1)⊕O(−1).

Combining the exact sequences (2.1.5) and (2.1.6) we obtain the resolution

0−→O(−3)⊕ 2Ω1(1)⊕O(−1)−→ 6O−→G −→ 0.

Dualizing and resolving 2Ω1 leads to the resolution

0−→ 2O(−3)⊕ 6O(−2)
ρ−→ 6O(−2)⊕O(−1)⊕O(1)−→F −→ 0.

Note that rank(ρ12)≥ 5; otherwise F would map surjectively to the cokernel of

a morphism 2O(−3)→ 2O(−2), in violation of semistability. When rank(ρ) = 5

we get resolution (ii). When rank(ρ) = 6 we get resolution (i).

Conversely, if F has resolution (i), then, in view of Corollary 2.3.2, F is

stable. Assume now that F has resolution (ii). We examine first the case when l

does not divide h. From the snake lemma we have an extension

0−→F ′ −→F −→Cx −→ 0,

where F ′ is the cokernel of a morphism ψ : O(−4) ⊕ O(−2) → O(−1) ⊕ O(1)

for which ψ12 does not divide ψ22. In view of Corollary 2.3.2, F ′ is semistable

and the only possible subsheaf of F ′ of slope zero must be of the form OC(1),

for a quintic curve C ⊂ P2. It follows that every proper subsheaf of F has non-

positive slope except, possibly, extensions E of Cx by OC(1). According to [10,
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Proposition 3.1.5], we have a resolution

0−→ 2O(−3)−→O(−2)⊕O(1)−→E −→ 0.

This forms part of a diagram analogous to diagram (8), leading to a contradiction.

Assume now that l divides h. We may assume that h= 0. Let L be the line

given by the equation l= 0. From the snake lemma we get a nonsplit extension

0−→OL(−1)−→F −→E −→ 0,

where E is as above. According to [10, Proposition 3.1.5], E is stable. It is easy

to see now that F is stable as well. �

PROPOSITION 3.1.7

(i) The sheaves G giving points in MP2(6,4) and satisfying the condition

h0(G(−2))> 0 are precisely the sheaves having a resolution of the form

0−→ 2O(−3)
ϕ−→O(−2)⊕O(2)−→G −→ 0,

ϕ=

[
l1 l2
f1 f2

]
,

where l1, l2 are linearly independent one-forms.

(ii) By duality, the sheaves F giving points in MP2(6,2) and satisfying the

condition h1(F (1))> 0 are precisely the sheaves having resolution

0−→O(−4)⊕O ϕT

−→ 2O(1)−→F −→ 0.

These are precisely the sheaves of the form Jx(2), where Jx ⊂ OC is the ideal

sheaf of a closed point x inside a sextic curve C ⊂ P2.

Proof

The argument is entirely analogous to the argument at [10, Proposition 3.1.5]. �

PROPOSITION 3.1.8

The sheaves F giving points in MP2(6,1) and satisfying the condition h1(F(1))>

0 are precisely the sheaves having a resolution of the form

0−→O(−4)⊕O(−1)
ϕ−→O⊕O(1)−→F −→ 0,

ϕ=

[
h l

g q

]
,

where l �= 0 and l does not divide q. These are precisely the sheaves of the form

JZ(2), where JZ ⊂OC is the ideal sheaf of a zero-dimensional subscheme Z of

length 2 inside a sextic curve C ⊂ P2.

Proof

Let F give a point in MP2(6,1) and satisfy the condition h1(F(1))> 0. Denote

G =FD(1). According to [9], G gives a point in MP2(6,5) and h0(G(−2))> 0. As in
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[3, Proposition 2.1.3], there is an injective morphism OC →G(−2), where C ⊂ P2

is a curve. Clearly C has degree 6; otherwise OC would destabilize G(−2). The

quotient sheaf C = G/OC(2) has support of dimension zero and length 2. Write

C as an extension of OP2 -modules of the form

0−→Cx −→C −→Cy −→ 0.

Let G′ be the preimage of Cx in G. This subsheaf has no zero-dimensional torsion

and is an extension of Cx by OC(2); hence, in view of Proposition 3.1.7, it has a

resolution of the form

0−→ 2O(−3)−→O(−2)⊕O(2)−→G′ −→ 0.

We construct a resolution of G from the above resolution of G′ and from the

standard resolution of Cy tensored with O(−1):

0−→O(−3)−→ 2O(−3)⊕ 2O(−2)−→O(−2)⊕O(−1)⊕O(2)−→G −→ 0.

If the morphism O(−3)→ 2O(−3) were zero, then it could be shown, as in the

proof of [10, Proposition 2.3.2], that Cy is a direct summand of G. This would

contradict our hypothesis. Thus we may cancel O(−3) to get the resolution

0−→O(−3)⊕ 2O(−2)−→O(−2)⊕O(−1)⊕O(2)−→G −→ 0.

If the morphism 2O(−2)→O(−2) were zero, then G would have a destabilizing

quotient sheaf of the form OL(−2). Thus we may cancel O(−2) to get a resolution

0−→O(−3)⊕O(−2)
ψ−→O(−1)⊕O(2)−→G −→ 0,

ψ =

[
q l

g h

]
,

in which l �= 0 and l does not divide q. Dualizing, we get a resolution for F as in

the proposition. The converse follows from Corollary 2.3.2. �

In the remaining part of this subsection we shall prove that there are no sheaves

F giving points in MP2(6,1) besides the sheaves we have discussed so far. In view

of Proposition 3.1.8 we may restrict our attention to the case when H1(F(1)) = 0.

Assume that h0(F(−1)) ≤ 1. According to Corollary 2.2.2(i), (ii) and Proposi-

tion 3.1.1 the pair (h0(F(−1)),h1(F)) may be one of the following: (0,0), (0,1),

(0,2), (1,2). Each of these situations has already been examined. The following

concludes the classification of sheaves in MP2(6,1).

PROPOSITION 3.1.9

Let F be a sheaf giving a point in MP2(6,1). Then h0(F(−1)) = 0 or 1.

Proof

Assume that F gives a point in MP2(6,1) and h0(F(−1))> 0. As in the proof of

[3, Proposition 2.1.3], there is an injective morphism OC →F(−1) for a curve

C ⊂ P2. From the semistability of F we see that C has degree 5 or 6. In the first
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case F(−1)/OC has Hilbert polynomial P(m) =m and has no zero-dimensional

torsion. Indeed, the pullback in F(−1) of any nonzero subsheaf of F(−1)/OC

supported on finitely many points would destabilize F(−1). We deduce that

F(−1)/OC is isomorphic to OL(−1); hence h0(F(−1)) = 1.

Assume now that C is a sextic curve and H1(F(1)) = 0. The quotient sheaf

C = F(−1)/OC has support of dimension zero and length 4. Assume that

h0(F(−1)) > 1. Then, in view of Corollary 2.2.2(iii), we have h0(F(−1)) ≥ 3.

We claim that there is a global section s of F(−1) such that its image in C gen-

erates a subsheaf isomorphic to OZ , where Z ⊂ P2 is a zero-dimensional scheme

of length 1, 2, or 3. Indeed, as h0(OC) = 1 and h0(F(−1))≥ 3, there are global

sections s1 and s2 of F(−1) such that their images in C are linearly independent.

Consider a subsheaf C′ ⊂ C of length 3. Choose c1, c2 ∈ C, not both zero, such

that the image of c1s1 + c2s2 under the composite map F(−1) → C → C/C′ is

zero. Then s= c1s1 + c2s2 satisfies our requirements.

Let F ′ ⊂F(−1) be the preimage of OZ . Assume first that Z is not contained

in a line, so, in particular, it has length 3. According to [1, Proposition 4.5], we

have a resolution

0−→ 2O(−3)−→ 3O(−2)−→O−→OZ −→ 0.

Combining this with the standard resolution of OC we obtain the exact sequence

0−→ 2O(−3)−→O(−6)⊕ 3O(−2)−→ 2O −→F ′ −→ 0.

As the map 2O(−3)→O(−6) in the above complex is zero and as Ext1(OZ ,O)

vanishes, we can show, as in the proof of [10, Proposition 2.3.2], thatOZ is a direct

summand of F ′. This is absurd; by hypothesis F(−1) has no zero-dimensional

torsion. The same argument applies if Z is contained in a line and has length 3,

except that this time we use the resolution

0−→O(−4)−→O(−3)⊕O(−1)−→O−→OZ −→ 0.

The cases when length(Z) = 1 or 2 are analogous. Thus h0(F(−1)) = 1. �

3.2. The strata as quotients
In Section 3.1 we classified all sheaves giving points in MP2(6,1), namely, we

showed that this moduli space can be decomposed into six subsets X0, . . . ,X5

(cf. Table 1). Recall the notations Wi, Wi, Gi, 0≤ i≤ 5, from Section 1.2. The

fibers of the canonical maps ρi : Wi →Xi are precisely the Gi-orbits. Given [F ] ∈
Xi, we constructed ϕ ∈ ρ−1

i [F ] starting from the Beilinson spectral sequence

I or II associated to F or some twist of this sheaf and performing algebraic

operations. This construction is local in the sense that it can be done for flat

families of sheaves that are in a sufficiently small neighborhood of [F ]. This

allows us to deduce, as at [3, Theorem 3.1.6], that the maps ρi are categorical

quotient maps. Applying [11, Remark 2, p. 5], it follows that Xi is normal. From

[12, Theorem 4.2], we conclude that each ρi is a geometric quotient map.

