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associated with operators satisfying
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Abstract Let (X,d, u) be a metric measure space, let L be a linear operator that has a
bounded Hoo-functional calculus and satisfies the Davies—Gaffney estimate, let ® be a
concave function on (0, co) of critical lower type pg € (0,1], andlet p(t) =¢t~ 1/~ 1(t71)
for all ¢ € (0,00). In this paper, the authors introduce the generalized VMO space
VMO, 1, (X) associated with L and establish its characterization via the tent space. As
applications, the authors show that (VMO,, 1,(X))* = By, 1 (X), where L* denotes the
adjoint operator of L in L?(X) and Bg, 1+ (X) the Banach completion of the Orlicz—
Hardy space Hg, + (X).
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1. Introduction

John and Nirenberg [24] introduced the space BMO(RR™), which is defined to be
the space of all f € L] (R™) such that

loc

ny = d
| fllBmo @) - Bch |B|/ |f(z) — fB|dx < oo,

where in what follows, fp = 15 BI st 5 f(x)dx. The space BMO(R") was proved to
be the dual of the Hardy space HI(R”) by Fefferman and Stein [14].
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Sarason [28] introduced the space VMO(R™), which is defined to be the space
of all f € BMO(R™) such that

1
ti sup o [ |f) = faldz =0,
c—0pa11 Bcrn |B| /B
T‘BSC

where 7 denotes the radius of the ball B. In order to represent H'!(R") as a dual
space, Coifman and Weiss [8] introduced the space CMO(R™), which is defined
to be the closure of all infinitely differentiable functions with compact support in
the BMO(R™)-norm and was originally denoted by the symbol VMO(R™) in [8],
and they proved that (CMO(R"))* = H!(R"). For more properties of BMO(R"),
VMO(R™), and CMO(R™), we refer the reader to Janson [18] and Bourdaud [5].

Let L be a linear operator in L?(R™) that generates an analytic semigroup
{e~tk }i>0 with kernels satisfying an upper bound of Poisson type. The Hardy
space H} (R™), the BMO space BMO/(R"), and Morrey spaces associated with
L were introduced and studied in [4], [11], [13]. Duong and Yan [12] further proved
that (H}(R™))* = BMOy-(R™), where L* denotes the adjoint operator of L in
L?(R™). Moreover, recently, Deng et al. [9] introduced the space VMO, (R™), the
space of vanishing mean oscillation associated with the operator L, and proved
that (VMO (R"))* = H}.(R™) and also

VMO4 (R") = CMO(R™) = VMO /x (R")

with equivalent norms, where A is the Laplace operator — > 1, 88—;2. Let ® on
(0,00) be a continuous, strictly increasing, subadditive function oflupper type
1 and of critical lower type pgy <1 but near to 1 (see Section 2.4 below for the
definition). Let p(t) =t~1/®~1(¢t71) for all t € (0,00). A typical example of such
Orlicz functions is ®(t) =t for all ¢ € (0,00) and p <1 but near to 1. Jiang and
Yang [22] introduced the VMO-type space VMO,, 1(R™) and proved that the
dual space of VMO, r-(R™) is the space Bg, ,(R™), where Bg ,(R™) denotes the
Banach completion of the Orlicz—Hardy space Hg 1 (R™) in [23].

Let L be a second-order divergence form elliptic operator with complex
bounded measurable coefficients, and let ® be a continuous, strictly increas-
ing, concave function of critical lower-type pg € (0,1]. Jiang and Yang [19]
studied the VMO-type spaces VMO, r,(R") and proved that the dual space
of VMO, r-(R") is the space Bg (R"™), where B (R") denotes the Banach
completion of the Orlicz—Hardy space Hg r,(R™) in [20]. (We remark that the
assumptions on pe in [19], [20] can be relaxed into the same assumptions on pg;
see Remark 2.2(ii) below.) In particular, when ®(¢t) =t for all ¢ € (0,00), then
p(t)=1and (VMO (R"))* = H}.(R™), which was also independently obtained
by Song and Xu [29], where H}.(R™) denotes the Hardy space first introduced
by Hofmann and Mayboroda [16] (see also [17]).

Let (X,d) be a metric space endowed with a doubling measure p, and let
L be a nonnegative self-adjoint operator satisfying Davies—Gaffney estimates.
Hofmann et al. [15] introduced the Hardy space H} (X) associated to L. Jiang and
Yang [21] further introduced the Orlicz-Hardy space Hg (X). Anh [1] studied
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the VMO space VMO (X) associated to L and proved that the dual space of
VMO, (X) is the Hardy space Hj(X). Recently, Duong and Li [10] observed
that the assumption “L is a nonnegative self-adjoint operator” in [15] can be
replaced by a weaker assumption that “L has a bounded H,-functional calculus
on L?(X)” and introduced the Hardy space HY(X) with p € (0,1], which was
further generalized by Anh and Li [2] to the Orlicz-Hardy spaces Hg 1,(X).

From now on, we always assume that L is a linear operator which has a
bounded H,-functional calculus and satisfies Davies—Gaffney estimates and that
® is a continuous, strictly increasing, concave function of critical lower-type pg €
(0,1]. In this paper, we introduce the generalized VMO space VMO, 1,(X) asso-
ciated with L and establish its characterization via the tent space in [21]. Then,
we further prove that (VMO, (X))* = Bg,r+(X), where Bg r+(X) denotes the
Banach completion of the Orlicz—Hardy space Hg +(X) in [2]. When ®(t) =t
for all t € (0,00), we denote VMO, ,(X) simply by VMO, (X). As a special case
of the main results in this paper, we show that (VMO (X))* = H}.(X), which,
when L is nonnegative self-adjoint, was already obtained by Anh [1].

Precisely, the paper is organized as follows. In Section 2, we recall some
known notions and notation concerning metric measure spaces X', then describe
some basic assumptions on the considered operator L and the Orlicz function
® and present some properties of the operator L and the Orlicz function &
considered in this paper.

In Section 3, we first obtain the p-Carleson measure characterization (see
Theorem 3.1 below) of the space BMO, 1(X) in [2] via first establishing a
Calder6n reproducing formula (see Proposition 3.3 below). Differently from the
Calderén reproducing formula in [21, Proposition 4.6], the Calderén reproduc-
ing formula in Proposition 3.3 below holds for all molecules instead of atoms
n [21], which brings us some extra difficulty due to the lack of the support of
molecules. Then we introduce the generalized VMO space VMO, 1,(X) associ-
ated with L, and the tent space T5°, (), and establish some basic properties of
these spaces. In particular, we characterize the space VMO, ,(X) via Tg°, (&)
(see Theorem 3.4 below). To this end, we first need to make clear the dual
relation between Hg r-(X) and BMO, 1,(X) (see Theorem 3.2 below), which is
deduced from a technical result on the optimal representation of finite linear
combinations of molecules (see Theorem 3.1 below). We remark that variants of
Theorems 3.1 and 3.2 below have already been given, respectively, in [2, Theo-
rems 3.15, 3.13, 3.16] without a detailed proof of [2, Theorem 3.15]. We give a
detailed proof of Theorem 3.1 below which induces more accurate indices appear-
ing in Theorems 3.1 and 3.2 below, comparing with [2, Theorems 3.13, 3.15] (see
Remark 3.2 below). Moreover, the proof of Theorem 3.1 below simplifies the
proof of [15, Theorem 5.4] in a subtle way, and the proof of [15, Theorem 5.4]
strongly depends on the support of atoms (see Remark 3.1 below).

In Section 4, we first obtain, in Theorem 4.1 below, the dual space of the
tent space T2 (X) in Definition 3.4 below, from which we further deduce that
(VMOP’L(X))’* = By, 1+ (X) in Theorem 4.2 below, where Bg 1 (X) denotes the
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Banach completion of Hg +(X). In particular, we obtain (VMO (X))* =
Finally we make some conventions on notation. Throughout the whole paper,
we denote by C' a positive constant which is independent of the main parameters,
but it may vary from line to line. The constant with subscripts, such as C1, does
not change in different occurrences. We also use C(7,...) to denote a positive
constant depending on the indicated parameters 7, .... The symbol A < B means
that A<CB. If A< B and B < A, then we write A~ B. We also set N=
{1,2,...} and Z4 =NU{0}. The symbol B(x,r) denotes the ball {y € X : d(z,y) <
r}; moreover, let CB(x,r) = B(z,Cr). For a measurable set E, denote by x g the
characteristic function of E and by EC the complement of E in X.

2. Preliminaries

In this section, we first recall some notions and notation on metric measure spaces
and then describe some basic assumptions on the operator L considered in this
paper and its functional calculus; finally, we also present some basic assumptions
and properties on Orlicz functions.

2.1. Metric measure spaces

Throughout the whole paper, let X be a set, let d be a metric on X, and let u be
a nonnegative Borel regular measure on X. Moreover, assume that there exists a
constant Cy > 1 such that for all x € X and r > 0,

(2.1) Vix,2r) <CiV(x,r) < oo,
where B(z,r)={y € X :d(z,y) <r} and
(2.2) V(z,r) = p(B(z,r)).

Observe that if d is further assumed to be a quasi-metric, then (X,d,u) is
called a space of homogeneous type in the sense of Coifman and Weiss [7] (see
also [8]).

Notice that the doubling property (2.1) implies the following strong homo-
geneity property: there exist some positive constants C' and n, depending on C1,
such that

(2.3) V(x, Ar) <CA"V (z,7)

uniformly for all A>1, x € X, and r > 0. The parameter n measures the dimen-
sion of the space X in some sense. Also, there exist constants C' € (0,00) and
N €[0,n], depending on Cq, such that
d N

(2.4) Vix,r) < C(l + M) Viy,r)

r
uniformly for all z,y € X and r > 0. Indeed, the property (2.4) with N =n
is a simple corollary of the strong homogeneity property (2.3). In the case of
Euclidean spaces, Lie groups of polynomial growth and, more generally, Ahlfors
regular spaces, N can be chosen to be zero.
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In what follows, for any ball B C X', we set
(2.5) U(B)=B and Uj(B)=2'B\2?"'B for jeN.

The following covering lemma established in [1, Lemma 2.1] plays a key role
in the sequel.

LEMMA 2.1

For any € >0, there exists Ny € N, depending on £, such that for all balls B(xp,
r), with tp € X and r >0, there exists a family {B(zp.i,7)}%, of balls such
that

(i) B(zp,lr)cUY, B(zp,r);
(i) N, <Cem;
(iii) SN XBlap.m < C-

Here C is a positive constant independent of xg, r, and L.

