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Abstract We classify del Pezzo surfaces of Picard number 1 with log-canonical singu-

larities admitting Q-Gorenstein smoothings.

1. Introduction

Throughout this paper we work over the complex number field C. A smoothing

of a surface X is a flat family X→D over a unit disk 0 ∈D⊂ C such that the

fiber X0 is isomorphic to X and the general fiber is smooth. In this situation

X can be considered as a degeneration of a fiber Xt, 0 �= t ∈D. A smoothing is

said to be Q-Gorenstein if the total family X is. Throughout this paper a del

Pezzo surface means a normal projective surface whose anticanonical divisor is

Q-Cartier and ample. We study Q-Gorenstein smoothings of del Pezzo surfaces

with log-canonical singularities. This is interesting for applications to birational

geometry and the minimal model program (see, e.g., [21], [24]) as well as to moduli

problems (see, e.g., [17], [7]). Smoothings of del Pezzo surfaces with log-terminal

singularities were considered in [20], [8], and [23].

THEOREM 1.1

Let X be a del Pezzo surface with only log-canonical singularities and ρ(X) = 1.

Assume that X admits a Q-Gorenstein smoothing, and assume that there exists

at least one non-log-terminal point (o ∈X). Let η : Y →X be the minimal reso-

lution. Then there is a rational curve fibration ϕ : Y → T over a smooth curve T

such that a component C1 of the η-exceptional divisor dominating T is unique,

it is a section of ϕ, and its discrepancy equals −1. Moreover, o is the only non-

log-terminal singularity and singularities of X outside o are at worst Du Val of

type A. The surface X and singular fibers of ϕ are described in Table 1. All the

cases except possibly for 3o with 5≤ n≤ 8 and 4o with 5≤ n≤ 10 occur.

For a precise description of the surfaces that occur in our classification, we refer

to Section 8.
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Table 1

Singularities ρ(Y ) K2
X Singular Condition

(o ∈X) X \ {o} fibers of ϕ on n

1o Elln ∅ 2 n ∅ n≤ 9

2o [n; [2]4] 4A1 10 n− 2 4(I2) 3≤ n≤ 6

3o [n,2,2; [2]4] 2A1 10 n− 2 2(I2)(II) 3≤ n≤ 8

4o [2,2, n,2,2; [2]4] ∅ 10 n− 2 2(II) 3≤ n≤ 10

5o [n; [3]3] 3A2 11 n− 1 3(I3) 2, 3, 4

6o [n; [2], [4]2] A1, 2A3 12 n− 1 (I2)2(I4) 2, 3

7o [2; [2], [3], [6]] A1, A2, A5 13 1 (I2)(I3)(I6)

Table 2

I (X � P ) Condition μP −K
2

1• 2 [n1, . . . , ns; [2]
4]

∑
(ni − 3)≤ 3 4−

∑
(ni − 3)

∑
(ni − 2)

2• 3 [n; [3], [3], [3]] n= 2,3,4 4− n n

3• 4 [n; [2], [4], [4]] n= 2,3 3− n n+ 1

4• 6 [2; [2], [3], [6]] 0 4

To show the existence of Q-Gorenstein smoothings we use the unobstruct-

edness of deformations (see Proposition 7.5) and a local investigation of the

Q-Gorenstein smoothability of log-canonical singularities.

THEOREM 1.2

Let (X � P ) be a strictly log-canonical surface singularity of index I > 1 admitting

a Q-Gorenstein smoothing. Then it belongs to one of types listed in Table 2, where

μP is the Milnor fiber of the smoothing.

Q-Gorenstein smoothings exist in cases 2•, 3•, 4•, as well as in the case 1•

for singularities of types [n; [2]4] with n ≤ 6, [n1, . . . , ns; [2]
4] with

∑
(ni − 2) ≤

2, [4,3; [2]4], and [3,3,3; [2]4]. In all other cases the existence of Q-Gorenstein

smoothings is unknown.

The smoothability of log-canonical singularities of index 1 was studied earlier

(see, e.g., [19, Example 6.4], [28, Corollary 5.12]).

As a by-product we construct essentially canonical threefold singularities of

index 5 and 6. We say that a canonical singularity (X � o) is essentially canon-

ical if there exists a crepant divisor with center o. V. Shokurov conjectured

that essentially canonical singularities of given dimension have bounded indices.

This is well known in dimension 2: canonical surface singularities are Du Val

and their index equals 1. Shokurov’s conjecture was proved in dimension 3 by

M. Kawakita in [11]. More precisely, he proved that the index of an essentially

canonical threefold singularity is at most 6. The following theorem supplements

Kawakita’s result.
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THEOREM 1.3

For any 1≤ I ≤ 6 there exists a 3-dimensional essentially canonical singularity

of index I.

In fact, our result is new only for I = 5 and 6: [9] classified threefold canoni-

cal hyperquotient singularities, and among them, there are examples satisfying

conditions of our theorem with I ≤ 4. Theorem 1.3 together with [11] gives the

following.

THEOREM 1.4

Let I be the set of indices of 3-dimensional essentially canonical singularities.

Then

I= {1,2,3,4,5,6}.

The paper is organized as follows. Section 2 is preliminary. In Section 3, we

obtain necessary conditions for the Q-Gorenstein smoothability of 2-dimensional

log-canonical singularities. In Section 4 we construct examples of Q-Gorenstein

smoothings. Theorem 1.3 will be proved in Section 5. In Section 6, we collect

important results on del Pezzo surfaces admitting Q-Gorenstein smoothings. The

main birational construction for the proof of Theorem 1.1 is outlined in Section 7,

which will be considered in Sections 8 and 9.

2. Log-canonical singularities

For basic definitions and terminology of the minimal model program, we refer to

[16] or [14].

2.1
Let (X � o) be a log-canonical surface singularity. The index of (X � o) is the

smallest positive integer I such that IKX is Cartier. We say that (X � o) is

strictly log-canonical if it is log-canonical but not log-terminal.

DEFINITION 2.2

A normal Gorenstein surface singularity is said to be simple elliptic if the excep-

tional divisor of the minimal resolution is a smooth elliptic curve. We say that a

simple elliptic singularity is of type Elln if the self-intersection of the exceptional

divisor equals −n. A normal Gorenstein surface singularity is called a cusp if the

exceptional divisor of the minimal resolution is a cycle of smooth rational curves

or a rational nodal curve.

2.3
We recall some notation on weighted graphs. Let (X � o) be a rational surface

singularity, let η : Y → X be its minimal resolution, and let E =
∑

Ei be the

exceptional divisor. Let Γ = Γ(X,o) be the dual graph of (X � o), that is, Γ is a
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weighted graph whose vertices correspond to exceptional prime divisors Ei and

edges join vertices meeting each other. In the usual way we attach to each vertex

Ei the number −E2
i . Typically, we omit 2 if −E2

i = 2.

If (X � o) is a cyclic quotient singularity of type 1
r (1, q), gcd(r, q) = 1, then

the graph Γ is a chain:

(2.3.1) ◦
n1

◦
n2

· · · ◦
nk

We denote it by [n1, . . . , nk] = 〈r, q〉. The numbers ni are determined by the

expression of r/q as a continued fraction (see [3]). For positive integers n, ri, qi,

gcd(ri, qi) = 1, i= 1, . . . , s, the symbol

〈n; r1, . . . , rs; q1, . . . , qs〉

denotes the graph

〈r2, q2〉 · · · 〈rs−1, qs−1〉

〈r1, q1〉 ◦
n

〈rs, qs〉

For short, we will omit qi’s: 〈n; r1, . . . , rs〉. If 〈ri, qi〉= [ni,1, ni,2, . . . ], then we also

denote

〈n; r1, . . . , rs; q1, . . . , qs〉=
[
n; [n1,1, n1,2, . . . ], . . . , [ns,1, ns,2, . . . ]

]
.

For example, 〈n; 3,3,3; 1,1,2〉= [n; [3], [3], [2,2]] is the graph

3◦

◦
3

◦
n

◦ ◦

The graph

◦ ◦

◦
n1

· · · ◦
ns

◦ ◦

will be denoted by [n1, . . . , ns; [2]
4].

THEOREM 2.4 ([12, Section 9])

Let (X � o) be a strictly log-canonical surface singularity of index I. Then one

of the following holds:

(i) I = 1 if and only if (X � o) is either a simple elliptic singularity or a

cusp,
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(ii) I = 2 if and only if Γ(X,o) is of type [n1, . . . , ns; [2]
4], s≥ 1,

(iii) I = 3 if and only if Γ(X,o) is of type 〈n; 3,3,3〉,
(iv) I = 4 if and only if Γ(X,o) is of type 〈n; 2,4,4〉,
(v) I = 6 if and only if Γ(X,o) is of type 〈n; 2,3,6〉.

COROLLARY 2.4.1

A strictly log-canonical surface singularity is not rational if and only if it is of

index 1.

2.5
Let (X � o) be a strictly log-canonical surface singularity of index I , let η : Y →X

be its minimal resolution, and let E =
∑

Ei be the exceptional divisor. Let us

contract all the components of E with discrepancies greater than −1:

(2.5.1) η : Y
η̃−→ X̃

σ−→X.