Some of these quotients have concrete descriptions. The quotient W5/G5 is

isomorphic to the flag Hilbert scheme of pairs (C,Z), where C ⊂ P2 is a curve of
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degree 6 and Z ⊂ C is a zero-dimensional scheme of length 2. Let W ′
0 ⊂W0 be

the set of morphisms ϕ for which ϕ11 is semistable as a Kronecker module and

ϕ21 �= vϕ11 for any v ∈Hom(4O(−1),O). Clearly W0 �W ′
0, being the subset of

injective morphisms. According to [4, Section 9.3], the geometric quotient W ′
0/G0

exists and is the projectivization of a certain vector bundle over N(3,5,4) of rank

18. Clearly W0/G0 is a proper open subset of W ′
0/G0.

The quotient W3/G3 can be constructed as at [10, Proposition 2.2.2]. Let

W ′
3 ⊂W3 be the subset given by the following conditions: ϕ12 = 0, ϕ11 has linearly

independent entries, ϕ22 has linearly independent maximal minors, ϕ21 �= ϕ22u+

vϕ11 for any u ∈Hom(2O(−3),2O(−1)), and v ∈Hom(O(−2),3O). ClearlyW3 �
W ′

3, being the subset of injective morphisms. Let U3 be the set of pairs (ϕ11, ϕ22)

satisfying the above properties, and let Γ3 be the canonical group acting on

U3. Applying the method of [10, Proposition 2.2.2] one can show that the quo-

tient W ′
3/G3 exists and is the projectivisation of a vector bundle of rank 24

over U3/Γ3 � P2 × N(3,2,3). Thus W3/G3 is a proper open subset of W ′
3/G3.

Analogously one can construct the quotient W2/G2 except that this time one

has to pay special attention to the fact that the canonical group acting on the

space of triples (ϕ11, ϕ12, ϕ23) satisfying the properties of Proposition 3.1.3(ii) is

nonreductive.

CLAIM 3.2.1

Let U=Hom(O(−3)⊕ 2O(−2),2O(−1)), and let U ⊂U be the set of morphisms

ψ =

[
q1 l11 l12
q2 l21 l22

]

that satisfy the conditions of Proposition 3.1.3(ii). Let G be the canonical group

acting by conjugation on U . Then there exists a geometric quotient U/G, which

is a smooth projective variety of dimension 10.

Proof

It is straightforward to check that the conditions defining U are equivalent to

saying that ψ is not equivalent to a morphism represented by a matrix having

one of the following forms:[

 0 0


 
 


]
,

[

 
 0


 
 0

]
,

[
0 0 



 
 


]
,

[
0 
 


0 
 


]
.

This allows us to interpret U as the set of semistable points in the sense of [4].

Adopting the notations of [4], let Λ = (λ1, λ2, μ1) be a polarization for the action

of G on U satisfying the condition 1/4 < λ2 < 1/2. Using King’s criterion of

semistability (see [6]) and the above alternate description of U we deduce that

U is the set Us(Λ) of morphisms that are stable relative to Λ (cf. [4]). According

to [4, Propositions 6.1.1, 7.2.2, 8.1.3], there exists a geometric quotient Us(Λ)/G,

which is a smooth quasi-projective variety, provided 3/7 < λ2 < 1/2, which we

assume to be the case. This quotient is projective because Us(Λ) coincides with

the set of semistable points in U relative to Λ. �
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The quotient W2/G2 is an open subset of the projectivization of a vector bundle

over (U/G)× P2 of rank 22.

3.3. Generic sheaves
Let C ⊂ P2 denote an arbitrary smooth sextic curve, and let Pi denote distinct

points on C. According to [1, Propositions 4.5, 4.6], the cokernels of morphisms

4O(−5)→ 5O(−4) whose maximal minors have no common factor are precisely

the ideal sheaves IZ ⊂OP2 of zero-dimensional schemes Z ⊂ P2 of length 10 that

are not contained in a cubic curve. It follows that the generic sheaves giving

points in X0 are of the form OC(P1 + · · ·+ P10), where Pi, 1 ≤ i ≤ 10, are not

contained in a cubic curve.

According to [1, Propositions 4.5 and 4.6], the cokernels of morphisms

2O(−3)→ 3O(−2) whose maximal minors have no common factor are precisely

the ideal sheaves IZ ⊂OP2 of zero-dimensional schemes Z ⊂ P2 of length 3 that

are not contained in a line. It follows that the generic sheaves in X3 have the

form OC(2)(−P1 − P2 − P3 + P4), where P1, P2, P3 are non-colinear.

Obviously, the generic sheaves in X4 have the form OC(1)(P1+P2+P3+P4),

where no three points among P1, P2, P3, P4 are colinear. Also, the generic sheaves

in X5 are of the form OC(2)(−P1 − P2). According to Claim 3.3.1 below, the

generic sheaves in X1 have the form OC(3)(−P1−· · ·−P8), where no four points

among P1, . . . , P8 are colinear and no seven of them lie on a conic curve. By Claim

3.3.2, the generic sheaves in X2 have the form OC(1)(P1 + · · ·+P5 −P6), where

no three points among P1, . . . , P5 are colinear.

CLAIM 3.3.1

Let U ⊂ Hom(2O(−2),O(−1) ⊕ 2O) be the set of morphisms represented by

matrices ⎡
⎣ l1 l2
q11 q12
q21 q22

⎤
⎦

for which the maximal minors l1q12 − l2q11 and l1q22 − l2q21 have no common

factor. The cokernels of the morphisms in U are precisely the sheaves of the

form IZ(3), where IZ ⊂OP2 is the ideal sheaf of a zero-dimensional subscheme

Z ⊂ P2 of length 8, no subscheme of length 4 of which is contained in a line and

no subscheme of length 7 of which is contained in a conic curve.

Proof

Let ψ ∈ U , and let ζi denote the maximal minor of ψ obtained by deleting row i.

Since ζ1, ζ2, ζ3 have no common factor, there is an exact sequence of the form

0−→ 2O(−2)
ψ−→O(−1)⊕ 2O ζ−→O(3)−→C −→ 0,

ζ =
[
ζ1 −ζ2 ζ3

]
.
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The Hilbert polynomial of C is 8; hence C is the structure sheaf of a zero-

dimensional scheme Z of length 8 and Coker(ψ) � IZ(3). If four of the points

of Z were on the line with equation l = 0, then, by Bézout’s theorem, l would

divide ζ2 and ζ3, contrary to our hypothesis. Similarly, if seven of the points of

Z lay on the irreducible conic curve with equation q = 0, then q would divide ζ2
and ζ3.

For the converse we use the method of [1, Proposition 4.5]. Assume that

Z ⊂ P2 is a subscheme as in the proposition. The Beilinson spectral sequence I

with E1-term

E1
ij =Hj

(
IZ(2)⊗Ω−i(−i)

)
⊗O(i)

converges to IZ(2). By hypothesis H0(IZ(2)) = 0, hence also H0(IZ(3)⊗Ω1) = 0

and H0(IZ(1)) = 0. Using Serre duality we can show that H2(IZ(2)), H2(IZ(1))
and H2(IZ(3)⊗Ω1) vanish. The middle row of the display diagram for the Beilin-

son spectral sequence yields a monad

0−→ 5O(−2)
α−→ 8O(−1)

β−→ 2O−→ 0

with middle cohomology IZ(2). Denote B =Hom(Ker(β),O(−1)). Applying the

functor Hom( ,O(−1)) we get the exact sequences

0 −→ 2O(−1)
βT

−→ 8O−→B −→ 0,

0 −→Hom
(
IZ(2),O(−1)

)
−→B −→ 5O(1).

From the first exact sequence we see that h0(B) = 8, and from the second exact

sequence we see that B is torsion-free. It follows that the morphism 8O→B can-

not factor through 7O⊕Cx. This allows us to deduce, as at [10, Proposition 2.1.4],

that any matrix representing βT has at least three linearly independent entries

on each column; in other words, that βT has one of the following canonical forms:⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0

0 0

0 0

0 0

0 0

X R

Y S

Z T

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0

0 0

0 0

0 0

X 0

Y R

Z S

0 T

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0

0 0

0 0

X 0

Y 0

Z R

0 S

0 T

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0

0 0

X 0

Y 0

Z 0

0 X

0 Y

0 Z

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Moreover, the morphism 8O→B cannot factor through 6O⊕OL(1). This allows

us to deduce, as at [10, Proposition 3.1.3], that the first three canonical forms

are unfeasible. Thus Ker(β)� 2Ω1 ⊕ 2O(−1), so we have a resolution

0−→ 5O(−2)−→ 2Ω1 ⊕ 2O(−1)−→IZ(2)−→ 0,

hence a resolution

0−→ 2O(−3)⊕ 5O(−2)
ρ−→ 6O(−2)⊕ 2O(−1)−→IZ(2)−→ 0.
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Notice that rank(ρ12) ≥ 3; otherwise IZ(2) would map surjectively onto the

cokernel of a morphism 2O(−3) → 4O(−2), which is impossible, because

rank(IZ(2)) = 1. Assume that rank(ρ12) = 3. We get a resolution

0−→ 2O(−3)⊕ 2O(−2)
η−→ 3O(−2)⊕ 2O(−1)−→IZ(2)−→ 0

with η12 = 0. Clearly η22 is injective and Coker(η22) maps injectively to IZ(2).
This is absurd: IZ(2) is a torsion-free sheaf, whereas Coker(η22) is a torsion sheaf.

Assume that rank(ρ12) = 4. We have a resolution

0−→ 2O(−3)⊕O(−2)
η−→ 2O(−2)⊕ 2O(−1)−→IZ(2)−→ 0

with η12 = 0. The entries of η22 are linearly independent; otherwise IZ(2) would
have a subsheaf of the form OL(−1), which is absurd. Let x be the common

zero of the entries of η22. The points of Z distinct from x lie on the conic curve

with equation det(η11) = 0, contradicting our hypothesis on Z. We conclude that

rank(ρ12) = 5, and we arrive at the resolution

0−→ 2O(−3)
ψ−→O(−2)⊕ 2O(−1)−→IZ(2)−→ 0,

ψ =

⎡
⎣ l1 l2
q11 q12
q21 q22

⎤
⎦ .