2.2. Holomorphic functional calculi
We now recall some basic notions of holomorphic functional calculi introduced
by Mclntosh [25].

Let 0 < v <~ < 7. Define the closed sector S, in the complex plane C by set-
ting S, = {2z € C: |argz| < v} U{0}, and denote by SY its interior. We employ the
following subspaces, Hoo(SY) and ¥(SY), of the space H(SY) of all holomorphic
functions on SY:

Hao(59) = (b€ H(SD): [bll(sp) = sup b(=)] < oo

and

T(SY) = {w € H(SY) : there exist s € (0,00) and C € (0,00) such that

for all z € 8, [(2)| < Clz|*(1 + \Z|2S)—1}.

Given v € (0,7), a closed operator L in L?(IR™) is said to be of type v if o(L) C
Sy, where o(L) denotes its spectra and if, for all v > v, there exists a positive
constant C, such that for all A¢ S., [|(L — M) 7| L2@n)—p2mn) < Cy A1, Let
Z and % be two linear normed spaces, and let T be a continuous linear operator
from 2" to ¢. Here and in what follows, ||T||2 o denotes the operator norm
of T from X to #. Let 0 € (v,7), and let T be the contour {£ =ret . r >0}
parameterized clockwise around S,. Then if L is of type v and ¢ € ¥(SY), the
operator ¥(L) is defined by

1
L)=— [ (L= XI)""9(N\)dx
v =g [(E=AD ey
where the integral is absolutely convergent in £(L?*(R™), L?(R")) (the class of
all bounded linear operators in L?(R™)). By the Cauchy theorem, we know that
(L) is independent of the choices of v and « such that 6 € (v,~). Moreover, if

L is one-to-one and has dense range, and b € Huo(SY), then b(L) is defined by
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setting b(L) = [¢(L)] " (by)(L), where ¢(2) = z(1+ z)2 for all z € S. It was
proved by McIntosh [25] that b(L) is a well-defined linear operator in L?*(R™).
Moreover, the operator L is said to have a bounded H.,-calculus in L*(R™) if, for

all v € (v, m), there exists a positive constant 5“/ such that for all b€ Hy(S9),
b(L) € £(L*(R™), L?(R™)) and

(2.6) ||bHL2(R”)*>L2(R") SC’YHb”LOO(S,?,)'

2.3. Assumptions on the operator L
Throughout the whole paper, we always suppose that the considered operators
L satisfy the following assumptions.

ASSUMPTION (L)
The operator L has a bounded H-calculus in L?(X).

ASSUMPTION (L)»
The semigroup {e~*};~¢ generated by L is analytic on L?(X) and satisfies the

Davies—Gaffney estimate; namely, there exist positive constants Cy and C3 such
that for all closed sets E and F in X, t € (0,00) and f € L*(E),

[dist(E, F)]? }HfH
Cgt L2(E)>

where dist(E, F) = inf,ep yer d(z,y) and the space L?(E) denotes the set of all

p-measurable functions on E such that || f||r2(m) = { [ |f(2)[> du(z)}/? < oo.

(2.7) e~ Flar) < Coexp{—

REMARK 2.1

By the functional calculus of L on L?(X), it is easy to see that if an operator
L satisfies Assumptions (L); and (L)s, the adjoint operator L* also satisfies
Assumptions (L); and (L)s, and, therefore, the following Lemmas 2.2 and 2.3
also hold for L*.

By Assumptions (L); and (L)2, we have the following technical result which was
obtained by Anh and Li [2, Proposition 2.2].

LEMMA 2.2

Let L satisfy Assumptions (L)1 and (L)o. Then for any fized k € Z (resp., j,k €
Zy with j < k), the family {(t2L)ke’t2L}t>0 (resp., {(t2L)7 (I +t?L)"*}y50) of
operators also satisfies the Davies—Gaffney estimate (2.7) with positive constants
Cy, C3 depending only on n and k (resp., n, j, and k).

By (2.6), we have the following useful lemma.

LEMMA 2.3
Let L satisfy Assumptions (L)1 and (L)2. Then for any fized k € N, the operator
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given by setting, for all f € L*>(X) and v € X,

Sif(z)= (//F(x) [(B2L)Fe L f(y))? Sg% %)1/2,

is bounded on L?(X).

2.4. Orlicz functions

Let ® be a positive function on Ry = (0,00). The function ® is said to be of
upper (resp., lower) type p for some p € [0, 00), if there exists a positive constant
C such that for all ¢ € [1,00) (resp., t € (0,1]) and s € (0, c0),

(2.8) D(st) < CtPD(s).

Obviously, if ® is of lower type p for some p € (0,00), then lim; .o, ®(¢) =0. So
for the sake of convenience, if it is necessary, we may assume that ®(0) =0. If ®
is of both upper-type p; and lower-type po, then ® is said to be of type (po,p1).
Let

pe = inf{p € (0,00) : there exists a positive constant C

(2.9)
such that (2.8) holds for all ¢ € [1,00) and s € (0,00) }
and
pe = sup{p € (0,00) : there exists a positive constant C
(2.10)

such that (2.8) holds for all ¢ € (0,1) and s € (0,00)}.

It is easy to see that pg < pj}? for all ®. In what follows, p; and p;f are respectively
called the critical lower-type index and the critical upper-type index of ®.

Throughout the whole paper, we always assume that ® satisfies the following
assumption.

ASSUMPTION (&)
Let ® be a positive, continuous, strictly increasing function on (0,00) which is
of critical lower type pg € (0,1]. Also assume that ¢ is concave.

REMARK 2.2

(i) Recall that the function ® is called of strictly lower-type p if (2.8) holds
with C =1 for all ¢t € (0,1) and s € (0,00). Then the strictly critical lower-type
index pe of ® is defined by

po =sup{p € (0,00) : ®(st) < t?®(s) holds for all ¢t € (0,1) and s € (0,00)}.

Obviously, pe < pg < pg. Moreover, it was proved in [20, Remark 2.1] that ® is
also of strictly lower-type pg. In other words, pg is attainable.

However, p; and p;C may not be attainable. For example, for p € (0,1], if
®(t) =tP for all ¢t € (0,00), then ® satisfies Assumption (®) and pe = pg =
ps =p; for p € [1/2,1], if ®(t) =t?/In(e +t) for all ¢ € (0,00), then ® satisfies



212 Liang, Yang, and Yuan

Assumption (®) and pgy =p= pg, Dy is not attainable but p$ is attainable; for
p € (0,1/2], if ®(¢t) =tPIn(e+¢t) for all t € (0,00), then P satisfies Assumption
(@) and py =p=p}, py is attainable but p is not attainable.

(ii) We observe that, via the Aoki-Rolewicz theorem in [3] and [26], all results
n [2], [19], [20], and [21] are still true if the assumptions on pg are replaced by
the same assumptions on pg .

Notice that if ® satisfies Assumption (), then @(O) = 0. For any positive function
® of critical lower-type pz, if we set ®(t fo (s)/s)ds for t € [0,00), then

by [30, Proposition 3.1], ® is equivalent to <I>, namely, there exists a positive
constant C' such that C~1®(t) < ®(t) < C®(t) for all ¢ € [0,00); moreover, ® is
a positive, strictly increasing, concave, and continuous function of critical lower-
type pé. Notice that all our results of this paper are invariant on equivalent Orlicz
functions. From this, we deduce that all results with ® as in Assumption (®) also
hold for all positive functions ® of the same critical lower-type pg as @.

Let @ satisfy Asbumption ( ). A measurable function f on X is said to be in
the space L*(X) if [, ®(|f(x)|) du(x) < co. Moreover, for any f € L®(X), define

”fHL‘I’(X)_lnf{)‘e( )/X (If()\)l) u(x)él}.

Since @ is strictly increasing, we define the function p(¢) on (0,00) by
t_l

2.11 )= ———
(2.11) p(t) >1(¢1)
for all t € (0,00), where ®~! is the inverse function of ®. Then the types of ® and
p have the following relation. If 0 < pg < p; <1 and ® is an increasing function,
then @ is of type (po,p1) if and only if p is of type (p7* —1,py " —1) (see [30] for
its proof).

3. The space VMO, 1 (X)

In this section, we introduce the generalized vanishing mean oscillation spaces
associated with L. Throughout this section, we always assume that L satisfies
Assumptions (L); and (L)s.

We first recall the notion of tent spaces in [27], which, when X = R", were
first introduced by Coifman, Meyer, and Stein [6].

For any v >0 and z € X, let ', (z) = {(y,t) € X x (0,00) : d(z,y) < vt}
denote the cone of aperture v with vertex x € X. For any closed set F' of X', denote
by R, F the union of all cones with vertices in F, namely, R, F =J,cp T (2);
and for any open set O in X, denote the tent over O by T,(O), which is defined as
T,(0) = [R,(O%)]. It is easy to see that T, (0) = {(z,t) € X x (0,00) : d(z,0%) >
vt}. In what follows, we denote R (F), I'1(z), and T (O) simply by R(F), I'(z),
and 67 respectively.
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For all measurable functions g on X x (0,00) and = € X, define

=[] o or 7t T)
o)) = sup s (s [ [ atwop @09

where the supremum is taken over all balls B containing x. We denote A;(g)
simply by A(g).

Recall that for p € (0,00), the tent space T2 (X) is defined to be the space of
all measurable functions g on X' x (0, 00) such that ||g||7px) = [ A(9)[| e (x) < 0,
which was introduced by Coifman, Meyer, and Stein [6] for X =R™ and by Russ
[27] for a space X of homogeneous type. Let ® satisfy Assumption (®). In what
follows, we denote by T (X') the space of all measurable functions g on X x (0, 00)
such that A(g) € L*(X), and for any g € Tp(X), we define its norm by

oz, = 1Ay =int {3 > 0: [ @(F9E) dua) < 1},

the space TgP(X) is defined to be the space of all measurable functions g on
X x (0, 00) satisfying ||gll7ge (x) = ICp(9) | oo (a) < 00
Recall that a function a on X x (0,00) is called a Tg(X)-atom if

and

(i) there exists a ball B C X such that suppa C E;
(i) [f5la(x,6)]* H2L < [u(B)] " p(u(B))) 2.

Since @ is concave, from Jensen’s inequality and Holder’s inequality we
deduce that for all Ty (X)-atoms a, ||a|lr,x) <1 (see [21] for the details). More-
over, the following atomic decomposition for elements in T (X)) is just [21, The-
orem 3.1].

