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Abstract LetΩbeaboundeddomainofRn (n≥ 1) containing the origin. In thepresent

paper we establish the weightedHardy–Sobolev inequalities with sharp remainders. For

example, when α= 1−n/p and 1< p<+∞ hold, we establish the following inequality.

There exist positive numbers Λn,p,α,C, and R such that we have∫
Ω

|∇u|p|x|αp dx ≥ Λn,p,α

∫
Ω

|u(x)|p
|x|n

A1(|x|)−p dx

(0.1)

+C

∫
Ω

|u(x)|p
|x|n

A1(|x|)−pA2(|x|)−2 dx

for anyu ∈W 1,p
α,0(Ω). HereA1(|x|) = log R

|x| , andA2(|x|) = logA1(|x|). This is called the
critical Hardy–Sobolev inequality with a sharp remainder involving a singular weight

A1(|x|)−pA2(|x|)−2, in the sense that the improved inequality holds for this weight but

fails for any weight more singular than this one. Here Λn,p,α is a sharp constant inde-

pendent of each function u. Further we establish the Hardy–Sobolev inequalities in the

subcritical case (α> 1− n/p) and the supercritical case (α< 1− n/p).

As an application,we use our improved inequality to determine exactlywhen the first

eigenvalues of the weighted eigenvalue problems for the operators represented by

−div(|x|αp|∇u|p−2∇u)− μ/|x|nA1(|x|)−p|u|p−2u (the critical case) will tend to zero

as μ increases toΛn,p,α. This also gives us sufficient conditions for the operators to have

the positive first eigenvalue in a certain nontrivial functional framework, and we study

the eigenvalue problem in the borderline case.

1. Introduction

Let Ω be a bounded domain of R
n with 0 ∈ Ω and n ≥ 1. In this paper, we

shall establish the weighted Hardy–Sobolev inequalities with sharp remainders.

Assume temporally that 1< p<∞ and α> 1−n/p, which is basic and called the

subcritical case. Then we first consider a variant of the Hardy–Sobolev inequalities

given by

(1.1)

∫
Ω

|∇u|p|x|αp dx≥Λn,p,α

∫
Ω

|u(x)|p
|x|p |x|αp dx
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for any u ∈W 1,p
α,0(Ω), where Λn,p,α = |n−p+pα

p |p is the best constant independent

of each u. Here the best constant Λn,p,α in the subcritical case is given by the

infimum of ∫
Ω
|∇u|p|x|αp dx∫

Ω
|u(x)|p
|x|p |x|αp dx

for u ∈W 1,p
α,0(Ω) \ {0}.

Moreover there exists no extremal function in W 1,p
α,0(Ω) which attains the

infimum of this quantity. Roughly speaking, the candidates of the extremals are

too singular at the origin to belong to the admissible class W 1,p
α,0(Ω). Hence, it

is natural to consider that there exist “missing terms” in the right-hand side of

(1.1). In view of this, we shall investigate the Hardy–Sobolev inequalities repre-

sented by (1.1) and improve them by finding out missing terms. More precisely,

in the subcritical case (α> 1−n/p and 1< p<+∞), we shall achieve an optimal

improvement of the inequality (1.1) by adding a second term involving the sin-

gular weight (log 1
|x| )

−2, in the sense that the improved inequality holds for this

weight but fails for any weight more singular than this one. To make clear the

sharpness of the inequalities, we shall introduce a family of test functions involv-

ing logarithmic functions. We also treat the cases α= 1− n/p and α < 1− n/p,

which are called the critical case and the supercritical case, respectively.

To make clear the relations of these new inequalities to the known ones, let

us first recall briefly the following weighted Sobolev inequalities.

There is a positive number S(p, q,α,β,n) depending only on p, q,α,β, and n

such that for any u ∈C∞
0 (Rn) we have

(1.2)

∫
Rn

|∇u|p|x|αp dx≥ S(p, q,α,β,n)
(∫

Rn

|u|q|x|βq dx
)p/q

,

where n≥ 1 and p, q,α,β are real parameters satisfying

0≤ 1

p
− 1

q
=

1− α+ β

n
, −n

q
< β ≤ α,1≤ p <+∞.

Here S(p, q,α,β,n) is the best constant given by the infimum of

(1.3)

∫
Rn |∇u|p|x|αp dx(∫
Rn |u|q|x|βq dx

)p/q for u ∈W 1,p
α,0(R

n) \ {0}.

These inequalities are often called the Caffarelli–Kohn–Nirenberg-type. Actually

in [4] they proved more general multiplicative inequalities. In [13] we also stud-

ied the inequalities (1.2) and obtained some results on the best constant, the

existence and nonexistence of extremal functions, and their qualitative prop-

erties. Here we remark that if we consider the variational problem (1.3) in the

radial function space instead of W 1,p
α,0(R

n), then the extremal functions are explic-

itly obtained by solving the corresponding Euler–Lagrange equations. Therefore

the best constants, denoted by SR(p, q,α,β,n), are known for α > 1− n/p and

α− 1≤ β ≤ α, and they readily satisfy limβ→α−1+0 SR(p, q,α,β,n) = Λn,p,α. In

an upcoming paper [17] we will establish the Caffarelli–Kohn–Nirenberg-type

inequalities in both of the critical (α= 1− n/p) and supercritical (α < 1− n/p)
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cases, and we will see that limβ→α−1+0 S(p, q,α,β,n) = Λn,p,α holds for any α ∈R

as well. Hence the weighted Hardy inequalities are naturally regarded as the limit

of the Caffarelli–Kohn–Nirenberg-type inequalities as β → α− 1+0. When p= 2

and α > 1 − n/2, this was shown by Catrina and Wang [5]. They studied the

inequality (1.2) with p= 2 and α > 1− n/2 intensively and obtained interesting

results (see also [6]).

We also believe that the improved Hardy inequalities are not only of interest

by themselves but are also applicable to various problems. To illustrate this,

we will exploit our results to study the eigenvalue problem for the operators

represented by

(1.4) −div(|x|αp|∇u|p−2∇u)− μ

|x|p−pα
|u|p−2u (the subcritical case).

First we use our improved inequality to determine exactly when the first eigen-

values of the weighted eigenvalue problems for the operators (1.4) will tend to 0

as μ increases to the best constant. This also gives us sufficient conditions for the

operators considered to have the positive first eigenvalue in a certain nontrivial

functional framework, and it seems to be interesting to study more precisely the

borderline case. In this regard, we will give some basic but nontrivial results,

assuming that p= 2, α= 1− n/2 (the critical case), and Ω =B1 = {x : |x|< 1}.
Let us consider the operators on C∞

0 (B1) given by

(1.5) Pμu=−div(|x|2−n∇u)− μ
u

|x|n
(
log R

|x|
)2 (the critical case),

where R> 1 and μ≤ 1/4. Here note that the best constant Λn,2,2−n/2 = 1/4 in

this case. Then we will study the following eigenvalue problem with a parameter

λ≥ 0:

(1.6)

{
Pμu= λ|x|au in B1,

u= 0 on ∂B1,

where a >−n.

When μ < 1/4, this problem can be dealt with in a usual functional frame-

work, namely, in a Hilbert space W 1,2
2−n/2,0(B1) defined in Section 2. But if μ=

1/4, then, apart from the previous case, the presence of the potential term with

the best constant in the weighted Hardy–Sobolev inequalities prevents us from

treating this problem in W 1,2
2−n/2,0(B1). With the the aid of the improved Hardy

inequalities, this fact leads us to the use of a Hilbert space V = V 1,2
2−n/2,0(B1)

(see Definition 2.7) closely related to the operator P1/4. Then we will see that

P1/4 : V → V ′ (the dual) actually becomes continuous, linear, and self-adjoint.

Further we will see the unboundedness of the first eigenfunction u1 in addition

to some (classical) results on the eigenvalue problem such as the existence of a

sequence of eigenvalues and the positivity of the first eigenvalue as Theorem 2.3

in Section 2.
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In the subcritical case (α > 1−n/2) for p= 2, this topic was actually treated

by Garcia-Azorero, Peral, and Primo [10]. They studied semilinear elliptic prob-

lems in the borderline case involving weights of the same type. We do not go

further into this topic in the present paper. It seems interesting for us to study

various nonlinear elliptic problems in the critical and the supercritical cases.

In the rest of this section let us give a brief historical remark. We use the

following notation from now on.

DEFINITION 1.1

For a given positive number R, we set for t > 0 and k = 2,3, . . .

(1.7) A1(t) := log
R

t
, Ak(t) := logAk−1(t), e1 := e, ek := eek−1 .

When no weight function is involved, such improved Hardy inequalities are

already studied by many authors. Adimurthi, Nirmalendu, Chaudhuri, and

Ramaswamy [1] have proved the following.

PROPOSITION 1.1

There exists a constant C > 0, depending on n ≥ 2,1 < p < n and R >

supΩ(|x|e2/p) such that for u ∈W 1,p
0 (Ω)

(1.8)

∫
Ω

|∇u|p dx≥
(n− p

p

)p
∫
Ω

|u(x)|p
|x|p dx+C

∫
Ω

|u(x)|p
|x|p A1(|x|)−2 dx.

When p= 2, we have proved in [9] the existence of finitely many sharp missing

terms of the Hardy–Sobolev inequality (1.1). In an upcoming paper [3] we will

establish a similar result in the weighted case. For the case of the Laplacian

(Rellich-type inequality) we have proved in [7] and [8] the following.

PROPOSITION 1.2

Let n≥ 3, 0 ∈Ω and Ω is a bounded domain in R
n.

(1) Noncritical case (1< p< n/2)

Then there exists K = K(n) > 0 and C = C(n) > 0 such that if R >

K supΩ |x|, then

(1.9)

∫
Ω

|Δu|p dx≥ λn,p

∫
Ω

|u(x)|p
|x|2p dx+C

∫
Ω

|u(x)|p
|x|2p A1(|x|)−2 dx

for any u ∈W 2,p
0 (Ω) and λn,p = (n− 2p/p)p(np− n/p)p.

(2) Critical case (p= n/2)

Then there exists K∗ = K∗(n) > 0 and C∗ = C∗(n) > 0 such that if R >

K∗ supΩ |x|, then

(1.10)

∫
Ω

|Δu|n/2 dx≥ λn/2

∫
Ω

|u(x)|n/2
|x|nA1(|x|)n/2

dx+C∗
∫
Ω

|u(x)|n/2
|x|nA1(|x|)n/2+1

dx

for any u ∈W
2,n/2
0 (Ω) and λn/2 = (n− 2/

√
n)n.
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As for the weighted case, a similar improved inequality was introduced in [15,

Theorem 11.1] to study a blow-up profile of a minimal solution for a certain

class of quasilinear elliptic equations. See also [14] for the higher-order case. The

present work is strongly motivated by our recent research in this field.

This paper is organized in the following way. In Section 2 we describe our

main results on Hardy–Sobolev inequalities including an application to a non-

linear eigenvalue problem. In Section 3 we prepare lemmas that are needed in

the proof of the main results stated in Section 2. In Section 4 we prove Theo-

rem 2.1 and Corollary 2.1, which are stated in Section 2. In Sections 5 and 6 we

give proofs to Theorem 2.2 and Theorem 2.3, respectively, and in Section 7 we

describe some related results in the linear case without a proof.

2. Main result and its application

2.1. Main result
First we modify the classical Sobolev spaces so that we can treat the weighted

Hardy inequalities and variational problems in the subsequent sections. Let us

begin with defining weighted Sobolev spaces.

Let 1 ≤ p < +∞. First we assume that α is a real number satisfying α >

−n/p. Let Lp(Ω, |x|pα) denote the space of Lebesgue measurable functions,

defined on a bounded domain Ω⊂R
n, for which

(2.1) ‖u‖Lp(Ω,|x|pα) =
(∫

Ω

|u|p|x|αp dx
)1/p

<+∞.

W 1,p
α,0(Ω) is given by the completion of C∞

0 (Ω) with respect to the norm defined

by

(2.2) ‖u‖W 1,p
α,0(Ω) = ‖|∇u|‖Lp(Ω,|x|pα).