We will show that ψ satisfies the conditions defining U . Assume that gcd(ζ2, ζ3) is

a linear form l. By hypothesis, at least five points of Z do not lie on the line given

by the equation l= 0. These points must be then in the common zero-set of ζ2/l

and ζ3/l, which, by Bézout’s theorem, is impossible. Likewise, gcd(ζ2, ζ3) cannot

be a quadratic form. If ζ2 divided ζ3, then, performing possibly row operations

on ψ, we may assume that ζ3 = 0. It would follow that

ψ ∼

⎡
⎣
 


0 0


 


⎤
⎦ or ψ ∼

⎡
⎣
 0


 0


 


⎤
⎦ .

In each case IZ(2) would have a torsion subsheaf, which is absurd. �

CLAIM 3.3.2

Let U ⊂Hom(2O(−1),2O⊕O(1)) be the set of morphisms represented by matri-

ces ⎡
⎣l11 l12
l21 l22
q1 q2

⎤
⎦

such that ζ3 = l11l22 − l12l21 is irreducible and does not divide any of the other

maximal minors. The cokernels of the morphisms in U are precisely the sheaves

of the form IZ(3), where IZ ⊂OP2 is the ideal sheaf of a zero-dimensional sub-

scheme Z ⊂ P2 of length 5, no subscheme of length 3 of which is contained in a

line.
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Proof

The argument is analogous to the argument at Claim 3.3.1. �

4. The moduli space MP2(6,2)

4.1. Classification of sheaves
PROPOSITION 4.1.1

Every sheaf F giving a point in MP2(6,2) and satisfying the condition h1(F) = 0

also satisfies the condition h0(F(−1)) = 0. For these sheaves h0(F ⊗Ω1(1)) = 0

or 1. The sheaves from the first case are precisely the sheaves having a resolution

of the form

(i) 0−→ 4O(−2)
ϕ−→ 2O(−1)⊕ 2O−→F −→ 0,

where ϕ is not equivalent, modulo the action of the group of automorphisms, to

a morphism represented by a matrix having one of the following forms:⎡
⎢⎢⎣

 0 0 0


 
 
 



 
 
 



 
 
 


⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

 
 0 0


 
 0 0


 
 
 



 
 
 


⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

 
 
 0


 
 
 0


 
 
 0


 
 
 


⎤
⎥⎥⎦ .

The sheaves in the second case are precisely the sheaves with resolution of the

form

(ii) 0−→ 4O(−2)⊕O(−1)
ϕ−→ 3O(−1)⊕ 2O−→F −→ 0,

where ϕ12 = 0, ϕ11 is semistable as a Kronecker module and ϕ22 has linearly

independent entries.

Proof

The first statement follows from [8, Claim 6.4]. The rest of the proposition follows

by duality from [8, Claim 4.3]. �

PROPOSITION 4.1.2

The sheaves F giving points in MP2(6,2) and satisfying the conditions

h0(F(−1)) = 0, h1(F) = 1, h1(F(1)) = 0 are precisely the sheaves having a reso-

lution of the form

(i) 0−→O(−3)⊕O(−2)⊕O(−1)
ϕ−→ 3O−→F −→ 0,

where ϕ is not equivalent to a morphism of any of the following forms:⎡
⎣
 
 



 
 0


 
 0

⎤
⎦ ,

⎡
⎣
 
 



 0 



 0 


⎤
⎦ ,

⎡
⎣
 
 



 
 



 0 0

⎤
⎦ ,

or the sheaves having a resolution of the form

(ii) 0−→O(−3)⊕O(−2)⊕ 2O(−1)
ϕ−→O(−1)⊕ 3O−→F −→ 0,
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where ϕ12 �= 0, ϕ13 = 0, ϕ11 is not divisible by ϕ12 and ϕ23 has linearly indepen-

dent maximal minors.

Proof

Let F give a point in MP2(6,2) and satisfy the above cohomological conditions.

Display diagram (2.1.1) for the Beilinson spectral sequence I converging to F(1)

reads

4O(−1)
ϕ1

Ω1(1) 0

0 3Ω1(1)
ϕ4

8O.

As in Proposition 3.1.3, we have Coker(ϕ1) = 0, Ker(ϕ1) � O(−2) ⊕ O(−1).

Performing the same steps as at Proposition 3.1.3 we arrive at the resolution

0−→O(−2)⊕O(−1)⊕ 9O ρ−→ 8O⊕ 3O(1)−→F(1)−→ 0.

Notice that rank(ρ13)≥ 7; otherwise F(1) would map surjectively to the cokernel

of a morphism O(−2)⊕O(−1)→ 2O, in violation of semistability. From here on

we get resolution (i) or (ii), depending on whether rank(ρ13) = 8 or 7.

Conversely, if F has resolution (i), then we can argue as in Proposition 3.1.3

to show that F is semistable. Assume now that F has resolution (ii). Assume

that there is a destabilizing subsheaf E ⊂ F that is itself semistable. We have an

extension

0−→F ′ −→F −→OZ −→ 0,

where Z is the zero-dimensional scheme of length 2 given by the ideal (ϕ11, ϕ12)

and F ′ has a resolution as at Claim 3.1.4, so F ′ gives a point in MP2(6,0), and

the only subsheaf of F ′ of slope zero, if there is one, must be of the form OL(−1).

It follows that E must have Hilbert polynomial PE(m) = 2m+1, m+2, or m+1.

In each case we have a diagram analogous to diagram (8) at Proposition 3.1.3,

leading to a contradiction. �

PROPOSITION 4.1.3

The sheaves F giving points in MP2(6,2) and satisfying the conditions

h0(F(−1)) = 1 and h1(F) = 1 are precisely the sheaves having a resolution of

the form

0−→O(−3)⊕ 2O(−2)
ϕ−→ 2O(−1)⊕O(1)−→F −→ 0,

where ϕ satisfies the conditions of Claim 3.1.2.

Proof

Let F give a point in MP2(6,2) and satisfy the above cohomological conditions.

Denote m = h0(F ⊗ Ω1(1)). The Beilinson diagram (2.1.4) for the dual sheaf

G =FD(1) giving a point in MP2(6,4) reads
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3O(−2)
ϕ1

mO(−1)
ϕ2 O

O(−2)
ϕ3

(m+ 2)O(−1)
ϕ4

5O.

Arguing as in the proof of Proposition 3.1.6, we can show that m = 3, that

Ker(ϕ2) = Im(ϕ1), and that Ker(ϕ1)�O(−3). Combining the exact sequences

(2.1.5) and (2.1.6) we get the resolution

0−→O(−2)
ψ−→O(−3)⊕ 5O(−1)−→ 5O−→G −→ 0.

As in [10, Proposition 2.1.4], we have Coker(ψ)�O(−3)⊕ 2O(−1)⊕Ω1(1), and

the cokernel of the induced morphism Ω1(1)→ 5O is isomorphic to 2O⊕O(1).

We finally arrive at the resolution dual to the resolution in the proposition:

0−→O(−3)⊕ 2O(−1)−→ 2O⊕O(1)−→G −→ 0.

The converse is the object of Claim 3.1.2. �

PROPOSITION 4.1.4

The sheaves F giving points in MP2(6,2) and satisfying the conditions

h0(F(−1)) = 1, h1(F) = 2, h1(F(1)) = 0 are precisely the sheaves having a reso-

lution of the form

0−→ 2O(−3)⊕O(−1)
ϕ−→O(−2)⊕O⊕O(1)−→F −→ 0,

where ϕ11 has linearly independent entries, ϕ22 �= 0, and does not divide ϕ32.

Proof

Let F give a point in MP2(6,2) and satisfy the above cohomological conditions.

Display diagram (2.1.1) for the Beilinson spectral sequence I converging to F(1)

reads

5O(−1)
ϕ1

2Ω1(1) 0

O(−1)
ϕ3

4Ω1(1)
ϕ4

8O.

Arguing as in the proof of Proposition 3.1.5 we see that Ker(ϕ1)�O(−3) and

Coker(ϕ1)�Cx. From (2.1.3) we have an extension

0−→F ′ −→F −→Cx −→ 0,

where F ′ = Coker(ϕ5)(−1). From (2.1.2) we get the exact sequence

0−→O(−2)−→O(−4)⊕ 4Ω1 −→ 8O(−1)−→F ′ −→ 0

and hence the resolution

0−→O(−2)−→O(−4)⊕ 12O(−1)
ρ−→ 8O(−1)⊕ 4O−→F ′ −→ 0.
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If rank(ρ12)≤ 7, then F ′ would have a subsheaf of slope 4/3 that would desta-

bilize F . Thus rank(ρ12) = 8, and we have the resolution

0−→O(−2)
ψ−→O(−4)⊕ 4O(−1)−→ 4O−→F ′ −→ 0.

Arguing as at [10, Proposition 2.1.4], we can show that Coker(ψ21) �O(−1)⊕
Ω1(1) and that the cokernel of the induced morphism Ω1(1)→ 4O is isomorphic

to O⊕O(1). We obtain the resolution

0−→O(−4)⊕O(−1)−→O⊕O(1)−→F ′ −→ 0.

Combining this with the standard resolution of Cx tensored with O(−2) we

obtain the exact sequence

0−→O(−4)−→O(−4)⊕ 2O(−3)⊕O(−1)−→O(−2)⊕O⊕O(1)−→F −→ 0.

The morphism O(−4) → O(−4) is nonzero because h1(F(1)) = 0. Canceling

O(−4) we obtain a resolution as in the proposition.

Conversely, assume that F has a resolution as in the proposition. Then F is

an extension of Cx by F ′, where, in view of Proposition 3.1.8, F ′ gives a point

in MP2(6,1). It follows that any possibly destabilizing subsheaf of F must be the

structure sheaf of a line or of a conic curve. Each of these situations can be easily

ruled out using diagrams similar to diagram (8) in Section 3.1. �

In the remaining part of this subsection we shall prove that there are no sheaves F
giving points in MP2(6,2) beside the sheaves we have discussed in this subsection

and the sheaves at Proposition 3.1.7(ii). In view of this result, we may restrict our

attention to the case when H1(F(1)) = 0. Assume that h0(F(−1))≤ 1. According

to Corollary 2.2.2(iv), (v), and Proposition 4.1.1 the pair (h0(F(−1)),h1(F)) may

be one of the following: (0,0), (0,1), (1,1), (1,2). Each of these situations has

already been examined. The following concludes the classification of sheaves in

MP2(6,2).