LEMMA 3.1

Let @ satisfy Assumption (®). Then for any f € To(X), there exist Tep(X)-atoms
{a;}52,1 and {A\;}32, C C such that for almost every (x,t) € X x (0,00),

(31) f(a:,t)zZAjaj(x,t),

and the series converges in Te(X). Moreover, there exists a positive constant C
such that for all f € Te(X),

A({Nja;}32,) = inf{)\ >0: iu(Bj)@(m) < 1}

SO fllre 2y

where Ej appears as the support of a;.

(3.2)
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DEFINITION 3.1

Let L satisfy Assumptions (L); and (L), let @ satisfy Assumption (@), let p be
as in (2.11), let M € N, € € (0,00), and let B be a ball. A function 8 € L*(X)
is called a (®, M, €)-molecule adapted to the ball B if there exists a function
b€ D(LM) such that

(i) B=LM;
(ii) For every k€ {0,1,...,M} and j € Z,, there holds

—je PN ; —1
1B L) bl L2 (v, )y < 157279 [u(27 B)] "2 [p(u(2'B))] ",
where U;(B) for j € Z, is as in (2.5).

Let ¢ = LMy be a function in L?(X), where v € D(LM). Following [15] and [16],
for e >0, M €N, and a fixed zg € X', we introduce the space

(3.3) My (L) ={¢=LMv € L*(X) : ||| pyare 1) < 00},
where
H¢||MgE(L) = SGUZP {QJE[V(ﬂfov23)]1/2P(V($0,2J)) Z ||LkVHL2(Uj(B(zo,1)))}
J + k=0

(see also [2]).

Notice that if ¢ € Mg‘[’e(L) for some € > 0 with norm 1, then ¢ is a (®, M, €) -
molecule adapted to the ball B(xg,1). Conversely, if § is a (®, M, €)-molecule
adapted to any ball, then 3 € My (L).

Let A, denote either (I + t2L)~ or e *'L, and let A} denote either (I +
£20*)7! or e=*L”. For any f € (MA(L*))*, the dual space of MY"(L*), we
claim that (I — A;)M f € L (X) in the sense of distributions. Indeed, for any
ball B, if ¢ € L?(B), then it follows from the Davies—Gaffney estimate (2.7) and
Remark 2.1 that (I — A})Mey € Mé\f’e(L*) for every e > 0. Thus, there exists a
nonnegative constant C(t,rp,dist(B,xo)), depending on ¢, rg, and dist(B, z¢),
such that for all ¥ € L?(B),

(=AM f)| = [(f, (T =AM v)]
S C(tﬂ“]g, diSt(B,l‘o)) ||f||(Mgfe(L*))*

which implies that (I — A;)™ f € L2 (X) in the sense of distributions.

loc

Finally, for any M € N, define
(3.4) My L (X) = N (M3 (L))",

e>n(1/py—1/pd)

¢||L2(B),

where p3 and py are, respectively, as in (2.9) and (2.10).

DEFINITION 3.2
Let L, ®, and p be as in Definition 3.1, and let M > (1/pg —1/2)n/2. A function
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fe MY (X) is said to be in the space BMOML(X) if

—T‘BL M 2 1/2
sup s [ [ 0= @) Pau)] <o,

where the supremum is taken over all balls B of X.

HfHBMOM (x) = Su

Now, let us recall some notions on the Orlicz—Hardy spaces associated with L.
For all f € L?(X) and = € X, define

SLf //Fx |t2 —¢2 Lf( )|2 dﬂ( )dt)l/Q

The Orlicz—Hardy space Hg, 1,(X) is defined to be the completion of the set {f €
L2(X):SLf € L*(X)} with respect to the quasi-norm || f|| g, , (x) = Sl o (x)-

The Orlicz-Hardy space Hg, (X) was introduced and studied in [2] (see
also [21]). If ®(t) =tP for p € (0,1] and all ¢ € (0,00), then the space Hgp 1,(X)
coincides with the Hardy space H7(X), which was introduced and studied by
Duong and Li [10].

Let the space Hy' %1; M(X) denote the space of finite linear combinations of

(®, M, €)-molecules. By [2, Corollary 3.8], we obtain that Hg‘%lney()\’) is dense
in Hg ,(X) (see also [21, Corollary 4.2]).
In what follows, for M € N, let C(M) be the positive constant such that

(3.5) (M) / tQ(MH)e_Qtz%:l.
0

Recall that a variant of the following representation of finite linear combina-
tions of molecules was given by [2, Theorem 3.15] without a detailed proof. The
following Theorem 3.1 gives more accurate ranges of € and M, comparing with

[2, Theorem 3.15].

THEOREM 3.1

Let L, ®, and M be as in Definition 3.2, and let e € (0, M — (1/pg — 1/2)n/2).
Assume that f = Zilio Nia;, where N € N, {a;}N is a family of (®,2M,€) -
molecules, {)\ W, CC, and ZZVO |Ai] < oo. Then there exists a Tepresentation
of f ZZ o wim;, where {m;}2Y, are (®,M,€)r-molecules, {p;}3, C C, and

Zi:0|,u1| S Ol fll g, (x), where C is a positive constant, depending only on
X,L,M,e, and n.

Proof
Throughout this proof, we choose ps € (0,pg) such that M > (1/ps —1/2)n/2
and € € (0, M — (1/pg —1/2)n/2). Therefore, @ is of lower-type pg, and hence p
is of upper-type 1/pp — 1.

Since {a;}N, is a family of (®,2M,¢€)-molecules, by definition there exist
a family {b;}Y, of functions and a family {B;}X of balls such that for every
i€{0,1,...,N}, a; = L?Mb, satisfies Definition 3.1(ii). Fix a point o € X. Let
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C(M)=2C(M)/(M + 1), where C(M) is as in (3.5). Then

~ X a2y o2 dt
C(M)/ t2(M+2)e —=1
0

By this and the L-functional calculus, for f =N \a; € L2(X), we have

f=ctn [erpree g

Ky
:5(M)/K (t2L>M+2 —2t Lfdt—i-é( )/O "'Ef1+f27

where K is a positive constant which is determined later.
Let us start with the term f;. Set p = N‘1||f||H®,L(X). Substituting f =
Zio A;a; into fi, we have

N

Z/\/ tLM—‘rQ —2tL dt_zullel’

where p; = 5(M)u, mi i, = LM fi k,, and
1 % a(M42) 2 92 dt
fir, =0~ )\i/ 2 MF2 26~ a; -
K

Then, obviously, Ei]io lpi| = ZjV:O pi = C(M)||fll g, (x)- We now claim that
for an appropriate choice of Ky and i € {0,1,...,N}, m; k, is a (D, M,€)r-
molecule adapted to the ball B;. Observe that a; = L2™b;, for i € {0,1,...,N}.
By Minkowski’s inequality, for k € {0,1,...,M}, i€ {0,1,...,N}, and j €Z,

1(rB, L) fikc, |l 2, (B2

_ e o2 dt
<N p M| (2 L)>MAD 2L (03 YRy | L2 0, (1)) — ”

o0 [e%s}
SRS
1=0 Y K1

« H (t2L)2(M+1)€—2t2L( dt

Xvi(B)[(rE, L)"bi]) ||L2(Uj(Bi)) T

=p N D H
1=0

where Uj(B;) for [ € Z, is as in (2.5). When [ < j — 1, by Lemma 2.2, u(27B;) <
2700 (21 By), p(u(27 By)) < 2n0=D/Pe=1) p(14(2! B;)), and Definition 3.1(ii), we
conclude that

o t o\ etn(1/Pe—1/2) dt
ng/ t 2MH(r%iL)’“billewl(Bn)(-i) T

Kl QJTBi t

0 _ t e+n(1/ps—1/2) (dt
< {=2M AM g—ler) 9l B y=1/2 9B, 1( _ ) at
N/K1 g, 27 (w2 B:)] T2 [p(u(2'By))] g, -
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S (u(@ B [p(u(@ B))]

o 9-U(e+(1/Pa—1/2)n/2) (@)Q[M*E/Hl/ﬁrl/z)n/z]
K, '

When [ € {j —1,4,5+ 1}, from Lemma 2.2 and Definition 3.1(ii), it follows that

> —2M 2 k dt
Hs | s L) bl e, sy +
K

<RI (2 B T2 [p(n(2Bi))] (;?1 >2M.

When [ > j+1, by Lemma 2.2, 1(2/B;) < u(2'B;), p(u(27B;)) < p(u(2'B;)), and
Definition 3.1(ii), we obtain

HIS/ t72MH(T2BiL)kbi||L2(Uz(Bi))(

t )6 dt
K

2l’I‘Bi t

. . . _ \2M —e¢
< B o B)) e (1)
1
Combining these estimates, by choosing K > max{rg,,...,"5y }, we further con-
clude that there exists a positive constant C, independent of 7, such that

(7% L) firey L2y 8oy < CrEt 279 (29 By) =2 [p(u(2 By)) ]~
B P, \ 2M—e/2(1/pa—1/2)n/2]
X p 1|/\i|(E> :

1

Then, by choosing

)

~ 1/(2[M—e/2—(1/pe—1/2)n/2])
K; = max {rBi [C’u max \)\l@ }
0<i<N 0<i<N
we see that for ¢ € {0,1,...,N}, m; i, is a (®, M, €)-molecule adapted to the
ball B;, which shows the claim.
We now consider the term f. Set p= N"Y|f|lg, ,(x)- Substituting f =

Zivzo A;a; into fa, we have
~ N Ky ) , dt N
fo=C(M) Z by / (PL)YMHle~t'L(2[e~t"Ly)) =- Zuimi,Kl,
i=0 70 i=0

where p; = C(M)p, m; i, = LM f; i, , and

K 2 2y dt
fi,Kl = ,leil)\i‘/ t2<M+1)L€7t L(t2L67t Lai) 7
0
Then, obviously, Zfio || = Zi]\io i = C(M)||fll g, (x)- We now claim that
for K7 as above and i € {0,1,..., N}, m; g, is a (®, M, €)-molecule adapted to
the ball 250 B;, where Ky € (0,00) is determined later. To show the claim, for
i€{0,1,...,N} and j € Zy, set Q; g, =2/ Ko+2p,\20+Ko=2 B, "and write

dt

K
fi7K1 _ ,u_l)\i/o t2(M+1)L€_t2L([t2L6_t2Lai]XQj,KO) ?
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K 2 2
+ ,Uil)\i/ 2(M+1) —t L([tZLeft Lai]XQg KO) -
0 :