Let C̃ =
∑

C̃i := η̃∗E be the σ-exceptional divisor. Then the pair (X̃, C̃) has only

divisorial log-terminal (dlt) singularities and the following relation holds:

KX̃ = σ∗KX − C̃.

The extraction σ : X̃ →X is called the dlt modification of (X � o).

COROLLARY 2.5.2 (see [12, Section 9], [14, Section 3], [16, Section 4.1], [22, Section 6.1])

In the above notation, one of the following holds:

(i) I = 1, X̃ = Y is smooth, and (X � o) is either a simple elliptic or a

cusp singularity;

(ii) I = 2, C̃ =
∑s

i=1 C̃i is a chain of smooth rational curves meeting trans-

versely at smooth points of X̃ so that C̃i · C̃i+1 = 1, and the singular locus of X̃

consists of two Du Val points of type A1 lying on C̃1 and two Du Val points of

type A1 lying on C̃s (the case s= 1 is also possible and then C̃ = C̃1 is a smooth

rational curve containing four Du Val points of type A1);

(iii) I = 3, 4, or 6, C̃ is a smooth rational curve, the pair (X̃, C̃) has only

purely log-terminal (plt) singularities, and the singular locus of X̃ consists of three

cyclic quotient singularities of types 1
ri
(1, qi), gcd(ri, qi) = 1, with

∑
1/ri = 1. In

this case I = least common denominator (lcm)(r1, r2, r3).

2.6
Let (X � o) be a log-canonical singularity of index I (of arbitrary dimension).

Recall (see, e.g., [16, Definition 5.19]) that the index 1 cover of (X � o) is a finite

morphism π :X� →X , where

X� := Spec
(I−1⊕

i=0

OX(−iKX)
)
.

Then X� is irreducible, o� = π−1(o) is one point, π is étale over X \Sing(X), and

KX� = π∗KX is Cartier.
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In this situation, (X� � o�) is a log-canonical singularity of index 1. Moreover,

if (X � o) is log-terminal (resp., canonical, terminal), then so is the singularity

(X� � o�).

COROLLARY 2.6.1

A strictly log-canonical surface singularity of index I > 1 is a quotient of a simple

elliptic or cusp singularity (X� � o�) by a cyclic group μI of order I = 2, 3, 4,

or 6 whose action on X� \ {o�} is free.

CONSTRUCTION 2.7 (see [12, Proof of Theorem 9.6])

Let (X � o) be a strictly log-canonical surface singularity of index I > 1, let

π : (X� � o�)→ (X � o) be the index 1 cover, and let σ̃ : (X̃� ⊃ C̃�)→ (X� � o�)

be the minimal resolution. The action of μI lifts to X̃� so that the induced

action on OX̃�(KX̃� + C̃�) = σ̃∗OX�(KX�) and H0(C̃�,OC̃�(KC̃�)) is faithful. Let

(X̃ ⊃ C̃) := (X̃� ⊃ C̃�)/μI . Thus, we obtain the following diagram:

(2.7.1)

X̃�
π̃

σ̃

X̃

σ

X�
π

X

Here σ : (X̃ ⊃ C̃)→ (X � o) is the dlt modification.

The following definition can be given in arbitrary dimension. For simplicity we

state it only for dimension 2, which is sufficient for our needs.

2.8. Adjunction
Let X be a normal surface, and let D be an effective Q-divisor on X . Write D =

C +B, where C is a reduced divisor on X , B is effective, and C and B have no

common component. Let ν :C ′ →C be the normalization of C. One can construct

an effective Q-divisor DiffC(B) on C ′, called the different, as follows (see [14,

Chapter 16] or [26, Section 3] for details). Take a resolution of singularities f :

X ′ →X such that the proper transform C ′ of C on X ′ is also smooth. Clearly, C ′

is nothing but the normalization of the curve C. Let B′ be the proper transform

of B on X ′. One can find an exceptional Q-divisor A on X ′ such that KX′ +C ′+

B′ ≡f A. The different DiffC(B) is defined as the Q-divisor (B′ − A)|C′ . Then

DiffC(B) is effective, and it satisfies the equality (adjunction formula)

(2.8.1) KC′ +DiffC(B) = ν∗(KX +C +B)|C .

THEOREM 2.8.2 (Inversion of Adjunction [26], [10])

The pair (X,C + B) is log-canonical (lc) (resp., plt) near C if and only if the

pair (C ′,DiffC(B)) is lc (resp., Kawamata log-terminal (klt)).
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PROPOSITION 2.8.3

Let (X � P ) be a surface singularity, and let o ∈ C ⊂X be an effective reduced

divisor such that the pair (X,C) is plt. Then (P ∈ C ⊂ X) is analytically iso-

morphic to (
0 ∈ {x1 − axis} ⊂C2

)
/μr(1, q), gcd(r, q) = 1.

In particular, C is smooth at P and DiffC(0) = (1− 1/r)P . The dual graph of

the minimal resolution of (X � P ) is a chain (2.3.1), and the proper transform

of C is attached to one of its ends.

3. Q-Gorenstein smoothings of log-canonical singularities

In this section we prove the classificational part of Theorem 1.2.

NOTATION 3.1

Let (X � P ) be a normal surface singularity, let η : Y →X be the minimal reso-

lution, and let E =
∑

Ei be the exceptional divisor. Write

(3.1.1) KY = η∗KX −Δ,

where Δ is an effective Q-divisor with Supp(Δ) = Supp(E). Thus, one can define

the self-intersection K2
(X,P ) := Δ2, which is a well-defined natural invariant. We

usually write K2 instead of K2
(X,P ) if no confusion is likely. The value K2 is

nonpositive, and it equals zero if and only if (X � P ) is a Du Val point.

• We denote by ςP the number of exceptional divisors over P .

LEMMA 3.2

Let (X � P ) be a normal surface singularity, and let X→D be its Q-Gorenstein

smoothing. If (X � P ) is log-terminal, then the pair (X,X) is plt, and the singu-

larity (X � P ) is terminal. If (X � P ) is log-canonical, then the pair (X,X) is lc,

and the singularity (X � P ) is isolated canonical.

Proof

By the higher-dimensional version of the inversion of adjunction (see [16, Theo-

rem 5.50], [10], and Theorem 2.8.2) the singularity (X � P ) is log-terminal (resp.,

log-canonical) if and only if the pair (X,X) is plt (resp., lc) at P . Since X is a

Cartier divisor on X, the assertion follows. �

LEMMA 3.3 ([13, Proposition 6.2.8])

Let (X � P ) be a rational surface singularity. If (X � P ) admits a Q-Gorenstein

smoothing, then K2 is an integer.

THEOREM 3.4 ([17, Proposition 3.10], [19, Proposition 5.9])

Let (X � P ) be a log-terminal surface singularity. The following are equivalent:

(i) (X � P ) admits a Q-Gorenstein smoothing,
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(ii) K2 ∈ Z,

(iii) (X � P ) is either a Du Val or a cyclic quotient singularity of the form
1
m (q1, q2) with

(q1 + q2)
2 ≡ 0 mod m, gcd(m,qi) = 1.

A log-terminal singularity satisfying equivalent conditions above is called a T-

singularity.

REMARK 3.4.1 (see [17])

It easily follows from (iii) that any non-Du Val singularity of type T can be

written in the form

1

dn2
(1, dna− 1).

Below we describe log-canonical singularities with integral K2. Note, how-

ever, that, in general, the condition K2 ∈ Z is necessary but not sufficient

for the existence of Q-Gorenstein smoothing (see Theorem 1.2 and Proposi-

tion 3.5(DV)).

PROPOSITION 3.5

Let (X � P ) be a rational strictly log-canonical surface singularity. Then in the

notation of Theorem 2.4 the invariant K2 is integral if and only if X is either

of type [n1, . . . , ns; [2]
4] or of type 〈n; r1, r2, r3; ε, ε, ε〉, where (r1, r2, r3) = (3,3,3),

(2,4,4), or (2,3,6) and ε= 1 or −1. Moreover, we have:

(DV) if X is of type [n1, . . . , ns; [2]
4] or 〈n; r1, r2, r3;−1,−1,−1〉, then

−K
2 = n− 2,

where in the case [n1, . . . , ns; [2]
4], we put n :=

∑
(ni − 2) + 2;

(nDV) if X is of type 〈n; r1, r2, r3; 1,1,1〉, then

−K
2 = n− 9 +

∑
ri.

For the proof we need the following lemma.

LEMMA 3.5.1

Let V be a smooth surface, and let C,E1, . . . ,Em ⊂ V be proper smooth rational

curves on V whose configuration is a chain:

◦
C

◦
Em

· · · ◦
E1

Let D =C +
∑

αiEi be a Q-divisor such that (KV +D) ·Ej = 0 for all j.

(i) If all the Ei’s are (−2)-curves, then D2 −C2 =m/(m+ 1).

(ii) If m= 1 and E2
1 =−r, then D2 −C2 = (r− 1)(3− r)/r.



Log-canonical degenerations 1049

Proof

Assume that E2
i = −2 for all i. It is easy to check that D = C +

∑m
i=1

i
m+1Ei.