PROPOSITION 4.1.5

Let F be a sheaf giving a point in MP2(6,2) and satisfying the condition

h1(F(1)) = 0. Then h0(F(−1)) = 0 or 1.

Proof

Let F give a point in MP2(6,2) and satisfy the condition h0(F(−1))≥ 2. As at

[3, Proposition 2.1.3], there is an injective morphism OC →F(−1) for a curve

C ⊂ P2. This curve has degree 5 or 6; otherwise OC would destabilize F(−1).

Assume that deg(C) = 5. The quotient sheaf C = F/OC(1) has Hilbert polyno-

mial P(m) =m+ 2 and zero-dimensional torsion T of length at most 1. Indeed,

the pullback in F of T would be a destabilizing subsheaf if length(T ) ≥ 2. If

T = 0, then C � OL(1), forcing h0(F(−1)) = 2. The morphism O(1) → OL(1)

lifts to a morphism O(1)→F , which leads us to the resolution

0−→O(−4)⊕O −→ 2O(1)−→F −→ 0.
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Thus h1(F(1)) = 1. Assume now that length(T ) = 1. Let F ′ ⊂F be the pullback

of T . According to [10, Proposition 3.1.5], we have h0(F ′(−1)) = 1. Since F/F ′ �
OL, we get h0(F(−1)) = 1, contradicting our choice of F .

Assume now that C is a sextic curve. The quotient sheaf C = F/OC(1) is

zero-dimensional of length 5. Let C′ ⊂ C be a subsheaf of length 4, and let F ′ be

its preimage in F . We claim that F ′ gives a point in MP2(6,1). If this were not the

case, then F ′ would have a destabilizing subsheaf F ′′, which may be assumed to

be semistable. We may assume, without loss of generality, that F is stable. Thus

we have the inequalities 1/6 < p(F ′′) < 1/3. This leaves only two possibilities:

that F ′′ give a point in MP2(5,1) or in MP2(4,1). In the first case F/F ′′ is

isomorphic to the structure sheaf of a line; hence h0(F(−1)) = h0(F ′′(−1)) = 0

or 1 (cf. [10]). This contradicts our choice of F . In the second case F/F ′′ is easily

seen to be semistable; hence it is isomorphic to the structure sheaf of a conic

curve. We get h0(F(−1)) = h0(F ′′(−1)) = 0 (cf. [3]), contradicting our choice

of F . This proves the claim; that is, F ′ is semistable. We have h0(F ′(−1))≥ 1

so, according to the results in Section 3.1, there are two possible resolutions

for F ′:

0−→ 2O(−3)⊕O(−2)−→O(−2)⊕O(−1)⊕O(1)−→F ′ −→ 0

or

0−→O(−4)⊕O(−1)−→O⊕O(1)−→F ′ −→ 0.

Combining the first resolution with the standard resolution of Cx = C/C′ tensored

with O(1), we obtain the exact sequence

0−→O(−1)−→ 2O(−3)⊕O(−2)⊕2O −→O(−2)⊕O(−1)⊕2O(1)−→F −→ 0.

From this it easily follows that Cx is a direct summand of F , which violates

semistability. Assume, finally, that F ′ has the second resolution. We can apply

the horseshoe lemma as above, leading to the resolution

0−→O(−1)−→O(−4)⊕O(−1)⊕ 2O−→O⊕ 2O(1)−→F −→ 0.

We see from this that h1(F(1)) = 1. �

4.2. The strata as quotients
In Section 4.1 we classified all sheaves giving points in MP2(6,2); namely, we

showed that this moduli space can be decomposed into seven subsets X0, . . . ,X6

(cf. Table 2). For 1≤ i≤ 6, the sheaves giving points in Xi are stable. We will

employ the notations Wi, Wi, Gi, 0 ≤ i ≤ 6, analogous to the notations from

Section 3.2. For 1 ≤ i ≤ 6, the fibers of the canonical maps ρi : Wi → Xi are

precisely the Gi-orbits. It follows, as at Section 3.2, that these are geometric

quotient maps. The semistable but not stable points of MP2(6,2) are of the form

[F1 ⊕F2], where F1, F2 give points in MP2(3,1), and they are all contained in

X0. Thus X0 cannot be a geometric quotient. Instead, it is a good quotient.
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PROPOSITION 4.2.1

There is a good quotient W0//G0, which is isomorphic to X0.

Proof

Let Wss
0 (Λ)⊂W0 denote the set of morphisms that are semistable with respect to

a polarization Λ = (λ1, μ1, μ2) satisfying the relation 1/8< μ2 < 3/16 (notation

as at [4]). According to [2, Theorem 6.4], Wss
0 (Λ)//G0 exists and is a projective

variety. According to [8, Claim 4.3], W0 is the subset of injective morphisms

inside Wss
0 (Λ). Thus W0//G0 exists and is a proper open subset of Wss

0 (Λ)//G0.

Arguing as at [3, Section 4.2.1], we can easily see that two points of W0 are

in the same fiber of ρ0 if and only if the relative closures in W0 of their G0-orbits

intersect nontrivially. This allows us to apply the method of [3, Theorem 4.2.2]

in order to show that ρ0 is a categorical quotient map. We need to recover

resolution (i) at Proposition 4.1.1 from the Beilinson spectral sequence. Fix F in

X0. Tableau (2.1.4) for the dual sheaf FD(1) reads

2O(−2) 0 0

0 2O(−1)
ϕ4

4O.

Combining the exact sequences (2.1.5) and (2.1.6) yields the dual to resolution

(i) at Proposition 4.1.1. Thus W0 →X0 is a categorical quotient map, and the

isomorphism W0//G0 �X0 follows from the uniqueness of the categorical quo-

tient. �

By analogy with [10, Proposition 2.2.2], the quotient W1/G1 is isomorphic to an

open subset of the projectivization of a vector bundle over N(3,4,3)×P2 of rank

21. By analogy with [10, Proposition 3.2.3], the quotient W3/G3 is isomorphic to

an open subset of the projectivization of a vector bundle over HilbP2(2)×N(3,2,3)

of rank 23, and W5/G5 is isomorphic to an open subset of the projectivization

of a vector bundle over P2 ×HilbP2(2) of rank 25. Recall the smooth projective

variety U/G constructed at Claim 3.2.1. By analogy with [4, Section 9.3], W4/G4

is isomorphic to an open subset of the projectivization of a vector bundle over

U/G of rank 23. The deepest stratum X6 is isomorphic to HilbP2(6,1), that is,

to the universal sextic curve in P2 × P(S6V ∗).

4.3. Generic sheaves
Let C ⊂ P2 denote an arbitrary smooth sextic curve, and let Pi denote distinct

points on C. According to [1, Propositions 4.5, 4.6], the cokernels of morphisms

3O(−4)→ 4O(−3) whose maximal minors have no common factor are precisely

the ideal sheaves IZ ⊂OP2 of zero-dimensional schemes Z of length 6 that are

not contained in a conic curve. It follows that the generic sheaves in X1 have the

form OC(1)(P1 + · · ·+ P6 − P7), where P1, . . . , P6 are not contained in a conic
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curve. Also from [1, Propositions 4.5, 4.6] we deduce that the generic sheaves in

X3 have the form OC(2)(−P1 − P2 − P3 + P4 + P5), where P1, P2, P3 are non-

colinear. From Claim 3.3.2 we deduce, by duality, that the generic sheaves in X4

are of the form OC(1)(P1 + · · ·+ P5), where no three points among P1, . . . , P5

are colinear. It is easy to see that the generic sheaves in X5 are of the form

OC(2)(P1 −P2 −P3). According to Claim 4.3.1 below, the generic sheaves in X2

have the form OC(3)(−P1−· · ·−P7), where P1, . . . , P7 do not lie on a conic curve

and no four points among them are colinear.

CLAIM 4.3.1

Let U ⊂Hom(O(−2)⊕O(−1),3O) be the set of morphisms whose maximal minors

have no common factor. The cokernels of the morphisms in U are precisely the

sheaves of the form IZ(3), where IZ ⊂OP2 is the ideal sheaf of a zero-dimensional

subscheme Z ⊂ P2 of length 7 that is not contained in a conic curve and no

subscheme of length 4 of which is contained in a line.

Proof

The argument is analogous to the argument at Claim 3.3.1. �

5. The moduli space MP2(6,3)

5.1. Classification of sheaves
PROPOSITION 5.1.1

The sheaves F giving points in MP2(6,3) and satisfying the conditions

h0(F(−1)) = 0, h1(F) = 0, h1(F(1)) = 0 are precisely the sheaves having one

of the following resolutions:

0−→ 3O(−2)−→ 3O−→F −→ 0,(i)

0−→ 3O(−2)⊕O(−1)
ϕ−→O(−1)⊕ 3O−→F −→ 0,(ii)

where ϕ12 = 0, the entries of ϕ11 span a subspace of V ∗ of dimension at least 2,

the same is true for the entries of ϕ22, and, moreover, ϕ is not equivalent to a

morphism represented by a matrix of the form⎡
⎢⎢⎣

 
 0 0


 
 0 0


 
 
 



 
 
 


⎤
⎥⎥⎦ ,

0−→ 3O(−2)⊕ 2O(−1)
ϕ−→ 2O(−1)⊕ 3O−→F −→ 0,(iii)

where ϕ12 = 0, ϕ11 has linearly independent maximal minors and the same for

ϕ22.