= Gi Ky Ko T ik K-
Then, by Minkowski’s inequality, for k € {0,1,...,M}, ¢ € {0,1,...,N}, and
j € Z+7

122501, L)* g; 1, .k, 22U, 250 B,))

K1, ¢ \2M—2k
-1 2M 2k K
< p A H/ (=) ome
0 T'B;

dt

2 2
x (2L)F e L ([ Le~t Lai]xgj’Ko) "

L2(U;(2%0 By))

o K _
- £ \2M—2k 2 dt
Sp 1|)‘Z‘|Z:/O (E) 250 Ixy om0 oyt Le ™ Faill L2, ) T
1=0 i

EH71|>\1'|ZH1~
1=0

When | < j — 2, from Lemma 2.2, pu(2/+50B;) < 2n0-0y2H+Kop))
p(u(2KoBy)) < 2nli=0(/Pe=1) 51y (2450 By)) and Definition 3.1(ii), it follows
that

Ky — S —
t\ZM=2k o t etn(1/pe—1/2) dt
s [ () Pl (s ) T

K1 _
t 2M —2k _ . B 1
S[() T R B 2B

t e+n(1/pe—1/2) dt
x <2j+KOTBi) ?
< (2K0’FBI.)2M2_j6[,u(2j+KoB¢)}_1/2 [p(u(2j+KOBi))] 712—5[64-(1/5@—1/2)"/2]
« 2—2K0[M—k+e+(1/5q>—1/2)n/2]KfM—2k+e+n(1/ﬁq>—1/2)

2M+2k—e—n(1/pp—1/2
XTBi+ e—n(1l/pe /)'

When ! € {j —2,...,j+2}, by Lemma 2.2 and Definition 3.1(ii), we see that

K _
t \2M—2k dt
H; < /o (g) 2% laill 2w, 20 B,)) T

< (250rp, M2 I (27 Ko By 2
> [P(M(QjJrKO Bi))} —12—2K0(M—k+e/2)K12M—2kT2BJE/I+2k.

When [ > j + 2, from Lemma 2.2, u(2/B;) < u(2'B;), p(u(2t5eBy)) <
p(u(2+ %0 B;)), and Definition 3.1(ii), we infer that

K _
t\2M-2k n e dt
HlS/O (g) 2 O”aiHLZ(UZ(ZKoB,;))(ZlTOTBi) 7
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K B
t 2M -2k B . B »
S L) e R 6 2 25 )

t edt
x <2l+K0’I"Bi> ?

< (2507 p, ) 2M 27 (20 By T2 [p(u(2 0 By)) |

% 272K0(Mkare)K121VI—2k+eTZBM+2k—e.
i

12—l€

Then we estimate h; g, k,. By Minkowski’s inequality and Definition 3.1(ii),
for ke{0,1,...,M},i€{0,1,...,N}, and j € Z, we conclude that

12501, L) hi i, 160 |l 121, (250 By

K1, 4 \2M—2k
-1 2M 2k K,
<t ()T
0 T'B;

2 2 dt
% (t2L)k+1€7t L([tQLeft LG‘@‘}XQG ) 7

L2(U; (250 By))

« 3
B 1ot \2M—2k t etn(l/pe—1/2)
< ()T P ()
0o\ 2o,
dt
t
S @0 M2 (@O B (w20 BY) |

% 9—2Ko[M—k+e+(1/Po—1/2)n/2]

42
X Ht2L€ ¢ Lai||L2(X)

2M —2 1/pe—1/2) 2M+2k—e—n(1/ps—1/2
x K k+et+n(l/ps /)TBi +2k—e—n(1/pa /)'

Combining these estimates, by choosing K7 > max{rg,,...,rsy }, we further
see that

122500, L) fi 1, | 2w, (250 B1)
S (250rg, ) 2M 277 (2750 By) | T2 [p(u(27TR0 By)) | -
% 272K0(M7k+6/2)K12M_2k+6+(1/5¢_1/2)n/27’2312/[+2k.

Then, by choosing

ln(KlefszreHl/ﬁ@71/2)n/2maXOSiSN{T%J:/H%})

2 2(M — k + ¢/2) ’

Ky= max (
0<k<M

we conclude that for ¢ € {0,1,...,N}, m; g, is a (®, M, ¢€)-molecule adapted
to the ball 250 B;, which shows the claim and hence completes the proof of
Theorem 3.1. (]

REMARK 3.1

We point out that the proof of Theorem 3.1 also works for [15, Theorem 5.4].
Moreover, due to the lack of the support of molecules, we show that m; g, for
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i€{l,...,N} is a (&, M, e)-molecule adapted to the ball 250 B,  instead of
B; as in the proof of [15, Theorem 5.4], which also simplifies the proof of [15,
Theorem 5.4].

By Theorem 3.1, with the argument the same as for the proofs of [2, Theo-
rems 3.13, 3.16], we obtain the following dual theorem. We omit the details.

THEOREM 3.2
Let L, @, p, and M be as in Definition 3.2. Then for any function f € BMOA{L(X),
the linear functional €, defined by €(g) = (f,g) initially on Hgl%lnELQ*M( ) with
M>M and € € (O,Mf (1/pg —1/2)n/2), has a unique extension to He - (X)
and, moreover, |[l|| s, .. (x))- < C'Hf”BMO,’X]L(X) for some nonnegative constant
C independent of f.

Conversely, for any £ € (He 1+ (X))*, there exists f € BMO;VfL(X) such that

Ug) = (f.9) for all g € Hy'5:" (X) and || fllmyon, () < Cllel sty o (a0y)- > where
C is a nonnegative constant independent of £.

REMARK 3.2

(i) Theorem 3.1 is just [2, Theorems 3.15] but with the ranges of indices M
and e replaced, respectively, by M > (1/pg —1/2)n/2 and e € (0, M — (1/pg —
1/2)n/2).

(ii) By Theorem 3.2, we see that for all M > (1/pg —1/2)n/2, the spaces
BMO% 1,(X) for different M coincide with equivalent norms; thus, in what follows,
we denote BMOJ', (X) simply by BMO,, 1(X).

The following two propositions are just [2, Propositions 3.11, 3.12] (see also [21,
Propositions 4.4, 4.5]).

PROPOSITION 3.1
Let L, ®, p, and M be as in Definition 3.2. Then f € BMO, 1,(X) if and only if
fe Mg{L(X) and

SUp ———~ /‘ (I +r30) "M f(x) | dpu(
Bcx p(p

Moreover, the quantzty appearing in the left-hand side of the above formula is
equivalent to HfHBMoé\{L(X).

1/2
} < 0.

PROPOSITION 3.2

Let L, ®, p, and M be as in Definition 3.2. Then there exists a positive constant
C such that for all f € BMO,, 1(X),

1 1 e du(z) dtq1/2
30 gy Ly | fy e @R RS < Ol
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The following Proposition 3.3 and Lemma 3.2 are kinds of Calderén reproducing
formulae.

PROPOSITION 3.3

Let L, ®, p, and M be as in Definition 3.2, let €,e; € (0,00), and let M >
M+e +n/4+(1/pg —1)N/2, where N is as in (2.4). Fiz o € X. Assume that
fe MY L(X) satisfies

_ “1\M £()]2
(3.6) /X (I -+ L))" fz)] du(z) < oc.

1+ [d(z, zg)] e t2N(1/pe —1)

Then for all (D, M, €)=-molecules «,
(f,a) =C(M) / (tQL)Me_t2Lf(x)t2L*e—t2L*a(m)
X x(0,00)

where C(M) is as in (3.5).

dp(x)dt
t )

Proof
For R >0 >0, write

) [ [ @M ePTe T o)

t
- <f,C(M) /6R(t2L*)M+1egtzL*a %>

<fva><f,OéC(M)/R(t2L*)M+1 —242L* dt>

s t

Since a is a (@, M €) p--molecule, by Definition 3.1, there exists b € L*(X) such
that o = (L*)™b. Notice that

f=U-T+L)y '+ +L) My

:i}( ) (I+L)” ]M—k(I+L)—’ff:]§<]\;) [I—(IT+L) " YML7*f,

where ( ) denotes the binomial coefficient, which, together with the H..-func-
tional calculus, further implies that

<f’o‘*C(M) /{f(t% JM+1 =261 cit>

_ i @4) <[1 — (I + L) M, LR — C(M)

k=0

R - m
% / (tZL*)MJrlethZL (L*)Mfkb%>
5
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— i (J‘:) <[1 —(I+L)"YMf o)

5 _
x/ (tzL*)Mﬂe—zt?L*(L*)M—kb%>
0

+§f(f><u—u+L>ﬂMﬁcw@

% /oo(t2L*)M+1€72t2L* (L*)Mfkb £>
R t

M
= Z ( ) (H+J).
For J, by (3.6) and Hoélder’s inequality, we conclude that

HS{A?IU—U+M*Wﬂ@P )"

1+ [d(z, xo)]n+e1+2N(1/p;—l)

oo _ . 2
% {/ ’/ (tQL*)M+M—k+16—2t2L b(x)% dt‘
x!JR t2(M—k)+1

_ 1/2
X (14 [d(w, @)+ 2N /D) () |

< /OoH(t2L*)M+1\7—k+1e—2t2L*b(l+ [d(.7x0)]n+51+2]\7(1/p;—1 )1/2||L2(X)
R

1
>< - =
£2(M —k)+1
Let By = B(xo,1). Notice that there exist N, d € N such that for all j € N, j > ]\77
d
c U Uiwi(B)
i=—d
where B is the ball adapted to o and U;(B) for j € Z4 is as in (2.5). By choosing
jo > N, we conclude that

|J|§/ H(tZL*)MJerkJrlethzL*b
R

1
||L2(2JOBo) $2(M—k)+1

+ Z / t2L* M+M— k+1 —2t2 L*b

Jj=jo+1

x (14 [d(:,xp)|Ter 2N (/Pa =) )1/2

1

nter+2N(1/pgy—1))1/2
X (L4 [d(-, zo)) HerF2NW/pa =) EY) (U3 (Bo)) g2(M—k)+1 “

EJ1+J2.