Then

D2 −C2 =
2m

m+ 1
+
( m∑
i=1

i

m+ 1
Ei

)2

=
2m

m+ 1
+

2

(m+ 1)2

(
−

m∑
i=1

i2 +

m−1∑
i=1

i(i+ 1)
)
=

m

m+ 1
.

Now let m= 1 and E2
1 =−r. Then D =C + r−1

r E1. Hence,

D2 −C2 =
2(r− 1)

r
− (r− 1)2

r
=

(r− 1)(3− r)

r
. �

Proof of Proposition 3.5

Let Δ be as in (3.1.1), and let C := �Δ�. Write Δ = C +
∑

Δi, where the Δi’s

are effective connected Q-divisors. By Lemma 3.5.1 we have

δi :=
(
(C +Δi)

2 −C2
)
=

{
1− 1

ri
if Δi is of type

1
ri
(1,−1),

4− ri − 3
ri

if Δi is of type
1
ri
(1,1).

Then

K
2 =

(
C +

∑
Δi

)2

=C2 +
∑

δi.

If (X � P ) is of type [n1, . . . , ns, [2], [2], [2], [2]], then

K
2 =C2 + 2=−

∑
(ni − 2).

Assume that C is irreducible, and assume that (X � P ) is of type 〈n; r1, r2, r3〉,
where

∑
1/ri = 1.

If all the Supp(Δi)’s are Du Val chains, then

K
2 =C2 +

∑(
1− 1

ri

)
=−n+ 2.

If (X � P ) is of type 〈n; r1, r2, r3; 1,1,1〉, then

K
2 =C2 +

∑(
4− ri −

3

ri

)
=−n+ 9−

∑
ri.

It remains to consider the “mixed” case. Assume, for example, that (X � P ) is of

type 〈n; 3,3,3〉. Then δi ∈ {0,2/3}. Since
∑

δi is an integer, the only possibility is

δ1 = δ2 = δ3, that is, all the chains Δi are of the same type. The cases 〈n; 2,4,4〉
and 〈n; 2,3,6〉 are considered similarly. �

COROLLARY 3.5.2

Let (X � P ) be a strictly log-canonical surface singularity of index I ≥ 2 admitting

a Q-Gorenstein smoothing. Let (X� � P �)→ (X � P ) be the index 1 cover. Then

−K
2
(X��P �) =

{
I(n− 2) in the case (DV),

I(n− 1) in the case (nDV).
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Proof

Let us consider the (nDV) case. We use the notation of (2.5.1) and (2.7.1). Let

E1, E2, E3 be the η̃-exceptional divisors. Then

KX̃ = σ∗KX − C̃, KY = η∗KX −Δ= η̃∗KX̃ −
∑ ri − 2

ri
Ei.

Therefore,

Δ = η̃∗C̃ +
∑ ri − 2

ri
Ei, Δ2 = C̃2 −

∑(
ri − 4 +

4

ri

)
,

−C̃2 = n+ 3−
∑ 4

ri
= n− 1, −K

2
(X��P �) =−IC̃2 = I(n− 1). �

REMARK 3.5.3

In the above notation we have (see, e.g., [16, Theorem 4.57])

mult(X� � P �) = max(2,−K
2
(X��P �)),

embdim(X� � P �) = max(3,−K
2
(X��P �)).

The following proposition is the key point in the proof of Theorem 1.2.

PROPOSITION 3.6

Let (X � P ) be a strictly log-canonical rational surface singularity of index I ≥ 3

admitting a Q-Gorenstein smoothing. Then (X � P ) is of type [n; [r1], [r2], [r3]].

Proof

By Lemma 3.3 the number K2 is integral, and by Proposition 3.5 (X � P ) is

either of type (nDV) or of type (DV). Assume that (X � P ) is of type DV.

3.7
Let f : X→D be a Q-Gorenstein smoothing. By Lemma 3.2 the pair (X,X) is

log-canonical, and (P ∈X) is an isolated canonical singularity. Let

π : (X� � P �)→ (X � P )

be the index 1 cover (see Section 2.6), and let X� := π∗X . Then X� is a Cartier

divisor on X�, the singularity (X� � P �) is canonical (of index 1), and the pair

(X�,X�) is lc. Moreover, X� is Cohen–Macaulay (CM), X� is hence normal, and

the canonical divisor KX� is Cartier. Therefore, π induces the index 1 cover πX :

(X� � P �)→ (X � P ). In particular, the index of (P ∈ X) equals I . Since I ≥ 3,

the singularity (X� � P �) is simple elliptic, and the dlt modification coincides

with the minimal resolution.

3.8
First we consider the case where (P ∈ X) is terminal. Below we essentially use

the classification of terminal singularities (see, e.g., [25]). In our case, (X� � P �) is

either smooth or an isolated compound Du Val (cDV) singularity. In particular,
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embdim(X� � P �)≤ embdim(X� � P �)≤ 4.

By our assumption (X � P ) is of type DV. So, by Corollary 3.5.2 and

Remark 3.5.3

(3.8.1) embdim(X� � P �) = I(n− 2).

If embdim(X� � P �) = 3, that is, (X� � P �) is smooth, then embdim(X� �
P �) = 3, mult (X� � P �) = 3, and I = n = 3. In this case (X � P ) is a cyclic

quotient singularity of type 1
3 (1,1,−1) (see [25]). We may assume that (X�, P �) =

(C3,0) and X� is given by an invariant equation ψ(x1, x2, x3) = 0 with

mult0ψ = 3. Since (X� � P �) is a simple elliptic singularity, the cubic part ψ3 of

ψ defines a smooth elliptic curve on P2. Hence, we can write ψ3 = x3
3+ τ(x1, x2),

where τ(x1, x2) is a cubic homogeneous polynomial without multiple factors.

The minimal resolution X̃� →X� is the blowup of the origin. In the affine chart

{x2 �= 0} the surface X̃� is given by the equation τ(x′
1,1)+ x′3

3 + x′
2(· · · ) = 0 and

the action of μ3 is given by the weights (0,1,1). Then it is easy to see that X̃

has three singular points of type 1
3 (1,1). This contradicts our assumption.

Thus, we may assume that embdim(X� � P �) = 4, that is, (X� � P �) is a

hypersurface singularity. Then I = 4 by (3.8.1). We may assume that (X� �
P �) ⊂ (C4 � 0) is a hypersurface given by an equation φ(x1, . . . , x4) = 0 with

mult0 φ= 2 and X� is cut out by an invariant equation ψ(x1, . . . , x4) = 0. Fur-

thermore, we may assume that x1, . . . , x4 are semi-invariants with μ4-weights

(1,1,−1, b), where b= 0 or 2 (see [25]).

Consider the case mult0ψ = 1. Since ψ is invariant, we have ψ = x4 +

(higher degree terms) and b = 0. In this case the only quadratic invariants are

x1x3, x2x3, and x2
4. Thus, φ2 is a linear combination of x1x3, x2x3, x

2
4. Since

I = 4 and b = 0, by the classification of terminal singularities φ contains either

x1x3 or x2x3 (see [25]). Then by eliminating x4 we see that (X� � P �) is a

hypersurface singularity whose equation has quadratic part of rank at least 2. In

this case, (X� � P �) is a Du Val singularity of type An, a contradiction.

Now let mult0ψ > 1. Then (see Remark 3.5.3)

embdim(X� � P �) =−K(X��P �) =mult(X� � P �) = 4 = I.

According to [16, Theorem 4.57] the curve given by quadratic parts of φ and ψ

in the projectivization P(TP �,X�) of the tangent space is a smooth elliptic curve.

According to the classification from [25], there are two cases.

Case: b= 0 and φ is an invariant
In this case, as above, φ2 and ψ2 are linear combinations of x1x3, x2x3, and x2

4,

so {φ2 = ψ2 = 0} cannot be smooth, a contradiction.

Case: b= 2 and φ is a semi-invariant of weight 2
Then, up to linear coordinate change of x1 and x2, we can write

φ2 = a1x1x2 + a2x
2
1 + a3x

2
2 + a4x

2
3, ψ2 = b1x1x3 + b2x2x3 + b3x

2
4.
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Since φ2 = ψ2 = 0 defines a smooth curve, a1x1x2 + a2x
2
1 + a3x

2
2 has no multiple

factors, so up to a linear coordinate change of x1 and x2 we may assume that

φ2 = x1x2 + x2
3. Similarly, b1, b2, b3 �= 0. Then easy computations (see, e.g., [15,

(7.7.1)]) show that (X� � P �) is a singularity of type [2; [2], [4]2]. This contradicts

our assumption.

3.9
Now we assume that (P ∈ X) is strictly canonical. Let γ : X̃→ X be the crepant

blowup of (P ∈ X). By definition, X̃ has only Q-factorial terminal singularities

and K
X̃
= γ∗KX. Let E =

∑
Ei be the exceptional divisor, and let X̃ be the

proper transform of X . Since the pair (X,X) is log-canonical, we can write

(3.9.1) K
X̃
+ X̃ +E = γ∗(KX +X), γ∗X = X̃ +E.