Proof

The proposition is a particular case of [8, Claims 4.6–4.8]. The above resolutions

can also be easily obtained from the display diagram
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3O(−1) 0 0

0 3Ω1(1)
ϕ4

9O

of the Beilinson spectral sequence I converging to F(1). �

PROPOSITION 5.1.2

(i) The sheaves F giving points in MP2(6,3) and satisfying the conditions

h0(F(−1)) = 0, h1(F) = 1 are precisely the sheaves having a resolution of the

form

0−→O(−3)⊕ 3O(−1)
ϕ−→ 4O−→F −→ 0,

where ϕ12 is semistable as a Kronecker module.

(ii) The sheaves F giving points in MP2(6,3) and satisfying the dual condi-

tions h0(F(−1)) = 1, h1(F) = 0 are precisely the sheaves having a resolution of

the form

0−→ 4O(−2)
ϕ−→ 3O(−1)⊕O(1)−→F −→ 0,

where ϕ11 is semistable as a Kronecker module.

Proof

Part (i) is a particular case of [8, Claim 5.3]. Part (ii) is equivalent to (i) by

duality. �

PROPOSITION 5.1.3

The sheaves F giving points in MP2(6,3) and satisfying the conditions

h0(F(−1)) = 1, h1(F) = 1, h1(F(1)) = 0 are precisely the sheaves having a reso-

lution of the form

(i) 0−→O(−3)⊕O(−2)
ϕ−→O⊕O(1)−→F −→ 0,

where ϕ12 �= 0, or the sheaves having a resolution of the form

(ii) 0−→O(−3)⊕O(−2)⊕O(−1)
ϕ−→O(−1)⊕O⊕O(1)−→F −→ 0,

where ϕ13 = 0, ϕ23, ϕ12 �= 0, ϕ12 does not divide ϕ11, and ϕ23 does not divide ϕ33.

Proof

Let F be a sheaf giving a point in MP2(6,3) and satisfying the above cohomolog-

ical conditions. Diagram (2.1.1) for the Beilinson spectral sequence I converging

to F(1) takes the form

4O(−1)
ϕ1

Ω1(1) 0

O(−1)
ϕ3

4Ω1(1)
ϕ4

9O.
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Arguing as at Proposition 3.1.3 we see that Coker(ϕ1) = 0 and Ker(ϕ1) �
O(−2) ⊕ O(−1). Performing the same steps as at Proposition 3.1.3 we arrive

at the resolution

0−→O(−1)−→O(−2)⊕O(−1)⊕ 12O ρ−→ 9O⊕ 4O(1)−→F(1)−→ 0.

Notice that rank(ρ13)≥ 8; otherwise, F(1) would map surjectively to the cokernel

of a morphism O(−2)⊕O(−1)→ 2O, in violation of semistability. We arrive at

a resolution

0−→O(−2)
ψ−→O(−3)⊕O(−2)⊕ 4O(−1)−→O(−1)⊕ 4O−→F −→ 0

in which ψ11 = 0, ψ21 = 0. Arguing as in the proof of [10, Proposition 2.1.4], we

can show that Coker(ψ31)�O(−1)⊕Ω1(1) and that the cokernel of the induced

map Ω1(1)→ 4O is isomorphic to O⊕O(1). We get the resolution

0−→O(−3)⊕O(−2)⊕O(−1)
ϕ−→O(−1)⊕O⊕O(1)−→F −→ 0.

Finally, we obtain resolutions (i) or (ii) depending on whether ϕ13 �= 0 or ϕ13 = 0.

Conversely, assume that F has resolution (i). According to Corollary 2.3.2,

if ϕ12 and ϕ22 have no common factor, then F is semistable. If ϕ12 divides ϕ22,

then F is stable-equivalent to OC ⊕OQ(1), for a quartic curve Q and a conic

curve C in P2. It remains to examine the case when gcd(ϕ12, ϕ22) is a linear

form l. In this case we have a nonsplit extension

0−→OL(−1)−→F −→E −→ 0,

where E has a resolution as at [10, Proposition 2.1.4], so it gives a point in

MP2(5,3). It is easy to estimate the slope of any subsheaf of F , showing that this

sheaf is semistable.

Assume now that F has resolution (ii). From the snake lemma we get an

extension

0−→E −→F −→OZ −→ 0,

where Z is the common zero-set of ϕ11 and ϕ12, and E has a resolution as at

Proposition 3.1.8, so it gives a point in MP2(6,1). Assume that F ′ ⊂ F is a

destabilizing subsheaf. Since p(F ′ ∩ E) ≤ 0, we see that F ′ has multiplicity at

most 3. By duality, any destabilizing subsheaf of FD(1) has multiplicity at most

3; hence F ′ has multiplicity 3. Without loss of generality we may assume that

F ′ gives a point in MP2(3,2), so there is a resolution

0−→O(−2)⊕O(−1)−→ 2O−→F ′ −→ 0.

This fits into a commutative diagram analogous to diagram (8) at Proposi-

tion 3.1.3, leading to a contradiction. �

PROPOSITION 5.1.4

The sheaves F giving points in MP2(6,3) and satisfying the conditions

h0(F(−1)) = 2, h1(F) = 2, h1(F(1)) = 0 are precisely the sheaves having a reso-

lution of the form
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0−→ 2O(−3)⊕O ϕ−→O(−2)⊕ 2O(1)−→F −→ 0,

where ϕ11 has linearly independent entries, and the same is true for ϕ22.

Proof

Let F give a point in MP2(6,3) and satisfy the above cohomological conditions.

Display diagram (2.1.1) for the Beilinson spectral sequence I converging to F(1)

reads

5O(−1)
ϕ1

2Ω1(1) 0

2O(−1)
ϕ3

5Ω1(1)
ϕ4

9O.

Arguing as in the proof of Proposition 3.1.5, we see that Ker(ϕ1)�O(−3) and

Coker(ϕ1)�Cx. From (2.1.3) we have an extension

0−→F ′ −→F −→Cx −→ 0,

where F ′ = Coker(ϕ5)(−1). From (2.1.2) we get the exact sequence

0−→ 2O(−2)−→O(−4)⊕ 5Ω1 −→ 9O(−1)−→F ′ −→ 0,

hence the resolution

0−→ 2O(−2)−→O(−4)⊕ 15O(−1)
ρ−→ 9O(−1)⊕ 5O−→F ′ −→ 0.

If rank(ρ12)≤ 8, then F ′ would have a subsheaf of slope 5/3 that would desta-

bilize F . Thus rank(ρ12) = 9, and we have the resolution

0−→ 2O(−2)
ψ−→O(−4)⊕ 6O(−1)−→ 5O −→F ′ −→ 0.

Arguing as at [10, Proposition 3.2.5], we can show that Coker(ψ21) � 2Ω1(1).

The exact sequence

0−→O(−4)⊕ 2Ω1(1)−→ 5O−→F ′ −→ 0

yields the resolution

0−→O(−4)⊕ 6O σ−→ 5O⊕ 2O(1)−→F ′ −→ 0.

If rank(σ12)≤ 4, then F ′ would have a subsheaf of slope 2 that would destabilize

F . Thus rank(σ12) = 5, and we have a resolution

0−→O(−4)⊕O −→ 2O(1)−→F ′ −→ 0.

Combining this with the standard resolution of Cx tensored with O(−2) we

obtain the exact sequence

0−→O(−4)−→O(−4)⊕ 2O(−3)⊕O −→O(−2)⊕ 2O(1)−→F −→ 0.

The morphism O(−4) → O(−4) is nonzero because h1(F(1)) = 0. Canceling

O(−4) we obtain a resolution as in the proposition.
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Conversely, assume that F has a resolution as in the proposition. Then F
is an extension of Cx by F ′, where, in view of Proposition 3.1.7(ii), F ′ gives a

stable point in MP2(6,2). It follows that any possibly destabilizing subsheaf of F
must be the structure sheaf of a line. This situation, however, can be easily ruled

out using a diagram analogous to diagram (8) in Section 3.1. �

PROPOSITION 5.1.5

The sheaves F giving points in MP2(6,3) and satisfying the condition h1(F(1))>

0 are precisely the sheaves of the form OC(2), where C ⊂ P2 is a sextic curve.

Proof

The argument is entirely analogous to the argument at [10, Proposition 4.1.1]. �

PROPOSITION 5.1.6

Let F give a point in MP2(6,3) and satisfy the condition h0(F(−1)) ≥ 3 or the

condition h1(F)≥ 3. Then F �OC(2) for some sextic curve C ⊂ P2.

Proof

By Serre duality h1(F) = h0(FD), so it is enough to examine only the case when

h0(F(−1))≥ 3. It is easy to see that F is stable (cf. the description in Section 5.2

of properly semistable sheaves). Arguing as at [3, Proposition 2.1.3], we see that

there is an injective morphism OC →F(−1) for some curve C ⊂ P2 of degree at

most 6. Since p(OC)<−1/2, C has degree 5 or 6. Assume first that deg(C) = 6.

The quotient sheaf C = F/OC(1) has length 6 and dimension zero. Let C′ ⊂ C
be a subsheaf of length 5, and let F ′ be its preimage in C. We have an exact

sequence

0−→F ′ −→F −→Cx −→ 0.

We claim that F ′ is semistable. If this were not the case, then F ′ would have a

destabilizing subsheaf F ′′, which may be assumed to be stable. In fact, F ′′ must

give a point in MP2(5,2) because 1/3< p(F ′′)< 1/2. According to [10, Section 2],

we have the inequality h0(F ′′(−1)) ≤ 1. The quotient sheaf F/F ′′ has Hilbert

polynomial P(m) =m+1 and no zero-dimensional torsion, so F/F ′′ �OL. Thus

h0
(
F(−1)

)
≤ h0

(
F ′′(−1)

)
+h0

(
OL(−1)

)
≤ 1,

contradicting our hypothesis. This proves that F ′ gives a point in MP2(6,2). We

have the relation h0(F ′(−1))≥ 2, hence, according to the results in Section 4.1,

there is a resolution

0−→O(−4)⊕O −→ 2O(1)−→F ′ −→ 0.