Then W 1,p
α,0(Ω) becomes a Banach space with the norm ‖ · ‖W 1,p

α,0(Ω).

To study the Hardy–Sobolev inequality in the supercritical case, we prepare

the following. For any α ∈ R, by Ẇ 1,p
α,0(Ω) we denote the completion of C∞

0 (Ω \
{0}) with respect to the norm defined by

(2.3) ‖u‖Ẇ 1,p
α,0(Ω) = ‖|∇u|‖Lp(Ω,|x|pα) + ‖u‖Lp(Ω,|x|p(α−1)).

Then Ẇ 1,p
α,0(Ω) is also a Banach space with the norm ‖ · ‖Ẇ 1,p

α,0(Ω). Here we note

that if 1−n/p < α, then Ẇ 1,p
α,0(Ω) coincides with W 1,p

α,0(Ω) by the Hardy inequality

(2.6). But if α≤ 1− n/p, then Ẇ 1,p
α,0(Ω), roughly speaking, consists of functions

vanishing at the origin, because |x|p(α−1) /∈ L1
loc(Ω).

We also define a Banach space of radial functions. For a ball Br = {x ∈R
n :

|x|< r} we set

(2.4)

{
R1,p

α,0(Br) = {u ∈W 1,p
α,0(Br) : u is a radial function},

‖u‖R1,p
α,0(Br)

= ‖u‖W 1,p
α,0(Br)

.

Now we give the definition of the Hardy–Sobolev best constant.
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DEFINITION 2.1

For 1< p<+∞ we set

(2.5) Λn,p,α =

{∣∣n−p+αp
p

∣∣p, if α �= 1− n
p ,(

p−1
p

)p
, if α= 1− n

p .

We recall the notation given by Definition 1.1.

For a given positive number R, we set for t > 0 and k = 2,3, . . .

A1(t) := log
R

t
, Ak(t) := logAk−1(t), e1 := e, ek := eek−1 .

Using this notation, we are in a position to state our main result.

THEOREM 2.1

Let n≥ 1, 0 ∈Ω, and Ω is a bounded domain in R
n.

(1) Subcritical case (α > 1− n/p, 1< p<+∞)

There exist K = K(n) > 1 and C = C(n) > 0 such that if R > K supΩ |x|,
then ∫

Ω

|∇u|p|x|αp dx ≥ Λn,p,α

∫
Ω

|u(x)|p
|x|p |x|αp dx

(2.6)

+C

∫
Ω

|u(x)|p
|x|p A1(|x|)−2|x|αp dx

for any u ∈W 1,p
α,0(Ω).

(2) Critical case (α= 1− n/p, 1< p<+∞)

Then there exist K =K(n)> 1 and C =C(n)> 0 such that if R>K supΩ |x|,
then ∫

Ω

|∇u|p|x|αp dx ≥ Λn,p,α

∫
Ω

|u(x)|p
|x|n A1(|x|)−p dx

(2.7)

+C

∫
Ω

|u(x)|p
|x|n A1(|x|)−pA2(|x|)−2 dx

for any u ∈W 1,p
α,0(Ω).

(3) Supercritical case (α < 1− n/p, 1< p<+∞)

Then there exist K =K(n)> 0 and C =C(n)> 0 such that if R>K supΩ |x|,
then ∫

Ω

|∇u|p|x|αp dx ≥ Λn,p,α

∫
Ω

|u(x)|p
|x|p |x|αp dx

(2.8)

+C

∫
Ω

|u(x)|p
|x|p A1(|x|)−2|x|αp dx

for any u ∈ Ẇ 1,p
α,0(Ω).

REMARK 2.1

The constant Λn,p,α is the best possible. Further weight functions of the terms

in the right-hand side are sharp, which will be shown in Section 4 (cf. [2, Theo-

rem 3.4]).
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REMARK 2.2

If we restrict ourselves to the case that α= 0, then the so-called rearrangement

argument works effectively. Therefore in this case we may assume that Ω is a ball

and u ∈W 1,p
α,0(Ω) is radial. But in the other cases, the rearrangement is not valid

in general. Hence we employ a polar coordinate system instead, and we establish

direct estimates from below for the left-hand side; then it results in the radial

case.

REMARK 2.3

When p≥ 2, the proof seems to be straightforward, even if it needs many steps.

On the other hand, when 1< p < 2, the proof requires additional technical lem-

mas, which are inspired by [1].

REMARK 2.4

If Ω is an unbounded domain of Rn, then the weight functions Ak(t) (k = 1,2, . . .)

are not defined, and it seems that there exists no missing term. In fact, it will

be shown in the upcoming paper [17] that there exists no missing term provided

that Ω =R
n and p= 2. When Ω=R

n and p �= 2, somewhat weaker nonexistence

results will be given there.

2.2. Applications
In this section we state two applications of our improved inequality. One is an

immediate consequence of Theorem 2.1, and the other is concerned with a non-

linear eigenvalue problem. Let us prepare more notation.

DEFINITION 2.2

If α �= 1− n/p, then we define

Fp,α =
{
f : Ω→R

+
∣∣∣ f ∈ L∞

loc(Ω \ {0}), limsup
|x|→0

|x|p(1−α)f(x)(
log 1

|x|
)−2 <∞

}
.

If α= 1− n/p, then we define

Fp,α =
{
f : Ω→R

+
∣∣∣ f ∈ L∞

loc(Ω \ {0}), limsup
|x|→0

|x|n
(
log 1

|x|
)p
f(x)(

log
(
log 1

|x|
))−2 <∞

}
.

Then as a corollary to Theorem 2.1, we immediately have the following. The

proof will be given in Section 4.4.

COROLLARY 2.1

Assume that 1< p<+∞.

(1) Assume that f ∈ Fp,α, then there exists λ(f) > 0 such that for a suffi-

ciently large R> 0 we have
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∫
Ω

|∇u|p|x|αp dx

≥Λn,p,α ×
{∫

Ω
|u(x)|p
|x|p |x|αp dx+ λ(f)

∫
Ω
|u(x)|pf(x)dx, if α �= 1− n

p ,∫
Ω

|u(x)|p
|x|n A1(|x|)−p dx+ λ(f)

∫
Ω
|u(x)|pf(x)dx, if α= 1− n

p ,

where u ∈ W 1,p
α,0(Ω) if 1 − n/p ≤ α, and u ∈ Ẇ 1,p

α,0(Ω) if α < 1 − n/p. Here λ(f)

and R are independent of each u.

(2) Assume that f /∈ Fp,α. Further, assume that{
lim|x|→0 |x|p(1−α)f(x)

(
log 1

|x|
)2

=∞, if α �= 1− n
p

lim|x|→0 |x|nf(x)
(
log 1

|x|
)p(

log
(
log 1

|x|
))2

=∞, if α= 1− n
p .

Then no inequality of type in the assertion 1 can hold.

Next we define quasilinear degenerate elliptic operators and a class of singular

weight functions.

DEFINITION 2.3

For 1< p<+∞ and we set

(2.9) Lp,αu=−div(|x|pα|∇u|p−2∇u).

DEFINITION 2.4

If α �= 1− n/p, then we define

Fp,α =
{
f : Ω→R

+
∣∣∣ f ∈ L∞

loc(Ω̄ \ {0}), lim
|x|→0

|x|p(1−α)f(x) = 0
}
.

If α= 1− n/p, then we define

Fp,α =
{
f : Ω→R

+
∣∣∣ f ∈ L∞

loc(Ω̄ \ {0}), lim
|x|→0

|x|n
(
log

1

|x|
)p

f(x) = 0
}
.

Then in the subcritical and the critical cases, we study the nonlinear eigenvalue

problems given by

(2.10)

⎧⎪⎪⎨⎪⎪⎩
Lp,αu− μ

|x|p−pα |u|p−2u= λ|u|p−2uf in Ω, if α> 1− n
p ,

Lp,αu− μ
|x|nA1(|x|)−p|u|p−2u= λ|u|p−2uf in Ω, if α= 1− n

p ,

u= 0 on ∂Ω

where f ∈ Fp,α. For 0 ≤ μ < Λn,p,α and λ ∈ R, we look for weak solutions u ∈
W 1,p

α,0(Ω) of these problems, and we study the asymptotic behavior of the first

eigenvalues for different singular weights as μ increases to Λn,p,α, after which the

operator Lp,α is no more bounded from below. Here we define a weak solution in

the following way.

DEFINITION 2.5

u ∈W 1,p
α,0(Ω) is said to be a weak solution of (2.10) if and only if for any φ ∈C1(Ω̄)
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with φ= 0 on ∂Ω∫
Ω

|∇u|p−2∇u · ∇φ |x|pα dx

=

{∫
Ω

(
μ

|x|p |u|p−2uφ|x|pα − λ|u|p−2uφf
)
dx, if α> 1− n

p∫
Ω

(
μ

|x|nA1(|x|)−p|u|p−2uφ|x|pα − λ|u|p−2uφf
)
dx, if α= 1− n

p .

Then we have

THEOREM 2.2

Assume that α≥ 1− n
p , 1< p<+∞ and f ∈ Fp,α. Then we have the following.

(1) The above problem admits a positive weak solution u ∈W 1,p
α,0(Ω) for all

0≤ μ <Λn,p,α, corresponding to the first eigenvalue λ= λ1
μ(f)> 0.

(2) As μ increases to Λn,p,α, λ
1
μ(f)→ λ1(f)≥ 0 for all f ∈ Fp,α.

(3) The limit λ1(f)> 0 if f ∈ Fp,α.

(4) If f /∈ Fp,α and if{
lim|x|→0 |x|p−αpf(x)

(
log 1

|x|
)2

=+∞, if α > 1− n
p ,

lim|x|→0 |x|nf(x)
(
log 1

|x|
)p(

log
(
log 1

|x|
))2

=+∞, if α= 1− n
p ,

then the limit λ1(f) = 0.

This is proved in Section 5.

Next we further study the borderline case (μ= Λn,p,α), assuming that Ω =

B1 = {x ∈ R
n; |x| < 1}, p = 2, and α = 1− n/2 (the critical case). Let us recall

the notation in Section 1.

DEFINITION 2.6

For R> 1 and μ≤ 1/4, we define for any u ∈C∞
0 (B1)

(2.11) Pμu=−div(|x|2−n∇u)− μ
u

|x|nA1(|x|)2
(the critical case).

Here note that the best constant satisfies Λn,2,2−n/2 = 1/4 in this case. Now we

define a norm which is suitable for the operator P1/4 as follows.

DEFINITION 2.7

For any u ∈C∞
0 (B1)

(2.12) ‖u‖2
V 1,2
2−n/2,0(B1)

=

∫
B1

|∇u|2|x|2−n dx− 1

4

∫
B1

u2

|x|nA1(|x|)2
dx.

By the aid of the improved weighted Hardy inequality (2.8), we see that

‖ · ‖V 1,2
2−n/2,0(B1)

defines a norm.

DEFINITION 2.8

By V 1,2
2−n/2,0(B1) we denote the completion of C∞

0 (B1) with respect to this norm.
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For the sake of simplicity we set V = V 1,2
2−n/2,0(B1). Then V clearly becomes a

Hilbert space with inner product

(u, v)V =

∫
B1

∇u · ∇v |x|2−n dx− 1

4

∫
B1

uv

|x|nA1(|x|)2
dx,

for any u, v ∈ V .

We remark that V is not imbedded into W 1,2
2−n/2,0(B1). In fact we give a

function U in Section 6 such that U ∈ V but U /∈W 1,2
2−n/2,0(B1). Now we study

the following eigenvalue problem in this framework.

For λ≥ 0, μ≤ 1/4, a >−n and u ∈ V ,

(2.13)

{
Pμu= λ|x|au in B1

u= 0 on ∂B1.

First we remark that the weight function |x|a belongs to F2,1−n/2 provided

that a >−n. Then it follows from Theorem 2.2 that the problem admits a positive

first eigenvalue and corresponding eigenfunctions in W 1,2
2−n/2,0(B1) for any μ <

1/4. Now we assume that μ= 1/4. Then we have the following.