The pair (X̃, X̃ +E) is log-canonical and X̃ has isolated singularities, so X̃ +E

has generically normal crossings along X̃ ∩ E. Hence, C := X̃ ∩ E is a reduced

curve. By the adjunction we have

KX̃ +C = (K
X̃
+ X̃ +E)|X̃ = γ∗(KX +X)|X̃ = γ∗

X̃
KX .

Thus, γX̃ : X̃ →X is a dlt modification of (X � P ). Since I ≥ 3, there is only one

divisor over P ∈X with discrepancy −1. Hence, this divisor coincides with C,

and so C is irreducible and smooth. In particular, X̃ meets only one component

of E.

CLAIM

Let Q ∈ X̃ be a point at which E is not Cartier. Then in a neighborhood of Q we

have X̃ ∼K
X̃
. In particular, Q ∈C.

Proof

We are going to apply the results of [11]. The extraction γ : X̃→X can be decom-

posed in a sequence of elementary crepant blowups

γi :Xi+1 −→Xi, i= 0, . . . ,N,

where X0 = X, XN = X̃, for i = 1, . . . ,N each Xi has only Q-factorial canonical

singularities, and the γi-exceptional divisor Ei+1,i is irreducible. Kawakita [11]

defined a divisor F with Supp(F ) =E on XN = X̃ inductively: F1 =E1,0 on X1

and Fi+1 = �γ∗i Fi�. In our case, by (3.9.1) the divisor F is reduced, that is, F =E.

Then by [11, Theorem 4.2] we have E ∼−K
X̃

near Q. Since X̃ +E is Cartier,

X̃ ∼K
X̃
near Q. �

CLAIM

The singular locus of X̃ near C consists of three cyclic quotient singularities

P1, P2, P3 of types 1
ri
(1,−1, bi), where gcd(bi, ri) = 1 and (r1, r2, r3) = (3,3,3),

(2,4,4), and (2,3,6) in cases I = 3, 4, 6, respectively.
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Proof

Let P1, P2, P3 ∈C be singular points of X̃ . Since C = X̃ ∩E is smooth, E is not

Cartier at the Pi’s. Hence, P1, P2, P3 ∈ X̃ are (terminal) non-Gorenstein points.

Now the assertion follows by [11, Theorem 4.2]. �

Therefore, Pi ∈ X̃ is a point of index ri/gcd(2, ri). Hence, the singularities of X̃

are of types 1
ri
(1,1). This proves Proposition 3.6. �

3.10
Let (X � P ) be a normal surface singularity admitting a Q-Gorenstein smoothing

f : X → D. Let MP be the Milnor fiber of f. Thus, (MP , ∂MP ) is a smooth 4-

manifold with boundary. Denote by μP = b2(MP ) the Milnor number of the

smoothing. In our case we have (see [6])

(3.10.1) b1(MP ) = 0, Eu(MP ) = 1+ μP .

PROPOSITION 3.10.2 ([8, Section 2.3])

Let (X � P ) be a rational surface singularity. Assume that (X � P ) admits a

Q-Gorenstein smoothing. Then for the Milnor number μP we have

(3.10.3) μP =K
2
(X,P ) + ςP .

Proof

Obviously, K2
(X,P ) + ςP depends only on the analytic type of the singularity

(X � P ). According to [18, Appendix], for (X � P ) there exist a projective surface

Z with a unique singularity isomorphic to (X � P ) and a Q-Gorenstein smoothing

Z/(T � 0). Let η : Y → Z be the minimal resolution. Write

KY = η∗KZ −Δ, K2
Y =K2

Z +Δ2.

Let Z ′ be the general fiber. Since

Eu(Y ) = Eu(Z) + ςP , χ(OY ) = χ(OZ),

by Noether’s formula we have

0 =K2
Y +Eu(Y )− 12χ(OZ)

=K2
Z +Δ2 +Eu(Z) + ςP − 12χ(OZ′)

= Δ2 + ςP +Eu(Z) +K2
Z′ − 12χ(OZ′)

= Δ2 + ςP +Eu(Z)−Eu(Z ′).

By (3.10.1) we have μP =Δ2
P + ςP . �

COROLLARY 3.10.4 (see [20, Proposition 13])

If (X � P ) is a T-singularity of type 1
dm2 (1,dma − 1), then

(3.10.5) μP = d− 1, −K
2 = ςP − d+ 1.
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Proposition 3.10.2 implies the following.

COROLLARY 3.10.6

Let (X � P ) be a strictly log-canonical surface singularity of index I > 1 admitting

a Q-Gorenstein smoothing. Then

(3.10.7) μP =

{
4−

∑
(ni − 3) in the case (DV) with I = 2,

13− n−
∑

ri in the case (nDV).

Proof of the classificational part of Theorem 1.2

Let

π : (X� � P �)→ (X � P )

be the index 1 cover. A Q-Gorenstein smoothing (X � P ) is induced by an equi-

variant smoothing of (X� � P �) (see Section 3.7). In particular, (X� � P �) is

smoothable. Assume that (X � P ) is of type [n1, . . . , ns; [2]
4] with s > 1. Then

(X� � P �) is a cusp singularity. By [29, Theorem 5.6] its smoothability implies

that

mult(X� � P �)≤ ςP � + 9.

Since ςP � = 2ςP − 10, by Corollary 3.5.2 and Remark 3.5.3 we have

2
∑

(ni − 2)≤ 2ςP − 1,
∑

(ni − 3)≤ 3.

In the case where (X � P ) is of type [n; [2]4], the singularity (X� � P �) is simple

elliptic. Then mult(X� � P �)≤ 9 (see, e.g., [19, Example 6.4]). Hence, n≤ 6. In

the case where (X� � P �) is of type [n, [r1], [r2], [r3]], the assertion follows from

Corollary 3.10.6 because μP ≥ 0. �

The existence of Q-Gorenstein smoothings follows from examples and discussions

in the next two sections.

4. Examples of Q-Gorenstein smoothings

PROPOSITION 4.1 ([27, Corollary 19])

A rational surface singularity of index 2 and multiplicity 4 admits a Q-Gorenstein

smoothing.

Recall that for any rational surface singularity (X � P ) one has

mult(X � P ) =−Z2,

where Z is the fundamental cycle on the minimal resolution (see [1, Corollary 6]).

LEMMA 4.1.1

Let (X � P ) be a log-canonical surface singularity of type [n1, . . . , ns; [2]
4]. Then

−Z2 =max
(
4,2 +

∑
(ni − 2)

)
=max(4,2−K

2).
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Proof

If either s ≥ 2 and n1, ns ≥ 3 or s = 1 and n1 ≥ 4, then Z = �Δ� and so Z2 =

Δ2 − 2 = −n by Proposition 3.5. If
∑

(ni − 2) = 1, then Z = 2Δ and so Z2 =

4Δ2 =−4. �

COROLLARY 4.1.2

A log-canonical singularity of type [n1, . . . , ns; [2]
4] with

∑
(ni − 2)≤ 2 admits a

Q-Gorenstein smoothing.

Let us consider explicit examples.

EXAMPLE 4.1.3

Let X=C3/μ2(1,1,1), and let

f :X→C, (x1, x2, x3) �→ x2
1 + (x2

2 + c1x
2k
3 )(x2

3 + c2x
2m
2 ),

where k,m ≥ 1 and c1, c2 are constants. The central fiber X = X0 is a log-

canonical singularity of type[
2, . . . ,2︸ ︷︷ ︸

k−1

,3,2, . . . ,2︸ ︷︷ ︸
m−1

; [2]4
]
.

Indeed, the 1
2 (1,1,1)-blowup of X ′ →X � 0 has irreducible exceptional divisor.

If k,m≥ 3, then the singular locus of X ′ consists of two Du Val singularities of

types Dk+1 and Dm+1. Other cases are similar.

EXAMPLE 4.1.4

Let μ2 act on C4
x1,...,x4

diagonally with weights (1,1,1,0), and let φ(x1, . . . , x4)

and ψ(x1, . . . , x4) be invariants such that mult0 φ = mult0ψ = 2 and the qua-

dratic parts φ(2), ψ(2) define a smooth elliptic curve in P3. Let X := {φ =

0}/μ2(1,1,1,0). Consider the family

f :X−→C, (x1, . . . , x4) �−→ ψ.

The central fiber X =X0 is a log-canonical singularity of type [4; [2]4].

PROPOSITION 4.1.5 ([4, Example 4.2])

Singularities of types [5; [2]4], [4,3; [2]4], and [3,3,3; [2]4] admit Q-Gorenstein

smoothings.

Now consider singularities of index greater than 2.

EXAMPLE 4.2 ([15, (6.7.1)])

Let X=C3/μ3(1,1,2), and let

f : (x1, x2, x3) �−→ x3
1 + x3

2 + x3
3.

The central fiber X =X0 is a log-canonical singularity of type [2; [3]3].
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EXAMPLE 4.3

Let X=C3/μ9(1,4,7), and let

f : (x1, x2, x3) �−→ x1x
2
2 + x2x

2
3 + x3x

2
1.

The central fiber X =X0 is a log-canonical singularity of type [4; [3]3]. The total

space has a canonical singularity at the origin.

