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Abstract We consider L2-supercritical and H1-subcritical focusing nonlinear

Schrödinger equations. We introduce a subset PW ofH1(Rd) for d≥ 1, and investigate

behavior of the solutions with initial data in this set. To this end, we dividePW into two

disjoint componentsPW+ andPW−. Then, it turns out that any solution starting from

a datum in PW+ behaves asymptotically free, and solution starting from a datum in

PW− blows up or grows up, from which we find that the ground state has two unstable

directions. Our result is an extension of the one by Duyckaerts, Holmer, and Roudenko

to the general powers anddimensions, and our argumentmostly follows the idea ofKenig

and Merle.

1. Introduction

In this paper, we consider the Cauchy problem for the nonlinear Schrödinger

(NLS) equation

(NLS) 2i
∂ψ

∂t
(x, t) +Δψ(x, t) +

∣∣ψ(x, t)∣∣p−1
ψ(x, t) = 0, (x, t) ∈Rd ×R,

where ψ is a complex-valued function on Rd ×R, Δ is the Laplace operator on

Rd, and p satisfies the so-called L2-supercritical and H1-subcritical condition

(1.1) 2 +
4

d
< p+ 1< 2∗ :=

{
∞ if d= 1,2,
2d
d−2 if d≥ 3.

Our (NLS) equation is invariant under the scaling

(1.2) ψ(x, t) �→ ψλ(x, t) := λ2/(p−1)ψ(λx,λ2t),

which determines a critical regularity

(1.3) sp :=
d

2
− 2

p− 1
.

The condition (1.1) implies that 0< sp < 1.
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We associate the equation (NLS) with the initial datum from the usual

Sobolev space H1(Rd):

(1.4) ψ(·,0) = ψ0 ∈H1(Rd).

We summarize the basic properties of this Cauchy problem (NLS) and (1.4) (see,

e.g., [4], [9], [13]–[15], [25]). The unique local existence of solutions is well known:

for any ψ0 ∈ H1(Rd), there exists a unique solution ψ in C(Imax;H
1(Rd)) for

some interval Imax = (−T−
max, T

+
max)⊂R: maximal existence interval including 0;

T+
max (−T−

max) is the maximal existence time for the future (the past). If Imax �R,
then we have

(1.5) lim
t→∗T∗

max

∥∥∇ψ(t)
∥∥
L2 =∞ (blowup),

provided that T ∗
max < ∞, where ∗ stands for + or −. Besides, the solution ψ

satisfies the following conservation laws of the mass M, the Hamiltonian H, and

the momentum P in this order: for all t ∈ Imax,

M
(
ψ(t)

)
:=
∥∥ψ(t)∥∥2

L2 =M(ψ0),(1.6)

H
(
ψ(t)

)
:=
∥∥∇ψ(t)

∥∥2
L2 −

2

p+ 1

∥∥ψ(t)∥∥p+1

Lp+1 =H(ψ0),(1.7)

P
(
ψ(t)

)
:=


∫
Rd

∇ψ(x, t)ψ(x, t)dx= P(ψ0).(1.8)

If, in addition, ψ0 ∈ L2(Rd, |x|2 dx), then the corresponding solution ψ also belongs

to C(Imax;L
2(Rd, |x|2 dx)) and satisfies the so-called virial identity (see [9]):∫

Rd

|x|2
∣∣ψ(x, t)∣∣2 dx=

∫
Rd

|x|2
∣∣ψ0(x)

∣∣2 dx+ 2t

∫
Rd

x · ∇ψ0(x)ψ0(x)dx

+ 2

∫ t

0

∫ t′

0

K
(
ψ(t′′)

)
dt′′ dt′ for all t ∈ Imax,

(1.9)

where K is a functional defined by

(1.10) K(f) := ‖∇f‖2L2 −
d(p− 1)

2(p+ 1)
‖f‖p+1

Lp+1 , f ∈H1(Rd).

It is worthwhile to note that

(1.11) K(f) =H(f)− (p− 1)sp
p+ 1

‖f‖p+1
Lp+1 ,

so that for any f ∈H1(Rd) \ {0}, we have

K(f)>H(f) if p < 1 +
4

d
,(1.12)

K(f) =H(f) if p= 1+
4

d
,(1.13)

K(f)<H(f) if p > 1 +
4

d
.(1.14)

The virial identity (1.9) tells us the behavior of the “variance” of a solution,

from which we expect to obtain a kind of propagation or concentration estimates.
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However, we cannot use (1.9) as it is, since we do not require the weight condition

ψ0 ∈ L2(Rd, |x|2 dx). We will work in the pure energy space H1(Rd), introducing

a generalized version of the virial identity (see (A.9) in the appendix).

Our equation (NLS) has several kinds of solutions: standing waves, blowup

solutions (see (1.5) above), and global-in-time solutions which asymptotically

behave like free solutions in the distant future/distant past. Here, the standing

wave is a nontrivial solution of the form

(1.15) ψ(x, t) = e(i/2)ωtf(x), ω > 0, f ∈H1(Rd) \ {0}.
Thus, f solves the following semilinear elliptic equation (nonlinear scalar field

equation):

(1.16) Δf − ωf + |f |p−1f = 0, ω > 0, f ∈H1(Rd) \ {0}.
Here, we remark that every solution f to (1.16) satisfies K(f) = 0. Indeed, since

any solution f to (1.16) belongs to the space H1(Rd)∩L2(Rd, |x|2 dx), the stand-
ing wave ψ = e(i/2)ωtf enjoys the virial identity (1.9), which immediately leads

us to K(f) = 0.

The standing waves are one of the interesting objects in the study of NLSs

for both mathematics and physics: standing waves are considered to be the states

of Bose–Einstein condensations. In this paper, we are interested in the precise

instability mechanism of the ground state. The ground state means a solution to

(1.16) minimizing the action Sω among the solutions, where

(1.17) Sω(f) := ω‖f‖2L2 + ‖∇f‖2L2 −
2

p+ 1
‖f‖p+1

Lp+1 .

To this end, we employ the classical potential well theory traced back to Sattinger

[23]. To define our potential well PW, we need to know some variational prop-

erties of the ground state. We shall give the precise definition of PW in (1.26)

below. Anyway, our PW is divided into PW+ and PW− according to the sign

of the functional K, that is, PW+ = PW ∩ [K > 0], PW− = PW ∩ [K < 0] (see

(1.29), (1.30)), and the ground state belongs to PW+ ∩PW−. We show that any

solution starting from PW+ exists globally in time and asymptotically behaves

like a free solution in the distant future and past (see Theorem 1.1); in contrast,

PW− gives rise to “singular” solutions (see Theorem 1.2). Thus, the ground state

shows at least two types of instability, since it belongs to PW+ ∩PW−.

To define our potential well PW, we shall investigate some properties of

the ground states here. There is much literature concerning the elliptic equation

(1.16) (see, e.g., [2], [7], [18], [24]). We know that if d ≥ 2, there are infinitely

many solutions (excited states) Qn
ω (n= 1,2, . . .) such that

(1.18) Sω(Q
n
ω) = ω‖Qn

ω‖2L2 + ‖∇Qn
ω‖2L2 −

2

p+ 1
‖Qn

ω‖p+1
Lp+1 →∞ (n→∞).

In the L2-supercritical and H1-subcritical case (2+ (4/d)< p+1< 2∗), it is well

known that for any ω > 0, there exists a ground state Qω that is a unique positive

radial function. Put S := S1 and Q :=Q1. Then, we have the relation

(1.19) Qω(x) = ω1/(p−1)Q(ω1/2x).
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Moreover, we can find that

S(Q) = inf
{
S(f)

∣∣ f ∈H1(Rd) \ {0},K(f) = 0
}

= inf
{
‖f‖2

H̃1

∣∣ f ∈H1(Rd) \ {0},K(f)≤ 0
}
= ‖Q‖2

H̃1 ,
(1.20)

where

(1.21) ‖f‖2
H̃1 := S(f)− 4

d(p− 1)
K(f) =

2sp
d

‖∇f‖2L2 + ‖f‖2L2 .

For λ > 0, let Tλ be a scaling operator defined by

(1.22) (Tλf)(x) := λ2/(p−1)f(λx).

Then, we define

(1.23) N (f) := inf
λ>0

S(Tλf) =
(M(f)

1− sp

)1−sp(H(f)

sp

)sp
for any function f ∈H1(Rd) with H(f)≥ 0.∗ Moreover, we define

(1.24) Ñ (f) := inf
λ>0

‖Tλf‖2H̃1 =
(M(f)

1− sp

)1−sp(2‖∇f‖2L2

d

)sp
for any f ∈H1(Rd).†

Since the sign of K is invariant under the scaling (1.22), we see from (1.20)

that the ground state Q satisfies

S(Q) =N (Q) = inf
{
N (f)

∣∣ f ∈H1(Rd) \ {0},K(f) = 0
}

= inf
{
Ñ (f)

∣∣ f ∈H1(Rd) \ {0},K(f)≤ 0
}

= Ñ (Q) = ‖Q‖2
H̃1 .

(1.25)

Now, we define our “potential well” PW by

PW=
⋃
ω>0

{
f ∈H1(Rd)

∣∣ Sω(f)< Sω(Qω)
}

=
{
f ∈H1(Rd)

∣∣ Sω(f)< Sω(Qω) for some ω > 0
}
.

(1.26)

Then, we see from an elementary calculus that

(1.27) PW=
{
f ∈H1(Rd)

∣∣H(f)<max
ω>0

[
Sω(Qω)− ωM(f)

]
=: B(f)

}
.

Using (1.19) and (1.25), we obtain the explicit form of B(f) for any f ∈H1(Rd)\
{0}:

(1.28) B(f) = 2sp
d

(M(Q)

M(f)

) 1−sp
sp ‖∇Q‖2L2 .

∗We have infλ>0 S(Tλf) = S(Tλf)|
λ=

√
spM(f)

(1−sp)H(f)

for any f ∈H1(Rd) with H(f)> 0.

†We have infλ>0 ‖Tλf‖2
H̃1

= ‖Tλf‖2
H̃1

|
λ=

√
dM(f)

2(1−sp)‖∇f‖2
L2

for any f ∈H1(Rd) \ {0}.
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We divide PW into two components according to the sign of K:

PW+ =
{
f ∈ PW

∣∣K(f)> 0
}
,(1.29)

PW− =
{
f ∈ PW

∣∣K(f)< 0
}
.(1.30)

It is worthwhile noting the following facts.

1. PW+ and PW− are unbounded open sets in H1(Rd): indeed, one can

easily verify this fact by considering the scaled functions Tλf for f ∈ H1(Rd)

and λ > 0.

2. We have

(1.31)
{
f ∈H1(Rd)

∣∣H(f)< 0
}
⊂ PW−.

3. We have PW=PW+∪PW−∪{0} (see Lemma 2.1) and PW+∩PW− = ∅.
4. PW+ and PW− are invariant under the flow defined by (NLS) (see

Lemma 2.2).

5. The ground state Qω belongs to PW+ ∩ PW− and Qω /∈ PW+ ∪ PW−
for any ω > 0, where PW+ and PW− are the closures of PW+ and PW− in the

H1-topology, respectively (see Corollary 1.3). Moreover, the orbit

(1.32)
{
eiθQω(· − a)

∣∣ ω > 0, a ∈Rd, θ ∈R
}

is contained in PW+ ∩PW−.

Here, the last fact above is the key to show the instability of the ground state.

We will prove these facts in Section 2.

We can see from (1.25) that PW+ is rewritten in the form

(1.33) PW+ =
{
f ∈H1(Rd)

∣∣K(f)> 0,N (f)<N (Q)
}
.

To consider the wave operators, we introduce a set Ω which is a subset of

PW+:

(1.34) Ω :=
{
f ∈H1(Rd) \ {0}

∣∣∣ Ñ (f)<
(2sp

d

)sp
N (Q)

}
.

Now, we are in a position to state our main results. When symbols with ±
appear in the following theorems and propositions, we always take both upper

signs or both lower signs in the double signs.

The first theorem below is concerned with the behavior of the solutions with

initial data from PW+.

THEOREM 1.1 (GLOBAL EXISTENCE AND SCATTERING)

Assume that d≥ 1, 2+ (4/d)< p+1< 2∗ and ψ0 ∈ PW+. Then, the correspond-

ing solution ψ to the equation (NLS) exists globally in time, that is, Imax = R,
and has the following properties:

(i) ψ stays in PW+ for all time and satisfies

(1.35) inf
t∈R

K
(
ψ(t)

)
> 0;
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(ii) we have

(1.36) sup
t∈R

∥∥∇ψ(t)
∥∥2
L2 <∞;

(iii) there exist unique φ+ ∈Ω and φ− ∈Ω such that

(1.37) lim
t→±∞

∥∥ψ(t)− e(i/2)tΔφ±
∥∥
H1 = lim

t→±∞

∥∥e−(i/2)tΔψ(t)− φ±
∥∥
H1 = 0.

This formula defines the operators U± : ψ0 �→ φ± = limt→±∞ e−(i/2)tΔψ(t). These

operators become homeomorphisms from PW+ to Ω, so that we can define the

scattering operator S := U−1
+ W− from Ω into itself, where W− := (U−)

−1.

REMARK 1.1

(i) Theorem 1.1 is an extension of the result by Duyckaerts, Holmer and

Roudenko [5]. See Notes and Comments below for the details.

(ii) Since Ω is clearly connected in the H1(Rd)-topology, we see from Theo-

rem 1.1 that PW+ is connected in the H1(Rd)-topology.

In contrast to the case of PW+, the solutions with initial data from PW− become

singular.

THEOREM 1.2 (BLOWUP OR GROWUP)

Assume that d≥ 1, 2+ (4/d)< p+1< 2∗ and ψ0 ∈ PW−. Then, the correspond-

ing solution ψ to the equation (NLS) satisfies the following:

(i) ψ stays in PW− as long as it exists and satisfies

(1.38) sup
t∈Imax

K
(
ψ(t)

)
< 0;

(ii) ψ blows up in a finite time or grows up; that is,

(1.39) sup
t∈[0,T+

max)

∥∥∇ψ(t)
∥∥
L2 = sup

t∈(−T−
max,0]

∥∥∇ψ(t)
∥∥
L2 =∞.