Vanishing mean oscillation spaces associated with operators 223

For all€> 0, let Cy = 2(n+a+2NQ/Pe =1)50/2||p|| 12 ) and Ry = (Cl/g)l/@(ﬁfk));
then for all R > Ry, we obtain
dt

bl S

3, < 9io/2nter+2N(1/pg~1) /°° K
~ £2(M—k

Letting Cy = rg/p‘gfl/Z)"/QHM and Ry = (Cy /€)Y @AM =k) e then know that
for all R > Ry,

Jo < Z o(n+e1+2N(1/pg—1))5/2
j=jo+1

d oo
2 s \MA+M—k+1 —2¢2L* 1
y Zd{/R LM ()

2 MA+M—k+1 —2t2L* (. _ 1 _
+/R ICE°L7) e el win ) Saa .

where Uj1;(B) = 2/++1 B\2/+1~1 B. Then, since

s ~ 27 1
27 x\M+M—k+1_—2t°L _
/R 1L € (XU.7'+7:(B)b)HLQ(UJ’*"(B))tz(’z\ifk)ﬂ

1 - )
< - - < 9—(n+e1+2N(1/pg —1))j/2%
~ R2AM-k) 1ol 225, .y 52 ' ’ &
o " Fv e vl
and fR H(tQL )M+M k+1o—2t°L (X([?j+i(B~))Gb)||L2(U7'+i(B))1/(t2(M k)+1)dt sat-
isfies the same estimate,N we see that Jo <€. Thus, limg_.o, J=0.
To consider H, let f=[I — (I + L)~}]™ f. Then

~ [ 2 dt
Shrir = <f,/0 (2L*)M+12°L (L*)Mfkb_>

t
Ve (2 om0 _appe Mk 4t
{F [ ey et iwy )
_ 7%<f7’ (52L*)]\/167262L* (L*)wakb>
My [° 9 e\ M —202L* ;o\ M—k; 4t
+7<f,/0(tL) e 2L (L% b?>.
Thus,
1 ~ 27 v M
Sur=—2(f, (62L%)Mem 2 (L) M—R) + - M
- —M! T oS2 7R\ M—t+1,—26%L" (7 x\M—k M!

=1
For all £ € {1,..., M}, from Hoélder’s inequality, we infer that

|<ﬁ ( 2L*)M—€+1e—262L* (L*)M—kb>|
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< {/X |(I—(I+L)"HMf(x)? du(:z:)}l/Q

- 1+ [d(z, z) e 2N (1 /Py —1)

« {/X|(§2L*)Mf€+167262L*(L*)Mfkb(x)ﬁ

_ 1/2
x (14 [d(a, zo)] " 2N /e =D) () |

<2[n+61+2N(1/p;—1)]j0/2H(52L*)M—£+1€—252L* (L*)M_kb||L2(210BO)
+ Z 9[n+e1+2N(1/pg—1)]5/2
=go+1
2 7\ M—b+1,—25%L" \M—Fk
x {[[(8*L7) e Oagzess v D 0 2w 0y
2 M e+l —2§2L M k
+[|(6*L (X(Uii;iféflUi(B))“(L b)Hm(U (BU))}
By the L2-functional calculus, we see that lims_,o ((52L*)M_€+1e_2‘52y (L*)M_kb =
0 in L2(X), and by Lemma 2.2, we know that

oo
Z glntei+2N(1/pg —1)]5/2
Jj=jo+1
% {H (62 )M—t+1 —2(52L*( Ugijj;flU,i(B)(L*)M_kb)HLz 0. oy

+ H(52L*)JV[7€+167252L* (X(U3+d+1 U‘(B))G(L*)Mfkb) HL2(UJ'(B0))}

i=j—d—1

oo

g Z 2M+€1+2N(1/p;_1)}j/2[”(L*)M_kb”L%Uij‘.H; Ui(BY)
i=jot+1 o
+67(217’3)/5“(L*)Mfkb”]ﬁ(x)]

<z
From
~ g 27 % >d dt ~ 27 % N
Si=(F, [ (L) B (@)Y = (e~ (LT
0
and

27 * V3
;@%H( R (LM R 2 ga) =0,

it follows that lims_qg H = 0, which completes the proof of Proposition 3.3. O

Instead of [21, Proposition 4.6] by Proposition 3.3 here, repeating the proof of
[21, Corollary 4.3], we obtain the following Lemma 3.2. The details are omitted.

LEMMA 3.2
Let L, ®, p, and M be as in Definition 3.2, and let e € (0,00). If f € BMO,, ,(X),
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then for any (®, M, e€)+-molecule c, there holds

2 \M =1L (N2 r o=l g5 &) At
ey=con [ [ Vet @PTe T TR

Recall that a measure du on X x (0,00) is called a p-Carleson measure if

_ 1 1/2
b= oo (g |y 1)<

where the supremum is taken over all balls B of X.

Using Theorem 3.2 and Proposition 3.2, similarly to the proof of [21, Theo-
rem 4.2], we obtain the following p-Carleson measure characterization of
BMO,, 1,(X).

THEOREM 3.3
Let L, ®, p, and M be as in Definition 3.2. Fix xq € X. Then the following are
equivalent:

(i) feBMO, (X);
(i) fe ./\/lé/{L (X) satisfies
/ (I - (I +L) )M f(a)?
x 1+ [d(z, zo)|ter P2V /Pe —1)

for some €, € (0,00), and duy is a p-Carleson measure, where dys is defined by
dpig(z,t) = |(BPL)M e L f ()2 B89 for all (2,1) € X % (0,00).

du(z) < 0o

Moreover, ||dugl|, is equivalent to | flBmo, . (x)-

Proof
It follows from Proposition 3.1 and the proof of Lemma 3.2 that (i) implies (ii).
To show that (ii) implies (i), let M > M + ¢ +n/4+ (1/pp —1)N/2. From
Proposition 3.3, we deduce that
4 dt
M) / / (PL)Ve T fla)PLreP T g(z) DA
X% (0,00) t

where ¢ is any finite combination of (®, M, ¢)-molecules. Then t2L*e~*"L"g e
Ty(X). By Lemma 3.1, there exist {);}32; C C and T (X)-atoms {a;}52, sup-
ported in {B }32, such that (3.1) and (3.2) hold. This, together with Fatou’s
lemma and Holder’s inequality, implies that

2 \M 2L (N[ r oL o( gy &) At
ol =lean [[ @y rtp@pLe e HEE

SZIM [ [ enye e saten 00
SZ|)\J'|H%‘||T§(X)<//B|(t2L) ~L g ()2 (t)dt)l/z
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427 %
S Z:IA ldusllp S NELYM e gl o lldiglly ~ gl g, - ) b -

By this and Theorem 3.2, we conclude that f € (Hg, r+(X))* = BMO, (&),
which completes the proof of Theorem 3.3. O

Now we introduce the space VMO, 1,(X).

DEFINITION 3.3

Let L, ®, p, and M be as in Definition 3.2. An element f € BMO,, (X) is said to
be in the space VMOJXL (X) if it satisfies the limiting conditions v1(f) =v2(f) =
~v3(f) =0, where 2o € X is a fixed point, ¢ € (0,00),

(/) =l sup / 0= e f@) 2 an(x)]

c—0p. rp<c p

()= lim o s L= R )]

€= B ’I‘B>Cp

and

v3(f) = lim sup

o 1/2
5 0= )R duta)]
¢ BB (B(ro.))® PIH

For any f € VMOP’L(X), define ||f\\VMO£7L(X) = [|fllBmo, 1 (x)-

DEFINITION 3.4

Let @ satisfy Assumption (@), and let p be as in (2.11). The space Tg°, (&) is
defined to be the space of all f € Tg°(X) satistying mi (f) = n2(f) =ns3(f) = 0 with
the same norm as the space Tg’ (X) where z9 € X is a fixed point, ¢ € (0,00),

5 || o B

L )dt}1/2

m(f)=lm sup

c=0pBrg<c P(

n2(f) = lim  sup / |fy
CHOOBTB>cp(/1'

)

and

m(f)= lm  sup / e
€7 B:BC[B(z0,c)]® p(,LL

)dt} 1/2
It is easy to see that TgS (X) is a closed linear subspace of Tg®(X).

Further, denote by 75° (X) the space of all f € Tg*(X) with m(f) =0, and
denote by T22,b(X) the space of all f € T3(X) with bounded support. Obviously,
we have Tg)b(X) C T35, (X) CT5° (X). Finally, denote by Tg% (&) the closure of
T3, (X) in the space Tg2 (X).
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LEMMA 3.3
Let L and @ be as in Definition 3.1, and let TgS (X) and Tg%(X) be defined as
above. Then Tg°,(X) and TS (X) coincide with equivalent norms.

Proof
Since T3, (X) C Tg2, (X) and TS, (X) is a closed linear subspace of Tg®(X), we
conclude that Tgo(X) = T3, (X) C T2, (X).

Conversely, for any f € Tg°, (X), by the definition of Tg° (X), for any € >0,
there exist positive constants ay, bo, and cp such that

du(
(3.7) sup // |f(y, 1) —2— Hy ) <,
Birp<ay (B p(u

1 ) dt
3.8 sup / fly <€,
( ) B:rp>bg /'L(B p(p’ |
and

dt
(39) owp s [ [ e
B:BC[B(z0,c0)]® N(

Let Ko = max{ao ,bo,co}, and for all (y,t) € X x (0,00), let

9, 1) = F(U, )X B(o,2K0) x (2K0)~1,2K0) (Y5 T)-
Obviously, g € T22_’b(X ). To complete the proof of Lemma 3.3, we need to show
that
If— 9”%5(;\6) Se

We consider the following three cases for all balls B in (3.7), (3.8), and (3.9).
Case (i): rp <ag or rp > by. In this case, from (3.7) and (3.8), we deduce
that

du(
I = 0l < BB /’|f pjz #® <oe

Case (ii): ap <rp <bp and B C [B(xo,co)]c. In this case, by (3.9), we con-
clude that

) dt
I =8l < ~gmomE | [ <2
Case (iii): ap <rp <bg and BN B(xo,co) # (). In this case, we have
du(y)dt _ [CKO™ du(y) dt
1100 - gop 0% < [ ] jrpp R
0 B

(2Ko) ™" d
p(y) dt
<[ [ R,
0 B(IB,Qkao)

where xp is the center of B and k is the smallest integer such that 2Fag >
rp. Then, by Lemma 2.1, we pick a family of balls with the same radius ag,
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{B(xp,i,a0)} Yk, such that B(xp,2%ag) C Ui\]:kl B(zpi,a0), Np < 2" and
Zivzkl XB(zp.5,a0) < 1- Therefore, combining the fact that p is an increasing func-
tion, we obtain

[ s [ o
, kB(ﬂﬁB“ao ’ t

= Z//B(wa ,,ao> el dﬂ(’f)d

<ez,u (3, z,ao [p(M(B(xB,ivao)))]z

E N sz,ao

< eu<B>[p(u<B>)]2,

which completes the proof of Lemma 3.3. |

DEFINITION 3.5

Let L, ®, p, and M be as in Definition 3.2. The space \//i\\/I/O%L(X) is defined to
be the space of all elements f € BMOM 1.(X) that satisfy the limiting conditions
N1(f) =72(f) =73(f) =0, where c € ( 0 ,00),

~ 1/2
n(f)= gﬂOB;Ech /ﬁ — [+ 3L M f(2)]” dul } :
o 1 1 ; 1/2
V1(f):clglélw_:;:s?ipzc,O(M(B)) [M(B)/BW B UM @) di } ’

and

~ 1
Y (f) = lim sup
€7 B:BC[B(0,¢)]® p(u(B))

/| — [+ 3L M f(2)] du

}1/2.