EXAMPLE 4.4 ([15, (7.7.1)])

Let

X= {x1x2 + x2
3 + x2k+1

4 = 0}/μ4(1,1,−1,2), k ≥ 1.

Consider the family

f :X−→C, (x1, . . . , x4) �−→ x2
4 + x3(x1 + x2) +ψ≥3(x1, . . . , x4),

where ψ≥3 is an invariant with mult(ψ≥3) ≥ 3. The central fiber X = X0 is a

log-canonical singularity of type [2; [2], [4]2]. The singularity of the total space is

terminal of type cAx/4.

EXAMPLE 4.5

Let X := {x1x2 + x2
3 + x2

4 = 0}/μ8(1,5,3,7). Consider the family

f :X−→C, (x1, . . . , x4) �−→ x1x4 + x2x3.

The central fiber X = X0 is a log-canonical singularity of type [3; [2], [4]2]. The

singularity of the total space X is canonical (see [9]).

More examples of Q-Gorenstein smoothings will be given in the next section.

5. Indices of canonical singularities

NOTATION 5.1

Let S = Sd ⊂ Pd be a smooth del Pezzo surface of degree d ≥ 3. Let Z be the

affine cone over S, and let z ∈ Z be its vertex. Let δ : Z̃ → Z be the blowup

along the maximal ideal of z, and let S̃ ⊂ Z̃ be the exceptional divisor. The

affine variety Z can be viewed as the spectrum of the anticanonical graded alge-

bra

Z = SpecR(−KS), R(−KS) :=
⊕
n≥0

H0
(
S,OS(−nKS)

)
,

and the variety Z̃ can be viewed as the total space Tot(L ) of the line bundle

L := OS(KS). Here S̃ is the negative section. Denote by γ : Z̃ → S the natural

projection.

LEMMA 5.2

The map δ is a crepant morphism, and (Z � z) is a canonical singularity.
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Proof

Write KZ̃ = δ∗KZ + aS̃. Then

KS̃ = (KZ̃ + S̃)|S̃ = (a+ 1)S̃|S̃ .

Under the natural identification S = S̃ one has OS̃(KS̃) � OS(−1) � OS̃(S̃).

Hence, a= 0. �

CONSTRUCTION 5.3

Assume that S admits an action ς :G→Aut(S) of a finite group G. The action

naturally extends to an action on the algebra R(−KS), the cone Z, and its

blowup Z̃. We assume that

(A) G�μI is a cyclic group of order I ,

(B) the action G on S is free in codimension 1, and

(C) the quotient S/G has only Du Val singularities.

Let GP be the stabilizer of a point P ∈ S. Since L = OS(KS), the fiber LP

of γ : Z̃ = Tot(L ) → S is naturally identified with
∧2

T∨
P,S , where TP,S is the

tangent space to S at P . By our assumptions (B) and (C), in suitable analytic

coordinates x1, x2 near P , the action of GP is given by

(5.3.1) (x1, x2) �−→ (ζbPIP · x1, ζ
−bP
IP

· x2),

where ζIP is a primitive IP th root of unity, gcd(IP , bP ) = 1, and IP is the order

of GP . Therefore, the action of GP on LP �∧2T∨
P,S is trivial. Let P̃ := LP ∩ S̃.

The algebra R(−KS) also admits a natural C∗-action compatible with the

grading. Thus, γ : Z̃ → S is a C∗-equivariant A1-bundle, where C∗-action on S

is trivial and the induced action λ :C∗ →Aut(Z̃) is just multiplication in fibers.

Fix an embedding G=μI ⊂C∗. Then two actions ς and λ commute, and so we

can define a new action of G on Z̃ by

(5.3.2) ς ′(α) = λ(α)ς(α), α ∈G.

Take local coordinates x1, x2, x3 in a neighborhood of P̃ ∈ Z̃ compatible with

the decomposition TP̃ ,Z̃ = TP̃ ,S̃ ⊕ TP̃ ,LP
of the tangent space and (5.3.1). Then

the action of GP is given by

(5.3.3) (x1, x2, x3) �−→ (ζbPIP · x1, ζ
−bP
IP

· x2, ζ
aP

IP
· x3), gcd(aP , IP ) = 1.

CLAIM 5.4

The quotient X̃ := Z̃/ς ′(G) has only terminal singularities.

Proof

All the points of Z̃ with nontrivial stabilizers lie on the negative section S̃.

The image of such a point P̃ on X̃ is a cyclic quotient singularity of type
1
IP

(bP ,−bP , aP ) by (5.3.3). �
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By the universal property of quotients, there is a contraction ϕ : X̃ → X con-

tracting E to a point, say, o, where X := Z/G and E := S̃/G. Thus, we have the

following diagram:

(5.4.1)

S̃ ⊂ Z̃

δγ

X̃

ϕ

⊃ E

S z ∈ Z
π

X � o

PROPOSITION 5.5

The germ (X � o) is an isolated canonical nonterminal singularity of index |G|.

Proof

Since the action ς ′ is free in codimension 1, the contraction ϕ is crepant by

Lemma 5.2. The index of (X � o) is equal to the least common multiple of |GP |
for P ∈ S. On the other hand, by the holomorphic Lefschetz fixed point formula

G has a fixed point on S. Hence, G=GP for some P . �

5.6
Now we construct explicit examples of del Pezzo surfaces with cyclic group actions

satisfying the conditions (A)–(C).

EXAMPLE 5.6.1

Recall that a del Pezzo surface S of degree 6 is unique up to isomorphism and

can be given in P1
u0:u1

× P1
v0:v1 × P1

w0:w1
by the equation

u1v1w1 = u0v0w0.

Let α ∈Aut(S) be the following element of order 6:

α : (u0 : u1;v0 : v1;w0 :w1) �−→ (v1 : v0;w1 :w0;u1 : u0).

Points with nontrivial stabilizers belong to one of three orbits, and representatives

are the following:

• P = (1 : 1; 1 : 1; 1 : 1), |GP |= 6,

• Q= (1 : ζ3; 1 : ζ3; 1 : ζ3), |GQ|= 3,

• R= (1 : 1; 1 :−1; 1 :−1), |GR|= 2.

It is easy to check that they give us Du Val points of type A5, A2, A1, respectively.

EXAMPLE 5.6.2

A del Pezzo surface S of degree 5 is obtained by blowing up four points P1, P2, P3,

P4 on P2 in general position. We may assume that P1 = (1 : 0 : 0), P2 = (0 : 1 : 0),

P3 = (0 : 0 : 1), P4 = (1 : 1 : 1). Consider the following Cremona transformation:

α : (u0 : u1 : u2) �−→
(
u0(u2 − u1) : u2(u0 − u1) : u0u2

)
.
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It is easy to check that α5 = id and the indeterminacy points are exactly P1, P2,

P3. Thus, α lifts to an element α ∈Aut(S) of order 5.

CLAIM

Let α ∈Aut(S) be any element of order 5. Then α has only isolated fixed points,

and the singular locus of the quotient S/〈a〉 consists of two Du Val points of

type A4.

Proof

For the characteristic polynomial of α on Pic(S) there is only one possibility:

t5 − 1. Therefore, the eigenvalues of α are 1, ζ5, . . . , ζ
4
5 . This implies that every

invariant curve is linearly proportional (in Pic(S)) to −KS . In particular, this

curve must be an ample divisor.

Assume that there is a curve of fixed points. By the above it meets any line.

Since on S there are at most two lines passing through a fixed point, all the lines

must be invariant. In this case α acts on S identically, a contradiction.

Thus, the action of α on S is free in codimension 1. By the topological

Lefschetz fixed point formula, α has exactly two fixed points, say, Q1 and Q2. We

may assume that actions of α in local coordinates near Q1 and Q2 are diagonal:

(x1, x2) �−→ (ζr5x1, ζ
k
5x2), (y1, y2) �−→ (ζl5y1, ζ

m
5 y2),

where r, k, l, m are not divisible by 5. Then by the holomorphic Lefschetz fixed

point formula

1 = (1− ζr5 )
−1(1− ζk5 )

−1 + (1− ζl5)
−1(1− ζm5 )−1.

Easy computations with cyclotomics show that up to permutations and modulo

5 there is only one possibility: r = 1, k = 4, l = 2, m = 3. This means that the

quotient has only Du Val singularities of type A4. �

EXAMPLE 5.6.3

Let μ3 act on S = P2 diagonally with weights (0,1,2). The quotient has three

Du Val singularities of type A2.

EXAMPLE 5.6.4

Let μ4 act on S = P1
u0:u1

× P1
v0:v1 by

(u0 : u1;v0 : v1) �−→ (v0 : v1;u1 : u0).

The quotient has three Du Val singularities of types A1, A3, A3.