Combining this with the standard resolution of Cx tensored with O(1) we get

the exact sequence

(∗) 0−→O(−1)−→O(−4)⊕ 3O−→ 3O(1)−→F −→ 0.
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From this we obtain the relation h1(F(1)) = 1; hence, by Proposition 5.1.5, F is

isomorphic to OC(2).

Assume now that C has degree 5. The quotient sheaf F/OC(1) has Hilbert

polynomial P(m) = m + 3. Let T denote its zero-dimensional torsion, and let

F ′ be the preimage of T in F . We have length(T ) ≤ 2; otherwise, F ′ would

destabilize F . If T = 0, then F/OC(1)�OL(2). We apply the horseshoe lemma

to the extension

0−→OC(1)−→F −→OL(2)−→ 0,

to the standard resolution of OC(1), and to the resolution

0−→O(−1)−→ 3O−→ 2O(1)−→OL(2)−→ 0.

We obtain again resolution (∗), leading to the conclusion of the proposition.

Assume that length(T ) = 1. According to [10, Proposition 3.1.5], we have

h0(F ′(−1)) = 1. Since F/F ′ � OL(1), we see that h0(F(−1)) ≤ 2, contrary to

our hypothesis. Assume that length(T ) = 2. Since F is stable, it is easy to see

that F ′ gives a point in MP2(5,2), so h0(F ′(−1)) ≤ 1, forcing h0(F(−1)) ≤ 1,

which contradicts our hypothesis. �

There are no other sheaves giving points in MP2(6,3) beside the sheaves we have

discussed in this subsection. To see this we may, by virtue of Proposition 5.1.5,

restrict our attention to the case when H1(F(1)) = 0. According to Proposi-

tion 5.1.6 and Corollary 2.2.2(vi), the pair (h0(F(−1)),h1(F)) may be one of

the following: (0,0), (0,1), (1,0), (1,1), (2,2). Each of these situations has been

examined.

5.2. The strata as quotients
In Section 5.1 we classified all sheaves giving points in MP2(6,3); namely, we

showed that this moduli space is the union of nine locally closed subsets, as in

Table 3, which we will call, by an abuse of terminology, strata. As the notation

suggests, the stratum XD
3 is the image of X3 under the duality automorphism

[F ] → [FD(1)]. The strata Xi, 0 ≤ i ≤ 7, i �= 3, are invariant under this auto-

morphism. We employ the notations Wi, Wi, Gi, ρi, 0≤ i≤ 7, analogous to the

notations from Section 3.2. We denote W s
i = ρ−1

i (Xs
i ). Adopting the notation of

[3], let Ei denote an arbitrary sheaf giving a point in the codimension i stratum

of MP2(4,2), i = 0,1. Let C ⊂ P2 denote an arbitrary conic curve; let Q ⊂ P2

denote an arbitrary quartic curve. It is easy to see that all points of the form

[OC ⊕Ei] belong to Xi and to no other stratum. According to Corollary 2.3.2, the

set W4 \W s
4 consists of those morphisms ϕ such that ϕ12 divides ϕ11 or ϕ22. The

sheaves F = Coker(ϕ), ϕ ∈W4 \W s
4 , are precisely the extensions of OC by OQ(1)

or of OQ(1) by OC satisfying the conditions h0(F(−1)) = 1, h1(F) = 1. Using

the argument found at [10, Proposition 3.3.2], we can show that the extension

sheaves

0−→OQ(1)−→F −→OC −→ 0



The classification of semistable plane sheaves supported on sextics 777

satisfying the condition h1(F) = 0 are precisely the sheaves of the form Coker(ϕ),
ϕ ∈WD

3 , such that the maximal minors of ϕ11 have a common quadratic factor.

By duality, it follows that the extension sheaves

0−→OC −→F −→OQ(1)−→ 0

satisfying the condition h0(F(−1)) = 0 are precisely the sheaves of the form

Coker(ϕ), ϕ ∈W3, such that the maximal minors of ϕ12 have a common quadratic

factor. This shows that the strata X2, X5, X6, X7 have only stable points and

that the sets X3 \Xs
3, X

D
3 \ (XD

3 )
s, X4 \Xs

4 coincide and consist of all points of

the form [OC ⊕OQ(1)].

The fibers of the canonical maps ρi : W
s
i →Xs

i , 0≤ i≤ 7, are precisely the Gi-

orbits; hence, by the argument found in Section 3.2, these are geometric quotient

maps. Thus Xi �Wi/Gi for i ∈ {2,5,6,7}.
Assume that i ∈ {0,1}. Arguing as in [3, Section 4.2.1], we can easily see

that two points of Wi are in the same fiber of ρi if and only if the relative

closures in Wi of their Gi-orbits intersect nontrivially. This allows us to apply the

method of [3, Theorem 4.2.2] in order to show that ρi is a categorical quotient

map. Note that W0 is a proper invariant open subset of the set of semistable

Kronecker modules 3O(−2) → 3O, so there exists a good quotient W0//G0 as

an open subset of N(6,3,3). By the uniqueness of the categorical quotient we

have an isomorphism X0 �W0//G0. This shows that MP2(6,3) and N(6,3,3) are

birational. Let W10 ⊂ W1 be the open invariant subset given by the condition

that the entries of ϕ11 span V ∗ and the same for the entries of ϕ22. Its image

X10 is open in X1. Since W10 ⊂W s
1 , the map W10 →X10 is a geometric quotient

map. By analogy with [10, Proposition 2.2.2], the quotient W10/G1 is isomorphic

to an open subset of the projectivisation of a vector bundle of rank 37 over

N(3,3,1)×N(3,1,3). The base is isomorphic to a point, so X10 is an open subset

of P36.

By analogy with [10, Proposition 2.2.2], the quotient W2/G2 is isomorphic

to an open subset of the projectivization of a vector bundle of rank 22 over

N(3,3,2) × N(3,2,3). Likewise, W6/G6 is isomorphic to an open subset of the

projectivization of a vector bundle of rank 26 over P2 ×P2. By analogy with [10,

Proposition 3.2.3], W5/G5 is isomorphic to an open subset of the projectivization

of a vector bundle of rank 24 over HilbP2(2) × HilbP2(2). The stratum X7 is

isomorphic to P(S6V ∗).

By analogy with [4, Section 9.3], there exists a geometric quotient W3/G3,

which is an open subset of the projectivization of a vector bundle of rank 22

over N(3,3,4). The induced map W3/G3 →X3 is an isomorphism over the set

of stable points in X3, as we saw above. One can easily see that the fiber of this

map over any properly semistable point [OC ⊕OQ(1)] is isomorphic to S3V ∗.

The linear algebraic group G = Aut(O ⊕ O(1)) acts on the vector space

U=Hom(O(−2),O⊕O(1)) by left multiplication. Consider the open G-invariant

subset U ⊂ U of morphisms ψ for which ψ11 is nonzero and does not divide

ψ21. Consider the fiber bundle with base P(S2V ∗) and fiber P(S3V ∗/V ∗q) at
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any point of the base represented by q ∈ S2V ∗. Clearly this fiber bundle is the

geometric quotient of U modulo G. Consider the open G4-invariant subset W
′
4 ⊂

W4 of morphisms ϕ whose restriction to O(−2) lies in U . Clearly W ′
4 is the

trivial vector bundle over U with fiber Hom(O(−3),O ⊕ O(1)). Consider the

subbundle Σ ⊂ W ′
4 given by the condition (ϕ11, ϕ21) = (ϕ12u,ϕ22u), for some

u ∈Hom(O(−3),O(−2)). As at [10, Proposition 2.2.5], the quotient bundle W ′
4/Σ

is G-linearized; hence it descends to a vector bundle E over U/G of rank 22. Its

projectivization P(E) is the geometric quotient of W ′
4 \ Σ modulo G4. Notice

that W s
4 is a proper open G4-invariant subset of W ′

4 \ Σ. Thus Xs
4 =W s

4/G4 is

isomorphic to a proper open subset of P(E).

5.3. Generic sheaves
Let C denote an arbitrary smooth sextic curve in P2, and let Pi denote distinct

points on C. By analogy with the case of the stratum X3 ⊂MP2(6,1), we see that

the generic sheaves in X2 have the form OC(2)(−P1 − P2 − P3 + P4 + P5 + P6),

where P1, P2, P3 are non-colinear and the same for P4, P5, P6. By analogy with

the stratum X1 ⊂MP2(6,2), we see that the generic sheaves in X3 have the form

OC(3)(−P1 − · · · −P6), where P1, . . . , P6 are not contained in a conic curve. The

generic sheaves in X4 have the form OC(3)(−P1 − · · · − P6), where P1, . . . , P6

lie on a conic curve and no four points among them are colinear. The generic

sheaves in X5 have the form OC(2)(P1 + P2 − P3 − P4). The generic sheaves in

X6 have the form OC(2)(P1 − P2).

6. The moduli space MP2(6,0)

6.1. Classification of sheaves
PROPOSITION 6.1.1

Let r be a positive integer. The sheaves F giving points in MP2(r,0) and satisfying

the condition h1(F) = 0 are precisely the sheaves having a resolution of the form

0−→ rO(−2)
ϕ−→ rO(−1)−→F −→ 0.

Moreover, F is properly semistable if and only if ϕ is properly semistable, viewed

as a Kronecker module.

Proof

This is a generalization of [10, Proposition 4.1.2]. Assume that F gives a point

in MP2(r,0) and h1(F) = 0. Diagram (2.1.4) for the Beilinson spectral sequence

II converging to F reads

rO(−2)
ϕ1

rO(−1) 0

0 0 0.