PROPOSITION 3.4
Let L, ®, p, and M be as in Definition 3.2. Then f € VMO]XL(X) if and only if

f e VMOM, (¥).

Proof

Suppose that f € VMO%L(X). To see f € VMO%L(X), it suffices to show that
o LyM 2 —k

310) s | [ 10— M @ )] Y2t

k=0
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where

1
ox(f, B) = sup
{B/C2+1 Bir g el2-1rp,rp)y P((B))[1(B)]1/?

<[ 0=+ @) duto)

(3.11)
1/2
] .

Indeed, since f € VMO%L(X), by Definition 3.5 and Proposition 3.1, we
conclude that §x(f, B) S || fllemo, . (x) and for all k € Z,

lim sup 6x(f,B)= lim sup 0x(f,B)= lim sup or(f,B)=
¢~V Birp<c ¢ Birg>c ci}ooB:BC[B(mO,c)]G

Then by the dominated convergence theorem for series, we have

=lim su e~TBL z)? T
W) = lim s 1/2/| M f(@)]2 duz)

c=0Birg<c P(I

1/2

Similarly we see that v2(f) =3(f) =0, and hence f € VMO, (X).
Let us now prove (3.10). Write

(312)  f= [ +rpL )M+ {I = = +r5L Y} = fi+ fo.
By Lemma 2.2, we have

2
(I — e " BIYM f1[| p2p)

< Z (1 e "L ™M (fixvs) s
(3.13) N Z |f1XUk(B)HL2(X)
So(u(B) [u(B)]'/? Y e 255, (f, B)
k=0

Sp(u(B) (B2 27 6(f, B),
k=0
where Ug(B) for all k € Z, is as in (2.5), ¢ is a positive constant, and the
third inequality follows from Lemma 2.1 that there exists a collection, {By 1,
By, 2, .., Bi.N, }, of balls such that each ball By, ; is of radius rg, B(z s, 2k 1y C
U B;”,and Nk<2nk
To estimate the remaining term, by the formula

M

(3.14) I—(I—[I+r3L HM = Z j!(MLij)!(r%L)_j(I —[[+r30]~HM

j=1
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(which relies on the fact that (I — (I +72L)"Y)(r?L)~! = (I +72L)~! for all
€ (0,00)) and Minkowski’s inequality, we obtain

(I — e " BYM fo| p2 ()

1/2

NE

S

W.
E

/ S5 ||e—(”3+51+ +52)Lf1||L2(B)d81"'de

. TE s a1 2
{[Ja-ersmpsi[- [T e tas] nw)| duto)}
1 /B o "B
/0 o Th Th
/ /‘ SL 55
0 o Th Th

> k 2 2 2 2
% Ze 0(2 ’I‘B) /(ZTB+SI++SJ)||f1XUk(B)||L2(X) d81 .. dsj

A

<
Il
—
.
I
<}

E

(3.15)

A

<~
Il
_
-
Il
=

S p(u(B)[(B)) /2 e (€2/Makng, (1, B)
k=0

So(u(B))[w(B)Y2> 27 6(f, B),

where c is a positive constant and in the penultimate inequality, we used the fact

that [ 7+ [, 7 (s1/r%) -+ (sj/r%)dsy - ds; ~ 1. Combining the estimates (3.13)
and (3.15), we obtain (3.10), which further implies that VMO%L(X) C
VMO, (X).

By borrowing some ideas from the proof of [16, Lemma 8.1], similarly to the

proof above, we conclude that VMO%L(X) C VMOJ, (X) and the details are
omitted. This finishes the proof of Proposition 3.4. O

We now characterize the space VMOLV{L(X) via the tent space.

THEOREM 3.4
Let L, ®, and p be as in Definition 3.1, let M, My, € N, and let M1 > M >
(1/pg —1/2)n/2. Then the following are equivalent:

(i) feVMOy,(X);

(i) fe MY (X) and (PL)Mie "L f € T (X).

Moreover, ||(t2L)M1€7t2LfHTgQ(X) is equivalent to | fl|smo, , (x)-
Proof

We first show that (i) implies (ii). Let f € VMO%L(X). By Proposition 3.2, we
know that (t2L)Mie=""Lf € T3°(X). To see that (t2L)Mie~t'Lf ¢ 15, (X), we
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claim that it suffices to show that for all balls B,

/
L LD e wp P
Sirk&c(ﬁB
k=0

where 0 (f, B) is as in (3.11). Indeed, since f € VMO%L(X) 271\7[62&(2\?), we
conclude that for each k € N, 0x(f, B) < || fllBmo, . (x) and

lim sup Ox(f,B)= lim sup 0x(f,B)

c=0pB.rp<c —X Birg>c

(3.16)

= lim sup dk(f,B)=0.
¢7%° B:BC[B(z0,c)]®

Then from the dominated convergence theorem for series, we infer that

1 27\ My —t? o du(x)dty1/2
m(f) =lim sup (B (B [/§|(t L)Mie Lf(x)‘ f}

c=0pBirg<c p(U

22 k hm Sup 5k(f, )=
Similarly we see that 72(f) =n3(f) =0, and hence (£2L)M1e=t"Lf ¢ 15%,(X).

Let us now prove (3.16). Write f = f1 + f2 as in (3.12). Then by Lemmas 2.2
and 2.3, similarly to the estimate of (3.13), we have

{/ él(t2L)Mle*t2Lfl(a;)|2 M}”Q
SZ // (t2L)M1e —fL (Fixon m) (@ )|2¢}1/2
k=0

7 [P 267 )2\ dt11/2
(3.17) suf1||L2<4B>+Z[/O exp{ - BB, ol
k=3

12 t

o~y [P 2 qntlde
S S e T
I f1llz2am) ]; @2 ; I fixv.s)llL2cx)

Sp(u(B)) (B2 27 6k (f, B),

k=0

where Uy (B) for all k€ Z,; is as in (2.5) and ¢ is a positive constant. Apply-
ing (3.14), Lemma 2.2, and M; > M to f,, we see that

{/ 5 |(t2L)Mle—t2Lf2(x)‘2 M}uz

: i {[] 1enecrapnypwp HEE)
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{//B{é]ﬂ“t?[,)]\/hjetzL(flek(B))(x”z w}lh
3.18) < i{i[/f (%)ﬁ %}1/2Hf1”w43)
/OrB exp{7(2 t2) }dt}l/QH.leUk(B)HLz(X)}

n+1 dt

& B t2
Sfilleeas) + {/ [7} } I fixv.e)llL2x
(4B) I;) 0 (2%rp)? L x(B) (&)

+
1

Sp(u(B) (B2 276,(f, B).

k=0
The estimates (3.17) and (3.18) imply (3.16), which completes the proof that
(i) implies (ii).
Conversely, let f € ./\/lgflL(X) and (2L)Mie"Lf ¢ T2, (X). By Proposi-
tion 3.2, we conclude that f € BMO, (X). For any ball B, write

</B |(I—e*r%L)Mf(x”zdﬂ(x))l/Q
B |g|fii)g1‘/3(l — e M f(@)g(w) du(a)|

p | [ H@ =B ) duta)|

anLz(B)

Notice that for any g € L%(B), (I — e "L )Mg is a multiple of a (®, M, €)p--
molecule (see [16, p. 43]). Then by Lemma 3.2 and Hélder’s inequality, we obtain

2 1/2
[ =B pa)Pduta)
~  sup ‘// (2L)Mie~t'L
HgHL2(B)S1 XX(0,00)

xf(x)tQL*e_tQL*(I e "L )M g(z)

dp(x)dt ’
t

NZ //v (B) Ly S (t)dt}l/g

. 2 pe dp(x) dt /2
// |t2L t2L* ( —e BL )Mg($)|2 :u‘( ) }
HqHL2<B)_ Vi (B) t

=Y o/, B)l,
k=0
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where Vy(B) = B and Vi(B) = (@)\(ﬁ) for k € N. In what follows, for

k>2,let Vi1 =(28B)\(2¥72B x (0,00)) and Vj 2 = Vi (B)\Vi.1(B).
For k €{0,1,2}, by Lemmas 2.2 and 2.3, we conclude that

. d dty1/2
I, = // |t2 L* 7t L” ( efrfgL )Mg($)|2 /L(LC) }
HqHLz(B)<1 Vi(B) t

_ 2 *
< osup [|(I—eEE )Myl ST

HQHLZ(B)Sl
Now for k > 3, write
du(x) dt}1/2

Ik: // ‘tQL* —t2L* ( _e—r%L*)M‘g(m)F -
H9HL2(3)<1 Vi,1(B)

1/2
4+ sup {// } =i + 1.
H9”L2(B)S1 Vk,2(B)

Since for any (y,t) € Vi 2(B), t > 28=2rp, from Minkowski’s inequality and Lem-
mas 2.2 and 2.3, it follows that

* 2 p d dty1/2
Ik,2 _ // |t2L*e—t2L (I _ 6—72BL )Mg(x)|2 ,u(x) }
<14 Jy, t

HgHL2(B)_ k2(B)

7"2
// ‘tQL* —t2L* |: / B L*e—sL* d8:| J\/[g(l‘)‘z d/.l/(m) dt}1/2
|guLz<B><1 Vi2(B) 0 t

TB
/ / // ‘tz [yML
H9HL2(B)<1 Vi,2(B

e~ (t2+s1+Fsa)L* g(2))? du(z )dt}l/zdsl...dsM
2*rp tH19ll72 (s dty1/2
M) } dsy---dspy
<1 ok— zTB t —+ 81+ - +SM)2( + t

Similarly, we see that Iy 1 <272*M . Let pg € (0,pg) be such that M > (1/pg —
1/2)n/2. Combining the above estimates and the fact that p is of upper-type
1/ps — 1, we finally conclude that

/2
Tl 10— ) Paute)]

|9HL2(3)

S 2—2]{)]\/['

p(1(B)

N

7 EM% =

2kM U
g p(u(B))[u(B)]l/z k(f, B)

o—k[2M —n(1/ps—1/2)] or(f, B) '
p(u(2kB))[u(2~ B)]1/2

A
>~
g
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Since (2L)Mie~t’'Lf ¢ 155, (X) C Te(X), from M > (1/pe —1/2)n/2 and the
dominated convergence theorem for series, we infer that

=lim su 1 — e B £ ()2 dp( i
W) =ty s T, 0P S )

~ B)
9—kM=n(1/5s=1/2] i) sup o (f, o
C_’OB:TBSC p(,u(sz))[u’(QkB)}l/Q

Similarly, y2(f) = ~vs(f) =0, which implies that f € VMOf,VfL(X) and hence com-
pletes the proof of Theorem 3.4. ]

S

NE

el
I
—_

REMARK 3.3

It follows from Theorem 3.4 that for all M € N and M > (1/pg —1/2)n/2, the
spaces VMO%L(X ) coincide with equivalent norms. Thus, in what follows, we
denote the VMO, (X) simply by VMO,, ().