Note that in all the examples above, the group generated by αn also satisfies the

conditions (A)–(C). We summarize the above information in Table 3. Together

with Proposition 5.5 this proves Theorem 1.3. Note that our table agrees with

the corresponding one in [11].
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Table 3

No. K2
S Example G I Sing(X̃)

1# 6 5.6.1 〈α〉 6 1
6
(1,−1,1), 1

3
(1,−1,1), 1

2
(1,1,1)

2# 5 5.6.2 〈α〉 5 1
5
(1,−1,1), 1

5
(2,−3,1)

3# 8 5.6.4 〈α〉 4 2× 1
4
(1,−1,1), 1

2
(1,1,1)

4# 6 5.6.1 〈α2〉 3 3× 1
3
(1,−1,1)

5# 9 5.6.3 〈α〉 3 3× 1
3
(1,−1,1)

6# 6 5.6.1 〈α3〉 2 4× 1
2
(1,1,1)

7# 8 5.6.4 〈α2〉 2 4× 1
2
(1,1,1)

Now we apply the above technique to construct examples of Q-Gorenstein

smoothings.

THEOREM 5.7

Let (X � o) be a surface log-canonical singularity of one of the following types:[
2; [2,3,6]

]
,

[
3; [2,4,4]

]
,

[
n; [3,3,3]

]
, n= 3,4,

[
n; [2,2,2,2]

]
, n= 5,6.

Then (X � o) admits a Q-Gorenstein smoothing.

LEMMA 5.7.1

In the notation of (5.4.1), let C ⊂ S be a smooth elliptic G-invariant curve such

that C ∼−KS . Assume that C passes through all the points with nontrivial sta-

bilizers. Let X̃� := γ−1(C), X� := δ(X̃�), and X := π(X�). Then the singularity

(X � o) is log-canonical of index |G|. Moreover, replacing λ with λ−1 if necessary

we may assume that X is a Cartier divisor on X.

Proof

Put X̃ := X̃�/G. Since the divisor X̃� + S̃ is trivial on S̃, the contraction δ is log

crepant with respect to KZ̃ + X̃�+ S̃ and so is ϕ with respect to K
X̃
+ X̃+E. By

construction, X� is a cone over the elliptic curve C and X =X�/G. Therefore,

(X � o) is a log-canonical singularity. Comparing this with Construction 2.7 we

see that the index of (X � o) equals |G|. We claim that X̃+E is a Cartier divisor

on X̃. Identify C with C̃ := γ−1(C)∩ S̃ = S̃ ∩ X̃�.

Let ω ∈H0(C,OC(KC)) be a nowhere-vanishing holomorphic 1-form on C,

and let α be a generator of G. Since dimH0(C,OC(KC)) = 1 and G has a fixed

point on C, the action of G on H0(C,OC(KC)) is faithful and we can write

α∗ω = ζIω, where ζI is a suitable primitive Ith root of unity.

Pick a point P̃ ∈ Z̃ with nontrivial stabilizer GP of order IP . By our assump-

tions P̃ ∈ C̃. Take semi-invariant local coordinates x1, x2, x3 as in (5.3.3). More-

over, we can take them so that x1 is a local coordinate along C. Then we can

write ω =�dx1, where � is an invertible holomorphic function in a neighbor-

hood of P . Hence, � is an invariant and α∗x1 = ζ
I/IP
I x1. Thus, by (5.3.3), the

action near P̃ has the form 1
IP

(1,−1, aP ). Since G faithfully acts on C with a

fixed point, IP = 2, 3, 4, or 6. Since gcd(aP , IP ) = 1, we have aP ∈ {±1}. Then
by (5.3.2), replacing λ with λ−1, we may assume that aP = 1. In our coordinates
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the local equation of S̃ is x3 = 0, and the local equation of X̃� is x2 = 0. Now it is

easy to see that the local equation x2x3 = 0 of S̃+ X̃� is GP -invariant. Therefore,

X̃ +E is Cartier. Since it is ϕ-trivial, the divisor X = ϕ∗(X̃ +E) on X is Cartier

as well. �

Proof of Theorem 5.7

It is sufficient to embed X to a canonical threefold singularity (X � o) as a Cartier

divisor. Let (X� � o�)→ (X � o) be the index 1 cover. Then (X� � o�) is a simple

elliptic singularity (see Section 2.6). In the notation of the examples in Section 5.6

consider the following μI -invariant elliptic curve C ⊂ S:

1#4# ζ3(u0w1 − u1w0)(v0 + v1) + (u0v1 − u1v0)(w0 +w1),

3# (u2
1 − u2

0)v0v1 + ζ4u0u1(v
2
1 − v20),

5# u2
0u1 + u2

1u2 + u2
2u0,

6# c1(u0w1 − u1w0)(v0 + v1) + c2(u0v1 − u1v0)(w0 +w1),

7# c1(u
2
0v

2
0−u2

1v
2
1) + c2v0v1(u

2
0−u2

1) + c3(u
2
0v

2
1−u2

1v
2
0) + c5u0u1(v

2
0−v21),

where ci’s are constants and ζn is a primitive nth root of unity. Then we apply

Lemma 5.7.1. �

6. Noether’s formula

PROPOSITION 6.1 ([8])

Let X be a projective rational surface with only rational singularities. Assume

that every singularity of X admits a Q-Gorenstein smoothing. Then

(6.1.1) K2
X + ρ(X) +

∑
P∈X

μP = 10.

Proof

Let η : Y →X be the minimal resolution. Since X has only rational singularities,

we have

Eu(Y ) = Eu(X) +
∑
P

ςP , χ(OY ) = χ(OX).

Further, we can write

KY = η∗KX −
∑
P

ΔP , K2
Y =K2

X +
∑
P

Δ2
P .

By the usual Noether formula for smooth surfaces

12χ(OX) =K2
Y +Eu(Y ) =K2

X +Eu(X) +
∑
P

(Δ2
P + ςP ).

Now the assertion follows from (3.10.3). �

6.2
Let X be an arbitrary normal projective surface, let η : Y →X be the minimal

resolution, and let D be a Weil divisor on X . Write η∗D =DY +D•, where DY
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is the proper transform of D and D• is the exceptional part of η∗D. Define the

number

(6.2.1) cX(D) =−1

2
〈D•〉 ·

(
�η∗D� −KY

)
.

PROPOSITION 6.2.2 ([2, Section 1])

In the above notation we have

(6.2.3) χ
(
OX(D)

)
=

1

2
D · (D−KX) + χ(OX) + cX(D) + c′X(D),

where

c′X(D) := h0
(
R1η∗OY

(
�η∗D�

))
− h0(R1η∗OY ).

REMARK 6.2.4

Note that cX(D) can be computed locally as

cX(D) =
∑
P∈X

cP,X(D),

where cP,X(D) is defined by the formula (6.2.1) for each germ (X � P ).

LEMMA 6.2.5

Let (X � P ) be a rational log-canonical surface singularity. Then

cP,X(−KX) =Δ2 − �Δ�2 − 3,

where, as usual, Δ is defined by KY = η∗KX −Δ.

Proof

Put D :=−KX , and write

η∗D = −KY −Δ, 〈D•〉= 〈−Δ〉= �Δ� −Δ,

�η∗D� −KY = −2KY − �Δ�=−2η∗KX + 2Δ− �Δ�.
Therefore,

cP,X(D) =
1

2

(
Δ− �Δ�

)
·
(
−2η∗KX + 2Δ− �Δ�

)
=

1

2

(
�Δ� −Δ

)
·
(
�Δ� − 2Δ

)
.

Since (X � P ) is a rational singularity, we have

−2 = 2pa
(
�Δ�

)
− 2 =

(
�Δ� −Δ

)
· �Δ�, �Δ�2 + 2=Δ · �Δ�,

and the equality follows. �

COROLLARY 6.2.6

Let (X � P ) be a rational log-canonical surface singularity such that K2 is inte-

gral. Then

(6.2.7) cP,X(−KX) =

⎧⎪⎪⎨
⎪⎪⎩
−1 in the case (DV),

0 if (X � P ) is log-terminal

or in the case (nDV).
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Proof

Let us consider the (nDV) case. (Other cases are similar.) By Proposition 3.5

we have −Δ2 = n− 9 +
∑

ri. On the other hand, �Δ�2 =−n+ 6−
∑

ri. Hence,

cP,X(−KX) = 0 as claimed. �

COROLLARY 6.2.8

Let X be a del Pezzo surface with log-canonical rational singularities and

ρ(X) = 1. Assume that for any singularity of X the invariant K2 is integral.

Then Hi(X,OX) = 0 for i > 0 and dim |−KX | ≥K2
X − 1.

Proof

By the Serre duality H2(X,OX) =H0(X,KX) = 0. If the singularities of X are

rational, then the Albanese map is a well-defined morphism alb :X → Alb(X).

Since ρ(X) = 1, we have dimAlb(X) = 0 and soH1(X,OX) = 0. The last inequal-

ity follows from (6.2.3) because c′X(−KX)≥ 0 and cX(−KX)≥−1 (see (6.2.7)).

�

7. Del Pezzo surfaces

ASSUMPTION 7.1

From now on let X be a del Pezzo surface satisfying the following conditions:

(i) the singularities of X are log-canonical and X has at least one non-log-

terminal point o ∈X ,

(ii) X admits a Q-Gorenstein smoothing,

(iii) ρ(X) = 1.

LEMMA 7.2

In the above assumptions, the following hold:

(i) dim |−KX |> 0,

(ii) X has exactly one non-log-terminal point.