In particular, if T±
max =∞, then we have

(1.40) limsup
t→±∞

∫
|x|>R

∣∣∇ψ(x, t)
∣∣2 dx=∞ for any R> 0.

REMARK 1.2

(i) We do not know whether a solution growing up at infinity exists.

(ii) We know (see [8]) that if ψ0 ∈H1(Rd)∩L2(Rd, |x|2 dx), then T±
max <∞

and the corresponding solution ψ satisfies

lim
t→±T±

max

∥∥∇ψ(t)
∥∥
L2 =∞.

For the case ψ0 /∈ L2(Rd, |x|2 dx), see Proposition 1.1 below (see also [22]).

Combining Theorems 1.1 and 1.2, we can show the instability of the ground

states. Precisely, we have the following.
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COROLLARY 1.3 (INSTABILITY OF GROUND STATE)

Let Qω be the ground state of the equation (1.16) for ω > 0. Then, Qω has two

unstable directions in the sense that Qω ∈ PW+ ∩ PW−. In particular, for any

ε > 0, there exist f+ ∈ PW+ and f− ∈ PW− such that

‖Qω − f±‖H1 ≤ ε.

REMARK 1.3

An example of f± is (1 ∓ (ε/(‖Qω‖H1)))Qω , where both upper or both lower

signs should be chosen in the double signs.

Next, we consider singular solutions. The following theorem tells us that solutions

with radially symmetric data from PW− blow up in a finite time.

PROPOSITION 1.1 (EXISTENCE OF BLOWUP SOLUTION)

Assume that d≥ 2, 2 + (4/d) < p+ 1< 2∗, and assume that p≤ 5 if d = 2. Let

ψ0 be a radially symmetric function in PW−, and let ψ be the corresponding

solution to the equation (NLS). Then, we have

(1.41) T±
max <∞ and lim

t→±T±
max

∥∥∇ψ(t)
∥∥
L2 =∞.

Furthermore, for any m> 0, there exists a constant Rm > 0 such that

(1.42)

∫
|x|>R

∣∣ψ(x, t)∣∣2 dx <m

for any R≥Rm and t ∈ Imax.

We do not know a lot of things about the asymptotic behavior of such singu-

lar solutions as found in Theorem 1.2. What we can say is the following. (For

simplicity, we state the forward time case only.)

PROPOSITION 1.2

Assume that d≥ 1 and 2+(4/d)< p+1< 2∗. Let ψ be a solution to the equation

(NLS) such that

(1.43) limsup
t→T+

max

∥∥∇ψ(t)
∥∥
L2 = limsup

t→T+
max

∥∥ψ(t)∥∥
Lp+1 =∞,

and let {tn}n∈N be a sequence in [0, T+
max) such that

(1.44) lim
n→∞

tn = T+
max,

∥∥ψ(tn)∥∥Lp+1 = sup
t∈[0,tn)

∥∥ψ(t)∥∥
Lp+1 .

For this sequence {tn}, we put

(1.45) λn :=
∥∥ψ(tn)∥∥−((p−1)(p+1))/(d+2−(d−2)p)

Lp+1

and consider the scaled functions

(1.46) ψn(x, t) := λ2/(p−1)
n ψ(λnx, tn − λ2

nt), t ∈
(
−T+

max − tn
λ2
n

,
tn
λ2
n

]
.
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We define a “renormalized” functions ΦRN
n by

(1.47) ΦRN
n (x, t) = ψn(x, t)− e(i/2)tΔψn(x,0), n ∈N.

Then, for any T > 0, there exists a subsequence of {ΦRN
n } (still denoted by the

same symbol) with the following properties:

(1.48) ΦRN
n ∈C

(
[0, T ];H1(Rd)

)
for any n ∈N,

and there exists a nontrivial function Φ ∈ L∞([0,∞);H1(Rd)) such that

(1.49) lim
n→∞

ΦRN
n =Φ in C

(
[0, T ]; weak-H1(Rd)

)
.

Here, Φ solves the following equation:

(1.50) 2i
∂Φ

∂t
+ΔΦ=−F,

where F is the nontrivial function in L∞([0,∞);L(p+1)/p(Rd)) given by

(1.51) lim
n→∞

|ψn|p−1ψn = F weakly* in L∞([0, T ];L(p+1)/p(Rd)
)
.

Here, we discuss some relations between the previous works and our results.

NOTES AND COMMENTS

Our analysis in PW+ is inspired by the previous work by Duyckaerts, Holmer,

and Roudenko [5], [10] (see also Kenig and Merle [16]). They considered a typical

nonlinear Schrödinger equation, the equation (NLS) with d= p= 3, and proved,

in [5], that if ψ0 ∈H1(R3) satisfies

(1.52) M(ψ0)H(ψ0)<M(Q)H(Q), ‖ψ0‖L2‖∇ψ0‖L2 < ‖Q‖L2‖∇Q‖L2 ,

then the corresponding solution exists globally in time and has asymptotic states

at ±∞, where Q denotes the ground state of the equation (1.16) with ω = 1. We

see from (1.25) and (1.33) that the condition (1.52) is equivalent to ψ0 ∈ PW+.

Hence, Theorem 1.1 is an extension of their result to all spatial dimensions d≥ 1

and L2-supercritical and H1-subcritical powers 2 + (4/d) < p+ 1 < 2∗. For the

nonlinear Klein–Gordon equation, a result corresponding to Theorem 1.1 was

obtained by Ibrahim, Masmoudi, and Nakanishi [12].

In [11], Holmer and Roudenko also considered the equation (NLS) and proved

that if the initial datum ψ0 satisfies |x|ψ0 ∈ L2(Rd) and either H(ψ0) < 0 or

H(ψ0)≥ 0 and

(1.53) Ñ (Q)< Ñ (ψ0),

then the corresponding solution blows up in a finite time. In our terminology,

their initial datum belongs to PW−.

This paper is organized as follows. In Section 2, we discuss properties of the

potential well PW. In Section 3, we introduce function spaces in which Strichartz-

type estimates work well. We also give a small data theory and a long time

perturbation theory. In Section 4, we give a proof of Theorem 1.1. Section 5 is
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devoted to proofs of Theorem 1.2 and Propositions 1.1 and 1.2. In the appendix,

we introduce a generalized version of virial identity and give its fundamental

properties.

NOTATION

We summarize the notation used in this paper.

We keep the letters d and p to denote the spatial dimension and the power

of nonlinearity in the equation (NLS), respectively.

N denotes the set of natural numbers, that is, N= {1,2,3, . . .}.
Imax denotes the maximal existence interval of the considering solution,

which has the form

Imax = (−T−
max, T

+
max),

where T+
max > 0 is the maximal existence time for the future and T−

max > 0 is the

one for the past.

The symbol (·, ·) denotes the inner product of L2(Rd), that is,

(f, g) :=

∫
Rd

f(x)g(x)dx, f, g ∈ L2(Rd).

C∞
c (Rd) denotes the set of infinitely differentiable functions from Rd to C

with compact supports.

Using the Fourier transformation F , for s ∈R we define differential operators

|∇|s, (−Δ)(s/2), and (1−Δ)(s/2) by

|∇|sf = (−Δ)(s/2)f :=F−1
[
|ξ|sF [f ]

]
,

(1−Δ)(s/2)f :=F−1
[(
1 + |ξ|2

)(s/2)F [f ]
]
.

2. Potential well PW

In this section, we discuss fundamental properties of the sets PW, PW−, and

PW+. In particular, we will prove that these sets are invariant under the flow

defined by the equation (NLS). Moreover, we prove Corollary 1.3 here.

We begin with the following fact.

LEMMA 2.1

The set PW does not contain any nontrivial function f with K(f) = 0, that is,

(2.1)
{
f ∈H1(Rd) \ {0}

∣∣K(f) = 0
}
∩PW= ∅,

so that

(2.2) PW=PW+ ∪PW− ∪ {0}.

Furthermore, PW is invariant under the flow defined by (NLS); that is, letting

ψ0 ∈ PW and letting ψ be the corresponding solution, we have

(2.3) ψ(t) ∈ PW for any t ∈ Imax.
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Proof of Lemma 2.1

Let f be a function in H1(Rd) \ {0} with K(f) = 0. Since Sω(f) =

ω1−spS(ω−1/(p−1)f(ω−(1/2)·)) and K(ω−−1/(p−1)f(ω−(1/2)·)) = 0 for any ω > 0,

we see from (1.20) that f /∈ PW.

The invariance (2.3) follows from the mass and energy conservation laws

(1.6) and (1.7). �

Now, we are in a position to prove Corollary 1.3.

Proof of Corollary 1.3

We consider a path Γω : (0,∞)→H1(Rd) given by Γω(λ) := λd/2Qω(λ·) for λ > 0.

Then, one can verify that Γω(λ) ∈ PW+ for any λ ∈ (0,1). This together with

the continuity of Γω shows that Qω ∈ PW+. Similarly, we can verify that Qω ∈
PW−. �

Next, we give the invariance results of the sets PW+ and PW− under the flow

defined by the equation (NLS).

LEMMA 2.2

Let ψ0 ∈ PW+, and let ψ be the corresponding solution to (NLS). Then, ψ exists

globally in time and satisfies the following:

(2.4) ψ(t) ∈ PW+ for any t ∈R,

(2.5) inf
t∈R

K
(
ψ(t)

)
≥
{
1−
(N (ψ0)

N (Q)

)(p−1)/2}
H(ψ0)> 0,

and

(2.6) sup
t∈R

∥∥∇ψ(t)
∥∥2
L2 <

d

2sp
H(ψ0).

On the other hand, let ψ0 ∈ PW−, and let ψ be the corresponding solution to the

equation (NLS). Then, we have

(2.7) ψ(t) ∈ PW− for any t ∈ Imax

and

(2.8) sup
t∈Imax

K
(
ψ(t)

)
≤H(ψ0)−B(ψ0)< 0.

REMARK 2.1

We see from the proof below (see (2.10)) that

(2.9)
{
1−
( Ñ (f)

Ñ (Q)

)(p−1)/2}
‖∇f‖2L2 ≤H(f)

for any f ∈H1(Rd) \ {0} with Ñ (f)< Ñ (Q).



Blowup and scattering problems for NLSs 639

Proof of Lemma 2.2

Let f ∈H1(Rd) \ {0} and 0 < λ <

√
Ñ (Q)

Ñ (f)
. Then, we have Ñ (λf) = λ2Ñ (f) <

Ñ (Q). This together with (1.25) shows that K(λf)> 0. Hence, we have

(2.10) K(f) = λ−(p+1)K(λf) + (1− λ−(p−1))‖∇f‖2L2 > (1− λ−(p−1))‖∇f‖2L2 .

Now, let ψ0 ∈ PW+, and let ψ be the corresponding solution. Then, it follows

from the conservation laws (1.6), (1.7), (1.25), (1.33), and K(ψ0)> 0 that

(2.11) 1<
N (Q)

N (ψ0)
=

N (Q)

N (ψ(t))
<

Ñ (Q)

Ñ (ψ0)
.

Hence, taking λ=
√

N (Q)
N (ψ0)

in (2.10), we obtain

K
(
ψ(t)

)
>
{
1−
(N (ψ0)

N (Q)

)(p−1)/2}∥∥∇ψ(t)
∥∥2
L2

>
{
1−
(N (ψ0)

N (Q)

)(p−1)/2}
H(ψ0) for any t ∈ Imax.

(2.12)

In particular, we have inft∈Imax K(ψ(t))> 0, which yields

(2.13) H(ψ0)>
(
1− 4

d(p− 1)

)∥∥∇ψ(t)
∥∥2
L2 =

2sp
d

∥∥∇ψ(t)
∥∥2
L2 for any t ∈ Imax.

Thus, we find Imax = R, and hence (2.12) and (2.13) give us the desired results

(2.5) and (2.6).

On the other hand, let ψ0 ∈ PW−, and let ψ be the corresponding solution.

It follows from (1.20) and the continuity of ψ in H1(Rd) that ψ(t) ∈ PW− for all

t ∈ Imax. Then, we see from (1.25) and (1.28) that

(2.14) 1≥ Ñ (Q)

Ñ (ψ(t))
=

d

2sp

B(ψ0)

‖∇ψ(t)‖2L2

,

which together with K(ψ(t))< 0 yields

(2.15) B(ψ0)≤
2sp
d

∥∥∇ψ(t)
∥∥2
L2 ≤

sp(p− 1)

p+ 1

∥∥ψ(t)∥∥p+1

Lp+1 =H(ψ0)−K
(
ψ(t)

)
.

Thus, we obtain (2.8). �

3. Strichartz-type estimate and scattering

In this section, we introduce Strichartz-type function spaces, which enables us

to control the long-time behavior of solutions. Using these spaces, we prepare

two important propositions: Proposition 3.5 in Section 3.2 (small data theory)

and Proposition 3.6 in Section 3.3 (long-time perturbation theory). The former

is used to avoid the vanishing and the latter to avoid the dichotomy in the

“contradiction-compactness” argument due to Kenig and Merle [16, Section 4.2].

At the end of this section, we give an existence result of the wave operator

in PW+.
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3.1. Auxiliary function space
To prove the scattering result ((1.37) in Theorem 1.1), we need to handle the

inhomogeneous term of the integral equation associated with (NLS) in a suitable

function space. Therefore, we will prepare a function space X(I), I ⊂R, in which

a Strichartz-type estimate works well.

Throughout this paper, we fix a number q1 with p+ 1< q1 < 2∗. Then, we

define indices r0, r1, and r̃1 by

1

r0
:=

d

2

(1
2
− 1

q1

)
,(3.1)

1

r1
:=

d

2

(1
2
− 1

q1
− sp

d

)
,(3.2)

1

r̃1
:=

d

2

(1
2
− 1

q1
+

sp
d

)
.(3.3)

Here, the pair (q1, r0) is admissible. Besides these indices, we define a pair (q2, r2) by

(3.4)
p− 1

q2
= 1− 2

q1
,

1

r2
:=

d

2

(1
2
− 1

q2
− sp

d

)
.

For the relations among some pairs of these indices denoted by means of letters

“q” and “r,” see Figure 1. It is worthwhile to note that the Sobolev embedding

and the Strichartz estimate lead us to the following estimate. For any pair (q, r)

satisfying

(3.5)
d

2
(p− 1)≤ q < 2∗,

1

r
=

d

2

(1
2
− 1

q
− sp

d

)
,

we have

‖e(i/2)tΔf‖Lr(I;Lq) �
∥∥(−Δ)(sp/2)f

∥∥
L2

for all f ∈ Ḣsp(Rd) and interval I,
(3.6)

where the implicit constant depends only on d, p, and q. The pairs (q1, r1) and

(q2, r2) satisfy the condition (3.5), so that the estimate (3.6) is valid for these

pairs.