4. The dual space of VMO, 1,(X)

In this section, we show that the dual space of VMO, (X) is B - (X), where
the space By ~(X) denotes the Banach completion of the space Hg +(X) (see
Definition 4.3 and Theorem 4.2 below).

The proof of the following proposition is similar to that of [23, Proposi-
tion 4.1]; we omit the details here.

PROPOSITION 4.1
Let @ satisfy Assumption (®). Then the dual space of Tg(X) is TgP(X). More-
over, the pairing

(F.9) (o Do 1) PO

X % (0,00)

for all f € Tp(X) and g € T (X) realizes TgP(X) as being equivalent to the dual
Of Tq> (X) .

We now introduce a new tent space T. »(X) and present some properties.

DEFINITION 4.1

Let p € (0,1). The space ZN“@(X) is defined to be the space of all f = Z;’;l Aja;
in (Tg°(X))*, where {a;}32, are Ty(X)-atoms and {);}$2; C C such that
Sl <o If f e T (X), then define 1117 () =inf{> 277, [j|}, where the
infimum is taken over all the possible decompositions of f as above.

By [16, Lemma 3.1], f;,(/'\.’) is a Banach space. Moreover, from Definition 4.1,
it is easy to deduce that Tg(X) is dense in T (X); in other words, Te(X) is a
Banach completion of Te(X).
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LEMMA 4.1
Let @ satisfy Assumption (®). Then Te(X) is a dense subspace of To(X), and
there exists a positive constant C such that for all f € Te(X), ”fH’fq(X <

Cllf o2y

Proof
Let f € Tp(X). By Theorem 3.1, there exist T (X)-atoms {a;}52, and {A\;}52, C
C such that (3.1) and (3.2) hold.

For any L € N, set o = Z]LZI |\j]. Since @ is of upper-type 1, by this
together with p(t) =¢~1/®=1(¢t71) for all ¢ € (0,00), we obtain

Al 1 Al
Z“ <aLuB> ) Z“ (aLmBj)p(u(Bm)_Lzl

which implies that

L
Z A({Nja}521) S I fllrae )

Letting L — oo, we further conclude that Z;’il X1 S Nl (-
Since f € Tg(X) and (Ta(X))* =Tg°(X), we see that
feTe(X) C (To(X)") = (T52(X))".
Thus, f € (Tg°(X))* and || fll(zgexy)» S I fllTe(x)- Recall that for any £ €
(T (X))*, its (Tg2(X))*-norm is defined by

10l (rge(xyy- = sap  [€(g)]-
HQHT{;O(X)Sl

Observe also that a; € (Tg°(X))* for all j € N. Now, from these observations, the
monotone convergence theorem, and Hoélder’s inequality, it follows that

_ a
Hf J JH(T;C(X))*

el ’/XX(OM) [f(x7t) _]il%% (xat)]g(%t) L(f) &

HgHTgO(x)Sl

dp(z) dt
< sup / Z I\ laj(z, t)g(z, b)] “(t)
X x(

HQHT"O(X)<1 000)J L+1

dp(z) dt
Zm/ (e g e, )] T

HQHTOO(X)<1J L+1

< su Z IAilllalizz o lloxs; Iz x) < Z Al =0,
HQHTOC’(X)Slj L+1 j=L+1
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as L — oo. Thus, the series in (3.1) converges in (T5°(X))*, which further implies
that f € Tp(X) and ”f”ip(x) < Z;’;l IAj| S |1 fll7e (x)- This finishes the proof of
Lemma 4.1. ]

LEMMA 4.2
Let @ satisfy Assumption (®). Then Ty, (X) is dense in Ty (X).

Proof
Since Ty (X) is dense in Te(X), to prove this lemma, it suffices to prove that
T3, (X) is dense in Tp(X) in the norm ||« ||z, )

Fix g € X. For any g € To(X) and k € N, let g, = gx0, , where
Ok = {(z,t) € X x (0,00) : dist(x,z0) < k,t € (1/k, k) }.

By the dominated convergence theorem and the continuity of ®, we conclude
that for any A >0,

i 820 - [ i 540900

which implies that limg_, [|g — ngT@(X) =0. Then, by Lemma 4.1, we see that

19 = 9kll 7, 20) S 119 = gll 70 (2) = O,

as k — 0o, which completes the proof of Lemma 4.2. O

LEMMA 4.3
Let @ satisfy Assumption (®). Then (Te(X))* =Tg(X) via the pairing

(.0~ (3. D9ty 1) O
X % (0,00)

for all f € Ty(X) and g € TgR(X).

Proof

By Proposition 4.1 and the definition of T (X), we see that (Tg(X))* = T (X)

and Tp(X) C Ty (X), which further implies that (T (X))* C T (X).
Conversely, let g € Tg°(X). Then for any f € ip()( ), choose a sequence of

To(X)-atoms {a;}72, and {A;}32, C Csuch that f =3}, Aja; in (Ig°(X))" and

DIFIRVIS ”f”i“@()()' Thus, by Holder’s inequality, we obtain

\@MszA o5 0 ) L

X (0,00)
<Nl vy 3 N1 S allrse o 11 ey
J

which implies that g € (Tg(X))* and hence completes the proof of Lemma, 4.3.
]
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LEMMA 4.4
Let @ satisfy Assumption (). If f € Tq;( , then
d ( )dt
(A1) Il = su | / Fla gty LY
9ETS 1 (X),llgllTge (x)<1'Y X% (0,00)
Proof
Let f € To(X). From Lemma 4.2, we deduce that

du(z) dt
I£ll7, )= sup ]/ f(z,t)g(x,t) —)
llgllrge (x)<1'V X% (0,00)

Thus, for any 8> 0, there exists g € Tg°(X) such that ||g|z,x) <1 and

d d
[ rensen B > 1 0 - 5
XX(O,()Q)

Observe here that fg € L*(X x (0,00)). Fix zg € X. Let
Ok = {(z,t) € X x (0,00) : dist(x,z0) < k,1/k <t <k}.

Then there exists £ € N such that

‘/ flz,t)g(x,t)xo,
X % (0,00)

Obviously, gxo, € T2,b( ). Thus, (4.1) holds, which completes the proof of
Lemma 4.4. U

d d
BV 1y oy~

The following lemma is a slight modification of [8, Lemma 4.2]; see also [22]. We
omit the details here.

LEMMA 4.5

Let ® satisfy Assumption (®). Suppose that {fp}32, is a bounded family of
functions in Te(X). Then there exist f € To(X) and a subsequence {fi; 1524
of {fr}2, such that for all g € T22b(X),

Tim ity PDL = [ fangla)
3= J 2% (0,00) t X% (0,00)
THEOREM 4.1
Let @ satisfy Assumption (®). Then (T5°,(X))*, the dual space of the space
T5%,(X), coincides with To(X) in the following sense.
For any g € To (X), define the linear function £ by setting, for all f € Tg(X),

(1.2 n=[, sy TP

dp(x)dt

Then there exists a positive constant C, independent of g, such that

ell(mge )+ < Cligliz, 2)-
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Conversely, for any € (T (X))*, there exists g € To(X) such that (4.2)
holds for all f € Tg®(X) and ||gllz, vy < Cll€ll(1ge(x))<, where C' is a positive
constant independent of £.

Proof
From Lemma 4.2, we infer that 73° (X) C Tg°(X) = (T (X))*, which further
implies that T (X) C (T (X))* C (T5%,(X))*.

Conversely, let £ € (T5°,(X))*. Notice that for any f € T22,b(X ), without loss
of generality, we may assume that supp f C K, where K is a bounded set in
X % (0,00). Then we have Hf”Tgfv(X) = [[fllTge(x) < C(K)”fHTf’b(X)' Thus, /
induces a bounded linear functional on 73 ,(X). Let O, be as in the proof of

Lemma 4.4. By the Riesz representation theorem, there exists a unique gi €
L?(Oy,) such that for all f € L?(Oy),

=/  Jeomn du(x)dt
X % (0,00)

Obviously, gr+10k = gi for all k€ N. Let g = g1x0, + > pe2 9kX0x\Ox_, - Then
g€ L (X x(0,00)), and for any f €T3 ,(X), we have

loc
W= [, sty

Set gr = gxo,- Then for each k € N, obviously, we see that g € Tib(X) C
To(X) C Tp(X). Then from Lemma 4.4, it follows that
du(x)dt

19kl 7 2y = sup \ / Fla, t)g(z,t)xo, (,t)
FETS L ()11 flmge (a)<1'Y X% (0,00)

= sup 1(fxou)l
feTZQ,b(X)»”fHTgO(X)Sl

< sup €]l (rge, (x))*

= Fllrgecaey < Mlellrge, ()
FETS L ()1 fllTge (x) <1 ’

Thus, by Lemma 4.5, there exist § € To(X) and {9k, 1321 C{gr}72, such that
for all f e T3 ,(X),

. ~ dp(zx) dt . du(x)dt
lm i ) PDL = [ g ey P
170 J x % (0,00) t X'x(0,00) ¢
On the other hand, notice that for sufficient large k;, we have

B . . du(z) dt
(n=[, o rwnen ™

= [ St e = [ e PO
X % (0,00) (0,00

which implies that g =g almost everywhere, and hence g € To (X). By a density
argument, we conclude that (4.2) also holds for ¢ and all f € Tg°(X), which
completes the proof of Theorem 4.1. O
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DEFINITION 4.2

Let L satisfy Assumptions (L); and (L)s, let & satisfy Assumption (@), let
M eN, M > (1/py —1/2)n/2, and let € € (n(1/pgy — 1/pd),00). An element
f e (BMO,, r+(X))* is said to be in the space Hg[f()() if there exist {A;}32,; CC
and (®, M, e)p-molecules {a;}22; such that f =372 A\ja; in (BMO,, - (X))*
and

A({Ajay )02, = inf{A >0: iM(Bj)@(W) < 1} < o0,
=1 J J

where for each j, o; is adapted to the ball B;.
Iffe Hi{}f(X), then its norm is defined by ||fHH£4,L((X) =inf{A({\jo;}521) 1,
where the infimum is taken over all the possible decoinpositions of f as above.