Proof

Part (i) is implied by semicontinuity (see [20, Theorem 4]). Part (ii) follows from

Shokurov’s connectedness theorem (see [26, Lemma 5.7], [14, Theorem 17.4]). �

CONSTRUCTION 7.3

Let σ : X̃ →X be a dlt modification, and let

C̃ =

s∑
i=1

C̃i = σ−1(o)

be the exceptional divisor. Thus, ρ(X̃) = s+ 1.

For some large k the divisor −kKX is very ample. Let H ∈ |−kKX | be a

general member, and let Θ := 1
kH . Then KX +Θ≡ 0 and the pair (X,Θ) is lc
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at o and klt outside o. We can write

(7.3.1) KX̃ + C̃ = σ∗KX , KX̃ + Θ̃+ C̃ = σ∗(KX +Θ),

where Θ̃ is the proper transform of Θ on X̃ . Clearly C̃ ∩ Supp(Θ̃) =∅ and Θ̃ is

nef and big. Note also that KX̃ is σ-nef.

7.3.2

Let D ∈ |−KX | be a member such that o ∈ Supp(D). This holds automatically

for any member D ∈ |−KX | if I > 1 because −KX is not Cartier at o in this

case. In general, such a member exists by Lemma 7.2(i). We have

(7.3.3) KX̃ +
∑

miC̃i + D̃ ∼ 0, mi ≥ 2 ∀i.

7.4
We distinguish two cases that will be treated in Sections 8 and 9, respectively:

(A) there exists a fibration X̃ → T over a smooth curve,

(B) X̃ has no dominant morphism to a curve.

Note that the divisor −(KX̃ + C̃) is nef and big. Therefore, in the case (A)

the generic fiber of the fibration X̃ → T is a smooth rational curve.

To show the existence of Q-Gorenstein smoothings we use the unobstructed-

ness of deformations.

PROPOSITION 7.5 ([8, Proposition 3.1])

Let Y be a projective surface with log-canonical singularities such that −KY

is big. Then there are no local-to-global obstructions to deformations of Y . In

particular, if the singularities of Y admit Q-Gorenstein smoothings, then the

surface Y admits a Q-Gorenstein smoothing.

However, in some cases the corresponding smoothings can be constructed explic-

itly.

EXAMPLE 7.5.1

Consider the hypersurface X ⊂ P(1,1,2,3) given by z2 = yφ4(x1, x2). Then X is

a del Pezzo surface with K2
X = 1. The singular locus of X consists of the point

(0 : 0 : 1 : 0) of type [3; [2]4] and four points {z = y = φ4(x1, x2) = 0} of type A1.

Therefore, X is of type 2o with n= 3.

EXAMPLE 7.5.2

Consider the hypersurface X ⊂ P(1,1,2,3) given by (x3
1−x3

2)z+ y3 = 0. Then X

is a del Pezzo surface with K2
X = 1. The singular locus of X consists of the point

(0 : 0 : 0 : 1) of type [2; [3]3] and three points (1 : ζk3 : 0 : 0), k = 0,1,2, of type A2.

Therefore, X is of type 5o with n= 2.
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8. Proof of Theorem 1.1: Fibrations

In this section we consider the case (A) of Construction 7.3. First we describe

quickly the singular fibers that occur in our classification.

8.1
Let Y be a smooth surface, and let Y → T be a rational curve fibration. Let

Σ⊂ Y be a section, and let F be a singular fiber. We say that F is of type (Ik)

or (II) if its dual graph has the following form, where � corresponds to Σ and •
corresponds to a (−1)-curve:

� k◦ • ◦ · · · ◦︸ ︷︷ ︸
k−1

(Ik)

◦ •

� ◦ ◦

◦
(II)

Assume that Y has only fibers of these types (Ik) or (II). Let Y → X̄ be the

contraction of all curves in fibers having self-intersections less than −1, that

is, corresponding to white vertices. Then ρ(X̄) = 2 and X̄ has a contraction

θ : X̄ → T .

REMARK 8.1.1

Let C̄ ⊂ X̄ be the image of Σ. Assume that X̄ is projective, C̄2 < 0, that is, C̄

is contractible, and (KX̄ + C̄) · C̄ = 0. For a general fiber F of θ we have (KX̄ +

C̄) · F = −1. Therefore, −(KX̄ + C̄) is nef. Now let X̄ →X be the contraction

of C̄. Then X is a del Pezzo surface with ρ(X) = 1.

8.2
Recall that we use the notation of Assumption 7.1 and Construction 7.3. In this

section, we assume that X̃ has a rational curve fibration X̃ → T , where T is a

smooth curve (the case (A)). Since ρ(X) = 1, the curve C̃ is not contained in

the fibers. A general fiber F̃ ⊂ X̃ is a smooth rational curve. By the adjunction

formula KX̃ · F̃ = −2. By (7.3.3) we have F̃ ·
∑

miC̃i = 2 and so F̃ · D̃ = 0.

Hence, there exists exactly one component of C̃, say, C̃1, such that F̃ · C̃1 = 1,

m1 = 2, and for i �= 1 we have F̃ · C̃i = 0. This means that the divisor D̃ and the

components C̃i with i �= 1 are contained in the fibers, and C̃1 is a section of the

fibration X̃ → T .

Let us contract all the vertical components of C̃, that is, the components C̃i

with i �= 1. We get the following diagram:
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X̃

σ

ν
X̄

θ

X T

Let C̄ := ν∗C̃ = ν∗C̃1, Θ̄ = ν∗Θ̃, and D̄ = ν∗D̃. By (7.3.1) and (7.3.3) we have

(8.2.1) KX̄ + C̄ + Θ̄≡ 0, KX̄ + 2C̄ + D̄ ∼ 0.

Moreover, the pair (X̄, C̄ + Θ̄) is lc, and if I > 1, then dim |D̄|> 0.

LEMMA 8.3 ([5])

If the singularity (X � o) is not rational, then T is an elliptic curve, X̃ � X̄ is

smooth, and X is a generalized cone over T .

Proof

By Theorem 2.4(i) the surface X̃ is smooth along C̃. Since C̃1 is a section, we have

C̃1 � T and C̃ cannot be a combinatorial cycle of smooth rational curves. Hence,

both C̃1 and T are smooth elliptic curves. Then C̃ = C̃1 and ρ(X̃) = ρ(X)+1 = 2.

Hence, any fiber F̃ of the fibration X̃ → T is irreducible. Since F̃ · C̃1 = 1, any

fiber is not multiple. This means that X̃ → T is a smooth morphism. Therefore,

X̃ is a geometrically ruled surface over an elliptic curve. �

From now on we assume that the singularities of X are rational. In this case,

T � P1 and dim |D̄| ≥ dim |−KX |> 0 (see Section 7.3.2 and Lemma 7.2).

LEMMA 8.4

Let F̄ be a degenerate fiber (with reduced structure). Then the dual graph of F̄

has one of the forms described in Section 8.1:

(Ik) with k = 2, 3, 4 or 6, or (II).

Proof

Let P̄ := C̄ ∩ F̄ . Since −(KX̄ + C̄ + F̄ ) is θ-ample, the pair (X̄, C̄ + F̄ ) is plt

outside C̄ by Shokurov’s connectedness theorem. Let m be the multiplicity of F̄ .

Since C̄ is a section of θ, we have C̄ · F̄ = 1/m < 1, and so the point P̄ ∈ X̄ is

singular.

If the pair (X̄, F̄ ) is plt at P̄ , then X̄ has on F̄ two singular points and these

points are of types 1
n (1, q) and

1
n (1,−q) (see, e.g., [22, Theorem 7.1.12]). We may

assume that P̄ ∈ X̄ is of type 1
n (1, q). In this case, m= n and the pair (X̄, C̄+ F̄ )

is lc at P̄ because C̄ · F̄ = 1/n. By Theorem 1.2 we have n = 2, 3, 4, or 6 and

q = 1. We get the case (Ik). From now on we assume that (X̄, F̄ ) is not plt at P̄ .

In particular, (X̄ � P̄ ) is not of type 1
n (1,1). Then again by Theorem 1.2 the

singularity (o ∈X) is of type [n1, . . . , ns; [2]
4]. Hence, the part of the dual graph

of F attached to C1 has the form
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◦

�̄
C

n1◦ · · · nk◦

◦

where k ≥ 1. Then KX̄ + C̄ is of index 2 at P̄ (see [14, Proposition 16.6]). Since

(KX̄ + C̄) ·mF̄ = −1, the number 2(KX̄ + C̄) · F̄ = −2/m must be an integer.