THEOREM 2.3

Assume that μ= 1/4 and a >−n. Then we have the following.

(1) There is a sequence of eigenvalues {λk} with 0< λk →+∞ as k →∞.

The first eigenvalue λ1 is simple and the corresponding eigenfunction has a con-

stant sign in B1.

(2) By u1 ∈ V = V 1,2
2−n/2,0(B1) we denote the first positive eigenfunction.

Then u1 /∈ L∞(B1).

The second assertion will be proved by constructing an unbounded subsolution

to the eigenvalue problem.

3. Preliminary lemmas

In this section we prepare lemmas which are needed to prove our main results.

First we prepare elementary inequalities.

LEMMA 3.1

For 1< p≤ 2 and M ≥ 1, we have

(3.1) |1 +X|p − 1− pX ≥ c(p)

{
Mp−2X2, |X| ≤M,

|X|p, |X| ≥M.

Here c(p) is a positive number independent of each X and M ≥ 1.

Proof

When X >−1, this follows from Taylor expansion. If we choose c(p) sufficiently

small, then it remains valid for X ≤−1. �
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The following elementary lemma is useful to show the sharpness of our improved

inequalities.

LEMMA 3.2

For 1< p we have

(3.2) |1 +X|p − 1− pX ≤C(p)
X2

1 +X2
(1 + |X|p).

Here C(p) is a positive number independent of each X ∈R.

Proof

Noting that

lim
X→0

|1 +X|p − 1− pX

X2
=

p(p− 1)

2
, lim

X→±∞

|1 +X|p − 1− pX

|X|p = 1,

the assertion is clear. �

Then we give a series of 1-dimensional weighted Hardy’s inequalities. Let us recall

the notation (1.7); that is, A1(r) = log R
r ,A2(r) = logA1(r) and so on.

LEMMA 3.3

Assume that R > 1, q < 1, and ν = 1 − q/2. Then for any h ∈ C1((0,1]) with

h(1) = 0,
∫ 1

0
|h′(r)|2A1(r)

qr dr <+∞ and limr→0h(r)
2A1(r)

q−1 = 0, we have

(3.3)

∫ 1

0

|h′(r)|2A1(r)
qr dr ≥ ν2

∫ 1

0

|h(r)|2A1(r)
q−2 dr

r
.

More precisely, for any subinterval [a, b]⊂ [0,1] we have∫ b

a

|h′(r)|2A1(r)
qr dr ≥ ν2

∫ b

a

|h(r)|2A1(r)
q−2 dr

r
(3.4)

− ν
( h(b)2

A1(b)1−q
− h(a)2

A1(a)1−q

)
.

Proof

Let h(r) =A1(r)
νw(r). Then w(0) =w(1) = 0, and

|h′(r)|2 = A1(r)
(ν−1)2

(
−ν

r
w(r) +w′(r)A1(r)

)2

(3.5)

≥
(ν
r

)2

|h(r)|2A1(r)
−2 − ν

r

( d

dr
w2(r)

)
A1(r)

2ν−1.

Hence for 2ν − 1 + q = 0, we have∫ 1

0

|h′(r)|2A1(r)
qr dr ≥ ν2

∫ 1

0

|h(r)|2A1(r)
q−2 dr

r
.

The rest of the proof is now clear. �



770 Hiroshi Ando and Toshio Horiuchi

LEMMA 3.4

Assume that R > e. Then for any h ∈ C((0,1]) with h(1) = 0,
∫ 1

0
|h′(r)|2 ×

A1(r)r dr <+∞ and limr→0h(r)
2A2(r)

−1 = 0, we have

(3.6)

∫ 1

0

|h′(r)|2rA1(r)dr ≥
1

4

∫ 1

0

|h(r)|2
A1(r) ·A2(r)2

dr

r
.

More precisely, for any subinterval [a, b]⊂ [0,1] we have∫ b

a

|h′(r)|2rA1(r)dr ≥
1

4

∫ b

a

|h(r)|2
A1(r) ·A2(r)2

dr

r
(3.7)

− 1

2

( h(b)2

A2(b)
− h(a)2

A2(a)

)
.

Proof

Let h(r) =A2(r)
νw(r). Then w(0) =w(1) = 0, and

|h′(r)|2 = A2(r)
(ν−1)2

(
−ν

r

w(r)

A1(r)
+w′(r) log

(
A1(r)

))2

(3.8)

≥
(ν
r

)2 |h(r)|2
A1(r)2A2(r)2

− ν

r

( d

dr
w2(r)

)A2(r)
2ν−1

A1(r)
.

Then we have∫ 1

0

|h′(r)|2rA1(r)dr ≥ ν2
∫ 1

0

|h(r)|2
A1(r) ·A2(r)2

dr

r

− ν

∫ 1

0

( d

dr
w2(r)

)
A2(r)

2ν−1 dr.

Putting ν = 1/2 we have the desired inequality, and the rest of the proof is also

clear. �

Here we have the following definition.

DEFINITION 3.1

A function ϕ ∈C1([0,1]) is said to belong to G([0,1]) if and only if ϕ(0) = ϕ(1) =

0 and ϕ′(0) ·ϕ′(1) �= 0.

DEFINITION 3.2

For ϕ ∈G([0,1]) and M > 1 we define three subsets of [0,1] as follows:

(3.9)

⎧⎪⎪⎨⎪⎪⎩
A(ϕ,M) =

{
r ∈ [0,1]

∣∣ |ϕ′(r)| ≤M |ϕ(r)|
r

}
B(ϕ,M) =

{
r ∈ [0,1]

∣∣ |ϕ′(r)|>M |ϕ(r)|
r

}
C(ϕ,M) =

{
r ∈ [0,1]

∣∣ |ϕ′(r)|=M |ϕ(r)|
r

}
.

Clearly we see [0,1] = A(ϕ,M) ∪B(ϕ,M). The set C(ϕ,M) coincides with the

set of critical points of log(|ϕ|r±M ). Moreover 1 ∈B(ϕ,M) and 0 ∈A(ϕ,M) for

any M > 1, since ϕ(1) = 0 and limr→+0ϕ(r)/r = ϕ′(0).
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Then we prepare an approximation lemma.

LEMMA 3.5

Let M > 1, and let ϕ ∈ G([0,1]) ∩ C2([0,1]). Assume that ϕ ≥ 0. Then there

exists a sequence of functions ϕk ∈G([0,1])∩C2([0,1]) such that ϕk > 0 in (0,1),

ϕk → ϕ in C1([0,1]) as k→+∞, and C(ϕk,M) consists of finite points for any k.

Proof

Take ϕ ∈G([0,1])∩C2([0,1]). By the definition of G([0,1]) we have ϕ′(0) ·ϕ′(1) �=
0; hence, there is some positive number δ ∈ (0,1/2) such that ϕ′ �= 0 on [0, δ] ∪
[1− δ,1]. Choose ξ ∈ C∞

0 (0,1) such that ξ ≥ 0 and ξ = 1 on Iδ = [δ,1− δ]. Now

we define for a positive ε

ϕε = ϕ+ εξ.

For a sufficiently small ε we immediately see ϕε ∈G([0,1]) ∩ C2([0,1]), (ϕε)′ �=
0 on [0, δ]∪ [1− δ,1] and ϕε = ϕ+ ε on Iδ. Moreover we have for a small δ > 0

([0, δ]∪ [1− δ,1])∩C(ϕε,M) = ∅.

In fact, if x ∈C(ϕε,M), then we should have r
∣∣ (ϕε)′

ϕε

∣∣=M > 1. But this is impos-

sible for a small δ > 0 because of limr→0 r
(ϕε)′

ϕε = 1 and limr→1 r
(ϕε)′

ϕε =+∞. For

the sake of simplicity, we assume that C(ϕ,M) consists only of {rϕ′ −Mϕ= 0}.
Put

(3.10) ψ = rϕ′ −Mϕ.

Then we have C(ϕ,M) = ψ−1(0). Since ψ ∈ C1, a set of all regular values of

ψ is dense in R. Therefore there exists a sequence of regular values {εkM}∞k=1

satisfying εk → 0 as k→∞. Since we may assume C(ϕ,M)⊂ Iδ , we see

(3.11) ψ−1(εkM) =
{
r ∈ Iδ

∣∣ r(ϕ+ εk)
′ =M(ϕ+ εk)

}
.

After all we define

(3.12) ϕk = ϕ+ εkξ, k = 1,2, . . . .

Then {ϕk}∞k=1 has the desired property. �

We also prepare various estimates which will be useful in the proof of Theorem 2.1

in the case 1< p< 2.

LEMMA 3.6

Assume that 1< p < 2 and R> 1.Then for any ε > 0 there is a positive number

M such that

(3.13)

∫
B(ϕ,M)

|ϕ||ϕ′|
A1(r)

dr ≤ ε

∫
B(ϕ,M)

|ϕ|2−p|ϕ′|prp−1 dr

holds for any ϕ ∈G([0,1]).
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Proof

We may assume that ϕ > 0. Then by the definition we have r |ϕ′|
ϕ > M on

B(ϕ,M). Hence we immediately have

(3.14) ϕ2−p|ϕ′|prp−1 = ϕ|ϕ′| ·
(
r
|ϕ′|
ϕ

)p−1

≥Mp−1ϕ|ϕ′|, on B(ϕ,M).

Therefore it suffices to choose M so that

(3.15) M1−p(logR)−1 ≤ ε. �

LEMMA 3.7

Assume that 1< p< 2 and R> 1.Then∫
A(ϕ,M)

|ϕ′(r)|2r dr ≥ 1

4

∫
A(ϕ,M)

|ϕ|2
rA1(r)2

dr

(3.16)

+
1

2

∫
B(ϕ,M)

|ϕ|2
rA1(r)2

dr−
∫
B(ϕ,M)

|ϕ||ϕ′|
A1(r)

dr

holds for any ϕ ∈G([0,1]).

Proof

By the density argument it suffices to prove this for ϕ ∈ C∞. Moreover we may

assume that the set C(ϕ,M) consists of finitely many points. If not, from the pre-

vious lemma we can approximate ϕ uniformly in the C1-topology by a sequence

of ϕk ∈ G([0,1]) with having this property. Therefore we may assume that the

set A(ϕ,M) is a union of finite number of disjoint intervals. Namely,

(3.17)

{
A(ϕ,M) =

⋃m
k=0[a2k, a2k+1],

B(ϕ,M) =
⋃m−1

k=0 (a2k+1, a2(k+1))∪ (a2m+1, a2m+2]

with a0 = 0 and a2m+2 = 1. Then it follows from Lemma 3.3 that∫
A(ϕ,M)

|ϕ′(r)|2r dr ≥ 1

4

∫
A(ϕ,M)

|ϕ|2
rA1(r)2

dr

− 1

2

m∑
k=0

(ϕ(a2k+1)
2

A1(a2k+1)
− ϕ(a2k)

2

A1(a2k)

)

=
1

4

∫
A(ϕ,M)

|ϕ|2
rA1(r)2

dr+
1

2

m+1∑
k=1

(ϕ(a2k)
2

A1(a2k)
− ϕ(a2k−1)

2

A1(a2k−1)

)
(3.18)

=
1

4

∫
A(ϕ,M)

|ϕ|2
rA1(r)2

dr+
1

2

∫
B(ϕ,M)

d

dr

(ϕ(r)2

A1(r)

)
dr

≥ 1

4

∫
A(ϕ,M)

|ϕ|2
rA1(r)2

dr

+
1

2

∫
B(ϕ,M)

|ϕ|2
rA1(r)2

dr−
∫
B(ϕ,M)

|ϕ||ϕ′|
A1(r)

dr.



Missing terms in the weighted Hardy–Sobolev inequalities 773

Thus we have the desired estimate. �

In a quite similar way we have the following.