Now, for any interval I , we put

X(I) = Lr1(I;Lq1)∩Lr2(I;Lq2),(3.7)

S(I) = L∞(I;L2)∩Lr0(I;Lq1).(3.8)

We find that Strichartz-type estimates work well in the space X(I).

LEMMA 3.1

Assume that d≥ 1 and 2+(4/d)< p+1< 2∗. Let t0 ∈R, and let I be an interval

whose closure contains t0. Then, we have∥∥∥∫ t

t0

ei(t−t′)Δv(t′)dt′
∥∥∥
X(I)

� ‖v‖
Lr̃′1 (I;Lq′1 )

,(3.9)
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Figure 1. Strichartz-type estimates: Q0 : ( 1
q1

, 1
r0

), Q1 : ( 1
q1

, 1
r1

), Q2 : ( 1
q2

, 1
r2

), Q̃1 : ( 1
q1

, 1
r̃1

).

∥∥∥∫ t

t0

ei(t−t′)Δ(v1v2)(t
′)dt′

∥∥∥
X(I)

� ‖v1‖Lr1 (I;Lq1 )‖v2‖Lr2/(p−1)(I;Lq2/(p−1)),(3.10)

where the implicit constants depend only on d, p, and q1.

The estimate (3.9) in Lemma 3.1 is due to Foschi (see [6, Theorem 1.4]). The

estimate (3.10) is an immediate consequence of (3.9) and the Hölder inequality.

The following lemma is frequently used in Section 4.

LEMMA 3.2

Assume that d≥ 1 and 2+(4/d)< p+1< 2∗. Let t0 ∈R, and let I be an interval

whose closure contains t0. Then, we have∥∥|v|p−1v
∥∥
Lr′0 (I;Lq′1 )

≤ ‖v‖Lr0 (I;Lq1 )‖v‖p−1
Lr2 (I;Lq2 ),(3.11) ∥∥∇(|v|p−1v

)∥∥
Lr′0 (I;Lq′1 )

� ‖∇v‖Lr0 (I;Lq1 )‖v‖p−1
Lr2 (I;Lq2 ),(3.12)

where the implicit constant depends only on d, p, and q1.
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Lemma 3.2 is easily obtained by the Hölder inequality and the chain rule.

We also need the interpolation estimate below in the next section (see Sec-

tion 4.2).

LEMMA 3.3

For j ∈ {1,2}, there exist a constant θj ∈ (0,1) such that

‖e(i/2)tΔf‖Lrj (I;Lqj ) � ‖e(i/2)tΔf‖1−θj
L∞(I;L(d/2)(p−1))

∥∥(−Δ)(sp/2)f
∥∥θj
L2

for all f ∈ Ḣsp(Rd),

where the implicit constant depends only on d, p, and q1.

Proof of Lemma 3.3

Fix a pair (q, r) satisfying (3.5) and q1 < q < 2∗. Applying the Hölder inequality

first and (3.6) afterward, we obtain

‖e(i/2)tΔf‖Lrj (I;Lqj ) ≤ ‖e(i/2)tΔf‖1−θj

L∞(I;L
d
2
(p−1))

‖e(i/2)tΔf‖θjLr(I;Lq)

(3.13)

� ‖e(i/2)tΔf‖1−θj
L∞(I;L(d/2)(p−1))

∥∥(−Δ)sp/2f
∥∥θj
L2 , j = 1,2

where

θj :=
q

qj

2qj − d(p− 1)

2q− d(p− 1)
.

Thus, we have proved the lemma. �

3.2. Sufficient conditions for scattering
We shall give two sufficient conditions for solutions to have asymptotic states in

the energy space H1(Rd). One of them is the small data theory (see Proposi-

tion 3.5).

We begin with the following proposition.

PROPOSITION 3.4 (SCATTERING IN THE ENERGY SPACE)

Assume that d ≥ 1 and 2 + 4
d < p+ 1 < 2∗. Let ψ be a solution to the equation

(NLS). Suppose that ψ exists on [0,∞) and satisfies

(3.14) ‖ψ‖X([0,∞)) <∞, ‖ψ‖L∞([0,∞);H1) <∞.

Then, we have

(3.15)
∥∥(1−Δ)1/2ψ

∥∥
S([0,∞))

<∞

and there exists a unique φ+ ∈H1(Rd) such that

(3.16) lim
t→∞

∥∥ψ(t)− e(i/2)tΔφ+

∥∥
H1 = 0.

Since the proof of Proposition 3.4 is well known, we omit it.

The following proposition gives us a sufficient condition for the boundedness

of X and S-norms.
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PROPOSITION 3.5 (SMALL DATA THEORY)

Assume that d ≥ 1 and 2 + 4
d < p+ 1 < 2∗. Let t0 ∈ R, and let I be an interval

whose closure contains t0. Then, there exists a positive constant δ, depending

only on d, p, and q1, with the following property: for any ψ0 ∈H1(Rd) satisfying

(3.17) ‖e i
2 (t−t0)Δψ0‖X(I) ≤ δ,

there exists a unique solution ψ ∈ C(I;H1(Rd)) to the equation (NLS) with

ψ(t0) = ψ0 such that

(3.18) ‖ψ‖X(I) < 2‖e i
2 (t−t0)Δψ0‖X(I),

∥∥(1−Δ)
1
2ψ
∥∥
S(I)

� ‖ψ0‖H1 ,

where the implicit constant depends only on d, p, and q1.

Proof of Proposition 3.5

We can prove this lemma by the standard contraction mapping principle. �

3.3. Long-time perturbation theory and wave operator
We will employ a concentration-compactness argument to prove that the solu-

tions starting from PW+ have asymptotic states (see Section 4). The following

proposition plays a crucial role there.

PROPOSITION 3.6 (LONG-TIME PERTURBATION THEORY)

Assume that d≥ 1 and 2 + (4/d)< p+ 1< 2∗. Then, for any A> 1, there exists

ε > 0, depending only on A, d, p, and q1, such that the following holds: Let I be

an interval, and let u be a function in C(I;H1(Rd)) such that

‖u‖X(I) ≤A,(3.19) ∥∥2i∂tu+Δu+ |u|p−1u
∥∥
Lr̃′1 (I;Lq′1 )

≤ ε.(3.20)

If ψ ∈C(R;H1) is a global solution to the equation (NLS) and satisfies

(3.21)
∥∥e(i/2)(t−t1)Δ

(
ψ(t1)− u(t1)

)∥∥
X(I)

≤ ε for some t1 ∈ I,

then we have

(3.22) ‖ψ‖X(I) � 1,

where the implicit constant depends only on d, p, q1, and A.

Proof of Proposition 3.6

This proposition is essentially known (see [3]). Therefore, we omit the proof. �

The following proposition tells us that the wave operator is well defined on Ω.

PROPOSITION 3.7 (EXISTENCE OF WAVE OPERATOR)

Assume d≥ 1 and 2 + (4/d)≤ p+ 1< 2∗. Then, for any φ+ ∈ Ω, there exists a

unique ψ0 ∈ PW+ such that the corresponding solution ψ to the equation (NLS)
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with ψ(0) = ψ0 exists globally in time and satisfies the following:

ψ ∈X
(
[0,∞)

)
,(3.23)

lim
t→+∞

∥∥ψ(t)− e(i/2)tΔφ+

∥∥
H1 = 0,(3.24)

H
(
ψ(t)

)
= ‖∇φ+‖2L2 for any t ∈R.(3.25)

Here, the map φ+ �→ ψ0 is continuous from Ω into PW+ in the H1(Rd)-topology.

Furthermore, if ‖φ+‖H1 is sufficiently small, then we have

(3.26) ‖ψ‖X(R) � ‖φ+‖H1 ,

where the implicit constant depends only on d, p, and q1.

Proof of Proposition 3.7

This proposition is essentially known (see, e.g., [10]). Therefore, we omit the

proof. �

4. Analysis on PW+

Our aim here is to prove Theorem 1.1. Obviously, Lemma 2.2 provides (1.35) and

(1.36). Therefore, it remains to prove the asymptotic completeness in PW+.

To prove the existence of asymptotic states for a solution ψ, it suffices to

show that ‖ψ‖X(R) < ∞ by virtue of Proposition 3.4 and Lemma 2.2. To this

end, we introduce a set PW+(δ) for δ > 0:

(4.1) PW+(δ) :=
{
f ∈H1(Rd)

∣∣K(f)> 0,N (f)< δ
}
.

It follows from (1.33) that PW+ =PW+(N (Q)).

We also define a number Nc by

Nc := sup
{
δ > 0

∣∣ ‖ψ‖X(R) <∞ for any ψ0 ∈ PW+(δ)
}

= inf
{
δ > 0

∣∣ ‖ψ‖X(R) =∞ for some ψ0 ∈ PW+(δ)
}
,

(4.2)

where ψ denotes the solution to (NLS) with ψ(0) = ψ0.

The small data theory (Proposition 3.5) shows Nc > 0, and the existence of

the ground state Q shows Nc ≤N (Q). Thus, our task is to prove Nc =N (Q).

4.1. Critical element versus virial identity
In this section, we give an outline of the proof of Nc =N (Q). We suppose the

contrary that Nc < N (Q). In this undesired situation, we can find a “critical

element” in PW+ which is a solution to (NLS) and whose orbit is precompact

modulo the invariant transformation group (see Proposition 4.1 below). Then, its

behavior contradicts the one described by the generalized virial identity (A.9),

so that we conclude that Nc =N (Q). At the end of this Section 4.1, we actually

show this, provided that the critical element exists.

The construction of the critical element is rather long. We divide it into two

parts; in Section 4.2, one finds its candidate, and in Section 4.3, one sees that

the candidate is actually the critical element.
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We here briefly explain how to find a candidate for the critical element. If

Nc <N (Q), then we can take a sequence {ψn} of global solutions to (NLS) such

that

ψn(t) ∈ PW+ for any t ∈R,

‖ψn‖X(R) =∞, lim
n→∞

N
(
ψn(0)

)
=Nc.

(4.3)

We consider the integral equation for ψn:

(4.4) ψn(t) = e(i/2)tΔψ0,n +
i

2

∫ t

0

e(i/2)(t−t′)Δ
{∣∣ψn(t

′)
∣∣p−1

ψn(t
′)
}
dt′,

where we put ψ0,n = ψn(0). We first observe that the linear part of this integral

equation possibly behaves as follows∗:

(4.5) e(i/2)tΔψ0,n(x)∼
∑
l≥1

e(i/2)(t−τ l
n)Δe−ηl

n·∇f l(x)

for some nontrivial functions f l ∈ PW+, τ
l
n ∈ R, and ηln ∈ Rd. Of course, this

is not a good approximation to ψn. So, putting τ l∞ = limn→∞ τ ln (possibly τ l∞ =

±∞), we solve our equation (NLS) with the initial datum e(i/2)τ
l
∞Δf l at t=−τ l∞:

ψl(t) = e(i/2)(t+τ l
∞)Δe−(i/2)τ l

∞Δf l

+
i

2

∫ t

−τ l
∞

e(i/2)(t−t′)Δ
{∣∣ψl(t′)

∣∣p−1
ψl(t′)

}
dt′.

(4.6)

Here, in case of τ l∞ =±∞, we are regarding this as the final value problem:

(4.7) e−(i/2)tΔψl(t) = f l +
i

2

∫ t

∓∞
e−(i/2)t′Δ

{∣∣ψl(t′)
∣∣p−1

ψl(t′)
}
dt′.

Then, instead of (4.5), we consider the superposition of these solutions with the

space-time translations:

ψapp
n (x, t) :=

∑
l≥1

(e−τ l
n

∂
∂t−ηl

n·∇ψl)(x, t)

=
∑
l≥1

ψl(x− ηln, t− τ ln).
(4.8)

We will see that this formal object ψapp
n is an “almost” solution to our equation

(NLS) with the initial datum
∑

l≥1 e
−(i/2)τ l

nΔe−ηl
n·∇f l and is supposed to be a

good approximation to ψn. In other words, a kind of superposition principle holds

valid in an asymptotic sense as n→∞. By virtue of the long-time perturbation

theory (Proposition 3.6), the sum in ψapp
n consists of a finite number of solutions.

Actually, as a consequence of the minimizing property of the sequence {ψn} (see

(4.3)), the summand is just one: put Ψ := ψ1. Then, it turns out that Ψ is a

critical element which we are looking for. In fact, we can prove the following.

∗e−ηl
n·∇ denotes the space translation by −ηn. We may expect that the number of sum-

mands f l is finite.
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PROPOSITION 4.1 (CRITICAL ELEMENT IN PW+)

Suppose that Nc <N (Q). Then, there exists a global solution Ψ ∈C(R;H1(Rd))

to the equation (NLS) with the following properties:

(i) Ψ is a critical element for Nc in (4.2) in the sense that

(4.9) ‖Ψ‖X(R) =∞, N
(
Ψ(t)

)
=Nc, Ψ(t) ∈ PW+ for any t ∈R,

(ii) Ψ satisfies

(4.10)
∥∥Ψ(t)

∥∥
L2 =

∥∥Ψ(0)
∥∥
L2 = 1 for any t ∈R,

and

(4.11) sup
t∈R

∥∥∇Ψ(t)
∥∥
L2 ≤N1/(p−1)sp

c ,

(iii) Ψ has zero momentum

(4.12) 

∫
Rd

Ψ(x, t)∇Ψ(x, t)dx= 0 for any t ∈R.

(iv) {Ψ(t)}t≥0 is tight in H1(Rd) in the following sense. For any ε > 0,

there exists Rε > 0 and a continuous path γε ∈C([0,∞);Rd) with γε(0) = 0 such

that

(4.13)

∫
|x−γε(t)|<Rε

∣∣Ψ(x, t)
∣∣2 dx > 1− ε for any t ∈ [0,∞),

and

(4.14)

∫
|x−γε(t)|<Rε

∣∣∇Ψ(x, t)
∣∣2 dx >

∥∥∇Ψ(t)
∥∥2
L2 − ε for any t ∈ [0,∞).