Therefore, m = 2. Assume that X̄ has a singular point Q̄ on F̄ \ {P̄}. We can

write Diff F̄ (0) = α1P̄ + α2Q̄, where α1 ≥ 1 (by the inversion of adjunction) and

α2 ≥ 1/2. Then Diff F̄ (C̄) = α′
1P̄ + α2Q̄, where α′

1 = α1 + F̄ · C̄ ≥ 3/2. On the

other hand, the divisor

−
(
KF̄ +Diff F̄ (C̄)

)
=−(KX̄ + F̄ + C̄)|F̄

is ample. Hence, degDiffF̄ (C̄)< 2, a contradiction. Thus, P̄ is the only singular

point of X̄ on F̄ . We claim that • is attached to one of the (−2)-curves at the

end of the graph. Indeed, assume that the dual graph of F has the form

◦

�̄
C

n1◦ · · · ni◦ · · · nk◦

• ◦

where 1 ≤ i ≤ k. Clearly, ni = 2. Contracting the (−1)-curve • we obtain the

following graph:

◦

�̄
C

n1◦ · · · • · · · nk◦

◦

Continuing the process, on each step we have a configuration of the same type

and finally we get the dual graph

◦

�̄
C

n′
1◦ · · ·

n′
j◦ •

◦

where j ≥ 0. Then the next contraction gives us a configuration which is not

a simple normal crossing divisor. The contradiction proves our claim. Similar

arguments show that nk = nk−1 = 2 and k = 2, that is, we get the case (II). �
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Proof of Theorem 1.1 in the case 7.3(A)

If all the fibers are smooth, then by Lemma 8.3 we have the case 1o. If there

exists a fiber of type (Ik) with k > 2, then I > 2 and by Theorem 1.2 we have

cases 5o, 6o, 7o. If all the fibers are of types (I2) or (II), then I = 2 and we have

cases 2o, 3o, 4o. The computation of K2
X follows from (6.1.1) and (3.10.7). �

9. Proof of Theorem 1.1: Birational contractions

9.1
In this section we assume that X̃ has no dominant morphism to a curve (Con-

struction 7.3(B)). It will be shown that this case does not occur.

Run the KX̃ -Minimal Model Program on X̃ . Since −KX̃ is big, in the last

step we get a Mori fiber space X̄ → T , and by our assumption T cannot be a

curve. Hence, T is a point, and X̄ is a del Pezzo surface with ρ(X̄) = 1. Moreover,

the singularities of X̄ are log-terminal and so X̄ ��X . Thus, we get the following

diagram:

X̃
σ ν

X X̄

Put C̄ := ν∗C̃ and C̄i := ν∗C̃i. By (7.3.3) we have

(9.1.1) KX̄ +
∑

miC̄i + D̄ ∼ 0, mi ≥ 2.

Since ρ(X) = ρ(X̄) and C̃ is the σ-exceptional divisor, the whole C̃ cannot be

contracted by ν.

LEMMA 9.2

Any fiber ν−1(P̄ ) of positive dimension meets C̃.

Proof

Since X̄ is normal, ν−1(P̄ ) is a connected contractible effective divisor. Since all

the components of C̃ are KX̃ -nonnegative, ν−1(P̄ ) �⊂ C̃. Since ρ(X) = 1, we have

ν−1(P̄ )∩ C̃ �=∅. �

LEMMA 9.3

If ν is not an isomorphism over P̄ , then (X̄, C̄) is plt at P̄ . In particular, C̄ is

smooth at P̄ .

Proof

Since KX̃ + C̃ + Θ̃ ≡ 0, the pair (X̄, C̄ + Θ̄) is lc. By the above lemma there

exists a component Ẽ of ν−1(P̄ ) meeting C̃. By Kodaira’s lemma the divisor Θ̃−∑
αiC̃i is ample for some αi > 0. Hence, Ẽ meets Θ̃ and so Supp(Θ̄) contains P̄ .

Therefore, (X̄, C̄) is plt at P̄ . �
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COROLLARY 9.3.1

The pair (X̄, C̄) is dlt.

LEMMA 9.4

The following hold:

(i) C̄ is an irreducible smooth rational curve;

(ii) X̄ has at most two singular points on C̄;

(iii) the singularities of X are rational (see also [5, Corollary 1.9]).

Proof

(i) Let C̄1 ⊂ C̄ be any component meeting D̄, and let C̄ ′ := C̄ − C̄1. Assume

that C̄ ′ �= 0. By Corollary 9.3.1, any point P̄ ∈ C̄1 ∩ C̄ ′ is a smooth point

of X̄ . Hence, DiffC̄1
(C̄ ′) contains P̄ with positive integral coefficient and

degDiffC̄1
(D̄+ C̄ ′)≥ 2 because Supp(D̄) ∩ C̄ �=∅. On the other hand, −(KX̄ +

C̄ + D̄) is ample by (9.1.1). This contradicts the adjunction formula. Thus, C̄ is

irreducible. Again by the adjunction

degKC̄ +degDiffC̄(0)< 0.

Hence, pa(C̄) = 0.

(ii) Assume that X̄ is singular at P̄1, . . . , P̄N ∈ C̄. Write

DiffC̄(0) =

N∑
i=1

(
1− 1

bi

)
P̄i

for some bi ≥ 2. The coefficient of DiffC̄(D̄) at points of the intersection

Supp(D̄)∩ C̄ is at least 1. Since Supp(D̄)∩ C̄ �=∅, we have N ≤ 2.

(iii) If (X � o) is a nonrational singularity, then pa(C̃) = 1 and X̃ is smooth

along C̃. Hence, pa(C̄)≥ 1. This contradicts (i). �

LEMMA 9.5

Let ϕ : S → S′ be a birational Mori contraction of surfaces with log-terminal

singularities, and let E ⊂ S be the exceptional divisor. Then −KS · E ≤ 1, and

the equality holds if and only if the singularities of S along E are at worst Du

Val.

Proof

Let ψ : Smin → S be the minimal resolution, and let Ẽ ⊂ Smin be the proper

transform of E. Write KSmin = ψ∗KS −Δ. Since KSmin · ψ∗E < 0, the divisor

KSmin is not nef over Z. Hence, KSmin · Ẽ =−1 and so −KS ·E + Ẽ ·Δ= 1. �

LEMMA 9.6

Let ν′ : X̃ →X ′ be the first extremal contraction in ν, and let Ẽ be its exceptional

divisor. Then Ẽ �⊂ C̃. Moreover, Ẽ ∩ C̃ is a singular point of X̃ and smooth point

of C̃.
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Proof

Since ρ(X) = 1, Ẽ ∩ C̃ �= ∅. Since KX̃ is σ-nef, Ẽ �⊂ C̃. Since C̄ is a smooth

rational curve, Ẽ meets C̃ at a single point, say, P̃ . Further, σ(Ẽ) meets Supp(Θ)

outside o. Hence, Θ̃ · Ẽ > 0. By Lemma 9.5 KX̃ · Ẽ ≥−1. Since KX̃ + C̃ +Θ̃≡ 0,

we have C̃ · Ẽ < 1. Hence, C̃ ∩ Ẽ is a singular point of X̃ . Since (X̃, C̃) is dlt,

C̃ ∩ Ẽ is a smooth point of C̃ (see, e.g., [14, Proposition 16.6]). �

PROPOSITION 9.7

We have that ρ(X̃) = 2 and C̃ is irreducible. Moreover, X̄ has exactly two singular

points on C̄ and I > 2.

Proof

Assume the converse, that is, C̃ is reducible. By Lemma 9.4 the curve C̄ is

irreducible. Let s be the number of components of C̃. So, ρ(X̃) = s+ 1. Hence,

ν contracts s − 1 components of C̃ and exactly one divisor, say, Ẽ such that

Ẽ �⊂ C̃. By Lemma 9.6 the curve Ẽ is contracted on the first step. Note that C̃ is

a chain C̃1 + · · ·+ C̃s, where both C̃1 and C̃s contain two points of type A1 and

the middle curves C̃2, . . . , C̃s−1 are contained in the smooth locus. By Lemma 9.6

we may assume that Ẽ meets C̃1. Then ν contracts C̃1, . . . , C̃s−1. However, C̃s

contains two points of type A1, and it is not contracted. Thus, X̄ has two singular

points of type A1 on C̄. Again by Lemma 9.4 the surface X̄ has no other singular

points on C̄. In particular, 2C̄ is Cartier, X̄ has only singularities of type T, and

K2
X̄

is an integer. On the other hand, we have −KX̄ =mC̄ + D̄, m≥ 2. By the

adjunction formula

−1 = deg
(
KC̄ +DiffC̄(0)

)
= (KX̄ + C̄) · C̄ =−D̄ · C̄ − (m− 1)C̄2.

This gives us D̄ · C̄ = C̄2 = 1/2, m= 2, and K2
X̄
= 9/2, a contradiction.

Finally, by Lemmas 9.4 and 9.6 the surface X̃ (resp., X̄) has exactly three

(resp., two) singular points on C̃. �

By Theorem 1.2 the surface X̄ has at least one non-Du Val singularity lying

on C̄. Thus, Theorem 1.1 is implied by the following.

PROPOSITION 9.8

We have that X̄ has only Du Val singularities on C̄.

Proof

Assume that the singularities of X̄ at points lying on C̄ are of types 1
n1

(1,1)

and 1
n2

(1,1) with n1 ≥ n2 and n1 > 2. In this case near C̄ the divisor H :=

−(KX̄ + 2C̄) is Cartier. By the adjunction formula

KC̄ +DiffC̄(0) = (KX̄ + C̄)|C̄ =−(H + C̄)|C̄ .

Hence,

degDiffC̄(0)< 2−H · C̄ ≤ 1.
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In particular, X̄ has at most one singular point on C̄, a contradiction. �
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