LEMMA 3.8

Assume that 1< p< 2 and R> 1. Then∫
A(ϕ,M)

|ϕ′(r)|2rA1(r)dr ≥
1

4

∫
A(ϕ,M)

|ϕ|2
rA1(r)A2(r)2

dr

+
1

2

∫
B(ϕ,M)

|ϕ|2
rA1(r)A2(r)2

dr(3.19)

−
∫
B(ϕ,M)

|ϕ||ϕ′|
A2(r)

dr

holds for any ϕ ∈G([0,1]).

4. Proof of Theorem 2.1

We shall give the proof of Theorem 2.1 through subsections and the proof will

be finished in Section 4.3. The proof of Corollary 2.1 will be given in Section 4.4.

More precisely, in Section 4.1, we shall begin with reducing the assertions in

Theorem 2.1 to the corresponding 1-dimensional variational problems consisting

of three different types. In Section 4.2 we shall solve these variational problems

in each case. Then in Section 4.3, the sharpness of the constant Λn,p,a and the

optimality of the logarithmic weight functions will be shown by constructing

suitable test functions.

4.1. Step 1 (Reduction to 1-dimensional case)
We start with treating subcritical case (1 < p < +∞, α > 1− n/p). We study a

variational problem defined by

J(p,α,n,Ω)
(4.1)

= inf
[∫

Ω

|∇u|p|x|αp dx : u ∈W 1,p
α,0(Ω),

∫
Ω

|u|p|x|αp−p dx= 1
]
.

Here we can assume that u is nonnegative and smooth as usual. By a polar

coordinate system, we rewrite (4.1) to obtain

J(p,α,n,Ω) = inf
[∫

Sn−1

dSω

∫ ∞

0

|∇u|prαp+n−1 dr :

(4.2)

0≤ u ∈W 1,p
α,0(Ω),

∫
Sn−1

dSω

∫ ∞

0

uprαp−p+n−1 dr = 1
]
.

By (u, v)Sn−1 for u, v ∈ L2(Sn−1) we denote the inner product on L2(Sn−1)

with the measure dSω . By a polar coordinate system, the Laplacian Δ is rep-

resented by r1−n∂r(r
n−1∂r·) + ΔSn−1/r2. Here ΔSn−1 is the Laplace Beltrami
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operator on the unit sphere. Then we have

(4.3) |∇u|2 = |∂ru(rω)|2 +
1

r2
|Λu|2 ≥ |∂ru(rω)|2.

Here the spherical gradient operator Λ is defined by

(4.4) (ΔSn−1u, v)Sn−1 = (Λu,Λv)Sn−1 for u ∈C2(Sn−1).

Now we reduce the variational problem (4.2) to the corresponding 1-dimensional

one. To do so we need more notation. Let Bi and Be be open balls with centers

at the origin such as Bi ⊂ Ω⊂ Be. We introduce a variational problem defined

by

j(p,α,n, de) = inf
[∫ de

0

|∂rv(r)|prαp+n−1 dr :

(4.5)

0≤ v ∈R1,p
α,0(B

e),

∫ de

0

v(r)prαp−p+n−1 dr = 1
]
,

where de = diam(Be)/2. Note that v ∈ R1,p
α,0(Bde) satisfies v(de) = 0, and this

problem is independent of the value de. We shall show j(p,α,n, d) ≥ Λn,p,α for

any d > 0 in the second step.

On the other hand, it is an easy task to see that J(p,α,n,Ω)≥ j(p,α,n, de).

In fact putting vω(r) = u(rω) for ω ∈ Sn−1, we immediately have∫
Ω

|∇u|p|x|pα dx ≥
∫
Sn−1

dSω

∫ de

0

|∂rvω(r)|p rn−1+pα dr

≥ j(p,α,n, de)

∫
Sn−1

dSω

∫ de

0

vω(r)
prαp−p+n−1 dr(4.6)

= j(p,α,n, de)

∫
Ω

|u|p|x|αp−p dx.

Then from the invariance of j(p,α,n, d) with respect to d and the canonical inclu-

sion W 1,p
0,α(B

i)⊂W 1,p
0,α(Ω)⊂W 1,p

0,α(B
e) it follows that J(p,α,n,Ω)≥ j(p,α,n, de).

Therefore in the proof we can assume that u is radial and Ω is a unit ball.

We proceed to the supercritical case (1< p <+∞, α < 1− n/p). Since αp−
p < −n, |x|pα−p /∈ L1

loc(Ω). Therefore we employ Ẇ 1,p
α,0(Ω) instead of W 1,p

α,0(Ω).

For 0≤ u ∈ Ẇ 1,p
α,0(Ω)∩C∞

0 (Ω \ {0}) we set

(4.7) u(x) = |x|lw, w ≥ 0,w ∈C∞
0 (Ω \ {0}).

By l we denote the integer part of 2− α− n/p; namely, l is the positive integer

satisfying 1−α−n/p < l≤ 2−α−n/p. Then there is a positive number C such

that we have for any u ∈ Ẇ 1,p
α,0(Ω)∩C∞

0 (Ω \ {0})

|∇w|p|x|p(α+l) ≤C(|∇u|p|x|pα + |u|p|x|p(α−1)).

Hence, we see that w ∈W 1,p
α+l,0(Ω)∩C∞

0 (Ω \ {0}). By the aid of polar coordinate

system again, we have
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∣∣∇(|x|lw)
∣∣p = ∣∣|x|2l|∇w|2 + l2|x|2(l−1)w2 + 2|x|2(l−1)wx · ∇w

∣∣p/2
≥

(
r2l(∂rw)

2 + l2r2(l−1)w2 + 2r2l−1w∂rw
)p/2

(4.8)

= |rl∂rw+ lrl−1w|p = |∂r(rlw)|p.

Hence we see

(4.9)

∫
Ω

|∇u|p|x|pα dx≥
∫
Sn−1

dSω

∫ de

0

∣∣∂r(rlw(rω))∣∣p rαp+n−1 dr.

Then we introduce a variational problem given by

k(p,α,n, de) = inf
[∫ de

0

∣∣∂r(rlv(r))∣∣prαp+n−1 dr :

(4.10)

0≤ v ∈R1,p
α+l,0(B

e),

∫ de

0

v(r)prαp+lp−p+n−1 dr = 1
]
,

where de = diam(Be)/2 and note that αp+ lp− p+ n− 1>−1. We shall show

that k(p,α,n, d) ≥ Λn,p,α for any d > 0 in the second step. As before, it is an

easy task to see that J(p,α,n,Ω) ≥ k(p,α,n, de) in this case. In fact putting

vω(r) = u(rω) for ω ∈ Sn−1, we immediately have

(4.11)

∫
Ω

|∇u|p|x|pα dx≥ k(p,α,n, de)

∫
Ω

|u|p|x|αp−p dx.

Again from the invariance of k(p,α,n, d) with respect to d and the inclusion

W 1,p
α,0(B

i) ⊂ W 1,p
α,0(Ω) ⊂ W 1,p

α,0(B
e) it follows that J(p,α,n,Ω) ≥ k(p,α,n, de).

Therefore we can assume that u is radial and Ω is a unit ball.

Lastly we consider the critical case (1< p <+∞, α= 1− n/p). In this case

we introduce the following 1-dimensional problem:

l(p,α,n, de,R) = inf
[∫ de

0

|∂rv(r)|prp−1 dr :

(4.12)

0≤ v ∈R1,p
α,0(B

e),

∫ de

0

|v(r)|p
r

A1(r)
−p dr = 1

]
,

where R is any constant satisfying R> de. Then we shall show l(p,α,n, d,R)≥
Λn,p,α for any d > 0 and R> d in the second step. As before, it is an easy task to

see that J(p,α,n,Ω)≥ l(p,α,n, de,R) in this case. In fact putting vω(r) = u(rω)

for ω ∈ Sn−1, we immediately have

(4.13)

∫
Ω

|∇u|p|x|p−n dx≥ l(p,α,n, de,R)

∫
Ω

|u(x)|p
|x|n A1(|x|)−p dx.

Here we note that the last integral is a decreasing function of the constant R satis-

fying the condition de <R. Then again from the invariance of l(p,α,n, d,R) with

respect to d and R> d and from the inclusionW 1,p
α,0(B

i)⊂W 1,p
α,0(Ω)⊂W 1,p

α,0(B
e) it

follows that J(p,α,n,Ω)≥ l(p,α,n, de,R). Therefore in the proof we can assume

that u is radial and Ω is a unit ball.
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REMARK 4.1

If we assume α= 0, then we can employ the symmetric rearrangement of domains

and functions. Briefly, we recall the decreasing rearrangement. For a domain Ω

we define a ball Ω∗ such that |Ω∗|= |Ω| with center at the origin. For a measur-

able function u : Ω→R we denote by u∗ : Ω∗ → [0,∞] the symmetric decreasing

rearrangement of u. It is well known that the symmetric rearrangement does not

change the Lp-norm. Then it follows from the Hardy–Littlewood inequality that∫
Ω

|u|p
|x|p dx≤

∫
Ω∗

u∗p

|x|p dx. Moreover it follows from the Pólya–Szegö principle that

if u is also weakly differentiable with |∇u| ∈ Lp(Ω) for some p≥ 1, then u∗ has

the same properties, and
∫
Ω
|∇u|p dx≤

∫
Ω∗ |∇u∗|p dx. Therefore we can assume

that u is radial and Ω is a ball in the proof of the main results, if α= 0. A similar

reduction is also possible provided that 1− n/p < α≤ 0. For the details, see [13,

Lemma 2.3 (p= q)]. For the symmetric decreasing rearrangement, see [16]–[18],

and [19] (see also [14, Lemmas 3.1–3.3]).

4.2. Step 2 (1-dimensional variational problems )
In this subsection we effectively employ a method of change of unknown func-

tions not only to solve 1-dimensional variational problems but also to show the

existence of sharp remainders of the 1-dimensional Hardy–Sobolev inequalities,

which are best possible up to constant times. Though we shall see in Section 4.3

the sharpness of Λn,p,α as well as other weight functions, we note that the sharp-

ness of Λn,p,α itself is also seen from the classical Hardy’s inequality given in

Remark 4.2 in the end of this subsection.

First in the subcritical case (1< p<+∞, α > 1−n/p) we study the problem

j(p,α,n, de), where de = diam(Be)/2. Since this problem is independent of the

value de, we assume de = 1, and we show that j(p,α,n,1)≥ Λn,p,α. Let us recall

j(p,α,n,1) = inf
[∫ 1

0

|∂rv(r)|prαp+n−1 dr :

(4.14)

0≤ v ∈R1,p
α,0(B1),

∫ 1

0

v(r)prαp−p+n−1 dr = 1
]
,

where B1 = {x ∈R
n | |x|< 1} is a unit ball.

For a radial v ∈C∞
0 (B1), we define

(4.15) v(r) = h(r)r−δ, δ = α−
(
1− n

p

)
> 0, r = |x|.

Here we may assume that v > 0 in B1 without loss of generality. Then we have

(4.16) |∇v(r)|p =
∣∣∇(

h(r)r−δ
)∣∣p = δphp

∣∣∣1− rh′

δh

∣∣∣pr−αp−n.

Then, noting δp =Λn,p,α, we have∫
B1

|∇v|p|x|αp dx−Λn,p,α

∫
B1

|v(x)|p
|x|p |x|αp dx

(4.17)

= ωnΛn,p,α

∫ 1

0

hp(r)
{∣∣∣1− rh′

δh

∣∣∣p − 1
}dr

r
.
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For the moment we assume that p ≥ 2. By a fundamental inequality |1 + t|p ≥
1 + pt+ c(p)|t|2 (t ∈R, p≥ 2, c(p); a small positive number), we obtain∫

B1

|∇v|p|x|αp dx−Λn,p,α

∫
B1

|v(x)|p
|x|p |x|αp dx

≥−ωn
Λn,p,α

δ

∫ 1

0

php−1h′ dr+ c(p)ωn
Λn,p,α

δ2

∫ 1

0

hp−2(h′)2r dr

(4.18)

= c(p)ωn
Λn,p,α

δ2

∫ 1

0

hp−2(r)|h′(r)|2r dr (note that h(0) = h(1) = 0)

= c(p)ωn
4

p2
Λn,p,α

δ2

∫ 1

0

∣∣(h p
2 (r)

)′∣∣2r dr.
Using Lemma 3.3 (ν = 1/2, q = 0), we get∫ 1

0

∣∣(hp/2(r)
)′∣∣2r dr ≥ 1

4

∫ 1

0

(hp/2(r)

rA1(r)

)2

r dr

(4.19)

=
1

4ωn

∫
B1

|v(x)|p
|x|p A1(r)

−2|x|αp dx.