We will give the proof of Proposition 4.1 in Sections 4.2 and 4.3.

To prove Nc =N (Q), however, we need to know more subtle behavior of the

path. For a sufficiently long time, we can take γε as the almost center of mass,

say γac
ε .

LEMMA 4.2 (ALMOST CENTER OF MASS)

Let Ψ be a global solution to the equation (NLS) satisfying the properties (4.9)–

(4.14). Let Rε be a radius found in of Proposition 4.1(iv) for ε > 0. We define

an “almost center of mass” by

(4.15) γac
ε,R(t) :=

(
�w20R,

∣∣Ψ(t)
∣∣2) for any ε ∈ (0, (1/100)) and R>Rε,

where �wR is the function defined by (A.3). Then, we have

(4.16) γac
ε,R ∈C1

(
[0,∞

)
;Rd),

and there exists a constant α > 0, depending only on d and p, such that∣∣γac
ε,R(t)

∣∣≤ 20R for any t ∈
[
0, α

R√
ε

]
,(4.17)
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∫
|x−γac

ε,R(t)|≤4R

∣∣Ψ(x, t)
∣∣2 + ∣∣∇Ψ(x, t)

∣∣2 dx≥
∥∥Ψ(t)

∥∥2
H1 − ε

(4.18)

for any t ∈
[
0, α

R√
ε

]
.

REMARK 4.1

In the proof below, we find that the following estimate holds (see (4.30)):∣∣∣dγac
ε,R

dt
(t)
∣∣∣� √

ε for any t ∈
[
0, α

R√
ε

]
,

where the implicit constant depends only on d and q.

Proof of Lemma 4.2

We easily verify (see, e.g., [21, Proposition B.1]) that

γac
ε,R(t) =

(
�w20R,

∣∣Ψ(0)
∣∣2)

+
(
2

∫ t

0

∫
Rd

∇�wj
20R(x) · ∇Ψ(x, s)Ψ(x, s)dxds

)
j=1,...,d

.
(4.19)

This formula, with the help of (4.10), (4.11), and ‖∇�w20R‖L∞ � 1, shows (4.16):

γac
ε,R ∈C1([0,∞);Rd).

Next, we prove the properties (4.17) and (4.18). Let γε be a path found in

Proposition 4.1, and let tε be the first time such that the size of γε reaches 10R,

that is,

(4.20) tε := inf
{
t≥ 0

∣∣ ∣∣γε(t)∣∣= 10R
}
.

Since γε ∈C([0,∞);Rd) with γε(0) = 0, we have tε > 0 and

(4.21)
∣∣γε(t)∣∣≤ 10R for any t ∈ [0, tε].

We claim that

(4.22)
∣∣γac

ε,R(t)− γε(t)
∣∣< 2R for any t ∈ [0, tε].

It follows from property (4.10) that∣∣γac
ε,R(t)− γε(t)

∣∣= ∣∣(�w20R,
∣∣Ψ(t)

∣∣2)− γε(t)
∥∥Ψ(t)

∥∥2
L2

∣∣
≤
∫
|x−γε(t)|≤R

∣∣x− γε(t)
∣∣∣∣Ψ(x, t)

∣∣2 dx
+

∫
|x−γε(t)|≥R

∣∣�w20R − γε(t)
∣∣∣∣Ψ(x, t)

∣∣2 dx.
(4.23)

Moreover, applying (4.21) and the estimate ‖�w20R‖L∞ ≤ 10R to the second term

on the right-hand side above, we obtain∣∣γac
ε,R(t)− γε(t)

∣∣≤R
∥∥Ψ(t)

∥∥2
L2 + 50R

∫
|x−γε(t)|≥R

∣∣Ψ(x, t)
∣∣2 dx

for any t ∈ [0, tε].

(4.24)
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Hence, this inequality (4.24) together with (4.10) and the tightness (4.13) yields

(4.25)
∣∣γac

ε,R(t)− γε(t)
∣∣≤R+ 50Rε< 2R for any ε <

1

100
and t ∈ [0, tε].

Now, we have by (4.21) and (4.22) that

(4.26)
∣∣γac

ε,R(t)
∣∣≤ 12R for any t ∈ [0, tε].

Moreover, (4.22) also gives us

(4.27) BR

(
γε(t)

)
⊂B4R

(
γac
ε,R(t)

)
for any t ∈ [0, tε],

so that the tightness of {Ψ(t)}t≥0 in H1(Rd) (see (4.13) and (4.14)) gives us∫
|x−γac

ε,R(t)|≤4R

∣∣Ψ(x, t)
∣∣2 + ∣∣∇Ψ(t)

∣∣2 dx≥
∥∥Ψ(t)

∥∥2
H1 − ε

for any t ∈ [0, tε].

(4.28)

Therefore, for the desired results (4.17) and (4.18), it suffices to show that there

exists a constant α > 0, depending only on d and p, such that

(4.29) α
R√
ε
≤ tε.

To this end, we prove that

(4.30)
∣∣∣dγac

ε,R

dt
(t)
∣∣∣� √

ε for any t ∈ [0, tε].

Before proving (4.30), we describe how it yields (4.29). It follows from (4.30)

that

(4.31)
∣∣γac

ε,R(tε)
∣∣− ∣∣γac

ε,R(0)
∣∣≤ ∫ tε

0

∣∣∣dγac
ε,R

dt
(t)
∣∣∣dt�

√
εtε.

Hence, we see from (4.22) and γε(0) = 0 that

(4.32)
√
εtε �

∣∣γac
ε,R(tε)

∣∣− 2R≥
∣∣γε(tε)∣∣− ∣∣γac

ε,R(tε)− γε(tε)
∣∣− 2R≥ 6R,

which gives (4.29).

Finally, we prove (4.30). Using (4.19) and the property (4.12), we obtain∣∣∣dγac
ε,R

dt
(t)
∣∣∣2 ≤ 4

d∑
j=1

‖∇�wj
20R‖2L∞

∥∥Ψ(t)
∥∥2
L2

∫
|x|≥20R

∣∣∇Ψ(x, t)
∣∣2 dx

for any t≥ 0.

(4.33)

Applying (4.10) and the estimate ‖∇�w20R‖L∞ � 1 to the right-hand side above,

we further obtain

(4.34)
∣∣∣dγac

ε,R

dt
(t)
∣∣∣2 �

∫
|x|≥20R

∣∣∇Ψ(x, t)
∣∣2 dx for any t≥ 0.

Since the estimate (4.21) shows that

(4.35) BR

(
γε(t)

)
⊂B20R(0) for any t ∈ [0, tε],

the estimate (4.34) together with the tightness (4.14) leads to (4.30). �
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Lemma 4.2 implies that Ψ found in Proposition 4.1 is in a bound motion, rather,

a standing wave. On the other hand, the generalized virial identity (A.9) suggests

that Ψ is in a scattering motion. As we already mentioned at the beginning of this

Section 4.1, these two facts contradict each other; Thus, we see that Nc =N (Q).

Here, we show this point precisely.

The generalized virial identity (A.9) together with (A.16) and (A.17) yields(
WR,

∣∣Ψ(t)
∣∣2)

≥
(
WR,

∣∣Ψ(0)
∣∣2)+ 2t


(
�wR · ∇Ψ(0),Ψ(0)

)
+ 2

∫ t

0

∫ t′

0

K
(
Ψ(t′′)

)
dt′′ dt′(4.36)

− 2

∫ t

0

∫ t′

0

∫
|x|≥R

ρ1(x)
∣∣∇Ψ(x, t′′)

∣∣2 + ρ2(x)
∣∣∣ x|x| · ∇Ψ(x, t′′)

∣∣∣2 dxdt′′ dt′
− 1

2

∫ t

0

∫ t′

0

∥∥Δ(div �wR)
∥∥
L∞

∥∥Ψ(t′′)
∥∥2
L2 dt

′′ dt′ for any R> 0.

Applying the estimates (4.10), ‖Δ(div �wR)‖L∞ � 1/R2, and (A.20) to the right-

hand side above, we obtain(
WR,

∣∣Ψ(t)
∣∣2)

≥
(
WR,

∣∣Ψ(0)
∣∣2)+ 2t


(
�wR · ∇Ψ(0),Ψ(0)

)
(4.37)

+ 2

∫ t

0

∫ t′

0

K
(
Ψ(t′′)

)
dt′′ dt′

−C1

∫ t

0

∫ t′

0

∫
|x|≥R

∣∣∇Ψ(x, t′′)
∣∣2 dxdt′′ dt′ − C2

R2
t2 for any R> 0,

where C1 and C2 are some positive constants independent of R. Moreover, it

follows from (2.5) in Lemma 2.2 that(
WR,

∣∣Ψ(t)
∣∣2)

≥
(
WR,

∣∣Ψ(0)
∣∣2)+ 2t


(
�wR · ∇Ψ(0),Ψ(0)

)
+ t2ω0H

(
Ψ(0)

)
(4.38)

−C1

∫ t

0

∫ t′

0

∫
|x|≥R

∣∣∇Ψ(x, t′′)
∣∣2 dxdt′′ dt′ − C2

R2
t2 for any R> 0,

where ω0 := 1− ((N (Ψ(0)))/(N (Q)))(p−1)/2. Here, we have by Lemma 4.2 that

for any ε ∈ (0, (1/100)), there exists Rε > 0 with the following property. For any

R≥Rε, there exists γac
ε,R ∈C1([0,∞);Rd) such that∣∣γac

ε,R(t)
∣∣≤ 20R for any t ∈

[
0, α

R√
ε

]
,(4.39) ∫

|x−γac
ε,R(t)|≥4R

∣∣∇Ψ(x, t)
∣∣2 dx < ε for any t ∈

[
0, α

R√
ε

]
,(4.40)

where α is some constant depending only on d and p.
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We see from (4.39) that∣∣x− γac
ε,R(t)

∣∣≥ 4R

for any R≥Rε, t ∈
[
0, α

R√
ε

]
, and x ∈Rd with |x| ≥ 24R.

(4.41)

Hence, (4.38) together with the tightness (4.40) leads to(
W50R,

∣∣Ψ(t)
∣∣2)

≥
(
W50R,

∣∣Ψ(0)
∣∣2)+ 2t


(
�w50R · ∇Ψ(0),Ψ(0)

)
+ t2ω0H

(
Ψ(0)

)
(4.42)

−C1t
2ε− C2

(50R)2
t2 for any R≥Rε and t ∈

[
0, α

R√
ε

]
.

We choose ε so small that

(4.43) 0< ε<min
{ 1

100
,
ω0

4C2
H
(
Ψ(0)

)}
,

and we choose R so large that

(4.44) R≥max
{
Rε,

√
C2√

ω0H(Ψ(0))

}
.

Then, it follows from (4.42) that(
W50R,

∣∣Ψ(t)
∣∣2)

≥
(
W50R,

∣∣Ψ(0)
∣∣2)+ 2t


(
�w50R · ∇Ψ(0),Ψ(0)

)
+

t2

2
ω0H

(
Ψ(0)

)
(4.45)

for any t ∈
[
0, α

R√
ε

]
.

Dividing the both sides of (4.45) by t2 and applying the estimates (4.10) and

‖WR‖L∞ ≤ 8R2, we obtain

8(50R)2

t2
≥ 1

t2
(
W50R,

∣∣Ψ(0)
∣∣2)+ 2

t


(
�w50R · ∇Ψ(0),Ψ(0)

)
+

ω0

2
H
(
Ψ(0)

)
for any t ∈

[
0, α

R√
ε

]
.

(4.46)

In particular, when t= α R√
ε
, we have by (4.10), ‖WR‖L∞ ≤ 8R2, and ‖�wR‖L∞ ≤

2R that

8(50)2ε

α2
≥ ε

α2R2

(
W50R,

∣∣Ψ(0)
∣∣2)+ 2

√
ε

αR


(
�w50R · ∇Ψ(0),Ψ(0)

)
+

ω0

2
H
(
Ψ(0)

)
≥−8(50)2ε

α2
− 200

√
ε

α

∥∥∇Ψ(0)
∥∥
L2 +

ω0

2
H
(
Ψ(0)

)
,

(4.47)

so that

(4.48)
8(50)2ε

α2
+

8(50)2ε

α2
+

200
√
ε

α

∥∥∇Ψ(0)
∥∥
L2 ≥

ω0

2
H
(
Ψ(0)

)
.
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However, taking ε→ 0 in (4.48), we obtain a contradiction. This absurd conclu-

sion comes from the existence of critical element Ψ (see Proposition 4.1). Thus,

it must hold that Nc =N (Q), provided that Proposition 4.1 is valid.

4.2. Solving the variational problem for Ñc

In this section, we construct a candidate for the critical element, considering the

variational problem for Nc.

Suppose to the contrary that Nc <N (Q). Then, we can take a minimizing

sequence {δn}n∈N such that

(4.49) Nc < δn <N (Q) for any n ∈N, lim
n→∞

δn =Nc.

Moreover, using the scale transformation (1.22), we can take a sequence {ψ0,n}n∈N

in PW+ such that

Nc <N (ψ0,n)< δn for any n ∈N,(4.50)

‖ψ0,n‖L2 = 1 for any n ∈N.(4.51)

Note that (4.50) together with (4.49) leads to

(4.52) lim
n→∞

N (ψ0,n) =Nc.

We also find that

(4.53) limsup
n→∞

‖e(i/2)tΔψ0,n‖L∞(R;L(d/2)(p−1)) > 0.

Let ψn be the solution to (NLS) with ψn(0) = ψ0,n. Then, (4.50) together with

the definition of Nc (see (4.2)) implies that

(4.54) ‖ψn‖X(R) =∞ for any n ∈N.

If (4.53) failed, then the small data theory (Proposition 3.5) concludes that

(4.55) ‖ψn‖X(R) <∞ for any sufficiently large n ∈N,

which contradicts (4.54). Hence (4.53) holds.

Now, we apply the profile decomposition given in [5] (see also [1], [17]) to

the sequence {ψ0,n}, so that we have the following.