The exact sequences (2.1.5) and (2.1.6) show that F � Coker(ϕ1). The rest of

the proof is exactly as at [10, Proposition 4.1.2]. �
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PROPOSITION 6.1.2

Consider an integer r ≥ 3. The sheaves F giving points in MP2(r,0) and satisfying

the conditions h0(F(−1)) = 0, h1(F) = 1, h1(F(1)) = 0 are precisely the sheaves

having a resolution of the form

0−→O(−3)⊕ (r− 3)O(−2)
ϕ−→ (r− 3)O(−1)⊕O −→F −→ 0,

where ϕ12 is semistable as a Kronecker module.

Proof

This is a generalization of [10, Proposition 4.1.3]. Assume that F gives a point in

MP2(r,0) and satisfies the above cohomological conditions. Diagram (2.1.1) for

the Beilinson spectral sequence I converging to F(1) reads

rO(−1)
ϕ1

Ω1(1) 0

0 Ω1(1)
ϕ4

rO.

Arguing as at Proposition 3.1.3, we can show that Coker(ϕ1) = 0 and that

Ker(ϕ1)�O(−2)⊕ (r− 3)O(−1). By duality, Coker(ϕ4)� (r− 3)O⊕O(1). The

exact sequence (2.1.3) yields the resolution

0−→O(−2)⊕ (r− 3)O(−1)−→ (r− 3)O⊕O(1)−→F(1)−→ 0.

The converse is exactly as at [10, Proposition 4.1.3]. �

PROPOSITION 6.1.3

The sheaves F giving points in MP2(6,0) and satisfying the conditions

h0(F(−1)) = 0, h1(F) = 2 are precisely the sheaves having one of the following

resolutions:

0−→ 2O(−3)−→ 2O−→F −→ 0,(i)

ϕ=

[
f11 f12
f21 f22

]
,

0−→ 2O(−3)⊕O(−2)
ϕ−→O(−2)⊕ 2O−→F −→ 0,(ii)

ϕ=

⎡
⎣ l1 l2 0

f11 f12 q1
f21 f22 q2

⎤
⎦ ,

0−→ 2O(−3)⊕O(−1)
ϕ−→O(−1)⊕ 2O−→F −→ 0,(iii)

ϕ=

⎡
⎣ q1 q2 0

f11 f12 l1
f21 f22 l2

⎤
⎦ ,

0−→ 2O(−3)⊕O(−2)⊕O(−1)
ϕ−→O(−2)⊕O(−1)⊕ 2O−→F −→ 0,(iv)
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ϕ=

⎡
⎢⎢⎣
l1 l2 0 0

p1 p2 l 0

f11 f12 p′1 l′1
f21 f22 p′2 l′2

⎤
⎥⎥⎦ .

Here q1, q2 are linearly independent, l1, l2 are linearly independent, l′1, l′2 are

linearly independent, and l �= 0.

Proof

Diagram (2.1.1) for the Beilinson spectral sequence I converging to FD(2) has

the form

2O(−1) 0 0

2O(−1)
ϕ3

6Ω1(1)
ϕ4

12O.

Combining the exact sequences (2.1.2) and (2.1.3), we obtain the resolution

0−→ 2O(−1)−→ 2O(−1)⊕ 6Ω1(1)−→ 12O−→FD(2)−→ 0

and hence the resolution

0−→ 2O(−1)−→ 2O(−1)⊕ 18O ρ−→ 12O⊕ 6O(1)−→FD(2)−→ 0.

If rank(ρ12)≤ 10, then FD(2) would map surjectively to the cokernel of a mor-

phism 2O(−1)→ 2O, in violation of semistability. Thus rank(ρ12) ≥ 11, which

leads us to the resolution

0−→ 2O(−1)
ψ−→ 2O(−1)⊕ 7O−→O⊕ 6O(1)−→FD(2)−→ 0,

where ψ11 = 0. Arguing as at [10, Proposition 3.1.3], we see that Coker(ψ21) is

isomorphic to O⊕ 2Ω1(2). The resolution

0−→ 2O(−3)⊕O(−2)⊕ 2Ω1 −→O(−2)⊕ 6O(−1)−→FD −→ 0

leads to the exact sequence

0−→ 2O(−3)⊕O(−2)⊕ 6O(−1)
η−→O(−2)⊕ 6O(−1)⊕ 2O−→FD −→ 0.

If rank(η23)≤ 4, then FD would map surjectively to the cokernel of a morphism

2O(−3) ⊕ O(−2) → O(−2) ⊕ 2O(−1), in violation of semistability. Canceling

5O(−1) and dualizing yields the resolution

0−→ 2O(−3)⊕O(−2)⊕O(−1)
ϕ−→O(−2)⊕O(−1)⊕ 2O−→F −→ 0.

From this we get resolutions (i)–(iv) depending on whether ϕ12 = 0 and ϕ23 = 0.

Conversely, assume that F has resolution (i). If f12 and f22 have no com-

mon factor, then, by virtue of Corollary 2.3.2, F is semistable. Assume that

gcd(f12, f22) is a quadratic polynomial q. We get a nonsplit extension

0−→OC(−1)−→F −→F ′ −→ 0,
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where C is the conic curve given by the equation q = 0 and F ′ has a resolution

0−→O(−3)⊕O(−1)
ϕ′

−→ 2O−→F ′ −→ 0

in which the entries of ϕ′
12 are linearly independent. According to Corollary 2.3.2,

F ′ gives a point in MP2(4,1). It is now easy to see that for any proper subsheaf

E ⊂ F we have p(E)≤ 0. Assume that gcd(f12, f22) is a linear form l. We have

an extension

0−→OL(−2)−→F −→F ′ −→ 0,

where L is the line given by the equation l= 0 and F ′ has a resolution

0−→O(−3)⊕O(−2)
ϕ′

−→ 2O−→F ′ −→ 0

in which the entries of ϕ′
12 have no common factor. According to Corollary 2.3.2,

F ′ gives a point in MP2(5,1). It is now easy to see that for any proper subsheaf

E ⊂ F we have p(E)≤ 0.

Assume now that F has resolution (ii) in which q1, q2 have no common

factor. From the snake lemma we get an extension

0−→F ′ −→F −→Cx −→ 0,

where x is given by the equations l1 = 0, l2 = 0, and F ′ has a resolution

0−→O(−4)⊕O(−2)
ϕ′

−→ 2O−→F ′ −→ 0

in which the entries of ϕ′
12 have no common factor. According to Corollary 2.3.2,

F ′ gives a point in MP2(6,−1). It is now easy to see that for any proper subsheaf

E ⊂ F we have p(E)≤ 0. If q1 and q2 have a common linear factor, then we have

an extension

(∗) 0−→OL(−1)−→F −→F ′ −→ 0,

where F ′ has a resolution as at [10, Proposition 4.1.4], so it is semistable. Thus

F is semistable.

Finally, we assume that F has resolution (iv). We have an extension

0−→F ′ −→F −→Cx −→ 0,

where x is given by the equations l1 = 0, l2 = 0, and F ′ has resolution

0−→O(−4)⊕O(−2)⊕O(−1)
ϕ′

−→O(−1)⊕ 2O−→F ′ −→ 0,

ϕ′ =

⎡
⎣
 l 0


 p′1 l′1

 p′2 l′2

⎤
⎦ . Assume first that ϕ′ �

⎡
⎣
 
 0


 0 



 0 


⎤
⎦ .

Then, according to Proposition 3.1.6(ii), F ′ is semistable, showing that F is

semistable. If ϕ′ has the special form given above, then we have extension (∗),
showing that F is semistable. �

PROPOSITION 6.1.4

(i) The sheaves F giving points in MP2(6,0) and satisfying the conditions
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h0(F(−1)) > 0, h1(F(1)) = 0 are precisely the sheaves having a resolution of

the form

0−→ 3O(−3)
ϕ−→ 2O(−2)⊕O(1)−→F −→ 0,

where ϕ11 has linearly independent maximal minors.

(ii) The sheaves F giving points in MP2(6,0) and satisfying the dual condi-

tions h0(F(−1)) = 0, h1(F(1))> 0 are precisely the sheaves having a resolution

of the form

0−→O(−4)⊕ 2O(−1)
ϕ−→ 3O−→F −→ 0,

where ϕ12 has linearly independent maximal minors.

Proof

Part (ii) is equivalent to (i) by duality, so we concentrate on (i). Assume that

F gives a point in MP2(6,0) and satisfies the cohomological conditions from (i).

There is an injective morphism OC →F(−1) for some curve C ⊂ P2. Note that

deg(C) = 5 or 6; otherwise, the semistability of F(−1) would be contradicted.

Assume first that deg(C) = 5. Let T denote the zero-dimensional torsion of

F/OC(1). If T �= 0, then the pullback of T in F would be a destabilizing sub-

sheaf. Thus T = 0; hence F/OC(1) � OL(−1). We apply the horseshoe lemma

to the extension

0−→OC(1)−→F −→OL(−1)−→ 0,

to the standard resolution of OC(1), and to the resolution

0−→O(−4)−→ 3O(−3)−→ 2O(−2)−→OL(−1)−→ 0.

We obtain the resolution

0−→O(−4)−→O(−4)⊕ 3O(−3)−→ 2O(−2)⊕O(1)−→F −→ 0.

Since h1(F(1)) = 0, the map O(−4)→O(−4) is nonzero. Canceling O(−4) we

arrive at a morphism as in the proposition.

Assume now that deg(C) = 6. The quotient sheaf C = F/OC(1) has dimen-

sion zero and length 3. Let Cx ⊂ C be a subsheaf of length 1, and let F ′ ⊂F be

its preimage. We apply the horseshoe lemma to the extension

0−→OC(1)−→F ′ −→Cx −→ 0,

to the standard resolution ofOC(1), and to the standard resolution of Cx tensored

with O(−3). We obtain the resolution

0−→O(−5)−→O(−5)⊕ 2O(−4)−→O(−3)⊕O(1)−→F ′ −→ 0.

The morphism O(−5)→O(−5) is nonzero; otherwise, arguing as at [10, Proposi-

tion 2.3.2], we would deduce that Cx is a direct summand of F ′, which is absurd.