Combining this with (4.18) we get the inequality j(p,α,n,1) ≥ Λn,p,α and the

inequality (2.6) where C = c(p)Λn,p,α/δ
24/p2. In step 3 we shall show the sharp-

ness of these inequalities.

Now we take care of the case that 1< p < 2. In this case we need technical

lemmas simply because of the lack of uniform estimate of (1+ t)p from below. To

overcome this, we borrow a basic idea from [1] and modify it to apply to our case,

where the so-called decreasing rearrangement argument does not work. Suppose

that M is sufficiently large, which will be specified later. For v ∈C∞
0 (B1), v > 0,

radial, again we set v(r) = h(r)r−δ , δ = α− 1 + n/p > 0.

By virtue of the definitions of A(ϕ,M), B(ϕ,M), and C(ϕ,M) replacing ϕ

and M by h and δM , respectively, we have [0,1] = A(h, δM) ∪ B(h, δM). By

the density argument we can assume that h ∈G([0,1]); that is, h′(0) · h′(1) �= 0.

Moreover from Lemma 3.5 we can assume that h > 0 in (0,1) and C(h, δM)

consists of finite points. For h ∈G([0,1]) and M > 1 we define three subsets of

[0,1] as follows:

(4.20)

⎧⎪⎪⎨⎪⎪⎩
A(h, δM) = {r ∈ [0,1] | r|h′(r)| ≤ δM |h(r)|}
B(h, δM) = {r ∈ [0,1] | r|h′(r)|> δM |h(r)|}
C(h, δM) = {r ∈ [0,1] | r|h′(r)|= δM |h(r)|}.

Then, Lemma 3.1 implies∫
B1

|∇v|p|x|αp dx−Λn,p,α

∫
B1

|v(x)|p
|x|p |x|αp dx

= ωnΛn,p,α

∫ 1

0

hp(r)
{∣∣∣1− rh′

δh

∣∣∣p − 1
}dr

r
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≥−ωn
Λn,p,α

δ

∫ 1

0

php−1h′ dr

+ ωnΛn,p,α

∫
A(h,δM)

hpc(p)Mp−2
(rh′

δh

)2 1

r
dr(4.21)

+ ωnΛn,p,α

∫
B(h,δM)

hpc(p)
(rh′

δh

)p 1

r
dr

= ωnΛn,p,αc(p)M
p−2δ−2

∫
A(h,δM)

hp−2(h′)2r dr

+ ωnΛn,p,αc(p)δ
−p

∫
B(h,δM)

(h′)prp−1 dr.

Then, noting Lemma 3.7 and A(h, δM) =A(hp/2, pδM/2), we have∫
A(h,δM)

hp−2(h′)2r dr =
4

p2

∫
A(h,δM)

(
(hp/2)′

)2
r dr

≥ 4

p2

(1
4

∫
A(h,δM)

hp

rA1(r)2
dr+

1

2

∫
B(h,δM)

hp

rA1(r)2
dr(4.22)

− p

2

∫
B(h,δM)

hp−1|h′|
A1(r)

dr
)
.

Similar to the proof in Lemma 3.6 we can estimate the last term to obtain

(4.23)
p

2

∫
B(h,δM)

hp−1|h′|
A1(r)

dr ≤ p

2

1

(δM)p−1 logR

∫
B(h,δM)

|h′|prp−1 dr.

Here we simply use the fact that r|h′|> δMh holds on the set B(h, δM). Com-

bining this with (4.21) and (4.22), choosing M large enough, we have the desired

inequality.

Second in the supercritical case (1 < p < +∞, α < 1 − n/p) we study the

problem k(p,α,n, de), where de = diam(Be)/2. Since this problem is independent

of the value de, we assume that de = 1, and we show that k(p,α,n,1)≥ Λn,p,α.

Let us recall

k(p,α,n,1) = inf
[∫ 1

0

∣∣∂r(rlv(r))∣∣prαp+n−1 dr :

(4.24)

0≤ v ∈R1,p
α+l,0(B1),

∫ 1

0

v(r)prαp+lp−p+n−1 dr = 1
]
,

where B1 = {x ∈R
n | |x|< 1} is a unit ball.

For v ∈C∞
0 (B1), v > 0, radial, we define

(4.25) v(r) = h(r)r−l−δ, δ = α−
(
1− n

p

)
< 0.

Since −1− δ =−l+ (1− α− n/p)< 0, we have h(0) = h(1) = 0. Then we have

(4.26)
∣∣∇(

rlv(r)
)∣∣p = ∣∣∇(

h(r)r−δ
)∣∣p = (−δ)php

∣∣∣1− rh′

δh

∣∣∣pr−αp−n.
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Note (−δ)p =Λn,p,α. Then∫
B1

∣∣∇(|x|lv)
∣∣p|x|αp dx−Λn,p,α

∫
B1

||x|lv(x)|p
|x|p |x|αp dx

(4.27)

= ωnΛn,p,α

∫ 1

0

hp(r)
{∣∣∣1− rh′

δh

∣∣∣p − 1
}dr

r
.

Noting that −δ > 0 in this case, we have the result by a similar argument to that

of the subcritical case. Therefore we proceed to the critical case.

Lastly we consider the critical case (1 < p < +∞, α = 1 − n/p). Recall the

1-dimensional problem:

l(p,α,n, de,R) = inf
[∫ de

0

|∂rv(r)|prp−1 dr :

(4.28)

0≤ v ∈R1,p
α,0(B

e),

∫ de

0

|v(r)|p
r

A1(r)
−p dr = 1

]
,

where R is any constant satisfying R> de. Then we have to show l(p,α,n, d,R)≥
Λn,p,α for any d > 0 and R> d. As before we assume that de = 1. Here we define

for any nonnegative radial function v ∈C∞
0 (B1),

(4.29) v(r) =A1(r)
μh(r), μ=

p− 1

p
.

Then we see h(0) = h(1) = 0 and

(4.30) |v′(r)|p = μpA1(r)
−1h(r)pr−p

∣∣∣1− rA1(r)h
′(r)

μh(r)

∣∣∣p.
For the moment, we assume that p≥ 2. By an elementary inequality we have

|1 + t|p ≥ 1 + pt+ c(p)|t|2 (t ∈R, p≥ 2, c(p); a small positive number).

Using this and noting that h(0) = h(1) = 0 and μp =Λn,p,α, we obtain∫ 1

0

|v′|prp−1 dr−Λn,p,α

∫ 1

0

|v(r)|pA1(r)
−p

r
dr

=Λn,p,α

∫ 1

0

h(r)p
A1(r)

−1

r

(∣∣∣1− rA1(r)h
′(r)

μh(r)

∣∣∣p − 1
)
dr

≥ Λn,p,α

μ

∫ 1

0

php−1h′ dr+ c(p)
Λn,p,α

μ2

∫ 1

0

h(r)p−2
(
h′(r)

)2
rA1(r)dr(4.31)

= c(p)
Λn,p,α

μ2

∫ 1

0

h(r)p−2(r)|h′(r)|2rA1(r)dr

= c(p)
4

p2
Λn,p,α

μ2

∫ 1

0

∣∣(h(r)p/2(r))′∣∣2rA1(r)dr.

Using Lemma 3.4, we get
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∫ 1

0

∣∣(h(r)p/2)′∣∣2rA1(r)dr ≥
1

4

∫ 1

0

h(r)p

rA1(r)A2(r)2
dr

(4.32)

=
1

4

∫ 1

0

|v(r)|p
rA1(r)pA2(r)2

dr.

Combining this with (4.31) we get the desired inequality l(p,α,n,1,R)≥ Λn,p,α

and the inequality (2.7), where C = c(p)Λn,p,α/μ
21/p2. In step 3 we shall show

the sharpness of these inequalities.

Next we take care of the case that 1< p < 2. In this case we need technical

lemmas again, which are quite similar to the previous case. Therefore we give

necessary lemmas only instead of a complete proof. Suppose that M is suffi-

ciently large, which will be specified later. We retain the notation; namely, for

v ∈ C∞
0 (B1), v > 0, radial, again we set v(r) = h(r)A1(r)

μ. Then we modify the

definition of the sets A(ϕ,M), B(ϕ,M), and C(ϕ,M) as follows.

DEFINITION 4.1

For ϕ ∈G([0,1]) and M > 1 we define three subsets of [0,1] as follows:

(4.33)

⎧⎪⎪⎨⎪⎪⎩
A(ϕ,M) =

{
r ∈ [0,1]

∣∣ |ϕ′(r)| ≤M |ϕ(r)|
rA1(r)

}
B(ϕ,M) =

{
r ∈ [0,1]

∣∣ |ϕ′(r)|>M |ϕ(r)|
rA1(r)

}
C(ϕ,M) =

{
r ∈ [0,1]

∣∣ |ϕ′(r)|=M |ϕ(r)|
rA1(r)

}
.

Then, replacing ϕ and M by h and μM , respectively, we have [0,1] =A(h,μM)∪
B(h,μM). By the density argument we can assume h ∈G([0,1]); that is, h′(0) ·
h′(1) �= 0. Moreover from Lemma 3.5 we can assume that h > 0 in (0,1) and

C(h,μM) consists of finite points. By Lemma 3.1, we have∫ 1

0

|v′|prp−1 dr−Λn,p,α

∫ 1

0

|v(r)|pA1(r)
−p

r
dr

=Λn,p,α

∫ 1

0

h(r)p
A1(r)

−1

r

(∣∣∣1− rA1(r)h
′(r)

μh(r)

∣∣∣p − 1
)
dr

≥−Λn,p,α

μ

∫ 1

0

php−1h′ dr

+Λn,p,α

∫
A(h,μM)

hpc(p)Mp−2
(rA1(r)h

′

μh

)2A1(r)
−1

r
dr(4.34)

+ Λn,p,α

∫
B(h,μM)

hpc(p)
∣∣∣rA1(r)h

′

μh

∣∣∣pA1(r)
−1

r
dr

=Λn,p,αc(p)M
p−2μ−2

∫
A(h,μM)

hp−2|h′|2rA1(r)dr

+Λn,p,αc(p)μ
−p

∫
B(h,μM)

|h′|prp−1A1(r)
p−1 dr.
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Note A(h,μM) =A(hp/2, p/2μM) and B(h,μM) =B(hp/2, p/2μM). Then apply-

ing Lemma 3.8 to ϕ = hp/2 and A(hp/2, p/2μM),B(hp/2, p/2μM) in place of

A(ϕ,M),B(ϕ,M), respectively, we have∫
A(h,μM)

hp−2(h′)2rA1(r)dr =
4

p2

∫
A(h,μM)

(
(h

p
2 )′

)2
rA1(r)dr

≥ 4

p2

(1
4

∫
A(h,μM)

h(r)p

rA1(r)A2(r)2
dr(4.35)

+
1

2

∫
B(h,μM)

h(r)p

rA1(r)A2(r)2
dr

− p

2

∫
B(h,μM)

h(r)p−1|h′(r)|
A2(r)

dr
)
.

From an easy variant of Lemma 3.6 we can estimate the last term to obtain

p

2

∫
B(h,μM)

hp−1|h′|
A2(r)

dr

(4.36)

≤ p

2

1

(μM)p−1 log(logR)

∫
B(h,μM)

|h′|pA1(r)
p−1rp−1 dr.

Here we simply use the fact that rA1(r)|h′|> μMh holds on the set B(h,μM).

Combining this with (4.34) and (4.35), choosing M large enough, we have the

desired inequality.