LEMMA 4.3

We can extract some subsequence of {ψ0,n} (still denoted by the same symbol)

with the following properties. There exist

(i) a family of nontrivial functions {f1, f2, f3, . . .} in H1(Rd) and

(ii) a family of sequences {{(η1n, τ1n)},{(η2n, τ2n)},{(η3n, τ3n)}, . . .} in Rd × R
with

(4.56) lim
n→∞

τ ln = τ l∞ ∈R∪ {±∞} for any l≥ 1

and

(4.57) lim
n→∞

|τ ln − τkn |+ |ηln − ηkn|=∞ for any 1≤ k < l,
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such that, putting

f0
n := ψ0,n, f0 := 0, τ0n := 0, η0n := 0,

f l
n := e(i/2)(τ

l
n−τ l−1

n )Δe(η
l
n−ηl−1

n )·∇(f l−1
n − f l−1) for l≥ 1,

we have that, for any l≥ 1 and q ∈ [2,2∗),

lim
n→∞

f l
n = f l weakly in H1(Rd) and strongly in Lq

loc(R
d),(4.58)

lim
n→∞

{∥∥|∇|sψ0,n

∥∥2
L2 −

∥∥|∇|s(f l
n − f l)

∥∥2
L2

}
=

l∑
k=1

∥∥|∇|sfk
∥∥2
L2

for any s ∈ [0,1],

(4.59)

lim
n→∞

{
‖ψ0,n‖qLq −

∥∥e−(i/2)τ l
nΔ(f l

n − f l)
∥∥q
Lq −

l∑
k=1

‖e−(i/2)τk
nΔfk‖qLq

}
= 0,(4.60)

lim
n→∞

{
H(ψ0,n)−H

(
e−(i/2)τ l

nΔ(f l
n − f l)

)
−

l∑
k=1

H(e−(i/2)τk
nΔfk)

}
= 0.(4.61)

Furthermore, putting N := #{f1, f2, f3, . . .}, we have the alternatives: if N is

finite, then

(4.62) lim
n→∞

∥∥e(i/2)tΔ(fN
n − fN )

∥∥
L∞(R;L(d/2)(p−1))∩X(R)

= 0;

if N =∞, then

(4.63) lim
l→∞

lim
n→∞

∥∥e(i/2)tΔ(f l
n − f l)

∥∥
L∞(R;L(d/2)(p−1))∩X(R)

= 0.

Besides the above properties, we have

(4.64) K
(
e−

i
2 τ

l
nΔ(f l

n − f l)
)
> 0 for any sufficiently large n ∈N

and

(4.65)

{
e−(i/2)τ l

∞Δf l ∈ PW+ if τ l∞ ∈R,

f l ∈Ω if τ l∞ =±∞

for any l≥ 1. We shall prove these properties. It follows from (2.6) in Lemma 2.2,

(4.52), and Nc <N (Q) that

(4.66) limsup
n→∞

Ñ (ψ0,n)≤ limsup
n→∞

N (ψ0,n) =Nc <N (Q).

This together with (4.59) shows that

Ñ
(
e−(i/2)τnΔ(f l

n − f l)
)
= Ñ (f l

n − f l)<N (Q)

for any sufficiently large n ∈N.
(4.67)

Hence, we see from (1.25) that (4.64) holds.
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Next, we prove (4.65). Suppose first that τ l∞ ∈ R. Then, (4.59) and (4.66)

give us

(4.68) Ñ (e−(i/2)τ l
∞Δf l) = Ñ (f l)<N (Q).

Hence, we find from (1.14) and (1.25) that

(4.69) 0<K(e−(i/2)τ l
∞Δf l)<H(e−(i/2)τ l

∞Δf l).

Moreover, we have by (4.59) and (4.61) that

(4.70) N (e−(i/2)τ l
∞Δf l) = lim

n→∞
N (e−(i/2)τ l

nΔf l)≤ lim
n→∞

N (ψ0,n).

Combining (4.52) with (4.70), we obtain

(4.71) N (e−
i
2 τ

l
∞Δf l)≤Nc <N (Q).

Hence, (1.33) together with (4.69) and (4.71) shows that e−(i/2)τ l
∞Δf l ∈ PW+.

We next suppose that τ l∞ ∈ {±∞}. Then, (4.61) together with (1.14) and

(4.64) yields

‖∇f l‖2L2 =H(e−(i/2)τ l
nΔf l) +

2

p+ 1
‖e−(i/2)τ l

nΔf l‖p+1
Lp+1

≤H(ψ0,n) + on(1) +
2

p+ 1
‖e−(i/2)tlnΔf l‖p+1

Lp+1 .

(4.72)

Here, it follows from τ l∞ ∈ {±∞} that

(4.73) lim
n→∞

‖e−(i/2)tlnΔf l‖Lp+1 = 0.

Hence, we have

(4.74) ‖∇f l‖2L2 ≤ lim
n→∞

H(ψ0,n).

Combining (4.74), (4.59), and (4.52), we obtain

(4.75) Ñ (f l)≤
(2sp

d

)sp
lim

n→∞
N (ψ0,n) =

(2sp
d

)sp
Nc <

(2sp
d

)sp
N (Q),

so that f l ∈Ω (see (1.34) for the definition of Ω).

Now, let ψn be the solution to (NLS) with ψn(0) = ψ0,n, so that ψn exists

on the whole interval R and

(4.76) ‖ψn‖X(R) =∞.

Then, we find the following fact, which gives us a candidate for the critical

element in Proposition 4.1.

LEMMA 4.4

We can extract a subsequence of {ψn} (still denoted by the same symbol) satis-

fying the following properties. There exist

(i) a nontrivial global solution Ψ ∈ C(R;H1(Rd)) to the equation (NLS)

with
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‖Ψ‖X(R) =∞,(4.77)

Ψ(t) ∈ PW+ for any t ∈R,(4.78) ∥∥Ψ(t)
∥∥
L2 = 1 for any t ∈R,(4.79)

N
(
Ψ(t)

)
=Nc for any t ∈R,(4.80)

and

(ii) a nontrivial function f ∈ PW+, a sequence {τn} in R with

limn→∞ τn = τ∞ for some τ∞ ∈R, and a sequence {ηn} in Rd such that

lim
n→∞

e(i/2)τnΔeηn·∇ψn(0) = f strongly in H1(Rd),(4.81)

lim
n→∞

∥∥Ψ(−τn)− e−(i/2)τnΔf
∥∥
H1 = 0.(4.82)

Especially, we have

(4.83) ‖f‖L2 =
∥∥Ψ(t)

∥∥
L2 for any t ∈R, ‖∇f‖L2 = lim

n→∞

∥∥∇Ψ(−τn)
∥∥
L2 .

Proof of Lemma 4.4

Note that {ψn} satisfies

ψn(t) ∈ PW+ for any t ∈R and n ∈N,(4.84) ∥∥ψn(t)
∥∥
L2 = 1 for any t ∈R and n ∈N,(4.85)

sup
n∈N

∥∥ψn(0)
∥∥
H1 <∞,(4.86)

lim
n→∞

N
(
ψn(t)

)
=Nc for any t ∈R,(4.87)

‖ψn‖X(R) =∞ for any n ∈N.(4.88)

We begin with proving N = 1 in Lemma 4.3. To this end, we introduce an

approximate solution ψapp
n of ψn: Let L=N if N <∞, and let L be a sufficiently

large number specified later if N =∞. Then, we define

(4.89) ψapp
n (x, t) :=

L∑
l=1

ψl(x− ηln, t− τ ln).

Here, each ψl is the solution to (4.6) (or (4.7)) with f l found in Lemma 4.3, and

each {(ηln, τ ln)} is the sequence found in Lemma 4.3, so that we find that

lim
n→∞

∥∥ψl(−τ ln)− e−(i/2)τ l
nΔf l

∥∥
H1 = 0 for any 1≤ l≤ L,(4.90)

ψl(t) ∈ PW+ for any 1≤ l≤ L and t ∈R.(4.91)

We note again that if τ l∞ =±∞, then ψl is the solution to the final value problem

(4.7). Indeed, since f l ∈Ω if τ l∞ =±∞ (see (4.65)), we actually obtain the desired

solution ψl by Proposition 3.7.

We shall show that

(4.92) ‖ψl‖X(R) <∞ for any 1≤ l≤ L, if N ≥ 2.
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To prove this, it suffices to show that N (ψl(0))<Nc (see (4.2)). Suppose N ≥ 2,

so that L≥ 2. Then, we see from (4.59), (4.61), and (4.64) that

lim
n→∞

N
(
ψn(0)

)
≥ limsup

n→∞

( 1

1− sp

L∑
k=1

M(fk)
)1−sp( 1

sp

L∑
k=1

H(e−(i/2)τk
nΔfk)

)sp
.

(4.93)

Here, it follows from (4.65) and limt→±∞ ‖e(i/2)tΔfk‖Lp+1 = 0 that

(4.94) H(e−(i/2)τk
nΔfk)> 0 for any k ≥ 1 and sufficiently large n.

Hence, we find from (4.87), (4.93), and (4.90) that

Nc = lim
n→∞

N
(
ψn(0)

)
> lim

n→∞

(M(f l)

1− sp

)1−sp(H(e−(i/2)τ l
nΔf l)

sp

)sp
= lim

n→∞

(M(ψl(−τ ln))

1− sp

)1−sp(H(ψl(−τ ln))

sp

)sp
(4.95)

=N
(
ψl(0)

)
for any 1≤ l≤ L.

Thus, (4.92) holds.

We know by (4.92) that

(4.96) sup
n∈N

‖ψapp
n ‖X(R) <∞.

Furthermore, when N =∞, there exists A> 0 with the following property. For

any L ∈ N (the number of components of ψapp
n ; see (4.89)), there exists nL ∈ N

such that

(4.97) sup
n≥nL

‖ψapp
n ‖X(R) ≤A.

We shall prove this fact. Recall that X(R) = Lr1(R;Lq1) ∩ Lr2(I;Lq2). One can

see that

‖ψapp
n ‖qj

Lrj (R;Lqj )

≤
L∑

l=1

‖ψl‖qj
Lrj (R;Lqj )

(4.98)

+CL

L∑
l=1

∑
1≤k≤L;

k 
=l

∥∥∣∣ψk(· − ηkn, · − τkn)
∣∣∣∣ψl(· − ηln, · − τ ln)

∣∣qj−1∥∥
Lrj/qj (R;L1)

=: Ij + II j for j = 1,2,

where CL > 0 is some constant depending only on d, p, q1, and L. We first

consider the term Ij . It follows from (4.59) and (4.86) that

(4.99)

∞∑
l=1

‖f l‖2H1 <∞,
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so that

(4.100) lim
l→∞

‖f l‖H1 = 0.

Hence, we see from Proposition 3.5 (when τ l∞ ∈ R) and Proposition 3.7 (when

τ ln =±∞) that there exists l0 ∈N, independent of L (the number of components

of ψapp
n ), such that

(4.101) ‖ψl‖X(R) � ‖f l‖H1 ≤ 1 for any l≥ l0,

where the implicit constant depends only on d, p, and q1. Since q1, q2 > 2, we

have by (4.92), (4.99), and (4.101) that

(4.102) Ij �
l0∑
l=1

‖ψl‖qjX(R) +

∞∑
l=l0+1

‖f l‖2H1 <∞.

Next, we consider the term II j . Using the condition (4.57), we can take nL ∈N
such that for any n≥ nL and k, l≤ L with k �= l,

(4.103)
∥∥∣∣ψk(· − ηkn, · − τkn)

∣∣∣∣ψl(· − ηln, · − τ ln)
∣∣qj−1∥∥

Lrj/qj (R;L1)
≤ 1

CLL2
,

where CL is the constant given in (4.98). Hence, we find that

(4.104) II j ≤ 1 for any n≥ nL.

Combining (4.98) with (4.102) and (4.103), we obtain (4.97).

We show that the case N ≥ 2 cannot occur. Note that ψapp
n solves the fol-

lowing equation:

(4.105) 2i
∂

∂t
ψapp
n +Δψapp

n + |ψapp
n |p−1ψapp

n = en,

where

en(x, t) :=
∣∣ψapp

n (x, t)
∣∣p−1

ψapp
n (x, t)

(4.106)

−
L∑

l=1

∣∣ψl(x− ηln, t− τ ln)
∣∣p−1

ψl(x− ηln, t− τ ln).

Proposition 3.6 (the long-time perturbation theory), with the help of (4.97), tells

us that there exists ε1 > 0, independent of L when N =∞, with the following

property: if there exists n ≥ nL (nL is the number found in (4.97) if N = ∞,

nL = 1 if N <∞) such that

(4.107)
∥∥e(i/2)tΔ(ψn(0)−ψapp

n (0)
)∥∥

X(R)
≤ ε1

and

(4.108) ‖en‖Lr̃′ (R;Lq′1 )
≤ ε1,

then

(4.109) ‖ψn‖X(R) <∞.
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In the sequel, we show that if N ≥ 2, then (4.107) and (4.108) hold valid for some

L, which shows N = 1, since (4.109) contradicts (4.88). It is worthwhile noting

here that

(4.110) ψn(0) = ψ0,n =

L∑
l=1

e−(i/2)τ l
nΔe−ηl

n·∇f l + e−(i/2)τL
n Δe−ηL

n ·∇(fL
n − fL).

Using the condition (4.57), we find that (4.108) holds for any sufficiently

large n. On the other hand, the formula (4.110), with the help of (3.6), shows

that ∥∥e(i/2)tΔ(ψn(0)−ψapp
n (0)

)∥∥
X(R)

=
∥∥∥e(i/2)tΔ(ψ0,n −

L∑
l=1

e−ηl
n·∇ψl(−τ ln)

)∥∥∥
X(R)

≤
∥∥e(i/2)(t−τL

n )Δe−ηL
n ·∇(fL

n − fL)
∥∥
X(R)

(4.111)

+

L∑
l=1

∥∥e(i/2)tΔ(e−(i/2)τ l
nΔe−ηl

n·∇f l − e−ηl
n·∇ψl(−τ ln)

)∥∥
X(R)

≤
∥∥e(i/2)tΔ(fL

n − fL)
∥∥
X(R)

+C

L∑
l=1

∥∥e−(i/2)τ l
nΔf l −ψl(−τ ln)

∥∥
H1 ,

where C is some constant depending only on d, p, and q1. Here, we have, by

(4.62) or (4.63), that

(4.112) lim
n→∞

∥∥e(i/2)tΔ(fL
n − fL)

∥∥
X(R)

≤ ε1
4

for any sufficiently large L (L =N if N <∞). Hence, for any L ∈ N satisfying

(4.112), there exists nL,1 ∈N such that

(4.113)
∥∥e(i/2)tΔ(fL

n − fL)
∥∥
X(R)

≤ ε1
2

for any n≥ nL,1.