We have an extension

0−→F ′ −→F −→C′ −→ 0,
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where C′ has length 2. Let Cy ⊂ C′ be a subsheaf of length 1, and let F ′′ ⊂F be

its preimage. We apply the horseshoe lemma to the extension

0−→F ′ −→F ′′ −→Cy −→ 0,

to the standard resolution of Cy tensored with O(−2), and to the resolution

0−→ 2O(−4)−→O(−3)⊕O(1)−→F ′ −→ 0.

We obtain a resolution

0−→O(−4)−→ 2O(−4)⊕ 2O(−3)−→O(−3)⊕O(−2)⊕O(1)−→F ′′ −→ 0

in which, by the same argument as above, the morphism O(−4) → 2O(−4) is

nonzero. Canceling O(−4) we obtain the resolution

0−→O(−4)⊕ 2O(−3)−→O(−3)⊕O(−2)⊕O(1)−→F ′′ −→ 0.

The morphism 2O(−3)→O(−3) is nonzero; otherwise, F would have a desta-

bilizing subsheaf that is the cokernel of a morphism 2O(−3)→O(−2)⊕O(1).

Denote Cz = C′/Cy . We apply the horseshoe lemma to the extension

0−→F ′′ −→F −→Cz −→ 0,

to the standard resolution of Cz tensored with O(−2), and to the resolution

0−→O(−4)⊕O(−3)−→O(−2)⊕O(1)−→F ′′ −→ 0.

We arrive at the resolution

0−→O(−4)−→O(−4)⊕ 3O(−3)−→ 2O(−2)⊕O(1)−→F −→ 0.

The morphism O(−4) → O(−4) is nonzero because h1(F(1)) = 0. Canceling

O(−4) we obtain a resolution as in the proposition.

Conversely, if F has resolution (i) or (ii), then, by virtue of Claim 3.1.4, F
is semistable. �

PROPOSITION 6.1.5

The sheaves F giving points in MP2(6,0) and satisfying the conditions

h0(F(−1)) > 0, h1(F(1)) > 0 are precisely the sheaves having a resolution of

the form

0−→O(−4)⊕O(−2)
ϕ−→O(−1)⊕O(1)−→F −→ 0, where ϕ12 �= 0.

Proof

Arguing as in the proof of Proposition 6.1.4, we see that there is an extension

0−→OC(1)−→F −→OL(−1)−→ 0

for a quintic curve C ⊂ P2 or that there is a resolution

0−→O(−4)
ψ−→O(−4)⊕ 3O(−3)

ρ−→ 2O(−2)⊕O(1)−→F −→ 0.

In the first case we can combine the standard resolutions of OC(1) and OL(−1)

to get a resolution as in the proposition. Indeed, by hypothesis h0(F(1))≥ 7, so

F(1) has a section mapping to a nonzero section of OL.
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In the second case ψ11 = 0 because h1(F(1))> 0. We claim that Coker(ψ21)�
Ω1(−1); that is, the entries of ψ21 are linearly independent. Clearly they span a

vector space of dimension at least 2. If

ψ21 ∼

⎡
⎣0




⎤
⎦ , then ρ∼

⎡
⎣
 
 
 



 
 0 0


 
 0 0

⎤
⎦ .

It would follow that F maps surjectively to the cokernel of an injective morphism

O(−4)⊕O(−3)→O(−2)⊕O(1). This would contradict the semistability of F .

From the resolution

0−→O(−4)⊕Ω1(−1)−→ 2O(−2)⊕O(1)−→F −→ 0

we obtain the resolution

0−→O(−4)⊕ 3O(−2)
ϕ−→ 2O(−2)⊕O(−1)⊕O(1)−→F −→ 0.

If rank(ϕ12) ≤ 1, then F would map surjectively to OC(−2) for a conic curve

C ⊂ P2, in violation of semistability. Thus rank(ϕ12) = 2, and canceling 2O(−2)

we obtain a resolution as in the proposition. �

In view of Corollary 2.2.2(vii) there are no other sheaves giving points in MP2(6,0)

beside the sheaves we have discussed in this subsection.

6.2. The strata as quotients
In Section 6.1 we classified all sheaves giving points in MP2(6,0), namely, we

showed that this moduli space is the union of six locally closed subsets as in

Table 4. As the notation suggests, XD
3 is the image of X3 under the duality

automorphism [F ]→ [FD]. The strata Xi, i= 0,1,2,4, are invariant under this

automorphism. We employ the notations Wi, Wi, Gi, ρi, 0≤ i≤ 4, analogous to

the notations from Section 3.2. We denote W s
i = ρ−1

i (Xs
i ).

From Proposition 6.1.1 we easily deduce that the points in X0 given by

properly semistable sheaves are of the form [F1 ⊕ · · · ⊕ Fκ], κ ≥ 2, where Fi is

stable and has resolution

0−→ riO(−2)−→ riO(−1)−→Fi −→ 0,

r1+ · · ·+rκ = 6. In particular, we see that X0 is disjoint from the other strata and

that two points in W0 are in the same fiber of ρ0 if and only if the relative closures

in W0 of their orbits meet nontrivially. This allows us to apply the method of [4,

Theorem 4.2.2] in order to show that ρ0 is a categorical quotient map. Note that

W0 is a proper invariant open subset of the set of semistable Kronecker modules

6O(−2)→ 6O(−1), so there exists a good quotient W0//G0 as an open subset of

N(3,6,6). By the uniqueness of the categorical quotient we have an isomorphism

X0 �W0//G0. This shows that MP2(6,0) and N(3,6,6) are birational.

According to Claim 3.1.4 and Corollary 2.3.2, the sets X3 \Xs
3, X

D
3 \ (XD

3 )
s,

X4 \Xs
4 coincide and consist of all points of the form [OL(−1)⊕OQ(1)], where

L ⊂ P2 is a line and Q ⊂ P2 is a quintic curve. Moreover, from the proofs of
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Propositions 6.1.4 and 6.1.5 it transpires that any sheaf stable-equivalent to

OL(−1) ⊕ OQ(1) is the cokernel of some morphism in WD
3 \W s

3 , W3 \ (WD
3 )

s,

or WD
4 \W s

4 . Thus X3, X
D
3 , X4 are disjoint from the strata X0, X1, and X2. For

i ∈ {3,4} the fibers of the map W s
i →Xs

i are precisely the Gi-orbits; hence, as

at Section 3.2, this is a geometric quotient map. According to [4, Section 9.3],

W s
3/G3 is an open subset of a fiber bundle over N(3,2,3) with fiber P24. We can

be more precise. According to Claim 3.1.4, W s
3 is the subset of W3 of morphisms

ϕ such that the maximal minors of ϕ12 have no common factor, hence, apply-

ing [1, Propositions 4.5, 4.6], we can show that the sheaves Coker(ϕ), ϕ ∈W s
3 ,

are precisely the sheaves of the form JZ(2), where Z ⊂ P2 is a zero-dimensional

scheme of length 3 that is not contained in a line, Z is contained in a sextic

curve C, and JZ ⊂OC is the ideal of Z in C. Thus W s
3/G3 is isomorphic to the

open subset of HilbP2(6,3) of pairs (C,Z) such that Z is not contained in a line.

Similarly, the sheaves giving points in Xs
4 are precisely the sheaves of the form

JZ(2), where Z is contained in a line L that is not a component of C. Thus X4

is isomorphic to the locally closed subset {(C,Z),Z ⊂ L,L�C} of HilbP2(6,3).

By the discussion above, the strata X1 and X2 are disjoint from X0, X3,

XD
3 , X4. Making a list of properly semistable sheaves giving points in MP2(6,0)

we can show that

X1 ∩X2 =
{
[OC1 ⊕OC2 ],C1,C2 ⊂ P2 cubic curves

}
.

DenoteX10 =X1\X2,X20 =X2\X1,W10 = ρ−1
1 (X10),W20 = ρ−1

2 (X20). Assume

that i ∈ {1,2}. Arguing as at [3, Section 4.2.1], we can easily see that two points

of Wi0 are in the same fiber of ρi if and only if the relative closures in Wi0 of their

Gi-orbits intersect nontrivially. This allows us to apply the method of [3, The-

orem 4.2.2] in order to show that the maps Wi0 →Xi0 are categorical quotient

maps.

6.3. Generic sheaves
Let C ⊂ P2 denote an arbitrary smooth sextic curve, and let Pi denote distinct

points on C. According to [1, Propositions 4.5, 4.6], the cokernels of morphisms

5O(−6)→ 6O(−5) whose maximal minors have no common factor are precisely

the ideal sheaves IZ ⊂ P2 of zero-dimensional schemes Z of length 15 that are

not contained in a quartic curve. It follows that the generic sheaves in X0 have

the form OC(4)(−P1−· · ·−P15), where P1, . . . , P15 are not contained in a quartic

curve. From Claim 6.3.1 below, it follows that the generic sheaves in X1 have the

form OC(3)(−P1 − · · · − P9), where P1, . . . , P9 are contained in a unique cubic

curve. The generic sheaves in X2 have the form OC(3)(−P1 − · · · − P9), where

P1, . . . , P9 are contained in two cubic curves that have no common component.

We saw in Section 6.2 that the generic sheaves in X3 have the form OC(2)(−P1−
P2−P3), and the generic sheaves inXD

3 have the form OC(1)(P1+P2+P3), where

P1, P2, P3 are non-colinear. The generic sheaves inX4 have the formOC(2)(−P1−
P2 − P3), where P1, P2, P3 are colinear.
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CLAIM 6.3.1

Let U ⊂ Hom(3O(−2),3O(−1) ⊕ O) be the set of morphisms whose maximal

minors have no common factor. The cokernels of morphisms in U are precisely

the sheaves of the form IZ(3), where IZ ⊂ OP2 is the ideal sheaf of a zero-

dimensional scheme Z of length 9, that is contained in a unique cubic curve.

Proof

The argument is analogous to the argument at Claim 3.3.1. �
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