REMARK 4.2

We recall the following classical Hardy inequalities.

PROPOSITION 4.1

Assume that a �= 1 and 1 < p < +∞. For any nonnegative function f ∈
C∞

0 ([0,∞)), it holds that

(4.37)

∫ ∞

0

x−aF (x)p dx≤
( p

|a− 1|
)p

∫ ∞

0

x−a+pf(x)p dx,

where

(4.38)

{
F (x) =

∫ x

0
f(t)dt for a > 1,

F (x) =
∫∞
x

f(t)dt for a < 1.

From this proposition we easily see that in the noncritical case, Λn,p,α becomes

the best constant.

4.3. Step 3 (Sharpness)
We construct a family of radial functions in R1,p

α,0(B1) or Ṙ
1,p
α,0(B1) which we will

essentially use to show the sharpness of Λn,p,α and the optimality of weight func-

tions A1(r)
−2 and A2(r)

−2. These test functions contain two positive parameters

ε and β, and we assume that ε→ 0 and β is large and specified later.
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DEFINITION 4.2 (NONCRITICAL CASE; α �= 1− n/p)

For ε > 0 and β >max(0, p− 2) let us define a radial function vε,β(r) = vε,β(|x|)
by

(4.39) vε,β(r) = r1−α−n
p hε,β(r),

where

(4.40) hε,β(r) =

⎧⎨⎩A1(r)
1−1/p−β/p, 0< r < ε,

A1(r)
1−1/pA1(ε)

−β/p log 1
r

log 1
ε

, ε < r < 1.

Here A1(r) = logR/r and R> 1.

In the critical case we shall employ the following.

DEFINITION 4.3 (CRITICAL CASE; α= 1− n/p)

For ε > 0 and β >max(0, p−2) let us define a radial function wε,β(r) =wε,β(|x|)
by

(4.41) wε,β(r) =A1(r)
1−1/pkε,β(r),

where

(4.42) kε,β(r) =

⎧⎨⎩A2(r)
1−1/p−β/p, 0< r < ε,

A2(r)
1−1/pA2(ε)

−β/p log(log e
r )

log(log e
ε )
, ε < r < 1

and A2(r) = logA1(r) and R> e.

Here we note that hε,β(0) = kε,β(0) = 0 and hε,β(1) = kε,β(1) = 0 hold.

First we shall show the sharpness of the constant Λn,p,α and the weight

functions A1(r)
−2 and A2(r)

−2. To this end we set in the noncritical case

(4.43)

⎧⎪⎪⎨⎪⎪⎩
I(u) =

∫
B1

|∇u|p|x|αp dx−Λn,p,α

∫
B1

|u(x)|p
|x|p |x|αp dx,

J(u,γ) =
∫
B1

|u(x)|p
|x|p |x|αpA1(r)

−γ dx,

K(u) =
∫
B1

|u(x)|p
|x|p |x|αp dx

and in the critical case

(4.44)

⎧⎪⎪⎨⎪⎪⎩
Ic(u) =

∫
B1

|∇u|p|x|p−n dx−Λn,p,α

∫
B1

|u(x)|p
|x|n A1(r)

−p dx,

Jc(u,γ) =
∫
B1

|u(x)|p
|x|n A1(r)

−pA2(r)
−γ dx,

Kc(u) =
∫
B1

|u(x)|p
|x|n A1(r)

−p dx.

Then we shall show that

(4.45) lim
ε→0

I(vε,β)

J(vε,β , γ)
= 0, if γ ∈ (0,2) and β > p− γ,

and

(4.46) lim
ε→0

Ic(wε,β)

Jc(wε,β , γ)
= 0, if γ ∈ (0,2) and β > p− γ.

Admitting this for the moment, let us show the sharpness of the weight functions

and the constant Λn,p,α. Since it holds from Hardy’s inequality that
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(4.47)
I(vε,β(r))

J(vε,β(r),2)
,

Ic(wε,β(r))

Jc(wε,β(r),2)
≥ ∃C > 0

for any ε > 0, we see that the weight functions A1(r)
−2 and A2(r)

−2 are sharp.

Moreover, since

(4.48)
J(vε,β , γ)

K(vε,β , γ)
,
Jc(wε,β , γ)

Kc(wε,β , γ)
≤ 1,

we also see that the constant Λn,p,α is sharp.

Now we show these properties (4.45) and (4.46). For the sake of simplicity

we put vε = vε,β(r), hε = hε,β(r), wε =wε,β(r), kε = kε,β(r), and μ= 1−α−n/p,

respectively. Direct calculation gives

(4.49)

{
v′ε = μrμ−1hε

(
1 +

rh′
ε

μhε

)
,

w′
ε =

p−1
p A

− 1
p

1
kε

r

(
−1 + p

p−1
rA1k

′
ε

kε

)
.

Then we have

(4.50)

{
I(vε) = ωnΛn,p,α

∫ 1

0
hp
ε

(∣∣1 + rh′
ε

μhε

∣∣p − 1
)
dr
r ,

Ic(wε) = ωnΛn,p,α

∫ 1

0
kpε

(∣∣1− p
p−1

rA1k
′
ε

kε

∣∣p − 1
)

dr
rA1

.

Next we shall show (4.45) in the noncritical case. Let us set X = rh′
ε/μhε.

By the definition we see

(4.51) X =
rh′

ε

μhε
=

{
p−1−β
n+pα−p

1
A1

, 0< r < ε,
p−1

n+pα−p
1
A1

+ p
n+pα−p

1
log 1

r

, ε < r < 1.

Using Lemma 3.2 and noting
∫ 1

0
hp
εX dr/r = 1

μ

∫ 1

0
hp−1
ε h′

ε dr = 0, we have

(4.52) I(vε)≤ ωnΛn,p,αC(p)

∫ 1

0

hp
ε

X2

1 +X2
(1 + |X|p)dr

r
.

By R(vε) we denote the integral in the right-hand side. Then by subdividing the

interval [0,1] into [0, ε] and [ε,1] for a sufficiently small ε > 0 we immediately get

R(vε)≤R1 +R2, where

(4.53) R1 =

∫ ε

0

hp
ε

X2

1 +X2
(1 + |X|p)dr

r
≤C

∫ ε

0

hp
ε

rA2
1

dr =C
A1(ε)

p−2−β

β − (p− 2)
.

Similarly we have

(4.54) R2 =

∫ 1

ε

hp
ε

X2

1 +X2
(1 + |X|p)dr

r
≤C

∫ 1

ε

hp
ε

rA2
1

(
1 +

1(
log 1

r

)p)dr.
Here ∫ 1

ε

hp
ε

rA2
1

dr =

∫ 1

ε

Ap−3
1 A1(ε)

−β

r

( log 1
r

log 1
ε

)p

dr ≤
∫ 1

ε

A2p−3
1 A1(ε)

−β

r
(
log 1

ε

)p dr

(4.55)

=
A1(ε)

−β

2(p− 1)
(
log 1

ε

)p (A1(ε)
2p−2 −A1(1)

2p−2
)
≤C

A1(ε)
p−2−β

β − (p− 2)
.
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Here we use the fact that limr→0
log 1

r

A1
= 1. If p �= 2, we have in a similar way∫ 1

ε

hp
ε

rA2
1

1(
log 1

r

)p dr =

∫ 1

ε

Ap−3
1 A1(ε)

−β

r
(
log 1

ε

)p dr

=
1

2− p

A1(ε)
−β(

log 1
ε

)p (A1(1)
p−2 −A1(ε)

p−2
)

(4.56)

≤ C

{
A1(ε)

−2−β , if p > 2,

A1(ε)
−p−β , if 1< p< 2.

Here we note that −β−p < p−2−β < 0 holds for any p > 1 and β >max(p−2,0).

Lastly if p= 2 we have∫ 1

ε

hp
ε

rA2
1

1(
log 1

r

)p dr =

∫ 1

ε

A−1
1 A1(ε)

−β

r
(
log 1

ε

)2 dr

=
A1(ε)

−β(
log 1

ε

)2 (A2(ε)−A2(1)
)

(4.57)

≤ CA1(ε)
−β−β′

(for any β′ ∈ (0,2)).

After all we get

(4.58) I(vε)≤C
A1(ε)

p−2−β

β − (p− 2)
+ o

(
A1(ε)

p−2−β
)
.

Similarly we have for γ ∈ (0,2) and β > p− γ

J(vε, γ) = ωn

∫ 1

0

vpεA1(r)
−γrαp−p+n−1 dr = ωn

∫ 1

0

hp
εA1(r)

−γ dr

r
(4.59)

= ωn

∫ ε

0

A1(r)
p−1−β−γ dr

r
+ ωn

∫ 1

ε

A1(r)
p−1−γA1(ε)

−β
( log 1

r

log 1
ε

)p dr

r
.

The first term in the last line equals A1(ε)
p−γ−β/β − (p − γ). The second is

positive; hence, we have

(4.60) J(vε, γ)≥ ωn
A1(ε)

p−γ−β

β − (p− γ)
.

Then we have for 0< γ < 2, β > p− γ

(4.61) lim
ε→0

I(vε,β)

J(vε,β , γ)
≤C

β − (p− γ)

β − (p− 2)
lim
ε→0

A1(ε)
γ−2

(
1 + o(1)

)
= 0.

REMARK 4.3

The second term of J(vε, γ) can be estimated similarly:∫ 1

ε

A1(r)
p−1−γA1(ε)

−β
( log 1

r

log 1
ε

)p dr

r
≤

∫ 1

ε

A1(r)
2p−1−γ A1(ε)

−β(
log 1

ε

)p dr

r

≤ A1(ε)
p−β−γ

2p− γ
.
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REMARK 4.4

If p≥ 2, then we can also put β = p− γ > 0 in the last step.

In quite the same way as we have for β > p,

(4.62) K(vε)≥ ωn
A1(ε)

p−β

β − p
.

Next we shall show (4.46) in the critical case. Let us setX =−p/p−1rA1(r)k
′
ε/kε.

By the definition we see

(4.63) X =

⎧⎨⎩
p−1−β
p−1

1
A2

, 0< r < ε,
1
A2

+ p
p−1

A1

log e
r log(log e

r )
, ε < r < 1.

Using Lemma 3.2 and noting
∫ 1

0
kpεX dr/rA1(r) =−p/p− 1

∫ 1

0
kp−1
ε k′ε dr = 0, we

have

(4.64) Ic(wε)≤ ωnΛn,p,αC(p)

∫ 1

0

kpε
X2

1 +X2
(1 + |X|p) dr

rA1
.

By R(wε) we denote the integral in the right-hand side. Then by subdividing the

interval [0,1] into [0, ε] and [ε,1] for a sufficiently small ε > 0 we immediately get

R(wε)≤R1 +R2, where

(4.65) R1 =

∫ ε

0

kpεX
2(1 + |X|p)
1 +X2

dr

rA1
≤C

∫ ε

0

kpε
rA1A2

2

dr =C
A2(ε)

p−2−β

β − (p− 2)
.

Now let us note limr→0
log(log e

r )

A2
= 1. Similarly we have

R2 =

∫ 1

ε

kpεX
2(1 + |X|p)
1 +X2

dr

rA1
(4.66)

≤ C

∫ 1

ε

kpε
rA1A2

2

(
1 +

1(
log

(
log e

r

))p)dr.
Then ∫ 1

ε

kpε
rA1A2

2

dr =

∫ 1

ε

Ap−3
2 A2(ε)

−β

rA1

( log(log e
r

)
log

(
log e

ε

))p

dr

≤
∫ 1

ε

A2p−3
2 A2(ε)

−β

rA1

(
log

(
log e

ε

))p dr(4.67)

=
A2(ε)

−β(A2(ε)
2p−2 −A2(1)

2p−2)

2(p− 1)
(
log

(
log e

ε

))p ≤C
A2(ε)

p−2−β

β − (p− 2)
.