Moreover, (4.90) shows that for any L≤N , there exists nL,2 ∈N such that

(4.114)
∥∥e−(i/2)τ l

nΔf l −ψl(−τ ln)
∥∥
H1 ≤

ε1
2CL

for any n≥ nL,2 and 1≤ l≤ L,

where C is the constant found in (4.111). Combining (4.111) with (4.113) and

(4.114), we find that for any L ∈N satisfying (4.112), there exists nL,3 ∈N such

that

(4.115)
∥∥e(i/2)tΔ(ψn(0)−ψapp

n (0)
)∥∥

X(R)
≤ ε1 for any n≥ nL,3,

which gives (4.107).

We have just proved N = 1, and therefore L should be one:

ψapp
n (x, t) = ψ1(x− η1n, t− τ1n) = (e−τ1

n
∂
∂t−η1

n·∇ψ1)(x, t).

Put Ψ = ψ1, f = f1, (γn, τn) = (γ1
n, τ

1
n), and τ∞ = τ1∞. Then, these are what we

want. Indeed, we have already shown that these satisfy the properties (4.78) and
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(4.82) (see (4.91) for (4.78), and see (4.90) for (4.82)). Moreover, the property

(4.83) immediately follows from (4.82).

It remains to prove (4.77), (4.79), (4.80), (4.81), and τ∞ ∈R.
We first prove that Ψ satisfies the property (4.77): ‖Ψ‖X(R) =∞. Suppose

to the contrary that ‖Ψ‖X(R) <∞. Then, a quite similar argument above works

well, so that we obtain an absurd conclusion

(4.116) ‖ψn‖X(R) <∞ for any sufficiently large n ∈N.

Thus, (4.77) holds.

Before proving (4.79), we shall prove (4.80) and (4.81). To this end, we show

that there exists a subsequence of {ψn} (still denoted by the same symbol) such

that

‖f‖L2 = lim
n→∞

∥∥ψn(0)
∥∥
L2 ,(4.117)

lim
n→∞

H(e−(i/2)τnΔf) = lim
n→∞

H
(
ψn(0)

)
.(4.118)

Extracting some subsequence, we have by (4.59), (4.61), (4.64), and (4.90) (or

(4.82)) that

(4.119)
∥∥Ψ(0)

∥∥
L2 = lim

n→∞

∥∥Ψ(−τn)
∥∥
L2 = ‖f‖L2 ≤ lim

n→∞

∥∥ψn(0)
∥∥
L2

and

(4.120) H
(
Ψ(0)

)
= lim

n→∞
H
(
Ψ(−τn)

)
= lim

n→∞
H(e−(i/2)τnΔf)≤ lim

n→∞
H
(
ψn(0)

)
.

Hence, if (4.117) or (4.118) failed, then we have by (4.87) that

N
(
Ψ(0)

)
=
(M(f)

1− sp

)1−sp
lim

n→∞

(H(e−(i/2)τnΔf)

sp

)sp
< lim

n→∞

(M(ψn(0))

1− sp

)1−sp
lim
n→∞

(H(ψn(0))

sp

)sp
(4.121)

= lim
n→∞

N
(
ψn(0)

)
=Nc.

This estimate together with the definition of Nc (see (4.2)) leads to the conclusion

that ‖Ψ‖X(R) <∞, which contradicts ‖Ψ‖X(R) =∞. Thus, (4.117) and (4.118)

hold. Then, the inequality in (4.121) becomes the equality, so that (4.80) holds.

Moreover, we see from (4.61) together with (4.118) that

(4.122) lim
n→∞

H
(
e−(i/2)τnΔ(f1

n − f)
)
= 0,

and from (4.59) and (4.117) that

(4.123) lim
n→∞

Ñ
(
e−(i/2)τnΔ(f1

n − f)
)
= 0.

Hence, it follows from Remark 2.1 that

(4.124) lim
n→∞

∥∥∇(f1
n − f)

∥∥
L2 = 0.

Since f1
n = e(i/2)τnΔeηnψn(0), we find from (4.117) and (4.124) that (4.81) holds.
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We prove (4.79). The properties (4.81) and (4.82) (or (4.83)) together with

(4.85) and the mass conservation law (1.6) yield (4.79).

Finally, we show that τ∞ ∈R. Since ‖Ψ‖X(R) =∞, we have ‖Ψ‖X([0,∞)) =∞
or ‖Ψ‖X((−∞,0]) =∞. The time reversibility of (NLS) allows us to assume that

‖Ψ‖X([0,∞)) =∞; if not, we consider Ψ(x,−t) instead of Ψ(x, t).

Put

Ψn(t) := Ψ(t− τn),

and suppose to the contrary that τ∞ =−∞ or τ∞ =+∞. If τ∞ =−∞, then (3.6)

and (4.82) show that∥∥e(i/2)tΔΨn(0)
∥∥
X((−∞,0])

=
∥∥e(i/2)(t+τn)ΔΨn(0)

∥∥
X((−∞,−τn])

≤ ‖e(i/2)tΔf‖X((−∞,−τn])
(4.125)

+
∥∥e(i/2)tΔ(e(i/2)τnΔΨn(0)− f

)∥∥
X((−∞,−τn])

→ 0 as n→∞.

Then, the small data theory (Proposition 3.5) leads us to

(4.126) ‖Ψ‖X((−∞,−τn]) = ‖Ψn‖X((−∞,0]) � 1 for any sufficiently large n ∈N.

Hence, taking n→∞ in (4.126), we obtain

(4.127) ‖Ψ‖X(R) <∞,

which contradicts ‖Ψ‖X(R) =∞. Thus, the case τ∞ =−∞ never happens. Simi-

larly, when τ∞ =+∞, we have by (3.6) and (4.82) that∥∥e(i/2)tΔΨn(0)
∥∥
X([0,+∞))

=
∥∥e(i/2)(t+τn)ΔΨn(0)

∥∥
X([−τn,+∞))

≤ ‖e(i/2)tΔf‖X([−τn,+∞))
(4.128)

+
∥∥e(i/2)tΔ(e(i/2)τnΔΨn(0)− f

)∥∥
X([−τn,+∞))

→ 0 as n→∞.

Hence, the small data theory (Proposition 3.5) shows that

(4.129) ‖Ψ‖X([τn,+∞)) = ‖Ψn‖X([0,+∞) <∞ for any sufficiently large n,

so that

(4.130) ‖Ψ‖X([0,+∞)) <∞.

However, (4.130) contradicts our working hypothesis ‖Ψ‖X([0,+∞)) =∞. Thus,

we find that τ∞ ∈R. �

4.3. Proof of Proposition 4.1
We shall prove Proposition 4.1, showing that the candidate Ψ found in Lemma 4.4

is actually critical element.
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Proof of Proposition 4.1

The properties (4.9) and (4.10) have been obtained in Lemma 4.4. Moreover,

(2.6) together with (4.9) and (4.10) yields (4.11).

We shall prove (4.12); the momentum of Ψ is zero. We apply the Galilei

transformation to Ψ:

(4.131) Ψξ(x, t) := e(i/2)(xξ−t|ξ|2)Ψ(x− ξt, t), ξ ∈Rd.

It is easy to verify that∥∥Ψξ(t)
∥∥
Lq =

∥∥Ψ(t)
∥∥
Lq for any ξ ∈Rd, q ∈ [2,2∗) and t ∈R,(4.132)

‖Ψξ‖X(R) = ‖Ψ‖X(R) =∞ for any ξ ∈Rd.(4.133)

Moreover, a simple calculation together with the mass and momentum conserva-

tion laws (1.6) and (1.8) shows that∥∥∇Ψξ(t)
∥∥2
L2 = |ξ|2

∥∥Ψ(0)
∥∥2
L2 +

∥∥∇Ψ(t)
∥∥2
L2

+ 2ξ · 

∫
Rd

Ψ(x,0)∇Ψ(x,0)dx for any ξ ∈Rd.
(4.134)

This together with the energy conservation law (1.7) yields

H
(
Ψξ(t)

)
=H

(
Ψ(0)

)
+ |ξ|2

∥∥Ψ(0)
∥∥2
L2

+ 2ξ · 

∫
Rd

Ψ(x,0)∇Ψ(x,0)dx for any ξ ∈Rd.
(4.135)

Put

(4.136) ξ0 :=−


∫
Rd Ψ(x,0)∇Ψ(x,0)dx

‖Ψ(0)‖L2

.

Then, we have by (4.134) and (4.135) that∥∥∇Ψξ0(t)
∥∥2
L2 =

∥∥∇Ψ(t)
∥∥2
L2 −

(


∫
Rd

Ψ(x,0)∇Ψ(x,0)dx
)2

for any t ∈R,
(4.137)

H
(
Ψξ0(t)

)
=H

(
Ψ(0)

)
−
(


∫
Rd

Ψ(x,0)∇Ψ(x,0)dx
)2

for any t ∈R.
(4.138)

Now, we suppose that

(4.139) 

∫
Rd

Ψ(x, t)∇Ψ(x, t)dx=

∫
Rd

Ψ(x,0)∇Ψ(x,0)dx �= 0.

Then, it follows from (4.132), (4.137), (2.6), and (4.9) that

(4.140) Ñ
(
Ψξ0(t)

)
< Ñ

(
Ψ(t)

)
<N

(
Ψ(t)

)
=Nc <N (Q) for any t ∈R.

This inequality together with (1.25) implies that

(4.141) K
(
Ψξ0(t)

)
> 0 for any t ∈R.
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Moreover, using (4.132), (4.138), and (4.9), we obtain

(4.142) N
(
Ψξ0(t)

)
<Nc,

so that ‖Ψξ0‖X(R) <∞. However, this contradicts (4.133). Thus, the momentum

of Ψ must be zero.

Next, we prove the claim (4.13)–(4.14). Since ‖Ψ‖X(R) = ∞, we have

‖Ψ‖X([0,∞)) =∞ or ‖Ψ‖X((−∞,0]) =∞. The time reversibility of (NLS) allows us

to assume that ‖Ψ‖X([0,∞)) =∞; if not, we consider Ψ(x,−t) instead of Ψ(x, t).

In order to prove the claim (4.13)–(4.14), it suffices to show that {Ψ(t) | t ∈
[0,∞)} is precompact in H1(Rd) modulo the space translation (see [5, Appen-

dix A]). Take any sequence {tn} in R, and put

(4.143) Ψn(x, t) := Ψ(x, t+ tn).

Then, we can apply the argument in Section 4.2 to the sequence {Ψn(0)}, so that

there exists a subsequence of {Ψn} (still denoted by the same symbol) with the

following properties. There exist a nontrivial function Φ ∈ PW+, τ∞ ∈ R and a

sequence {γn} in Rd, such that

(4.144) lim
n→∞

Ψn(·+ γn,0) = Ψ(·+ γn, tn) = e−(i/2)τ∞ΔΦ strongly in H1(Rd),

which shows that {Ψ(t) | t ∈ [0,∞)} is precompact in H1(Rd) modulo the space

translation. Thus, we have completed the proof. �

4.4. Proof of Theorem 1.1
We shall prove Theorem 1.1.

Proof of Theorem 1.1

The claims (i) and (ii) are direct consequences of Lemma 2.2.

We shall prove (iii). We consider the forward time only. Proposition 3.7

shows that the wave operator W+ exists on Ω and is continuous. It remains to

prove the bijectivity of W+ from Ω to PW+ and the continuity of W−1
+ . These

proofs are standard (see, e.g., [4]), and therefore we prove the surjectivity only.

Take any ψ0 ∈ PW+, and let ψ be the solution to (NLS) with ψ(0) = ψ0. Since

Nc =N (Q), we have ‖ψ‖X(R) <∞. Hence, it follows from Proposition 3.4 that

ψ has an asymptotic state φ+ in H1(Rd). It remains to show that φ+ ∈Ω. Since

(4.145) lim
t→+∞

∥∥ψ(t)∥∥
Lp+1 = lim

t→+∞
‖e(i/2)tΔφ+‖Lp+1 = 0,

we see from the energy conservation law (1.7) that

H(ψ0) = lim
t→+∞

(∥∥∇ψ(t)
∥∥2
L2 −

2

p+ 1

∥∥ψ(t)∥∥p+1

Lp+1

)
= ‖∇φ±‖2L2 .

(4.146)

Moreover, the mass conservation law (1.6) gives us

(4.147) ‖ψ0‖2L2 = lim
t→+∞

∥∥ψ(t)∥∥2
L2 = ‖φ+‖2L2 .
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Combining (4.146), (4.147), and (1.33), we find that

(4.148) Ñ (φ+) =
(2sp

d

)sp
N (ψ0)<

(2sp
d

)sp
N (Q).

Thus, we have φ+ ∈Ω. �

5. Analysis on PW−

We shall give proofs of Theorem 1.2, Proposition 1.1, and Proposition 1.2.

Proof of Theorem 1.2

We have already proved the claim (i) in Lemma 2.2. Proofs of (1.39) and (1.40)

remain. For simplicity, we consider the forward time only. The problem for the

backward time can be proved in a similar way.

Take any ψ0 ∈ PW−, and let ψ be the corresponding solution to the equation

(NLS) with ψ(0) = ψ0. When the maximal existence time T+
max is finite, we have

(1.39) as mentioned in (1.5). Therefore, it suffices to prove (1.40). We prove this

by employing the idea of Nawa [21].

We suppose to the contrary that (1.40) fails when T+
max =∞, so that there

exists R0 > 0 such that

(5.1) M0 := sup
t∈[0,∞)

∫
|x|≥R0

∣∣∇ψ(x, t)
∣∣2 dx <∞.

Then, we shall derive a contradiction in three steps.

In what follows, we put ε0 := B(ψ0)−H(ψ0); we see from (1.27) that ε0 > 0.

Step 1. We claim that there exists a constant m0 > 0 such that for any R> 0,

m0 < inf
{∫

|x|≥R

∣∣v(x)∣∣2 dx ∣∣∣
(5.2)

v ∈H1(Rd),KR(v)≤−1

4
ε0,‖∇v‖2L2(|x|≥R) ≤M0,‖v‖L2 ≤ ‖ψ0‖L2

}
,

where KR is the functional given by (A.10). Let us prove this. Take any v ∈
H1(Rd) with the following properties:

(5.3) KR(v)≤−1

4
ε0, ‖∇v‖2L2(|x|≥R) ≤M0, ‖v‖L2 ≤ ‖ψ0‖L2 .