If p �= 2, we have in a similar way∫ 1

ε

kpε
rA1A2

2

1(
log

(
log e

ε

))p dr =

∫ 1

ε

Ap−3
2 A2(ε)

−β

rA1

(
log

(
log e

ε

))p dr

=
1

2− p

A2(ε)
−β(

log
(
log e

ε

))p (A2(1)
p−2 −A2(ε)

p−2
)

(4.68)
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≤ C

{
A2(ε)

−2−β , if p > 2,

A2(ε)
−p−β , if 1< p< 2.

Here we note that −β−p < p−2−β < 0 holds for any p > 1 and β >max(p−2,0).

Lastly if p= 2 we have∫ 1

ε

kpε
rA1A2

2

1(
log

(
log e

r

))p dr =

∫ 1

ε

A−1
2 A2(ε)

−β

rA1

(
log

(
log e

r

))2 dr
=

A1(ε)
−β(

log 1
ε

)2 (A2(e)−A2(1)
)

(4.69)

≤ CA2(ε)
−β−β′

(for any β′ ∈ (0,2)).

After all we get

(4.70) Ic(wε)≤C
A2(ε)

p−2−β

β − (p− 2)
+ o

(
A2(ε)

p−2−β
)
.

Similarly we have for γ ∈ (0,2) and β > p− γ

Jc(wε, γ) = ωn

∫ 1

0

kpεA1(r)
−1A2(r)

−γ dr

r

= ωn

∫ ε

0

A2(r)
p−1−β−γ

rA1(r)
dr(4.71)

+ ωn

∫ 1

ε

A2(r)
p−1−γA2(ε)

−β
( log(log e

r

)
log

(
log e

ε

))p dr

r
.

The first term in the last line equals A2(ε)
p−γ−β/β − (p− γ). The second term

is positive; hence, we have

(4.72) Jc(vε, γ)≥ ωn
A2(ε)

p−γ−β

β − (p− γ)
.

Then we have for 0< γ < 2, β > p− γ

(4.73) lim
ε→0

Ic(wε,β(r))

Jc(wε,β(r), γ)
≤C

β − (p− γ)

β − (p− 2)
lim
ε→0

A1(ε)
γ−2

(
1 + o(1)

)
= 0.

REMARK 4.5

The second term of J(vε, γ) can be estimated as before:∫ 1

ε

A2(r)
p−1−γA2(ε)

−β
( log(log e

r

)
log

(
log e

ε

))p dr

r
≤

∫ 1

ε

A2(r)
2p−1−γ A2(ε)

−β(
log

(
log e

ε

))p drr
≤ C

A2(ε)
p−β−γ

2p− γ
.

REMARK 4.6

If p≥ 2, then we can also put β = p− γ > 0 in the last step.
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In quite the same way as we have for β > p,

(4.74) Kc(wε)≥ ωn
A2(ε)

p−β

β − p
.

4.4. Proof of Corollary 2.1
Assume that α �= 1− n/p. If f ∈ Fp,α, then

(4.75) limsup
|x|→0

f(x)|x|p(1−α)
(
log

R

|x|
)2

<∞

and hence for sufficiently small ε, in Bε,

(4.76) f(x)<C|x|−p(1−α)
(
log

R

|x|
)−2

.

Outside Bε, f is a bounded function and hence C can be chosen so that this

inequality holds in Ω. Then the assertion will follow from this inequality.

If f /∈ Fp,α, α �= 1−n/p, and if |x|p(1−α)f(x)
(
log R

|x|
)2

tends to ∞ as |x| → 0,

then we can write f(x) = h(x)
|x|p(1−α)A1(|x|)2 , where h(x) tends to infinity as x tends

to 0. Then from the calculation of Theorem 2.1, for ε > 0 sufficiently small we

get ∫
B1

|vε,β |ph(x)
|x|p(1−α)A1(|x|)2

dx

≥ ωn

∫ ε

0

|vε,β |pA1(r)
−2rn−1−p(1−α) dr min

|x|≤ε
h(x)

(4.77)

≥
∫ ε

0

A1(r)
p−3−βr−1 dr min

|x|≤ε
h(x)

=O
(
log

R

ε

)p−2−β

min
|x|≤ε

h(x).

Since min|x|≤ε h(x) tends to ∞ as ε→ 0, noting (4.59), we conclude that

(4.78)
I(vε,β)

J(vε,β , f)
→ 0 for J(vε,β , f) =

∫
Ω

∣∣vε,β(|x|)∣∣pf(x)dx
as ε→ 0 and the inequality in the assertion 1 (noncritical case) cannot hold for

such f /∈ Fp,α. Since the argument is quite similar, we shall omit the proof in the

critical case. �

5. Proof of Theorem 2.2

Let us recall the theorem.

THEOREM 5.1

Assume that α≥ 1−n/p, 1< p<+∞ and f ∈ Fp,α. Then we have the following.

(1) The problem (2.11) admits a positive weak solution u ∈W 1,p
α,0(Ω) for all

0≤ μ <Λn,p,α, corresponding to the first eigenvalue λ= λ1
μ(f)> 0.



788 Hiroshi Ando and Toshio Horiuchi

(2) As μ increases to Λn,p,α, λ
1
μ(f)→ λ1(f)≥ 0 for all f ∈ Fp,α.

(3) The limit λ1(f)> 0 if f ∈ Fp,α.

(4) If f /∈ Fp,α and if{
lim|x|→0 |x|p−αpf(x)

(
log 1

|x|
)2

=+∞, if α> 1− n
p ,

lim|x|→0 |x|nf(x)
(
log 1

|x|
)p(

log
(
log 1

|x|
))2

=+∞, if α= 1− n
p ,

then the limit λ1(f) = 0.

To prove the Theorem 5.1, we need the following.

LEMMA 5.1

Let (ϕm)m∈N ⊂ Lp(Ω, |x|α), α >−n,1≤ p <∞, be such that, as m→∞,

(i) ϕm ⇀ϕ weakly in Lp(Ω, |x|α),
(ii) ϕm(x)→ ϕ(x) a.e. in Ω.

Then

(5.1) lim
m→∞

(‖ϕm‖pLp(Ω,|x|α) − ‖ϕm −ϕ‖pLp(Ω,|x|α)) = ‖ϕ‖pLp(Ω,|x|α).

For the proof see [18, Theorem 1.9] for example.

LEMMA 5.2

Here

(|∇um|p−2∇um − |∇u|p−2∇u) · ∇(um − u)
(5.2)

≥C(p)

{
|∇(um − u)|p, if p≥ 2,

|∇(um−u)|2
(|∇um|+|∇u|)2−p , if 1< p≤ 2

for some C(p)> 0.

For the proof see [15, Lemma 2.3] for example.

REMARK 5.1

The proof of Theorem 5.1 is organized in the following way. First in the proof of

assertion 1, u will be characterized as a solution of a minimizing problem for the

functional (5.3) subject to the constraint (5.4). Then using Lemmas 5.1 and 5.2,

we show that u is not trivial and satisfies the Euler–Lagrange equation in a weak

sense. The rest of the assertion follows from Corollary 2.1.

Proof of Theorem 5.1

We treat the subcritical case only, because the argument is quite similar in the

critical case. We define the functional

(5.3) Eμ(u) =

∫
Ω

(
|∇u|p − μ

|u|p
|x|p

)
|x|pα dx.
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By the Hardy inequality, one can check that Eμ(·) is continuous, Gateaux differ-

entiable, and coercive on W 1,p
α,0(Ω). Let us set W =W 1,p

α,0(Ω). We minimize this

functional over the manifold

(5.4) Mf =
{
u ∈W

∣∣∣ ∫
Ω

|u(x)|pf(x)dx= 1
}
,

and let λ1
μ > 0 be the infimum. Then we can choose (um)m∈N ⊂Mf a minimizing

sequence of Eμ such that Eμ(um)→ λ1
μ and Eμ|′Mf

(um)→ 0. The coercivity of

Eμ implies that (um)m∈N is a bounded sequence and hence we have for a subse-

quence, as k→∞, umk
⇀u weakly in W . Moreover it follows from Definition 2.4

and Theorem 2.1 that the embedding W → Lp(Ω, f) is not only continuous but

also compact. Here the continuity is clear from the existence of the continuous

inclusions W ⊂ Lp(Ω, |x|αp−p) ⊂ Lp(Ω, f). We also note that by virtue of the

assumption on f , the compactness follows from the standard argument; hence,

we omit the proof. For the detailed proof, see [12, Theorem 1 and the proof of

compactness p. 383] for example (cf. [15, Proposition 4.2], [13, Proposition 1.2]).

Since W is compactly embedded in Lp(Ω, f), it follows that Mf is weakly

closed and hence u ∈Mf . Therefore we have

(5.5)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∇umk

⇀∇u weakly in (Lp(Ω, |x|pα))n,
umk

⇀u weakly in Lp(Ω, |x|pα−p),

umk
→ u strongly in Lp(Ω, |x|pα),

umk
→ u strongly in Lp(Ω, f).

Also umk
in D′(Ω)

(5.6) Lp,αumk
=

μ

|x|p−αp
|umk

|p−2umk
+ λmk

|umk
|p−2umk

f + fmk
,

where fmk
→ 0 in W ′ and λmk

→ ∃λ as mk →∞. By a standard argument we

show that

(5.7) Lp,αu=
μ

|x|p−αp
|u|p−2u+ λ|u|p−2uf, in D′(Ω).

For a sufficiently small ρ > 0, let φ ∈C∞(Ω) such that for Bρ ∩ suppφ= ∅ and

(5.8) φ=

{
0, |x|< ρ,

1, |x|> 2ρ.

Using the test function vmk
= φ(umk

− u) ∈W , we have∫
Ω

(|∇umk
|p−2∇umk

− |∇u|p−2∇u)∇vmk
|x|pα dx

= λmk

∫
Ω

|umk
|p−2umk

vmk
f dx+ μ

∫
Ω

|umk
|p−2umk

vmk
f dx(5.9)

+ 〈fmk
, vmk

〉 −
∫
Ω

|∇u|p−2∇u · ∇vmk
|x|pα dx.

From (5.5) one deduces that vmk
⇀ 0 weakly in W and Lp(Ω, |x|αp−p) and

strongly in Lp(Ω, f) and Lp(Ω). Here we also note that vmk
(k = 1,2, . . .) vanish
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uniformly near the origin. Hence for mk →∞ and by expanding ∇vmk
we get

(5.10) lim
mk→∞

∫
Ω

emk
φ= 0,

where emk
= (|∇umk

|p−2∇umk
− |∇u|p−2∇u)∇(umk

− u).

Fix θ with 0< θ < 1; then∫
Ω

eθmk
=

∫
Ω

eθmk
φ+

∫
Ω

eθmk
(1− φ)

(5.11)

≤
(∫

Ω

emk
φ
)θ(∫

Ω

φ
)1−θ

+
(∫

Ω

emk

)θ(∫
Ω

(1− φ)
)1−θ

.

From (5.10) and (5.11) we get

lim
mk→∞

∫
Ω

eθmk
≤Cθρ

n(1−θ).

Letting ρ tend to zero implies that for any subsequence em′
k
of emk

(5.12) em′
k
→ 0 a.e. in Ω.

We apply Lemma 5.2 to (5.12) and get

(5.13) ∇um′
k
(x)→∇u(x) a.e. x ∈Ω.

For simplicity we retain {umk
} instead of {um′

k
}. Then we apply Lemma 5.1 to

umk
and also to ∇umk

to obtain

λ1
μ = ‖∇(umk

− u)‖pLp(Ω,|x|αp) − μ‖umk
− u‖pLp(Ω,|x|αp−p)

+ ‖∇u‖pLp(Ω,|x|αp) − μ‖u‖pLp(Ω,|x|αp−p) + o(1)(5.14)

≥ (Λn,p,α − μ)‖umk
− u‖pLp(Ω,|x|αp−p) + λ1

μ + o(1),

where o(1) → 0 as mk → ∞. As μ < Λn,p,α we conclude that ‖umk
−

u‖p
Lp(Ω,|x|αp−p)

→ 0 as mk →∞ and also ‖∇(umk
−u)‖pLp(Ω,|x|αp) → 0 as mk →∞

and hence we have Eμ(u) = λ1
μ and λ= λ1

μ. Then by the Euler–Lagrange equa-

tion of Eμ, u is a distribution solution of (5.7) and since u ∈ W , it is a weak

solution to the eigenvalue problem (2.10), corresponding to λ= λ1
μ.

Moreover, if f ∈ Fp,α, by Corollary 2.1, we have as μ→ Λn,p,α

(5.15) λ1
μ(f)→ λ1(f) = inf

u∈W (Ω)\{0}

∫
Ω

(
|∇u|p −Λn,p,α

|u(x)|p
|x|p

)
|x|αp dx∫

Ω
|u(x)|pf(x)dx > 0.

If f /∈ Fp,α and satisfies the condition in (4), then again by Corollary 2.1 we have

λ1(f) = 0. �

6. Proof of Theorem 2.3

Let us recall the eigenvalue problem and the theorem. We consider the problem

defined by

(6.1)

{
Pμu=−div(|x|2−n∇u)− μ u

|x|nA1(|x|)2 = λ|x|au in B1,

u= 0 on ∂B1,
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where a >−n, λ≥ 0 and μ≤ 1/4. Then we have the following.

THEOREM 6.1

Assume that μ= 1/4 and a >−n. Then we have the following.

(1) There is a sequence of eigenvalues {λk} with 0< λk →+∞ as k →∞.

The first eigenvalue λ1 is simple and the corresponding eigenfunction has a con-

stant sign in B1.

(2) By u1 ∈ V = V 1,2
2−n/2,0(B1) we denote the first positive eigenfunction.

Then u1 /∈ L∞(B1).

Before we give a proof of this theorem, we make clear the functional framework.

A Hilbert space V = V 1,2
2−n/2,0(B1) is given as the completion of C∞

0 (B1) with

respect to the norm defined by

(6.2) ‖u‖2
V 1,2
2−n/2,0(B1)

=

∫
B1

|∇u|2|x|2−n dx− 1

4

∫
B1

u2

|x|nA1(|x|)2
dx.

By the aid of the improved weighted Hardy inequality (2.7), we see that

‖ · ‖V 1,2
2−n/2,0(B1)

defines a norm. Then V clearly becomes a Hilbert space with

inner product

(u, v)V =

∫
B1

∇u · ∇v |x|2−n dx− 1

4

∫
B1

uv

|x|nA1(|x|)2
dx,

for any u, v ∈ V . Here we note that L2(B1, |x|a) is a Hilbert space as well (see

(2.1) for the definition). By V ′ and 〈·, ·〉V ′,V we denote the dual of V and the

duality product, respectively. To characterize V we introduce a Hilbert space Ṽ

which is isometric to V .

DEFINITION 6.1

By Ṽ we denote the completion of C∞
0 (B1) with respect to this norm defined by

(6.3) ‖u‖Ṽ =
(∫

B1

|∇u|2|x|2−nA1(|x|)dx
)1/2

for any u ∈C∞
0 (B1).

Then Ṽ clearly becomes a Hilbert space. Now we consider a map T given by

(6.4) T (u) =A1(|x|)−1/2u for any u ∈C∞
0 (B1).

A direct calculation gives us for any u ∈C∞
0 (B1) and v = T (u),

(6.5) P1/4u=−A1(|x|)−1/2 div
(
|x|2−nA1(|x|)∇v

)
.

Then we have following.

LEMMA 6.1

The map T : V → Ṽ is an isometry. Namely, we have for any u ∈ V and v = T (u),

(6.6) ‖u‖V = ‖v‖Ṽ .



792 Hiroshi Ando and Toshio Horiuchi

Proof

First we assume that u ∈ C∞
0 (B1). Then v = T (u) is smooth possibly except

for the origin and v(0) = 0. Multiplying u to the both sides of (6.5) and using

integration by parts, we have

‖u‖2V = 〈P 1
4
u,u〉V ′,V

=
〈
−A1(|x|)−1/2 div

(
|x|2−nA1(|x|)∇v

)
,A1(|x|)1/2v

〉
V ′,V

=

∫
B1

|∇v|2|x|2−nA1(|x|)dx= ‖v‖2
Ṽ
.

Here we used the fact v(0) = 0. Then by the density argument, we see that (6.1)

holds for any u ∈ V . �

We remark that V is not embedded into W 1,2
2−n/2,0(B1). To see this fact let us set

U(x) =A1(|x|)1/2 −A1(1)
1/2 for R> 1.

Then we easily see that U /∈W 1,2
2−n/2,0(B1). On the other hand, we have U ∈ V .

To see this, setting w = T (U) = 1−A1(1)
1/2A1(|x|)−1/2 we show w ∈ Ṽ . In fact

|∇w| ≤Cr−1A1(r)
−3/2 for some positive number C and r = |x|, and hence

‖w‖2
Ṽ
≤C ′

∫ 1

0

r−1A1(r)
−2 dr <+∞,

where C ′ is some positive number. Since w satisfies the boundary condition,

w ∈ Ṽ . Hence we can conclude that U ∈ V from Lemma 6.1.

Proof of Theorem 2.3

If a >−n, then it follows from Theorem 2.2 and its proof that V is compactly

embedded into L2(B1, |x|a). It is easy to see that P1/4 : V → V ′ is a continuous,

linear, and self-adjoint isomorphism. Moreover 〈P1/4u, v〉V ′,V = (u, v)V . Then by

the compactness result mentioned above, the restriction of P−1
1/4 to (L2(B1, |x|a))′

is a compact map on L2(B1, |x|a). Therefore the assertion (1) is now clear from

the classical theory of self-adjoint operators in Hilbert spaces. In particular, there

exist a positive first eigenvalue λ1 and corresponding first eigenfunction u1, which

is unique up to a multiplication by constants. We proceed to proof of assertion (2).

Without a loss of generality we assume that u1 is nonnegative. The second asser-

tion will be proved by constructing an unbounded subsolution to the eigenvalue

problem. Let us set

(6.7) W (x) =C1

(
A1(r)

1/2 −C2r
n+a

)
for r = |x| and R> 1.

Here C1 and C2 are positive numbers, which will be specified later. First we note

that

P 1
4
A1(r)

1/2 = 0.
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Then we have

(6.8) P1/4W (x) =C1C2

(
(n+ a)2 +

1

4
A1(r)

−2
)
ra for r = |x| and R> 1.

For any ε > 0, there is some number C1 > 0 such that we have

(6.9) P1/4W (x)≤ λ1r
aε.

Here we may put C1 = ελ1C
−1
2 ((n+ a)2 + 1/4A1(1)

−2)−1. For any ρ > 0,

W (x)|r=ρ =C1

(
A1(ρ)

1/2 −C2ρ
n+a

)
.

Let us set C2 =C2(ρ) = ρ−n−aA1(ρ)
1/2. Then we have

(6.10) W = 0 on ∂Bρ.

We need the following.

LEMMA 6.2 (WEAK COMPARISON PRINCIPLE)

Let μ satisfy μ≤ 1/4. Let u, v ∈ V such that{
Pμu≥ Pμv in B1,

u≥ v on ∂B1.

Then u≥ v in B1.

LEMMA 6.3

Here u1 > 0 in B1.

Admitting these for the moment we prove the assertion (2). From this lemma,

for some ε > and some ρ > 0 we have

(6.11) P1/4u1 = λ1|x|au1 ≥ λ1|x|aε for x ∈Bρ.

From (6.9) and (6.10) we have

(6.12)

{
P1/4u1 ≥ P1/4W in Bρ,

u1 ≥W = 0 on ∂Bρ.

Then by a weak comparison principle we conclude that

(6.13) u1 ≥W in Bρ .

Since W is unbounded in Bρ, the assertion (2) is proved. �

Proof of Lemma 6.2

Let us set ϕ= u−v and ϕ− =−min(u−v,0). Noting that Pμϕ≥ 0, 0≤ ϕ− ∈ V ,

and ϕ− = 0 on ∂B1, we have

0≤ 〈Pμϕ,ϕ
−〉V ′,V =−

∫
B1

|∇ϕ−|2|x|2−n dx+ μ

∫
B1

(ϕ−)2

|x|nA1(|x|)2
dx.

Therefore by the (improved) Hardy inequality we immediately have ϕ− ≡ 0 in

B1. This proves the assertion. �
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Proof of Lemma 6.3

We shall employ a weak comparison principle and Harnack’s inequality. Let G

be a truncation of the potential given by

G=min
(
1,4−1|x|−nA1(|x|)−2

)
.

Then let ũ be the solution to the boundary problem:

(6.14)

{
−div(|x|2−n∇ũ) =Gu1 in B1,

ũ= 0 on ∂B1.

Since G is bounded, we see that Gu1 ∈ (W 1,2
2−n/2,0(B1))

′. Hence ũ ∈W 1,2
2−n/2,0(B1).

Then by Harnack’s inequality (see, e.g., [11]) we have ũ > 0 in B1. On the other

hand, we see

(6.15)

{
−div(|x|2−n∇ũ) =Gu1 ≤−div(|x|2−n∇u1) in B1,

ũ= u1 = 0 on ∂B1.

Therefore it follows from a weak comparison principle that u1 ≥ ũ > 0. �

7. Further result

When p= 2, we have established in [9] the existence of finitely many sharp miss-

ing terms of the Hardy–Sobolev inequality.

PROPOSITION 7.1

Let n ≥ 2, k ≥ 1, and R ≥ ek supΩ |x|. For any u ∈ W 1,2
0,0 (Ω), there exist sharp

remainder terms such that∫
Ω

|∇u(x)|2 dx ≥
(n− 2

2

)2
∫
Ω

u(x)2

|x|2 dx

+
1

4

∫
Ω

u(x)2

|x|2
[
A1(|x|)−2 +

(
A1(|x|)A2(|x|)

)−2
+ · · ·(7.1)

+
(
A1(|x|)A2(|x|) . . .Ak(|x|)

)−2]
dx,

where

A1(t) := log
R

t
, Ak(t) := logAk−1(t), e1 := e,

ek := eek−1 (t > 0 and k ≥ 2).

This can be improved in the following way.

PROPOSITION 7.2

Let n≥ 2, k ≥ 1, and R≥ ek supΩ |x|.

(1) Subcritical case (α > 1− n/2)
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For any u ∈W 1,2
α,0(Ω), there exist sharp remainder terms such that∫

Ω

|∇u(x)|2|x|2α dx ≥ Λn,2,α

∫
Ω

u(x)2

|x|2 |x|2α dx

+
1

4

∫
Ω

u(x)2

|x|2
[
A1(|x|)−2 +

(
A1(|x|)A2(|x|)

)−2
+ · · ·(7.2)

+
(
A1(|x|)A2(|x|) . . .Ak(|x|)

)−2]|x|2α dx.
(2) Critical case (α= 1− n/2)

For any u ∈W 1,2
α,0(Ω), there exist sharp remainder terms such that∫

Ω

|∇u(x)|2|x|2α dx ≥ 1

4

∫
Ω

u(x)2

|x|2
[
A1(|x|)−2 +

(
A1(|x|)A2(|x|)

)−2
+ · · ·

(7.3)
+
(
A1(|x|) . . .Ak(|x|)

)−2]|x|2α dx.
(3) Supercritical case (α < 1− n/2)

For any u ∈ Ẇ 1,2
α,0(Ω), there exist sharp remainder terms such that∫

Ω

|∇u(x)|2|x|2α dx ≥ Λn,2,α

∫
Ω

u(x)2

|x|2 |x|2α dx

+
1

4

∫
Ω

u(x)2

|x|2
[
A1(|x|)−2 +

(
A1(|x|)A2(|x|)

)−2
+ · · ·(7.4)

+
(
A1(|x|)A2(|x|) . . .Ak(|x|)

)−2]|x|2α dx.
The proof is done in a straightforward way by using similar lemmas in this paper.

This can also be proved as a corollary to the inequality with infinitely many sharp

missing terms which will be treated in an upcoming paper [3]. Therefore let us

omit the proof here.
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