Then, we see from the first property in (5.3) and (A.17) that

(5.4)
1

4
ε0 ≤−KR(v)≤

∫
|x|≥R

ρ3(x)
∣∣v(x)∣∣p+1

dx.

Moreover, using the Hölder inequality, the Sobolev embedding, and the second

property in (5.3), we obtain

(5.5)

∫
|x|≥R

ρ3(x)
∣∣v(x)∣∣p+1

dx � ‖ρ3‖L∞‖v‖p+1−(d(p−1)/2)
L2(|x|≥R) M

d(p−1)/4
0 ,
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where the implicit constant depends only on d and p. This estimate together

with (5.4) yields

(5.6)
ε0

‖ρ3‖L∞M
d(p−1)/4
0

� ‖v‖p+1−(d(p−1)/2)
L2(|x|≥R) ,

where the implicit constant depends only on d and p. Since ‖ρ3‖L∞ � 1 (see

(A.20)), the estimate (5.6) gives us the desired result (5.2).

Step 2. Let m0 be a constant found in (5.2). Then, we prove that

(5.7) sup
t∈[0,∞)

∫
|x|≥R

∣∣ψ(x, t)∣∣2 dx≤m0

for any R satisfying the following properties:

R≥R0,(5.8)

1

R2
‖ψ0‖2L2 � ε0,(5.9) ∫

|x|≥R

∣∣ψ0(x)
∣∣2 dx <m0,(5.10)

1

R2

(
1 +

2

ε0
‖∇ψ0‖2L2

)(
WR, |ψ0|2

)
<m0.(5.11)

We remark that Lemma A.1 shows that (5.11) holds for any sufficiently large R.

Now, for R> 0 satisfying (5.8)–(5.11), we put

(5.12) TR := sup
{
T > 0

∣∣∣ sup
t∈[0,T )

∫
|x|≥R

∣∣ψ(x, t)∣∣2 dx≤m0

}
.

Note here that since ψ ∈ C(R;L2(Rd)) and ψ(0) = ψ0, we have by (5.10) that

TR > 0. It is clear that TR =∞ shows (5.7).

We suppose the contrary that TR < ∞. Then, it follows from ψ ∈ C(R;
L2(Rd)) that

(5.13)

∫
|x|≥R

∣∣ψ(x,TR)
∣∣2 dx=m0.

Hence, the definition of m0 (see (5.2)) together with (5.1), (5.8), and the mass

conservation law (1.6) leads us to

(5.14) −1

4
ε0 <KR

(
ψ(TR)

)
.

Moreover, the generalized virial identity (A.9) together with (5.14) and (2.8)

shows that(
WR,

∣∣ψ(TR)
∣∣2)< (WR, |ψ0|2

)
+ 2TR
(�wR · ∇ψ0, ψ0)− ε20T

2
R

+
1

4
ε0T

2
R − 1

2

∫ TR

0

∫ t′

0

(
Δ(div �wR),

∣∣ψ(t′′)∣∣2)dt′′ dt′.(5.15)

Here, using the estimate ‖Δ(div �wR)‖L∞ � 1
R2 , the mass conservation law (1.6),

and (5.9), we estimate the last term on the right-hand side above as follows:
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−1

2

∫ TR

0

∫ t′

0

(
Δ(div �wR),

∣∣ψ(t′′)∣∣2)dt′′ dt′ �
∫ TR

0

∫ t′

0

1

R2

∥∥ψ(t′′)∥∥2
L2 dt

′′ dt′

(5.16)

≤ 1

4
ε0T

2
R.

Combining (5.15) with (5.16) and the estimate |�wR(x)|2 ≤WR(x), we obtain(
WR,

∣∣ψ(TR)
∣∣2) < (WR, |ψ0|2

)
+ 2TR
(�wR · ∇ψ0, ψ0)−

1

2
T 2
Rε0

=
(
WR, |ψ0|2

)
− 1

2
ε0

{
TR − 2

ε0

(�wR · ∇ψ0, ψ0)

}2

(5.17)

+
2

ε0

∣∣(�wR · ∇ψ0, ψ0)
∣∣2

≤
(
WR, |ψ0|2

)
+

2

ε0
‖∇ψ0‖2L2

∫
Rd

WR(x)|ψ0(x)|2 dx.

This together with (5.11) concludes that

(5.18)
(
WR,

∣∣ψ(TR)
∣∣2)≤ (1 + 2

ε0
‖∇ψ0‖2L2

)(
WR, |ψ0|2

)
<R2m0.

On the other hand, since WR(x)≥R2 for |x| ≥R, we have∫
|x|≥R

∣∣ψ(x,TR)
∣∣2 dx=

1

R2

∫
|x|≥R

R2
∣∣ψ(x,TR)

∣∣2 dx
≤ 1

R2

(
WR,

∣∣ψ(TR)
∣∣2).(5.19)

Thus, we see from (5.18) and (5.19) that

(5.20)

∫
|x|≥R

∣∣ψ(x,TR)
∣∣2 dx <m0,

which contradicts (5.13), so that TR =∞ and (5.7) holds.

Step 3. We complete the proof of Theorem 1.2. The definition of m0 together

with the mass conservation law (1.6), (5.1), and (5.7) shows that

(5.21) −1

4
ε0 ≤KR

(
ψ(t)

)
for any R > 0 satisfying (5.8)–(5.11) and any t ≥ 0. Combining the generalized

virial identity (A.9) with (5.21), we obtain the following estimate as well as step

2 (see (5.15) and (5.16)):

(5.22)
(
WR,

∣∣ψ(t)∣∣2)≤ (WR, |ψ0|2
)
+ 2t
(�wR · ∇ψ0, ψ0)−

1

2
t2ε0

for any t ≥ 0. This inequality means that (WR, |ψ(t)|2) becomes negative in a

finite time, so that T+
max must be finite. However, this contradicts T+

max = ∞.

Hence, (5.1) derives an absurd conclusion. Thus, (1.40) holds. �

Next, we shall give a proof of Proposition 1.1.
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Proof of Proposition 1.1

We can prove (1.41) in a way similar to [22] (see also [10]). Hence, we omit it.

It remains to prove (1.42). We consider the term KR in the generalized virial

identity (A.9) (see (A.10) and Remark A.1). Integrating by parts, we have

−
∫ t

0

∫ t′

0

KR
(
ψ(t′′)

)
dt′′ dt′ =−

∫ t

0

(t− t′)KR
(
ψ(t′)

)
dt′

�
∫ Tmax

0

(Tmax − t)
∥∥ψ(t)∥∥p+1

Lp+1(|x|≥R)
dt,

(5.23)

where we have used (A.16), (A.17), and (A.20). Here, we recall the following

estimate (see [4], [19]):

(5.24)

∫ Tmax

0

(Tmax − t)
∥∥∇ψ(t)

∥∥2
L2 dt <∞.

This estimate together with the Hamiltonian conservation law (1.7) yields

(5.25)

∫ Tmax

0

(Tmax − t)
∥∥ψ(t)∥∥p+1

Lp+1 dt <∞.

Combining (5.23) with the Lebesgue dominated convergence theorem and (5.25),

we find that

(5.26) −
∫ t

0

∫ t′

0

KR
(
ψ(t′′)

)
dt′′ dt′ ≤ 0, when R→+∞.

Now, take any m> 0. Then, for any sufficiently large R > 0 depending on

m, the generalized virial identity (A.9) together with the estimates WR(x)≥R2

for |x| ≥R, ‖�wR‖L∞ � R, (2.8), ‖Δ(div �wR)‖L∞ � 1
R2 , and (5.26) shows that∫

|x|≥R

∣∣ψ(x, t)∣∣2 dx ≤ 1

R2

(
WR,

∣∣ψ(t)∣∣2)
≤ 1

R2

(
WR, |ψ0|2

)
+ 2

T+
max

R
‖ψ0‖L2‖∇ψ0‖L2 − ε0

R2
(T+

max)
2(5.27)

+
m

2
+

(T+
max)

2

R4
‖ψ0‖2L2 .

This together with Lemma A.1 yields the desired estimate (1.42). �

Finally, we shall give the proof of Proposition 1.2.

Proof of Proposition 1.2

Let ψ, {tn}, {λn}, {ψn}, and {ΨRN
n } be as in Proposition 1.2.

We can easily verify that

lim
n→∞

λn = 0,(5.28)

2i
∂ψn

∂t
+Δψn + |ψn|p−1ψn = 0 in Rd ×

(
−T+

max − tn
λ2
n

,
tn
λ2
n

]
,(5.29)



666 Takafumi Akahori and Hayato Nawa

∥∥ψn(t)
∥∥
L2 = λ−sp

n ‖ψ0‖L2 for any t ∈
(
−T+

max − tn
λ2
n

,
tn
λ2
n

]
,(5.30)

H
(
ψn(t)

)
= λ2−2sp

n H(ψ0) for any t ∈
(
−T+

max − tn
λ2
n

,
tn
λ2
n

]
,(5.31)

sup
t∈[0,tn/λ2

n]

∥∥ψn(t)
∥∥
Lp+1 = 1,(5.32)

where we put ψ0 = ψ(0). Besides, we have

(5.33) sup
t∈[0,tn/λ2

n]

∥∥∇ψn(t)
∥∥2
L2 ≤ 1 for any sufficiently large n ∈N.

Indeed, (5.31) and (5.32) lead us to∥∥∇ψn(t)
∥∥2
L2 =H

(
ψn(t)

)
+

2

p+ 1

∥∥ψn(t)
∥∥p+1

Lp+1

≤ λ2−2sp
n H(ψ0) +

2

p+ 1
for any t ∈

[
0,

tn
λ2
n

]
,

(5.34)

which together with (5.28) immediately yields (5.33).

Moreover, we see from (5.28), (5.29), (5.32), and (5.33) that for any T > 0,

there exists a subsequence of {ψn} in C([0, T ];H1(Rd)) (still denoted by the same

symbol) with the following properties:

sup
t∈[0,T ]

∥∥ψn(t)
∥∥
Lp+1 = 1 for any n ∈N,(5.35)

sup
t∈[0,T ]

∥∥∇ψn(t)
∥∥
L2 ≤ 1 for any n ∈N,(5.36)

2i
∂ψn

∂t
+Δψn + |ψn|p−1ψn = 0 in Rd × [0, T ].(5.37)

For such a subsequence {ψn}, we define ΦRN
n by

(5.38) ΦRN
n (x, t) = ψn(x, t)− e(i/2)tΔψn(x,0).

Here, it is worthwhile noting that

ΦRN
n ∈C

(
[0, T ];H1(Rd)

)
for any n ∈N,(5.39)

ΦRN
n (t) =

i

2

∫ t

0

e(i/2)(t−t′)Δ|ψn(t
′)|p−1ψn(t

′)dt′

for any t ∈ [0, T ] and n ∈N.

(5.40)

We shall show that

(5.41) sup
n∈N

‖ΦRN
n ‖L∞([0,T ];H1) ≤CT

for some constant CT > 0 depending only on d, p, and T . Applying the Strichartz

estimate to the formula (5.40), and using (5.35), we obtain the following two

estimates:
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‖ΦRN
n ‖L∞([0,T ];L2)

�
∥∥|ψn|p−1ψn

∥∥
L

4(p+1)
4(p+1)−d(p−1) ([0,T ];L(p+1)/p)

(5.42)
≤ T 1−(d(p−1))/(4(p+1))‖ψn‖pL∞([0,T ];Lp+1)

≤ T 1−(d(p−1))/(4(p+1)),

‖∇ΦRN
n ‖L∞([0,T ];L2)

�
∥∥∇(|ψn|p−1ψn

)∥∥
L4(p+1)/(4(p+1)−d(p−1))([0,T ];L(p+1)/p)

(5.43)
≤ T 1−(d(p−1))/(2(p+1))‖ψn‖p−1

L∞([0,T ];Lp+1)‖∇ψn‖L(4(p+1))/(d(p−1))([0,T ];Lp+1)

≤ T 1−(d(p−1))/(2(p+1))‖∇ψn‖L(4(p+1))/(d(p−1))([0,T ];Lp+1),

where the implicit constants depend only on d and p. Therefore, for the desired

estimate (5.41), it suffices to show that

(5.44) sup
n∈N

‖∇ψn‖L(4(p+1))/(d(p−1))([0,T ];Lp+1) ≤DT

for some constant DT > 0 depending only on d, p, and T . Here, note that the pair

(p+1,4(p+1)/d(p− 1)) is admissible. In order to prove (5.44), we introduce an

admissible pair (q, r) with q = p+2 if d= 1,2 and q = (1/2)(p+1+ 2∗) if d≥ 3,

so that p+1< q < 2∗. Then, it follows from the integral equation for ψn and the

Strichartz estimate that

‖∇ψn‖Lr([0,T ];Lq)

�
∥∥∇ψn(0)

∥∥
L2 + ‖ψn‖p−1

L(2(p+1)(p−1))/(d+2−(d−2)p([0,T ];Lp+1)

× ‖∇ψn‖L(4(p+1))/(d(p−1))([0,T ];Lp+1)

≤
∥∥∇ψn(0)

∥∥
L2 + T

d+2−(d−2)p
2(p+1) ‖ψn‖p−1

L∞([0,T ];Lp+1)

× ‖∇ψn‖
1− q(p−1)

(q−2)(p+1)

L∞([0,T ];L2)‖∇ψn‖
q(p−1)

(q−2)(p+1)

Lr([0,T ];Lq).

(5.45)

Combining (5.45) with (5.35) and (5.36), we obtain

(5.46) ‖∇ψn‖Lr([0,T ];Lq) � 1 + T
d+2−(d−2)p

2(p+1) ‖∇ψn‖
q(p−1)

(q−2)(p+1)

Lr([0,T ];Lq).

Since 0 < q(p − 1)/((q − 2)(p + 1)) < 1, this estimate together with the Young

inequality yields

(5.47) ‖∇ψn‖Lr([0,T ];Lq) � 1 + T
(q−2){d+2−(d−2)p}

4{q−(p+1)} .

Hence, interpolating (5.36) and (5.47), we obtain (5.44), so that (5.41) holds.

Next, we shall show that {ΦRN
n } is an equicontinuous sequence in

C([0, T ];Lq(Rd)) for any q ∈ [2,2∗). Differentiating the both sides of (5.40), we

obtain

(5.48) ∂tΦ
RN
n (t) =

i

2

∣∣ψn(t)
∣∣p−1

ψn(t) +
i

2
ΔΦRN

n (t) in H−1(Rd).
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This formula (5.48) and the Hölder inequality show that∥∥ΦRN
n (t)−ΦRN

n (s)
∥∥2
L2

=

∫ t

s

d

dt′
∥∥ΦRN

n (t′)−ΦRN
n (s)

∥∥2
L2 dt

′

= 2�
∫ t

s

∫
Rd

∂tΦRN
n (x, t′)

{
ΦRN

n (x, t′)−ΦRN
n (x, s)

}
dxdt′

� |t− s|‖ψn‖pL∞([0,T ];Lp+1)‖Φ
RN
n ‖L∞([0,T ];Lp+1)

+ |t− s|‖∇ΦRN
n ‖2L∞([0,T ];L2).

(5.49)

Combining this estimate with (5.35) and (5.41), we obtain

(5.50)
∥∥ΦRN

n (t)−ΦRN
n (s)

∥∥2
L2 � |t− s| for any s, t ∈ [0, T ],

where the implicit constant depends only on d, q, and T . Moreover, the Gagliardo–

Nirenberg inequality together with (5.41) and (5.50) shows that {ΦRN
n } is an

equicontinuous sequence in C([0, T ];Lq(Rd)) for any q ∈ [2,2∗).

We see from the Ascoli–Arzelá theorem together with (5.41) and the equicon-

tinuity that there exist a subsequence of {ΦRN
n } (still denoted by the same sym-

bol) and a nontrivial function Φ ∈ L∞([0,∞);H1(Rd)) such that

lim
n→∞

ΦRN
n =Φ in C

(
[0, T ];weak-H1(Rd)

)
,(5.51)

lim
n→∞

ΦRN
n =Φ strongly in C

(
[0, T ];Lq

loc(R
d)
)
for any q ∈ [2,2∗).(5.52)

It remains to prove (1.50). We see from (5.35) that there exists F ∈ L∞([0,∞);

L(p+1)/p(Rd)) such that

(5.53) lim
n→∞

|ψn|p−1ψn = F weakly* in L∞([0, T ];L p+1
p (Rd)

)
.

Then, it follows from (5.48) and (5.51) that

(5.54) 2i
∂Φ

∂t
+ΔΦ+ F = 0.

Here, if F were trivial, then Φ is so, since Φ(0) = limn→∞ΦRN
n (0) = 0 in L2

loc(R
d).

Therefore, F is nontrivial. �

Appendix: Generalized virial identity

The proofs of Theorem 1.1, Theorem 1.2, and Proposition 1.1 are based on a

generalization of the virial identity. To state it, we first introduce a positive

function w in W 3,∞([0,∞)), which is a variant of the function in [21]–[22]:

(A.1) w(r) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
r if 0≤ r < 1,

r− (r− 1)(d/2)(p−1)+1 if 1≤ r ≤ 1 + ( 2
d(p−1)+2 )

2/(d(p−1)),

smooth and w′ ≤ 0 if 1 + ( 2
d(p−1)+2 )

2/(d(p−1)) < r < 2,

0 if 2≤ r.
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Since w is determined by d and p only, we may assume that

(A.2) ‖w‖W 3,∞ � 1.

Using this w, we define

(A.3) �wR(x) =
(
�w1
R(x), . . . , �w

d
R(x)

)
:=

x

|x|Rw
( |x|
R

)
and

(A.4) WR(x) := 2R

∫ |x|

0

w
( r

R

)
dr

for R> 0 and x ∈Rd.

LEMMA A.1

Assume d ≥ 1 and 2 + (4/d) ≤ p + 1 < 2∗. Then, for any m > 0, C > 0 and

f ∈ L2(Rd), there exists R1 > 0 such that

(A.5)
C

R2

(
WR, |f |2

)
<m for any R≥R1.

Proof of Lemma A.1

For any m> 0, C > 0, and f ∈ L2(Rd), we can take R′
1 > 0 such that

(A.6)

∫
|x|≥R′

1

∣∣f(x)∣∣2 dx <
m

16C
.

Since ‖WR‖L∞ ≤ 8R2, we see from (A.6) that

C

R2

∫
|x|≥R′

1

WR(x)
∣∣f(x)∣∣2 dx≤ 8C

∫
|x|≥R′

1

∣∣f(x)∣∣2 dx
<

m

2
for any R> 0.

(A.7)

On the other hand, we have by the definition of WR (see (A.4)) that

C

R2

∫
|x|<R′

1

WR(x)
∣∣f(x)∣∣2 dx � C

2R′
1

R
‖f‖2L2

� m

2
for any R� 4CR′

1‖f‖2L2

m
.

(A.8)

Combining (A.7) and (A.8), we obtain the desired result. �

We introduce a generalized virial identity (cf. [21]–[22]):(
WR,

∣∣ψ(t)∣∣2) = (WR, |ψ0|2
)
+ 2t
(�wR · ∇ψ0, ψ0) + 2

∫ t

0

∫ t′

0

K
(
ψ(t′′)

)
dt′′ dt′

− 2

∫ t

0

∫ t′

0

KR
(
ψ(t′′)

)
dt′′ dt′(A.9)

− 1

2

∫ t

0

∫ t′

0

(
Δ(div �wR),

∣∣ψ(t′′)∣∣2)dt′′ dt′ for R> 0.
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Here, KR is defined by

(A.10) KR(f) =

∫
Rd

ρ1(x)
∣∣∇f(x)

∣∣2 + ρ2(x)
∣∣∣ x|x| · ∇f(x)

∣∣∣2 − ρ3(x)
∣∣f(x)∣∣p+1

dx,

where

ρ1(x) := 1− R

|x|w
( |x|
R

)
,(A.11)

ρ2(x) :=
R

|x|w
( |x|
R

)
−w′

( |x|
R

)
,(A.12)

ρ3(x) :=
p− 1

2(p+ 1)

{
d−w′

( |x|
R

)
− d− 1

|x| Rw
( |x|
R

)}
.(A.13)

REMARK A.1

If d= 1 or ψ is radially symmetric, then we have

(A.14) KR(ψ) =

∫
Rd

ρ0(x)
∣∣∇ψ(x)

∣∣2 − ρ3(x)
∣∣ψ(x)∣∣p+1

dx,

where

(A.15) ρ0(x) := 1−w′
( |x|
R

)
= ρ1(x) + ρ2(x).

In the next lemma, we give several properties of the weight functions ρ1, ρ2, ρ3,

and ρ0.

LEMMA A.2

Assume d ≥ 1 and 2 + (4/d) ≤ p + 1 < 2∗. Then, for any R > 0, we have the

following:

suppρj = {x ∈Rd
∣∣ |x| ≥R} for any R> 0 and j = 0,1,2,3,(A.16)

inf
x∈Rd

ρj(x)≥ 0 for any R> 0 and j = 0,1,2,3,(A.17)

ρ0(x) = 1 if |x| ≥ 2R,(A.18)

ρ3(x) =
d(p− 1)

2(p+ 1)
if |x| ≥ 2R,(A.19)

‖ρj‖L∞ � 1 for any j = 0,1,2,3.(A.20)

Proof of Lemma A.2

We easily verify this lemma from the definitions of ρ1, ρ2, ρ3, and ρ0. �
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Theor. 46 (1987), 113–129. MR 0877998.

[14] , “Nonlinear Schrödinger equations” in Schrödinger operators

(Sonderborg, 1988), Lecture Notes in Phys. 345, Springer, Berlin, 1989,

218–263. MR 1037322. DOI 10.1007/3-540-51783-9 22.

[15] , On nonlinear Schrödinger equations, II: Hs-solutions and

unconditional well-posedness, J. Anal. Math. 67 (1995), 281–306. MR 1383498.

DOI 10.1007/BF02787794.

http://www.ams.org/mathscinet-getitem?mr=1705001
http://www.ams.org/mathscinet-getitem?mr=0695535
http://dx.doi.org/10.1007/BF00250555
http://www.ams.org/mathscinet-getitem?mr=0695536
http://www.ams.org/mathscinet-getitem?mr=1655835
http://dx.doi.org/10.1007/BF02788703
http://www.ams.org/mathscinet-getitem?mr=2002047
http://www.ams.org/mathscinet-getitem?mr=2470397
http://www.ams.org/mathscinet-getitem?mr=2134950
http://dx.doi.org/10.1142/S0219891605000361
http://www.ams.org/mathscinet-getitem?mr=0634248
http://www.ams.org/mathscinet-getitem?mr=0460850
http://www.ams.org/mathscinet-getitem?mr=0533219
http://dx.doi.org/10.1016/0022-1236(79)90077-6
http://www.ams.org/mathscinet-getitem?mr=0533218
http://www.ams.org/mathscinet-getitem?mr=2421484
http://dx.doi.org/10.1007/s00220-008-0529-y
http://www.ams.org/mathscinet-getitem?mr=2354447
http://www.ams.org/mathscinet-getitem?mr=2872122
http://dx.doi.org/10.2140/apde.2011.4.405
http://www.ams.org/mathscinet-getitem?mr=0877998
http://www.ams.org/mathscinet-getitem?mr=1037322
http://dx.doi.org/10.1007/3-540-51783-9_22
http://www.ams.org/mathscinet-getitem?mr=1383498
http://dx.doi.org/10.1007/BF02787794
http://dx.doi.org/10.1007/3-540-51783-9_22
http://dx.doi.org/10.1007/3-540-51783-9_22


672 Takafumi Akahori and Hayato Nawa

[16] C. E. Kenig and F. Merle, Global well-posedness, scattering and blow-up for the

energy-critical, focusing, non-linear Schrödinger equation in the radial case,

Invent. Math. 166 (2006), 645–675. MR 2257393.

DOI 10.1007/s00222-006-0011-4.

[17] S. Keraani, On the defect of compactness for the Strichartz estimates of the

Schrödinger equations, J. Differential Equations 175 (2001), 353–392.

MR 1855973. DOI 10.1006/jdeq.2000.3951.

[18] M. K. Kwong, Uniqueness of positive solutions of �u− u+ up = 0 in RN ,

Arch. Rational Mech. Anal. 105 (1989), 243–266. MR 0969899.

DOI 10.1007/BF00251502.

[19] F. Merle, Limit of the solution of a nonlinear Schrödinger equation at blow-up

time, J. Funct. Anal. 84 (1989), 201–214. MR 0999497.

DOI 10.1016/0022-1236(89)90119-5.

[20] H. Nawa, “Asymptotic profiles of blow-up solutions of the nonlinear

Schrödinger equation” in Singularities in Fluids, Plasmas and Optics

(Heraklion, 1992), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. 404, Kluwer,

Dordrecht, 1993, 221–253. MR 1864372.

[21] , Asymptotic and limiting profiles of blowup solutions of the nonlinear

Schrödinger equations with critical power, Comm. Pure Appl. Math. 52 (1999),

193–270. MR 1653454.

DOI 10.1002/(SICI)1097-0312(199902)52:2&lt;193::AID-CPA2&gt;3.0.CO;2-3.

[22] T. Ogawa and Y. Tsutsumi, Blow-up of H1-solution for the nonlinear

Schrödinger equation, J. Differential Equations 92 (1991), 317–330.

MR 1120908. DOI 10.1016/0022-0396(91)90052-B.

[23] D. H. Sattinger, On global solution of nonlinear hyperbolic equations, Arch.

Rational Mech. Anal. 30 (1968), 148–172. MR 0227616.

[24] W. A. Strauss, Existence of solitary waves in higher dimensions, Comm. Math.

Phys. 55 (1977), 149–162. MR 0454365.

[25] C. Sulem and P.-L. Sulem, The Nonlinear Schrödinger Equation: Self-Focusing

and Wave Collapse, Appl. Math. Sci. 139, Springer, New York, 1999.

MR 1696311.

[26] M. I. Weinstein, Nonlinear Schrödinger equations and sharp interpolation

estimates, Comm. Math. Phys. 87 (1982/83), 567–576. MR 0691044.

Akahori: Faculty of Engineering, Shizuoka University, Jyohoku 3-5-1, Hamamatsu,

432-8561, Japan; ttakaho@ipc.shizuoka.ac.jp

Nawa: Department of Mathematics, School of Science and Technology, Meiji

University, 1-1-1 Higashimita Tama-ku, Kawasaki, Kanagawa 214-8571, Japan;

nawa@meiji.ac.jp

http://www.ams.org/mathscinet-getitem?mr=2257393
http://dx.doi.org/10.1007/s00222-006-0011-4
http://www.ams.org/mathscinet-getitem?mr=1855973
http://dx.doi.org/10.1006/jdeq.2000.3951
http://www.ams.org/mathscinet-getitem?mr=0969899
http://dx.doi.org/10.1007/BF00251502
http://www.ams.org/mathscinet-getitem?mr=0999497
http://dx.doi.org/10.1016/0022-1236(89)90119-5
http://www.ams.org/mathscinet-getitem?mr=1864372
http://www.ams.org/mathscinet-getitem?mr=1653454
http://dx.doi.org/10.1002/(SICI)1097-0312(199902)52:2&lt;193::AID-CPA2&
gt;3.0.CO;2-3
http://www.ams.org/mathscinet-getitem?mr=1120908
http://dx.doi.org/10.1016/0022-0396(91)90052-B
http://www.ams.org/mathscinet-getitem?mr=0227616
http://www.ams.org/mathscinet-getitem?mr=0454365
http://www.ams.org/mathscinet-getitem?mr=1696311
http://www.ams.org/mathscinet-getitem?mr=0691044
mailto:ttakaho@ipc.shizuoka.ac.jp
mailto:nawa@meiji.ac.jp

	Introduction
	Potential well PW
	Strichartz-type estimate and scattering
	Auxiliary function space
	Sufﬁcient conditions for scattering
	Long-time perturbation theory and wave operator

	Analysis on PW+
	Critical element versus virial identity
	Solving the variational problem for Ñc
	Proof of Proposition 4.1
	Proof of Theorem 1.1

	Analysis on PW-
	Appendix: Generalized virial identity
	Acknowledgments
	References
	Author's Addresses