By [21, Theorem 5.1], we see that for all M > (1/pg —1/2)n/2 and € € (n(1/pg —
1/p}),00), the spaces Hp 1(X) and Hgf(?() coincide with equivalent norms.
Let us introduce the Banach completion of the space He 1,(X).

DEFINITION 4.3

Let L satisfy Assumptions (L); and (L)g, let ® satisfy Assumption (®), let
e € (n(1/pgy —1/ps),00), and let M > (1/py — 1/2)n/2. The space Bg{f(X) is
defined to be the space of all f = Zjoozl Aja in (BMO,, - (X))*, where {);}52, C
C with 3277 |Aj| < 0o and {a;}32, are (®, M, e€)-molecules. If f € Bg{’i()(),
define Hf”B;‘jff(X) = inf{Z;il |A;|}, where the infimum is taken over all the

possible decompositions of f as above.

By [16, Lemma 3.1], we know that Bé{f(X) is a Banach space. Moreover, from

Definition 4.2, it is easy to deduce that Hg r(X) is dense in Bgf(?(). More
precisely, we have the following lemma.

LEMMA 4.6

Let L satisfy Assumptions (L)1 and (L), let @ satisfy Assumption (®), let € €
(n(1/pg —1/p}),0), and let M > (1/pg — 1/2)n/2. Then

(i) Ho,n(X)C Bé\f}f(z’\f) and the inclusion is continuous;
(ii) for any e; € (n(1/pg —1/p%),00) and My > (1/pg —1/2)n/2, the spaces
Bé/I’LE(X) and B‘Ji\,{lL’El (X) coincide with equivalent norms.

Proof
From Definition 4.3 and the molecular characterization of Hg 1,(X), it is easy to
deduce (i).

Let us prove (ii). By symmetry, it suffices to show that Bg{f (X)C Bé{i’el (X).
Let f € B,Jiv,{’lf(/’\,’). By Definition 4.3, there exist (®, M, ¢)z-molecules {a;}52,
and {);}22; C C such that f=3""" \ja; in (BMO, +(X))* and 3272, |Aj] S
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||f||Bé4£(X). By (i), for each j € N, we see that a; € Hp,,(X) C Bg{lL’El(X) and
||aj||B(1;>41L,F1 X Sllagll e, x) S 1. Since Bg{gq (X) is a Banach space, we see that

M e oo
£ € B () and ] g sy < 5% Wl gy ey S 11 gt ey Thus,
Bg{’;(%) - Bg{f“ (X), which completes the proof of Lemma 4.6. O

Since the spaces Bé‘f}f(é’() coincide for all € € (n(1/py — 1/p3),00) and M >
(1/pg —1/2)n/2, in what follows, we denote Bg{f(é’() simply by Be,r,(X).

LEMMA 4.7
Let L satisfy Assumptions (L)1 and (L)2, and let ® satisfy Assumption (P).
Then (Bg,1,(X))* =BMO,, 1+ (X).

Proof
Since (Ho,r.(X))* =BMO, - (X) and He 1,(X) C Be,1,(X), by duality, we con-
clude that (Bs,r(X))* C BMO, - (X).

Conversely, let € € (n(1/py — 1/ps),00), M > (1/pg — 1/2)n/2, and f €
BMO,, .+ (X). For any g € Bs,r(X), by Definition 4.3, there exist (®,M,€)r-
molecules {a;}22; and {);}32, C C such that g =372, A\ja; in (BMO, -(X))*
and 3771 [Aj] S [lgllBs, . (x)- Thus,

(L <D INIEa) S DN llemo, .- el s . x)
j=1

j=1
S llemo, - ()19l Ba 1 ()

which implies that f € (Bs,.(X))* and hence completes the proof of Lemma 4.7.
O

Let M € N. For all F € L?(X x (0,00)) with bounded support, define

(4.3) wL,MF:C(M)/OOO(tQL)MetQLF(.,t) %,

where C'(M) is as in (3.5).

PROPOSITION 4.2

Let L satisfy Assumptions (L)1 and (L)2, let ® satisfy Assumption (), and
let M € N. Then the operator mr, ar, initially defined on Tg’b(X), extends to a
bounded linear operator

(i) from T3(X) to L*(X);

(i) from Tg(X) to Ho (X)), if M > (1/pg —1/2)n/2;
(iii) from Te(X) to Be,r(X), if M > (1/pg —1/2)n/2;
(iv) from Tgo,(X) to VMO, (X).
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Proof
Conclusions (i) and (ii) were established in [2, Proposition 3.6] (see also [21,
Lemma 3.1]).

By Lemma 4.2, we know that Tib(.}() is dense in Tp(X). Let f € T22,b(‘)()'
From (ii) and Lemma 4.6, we deduce that 7z arf € He .(X) C By, .(X). More-
over, by Definition 4.1, there exist Tg(X')-atoms {a;}32, and {);}52, C C such
that f =377 A\ja; in (Tg2(X))* and 37, [N| S ||f||T . In addition, for any
g € BMO, - (X), we have ({2L*)Me="'L7g e T (X ). Thus, by (Te(X))* =
T2 (X), we conclude that

du(z)dt

(rear(f).0) = COM) /X o LT g

can [ ae @Ry D
X % (0,00) t

(me(ag), 9),

i

which implies that 77 (f) = ijl Ajmrom(aj) in (BMO,, - (X))*. By (ii), we
further conclude that

7Lt (Do) < D INHITL 20 (@) By 1 ()
j=1

oo

<SS iz @)l o0 S 1617, 2.
j=1

Since T;b(é\’) is dense in T (X), we see that 7, ps extends to a bounded linear
operator from Ty(X) to Bg,1,(X), which completes the proof of (iii).

Let us now prove (iv). From Lemma 3.3, we infer that 73 ,(X) is dense
in 7g% (X). Thus, to prove (iv), it suffices to show that 77, s maps Tg,b(X)
continuously into VMO,, ,(X).

Let f € T3,(X). By (i), we see that 7z af € L?(X). Notice that (3.3) and
(3.4) with L and L* exchanged imply that L?(X) C ./\/ljlt{IL(X)7 when M; € N and
M, > (1/py —1/2)n/2. Thus, 71 arf € Mg} (X). To show 7z arf € VMO, (X),
by Theorem 3.4, we still need to show that (tgL)Mle*tQLWL’Mf €T, (X).

For any ball B = B(zp,rp), let Vo(B) = B and Vi,(B) = (28 B)\(2F-1B) for
any k 6 N. For all k € Z, let f. = fxv, (s). Thus, for k € {0,1,2}, by Lemma 2.2
and (i), we see that

dp(z)dtq1/2
/ L) e P g )P PO < ey il < U fellzzn

For k>3, let V3 1(B) = (2’“B)\(2k*28 x (0,00)) and Vi o(B) = Vi (B)\Vi.1(B).
We further write fr = fixv,,(B) + feXvio(B) = [k + fr2. From Minkowski’s
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inequality, Lemma 2.3, and Holder’s inequality, we deduce that

// (BPL)Me " Erp v foo( )‘zwr/z

t

// ‘/22 ; Mig=L(2L)YMe=5"L(f 5(-,5)) (x )is‘2du(t)dt}1/z

k 2TB

2rp B du(z)dt1/2 ds
2M, 2M M+]V[1 (s2+t2)L . 2 i
</ // 200 520 (feal9) @) ]

k— 2TB t ,

2k B TB
<Ll
~
2k=2rp =JO

2re ds
s /2 [ fr,2 (5 8)ll L2 o S 272 ol ey

k—2rB

$2My g2M

dt11/2 ds
(52 1 £2)M+ 307 2

”fk 2(-,s )HLZ(X) ;

S

Similarly, we have

[ [ enre o PO o

Let ps € (0,pz) be such that M > (1/ps — 1/2)n/2 and M; > (1/ps —
1/2)n/2. Combining the above estimates, since ® is of lower-type pg, we finally
conclude that

3 (X)

p(u(B) [u 1/2/ (L), WM]W

2
2 1,—t? o dp(x) dt1/2
kZ:op (w(B))] (B)]1/2 U §|(t LYMe Ly o fula)| f}

2

1
* L BB

k=3 1i=1

8 [//g (L) Mre™ g g fa (@) m 1z

8

2
1
. kzzo p(N(B))[u(B)]l/z ”kaT,}(X)

o 2 o—2kM,

k=3 1i=

- . 1
< —2k[M1—(1/Pa—1/2)n/2]
s e e
Since f € T5°, (X) C Tg°(X), we have
1
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and, for all fixed k € N,

lim sup 1 frllzz () — lim sup [IEFTED)
o0 prrmee (U B) (B B2~ e iy p(u(28 B)) [u(2F B)] /2

=0.

~ lm sup | fillzz )
¢ B:BC[B(0,c)]C p(1(2kB))[u(2~ B)]1/2

Thus, by the dominated convergence theorem for series, we further conclude that

nl((tQL)MlefﬁL?TL,Mf)
1 " dp(z)dtq1/2
=lim sup (BB {//g |(t2L)M e LWL,Mf(JE)|2 T}

c—0 . rp<c P\M

= I fell 7z 20
9=2kIM1~(1/Fa=1/2n/2 iy gup 5 —0
,;O =0 By <c p(U(28B)) (28 B)]L/2

Similarly, we have ng((tzL)Mle’tQLwLMf) = 7’]3((t2L)M167t2L7TL7Mf) =0,
and hence (tQL)Mle*tzLTrLMf € Tg°,(X), which completes the proof of Propo-
sition 4.2. g

LEMMA 4.8

Let L satisfy Assumptions (L)1 and (L)2, and let © satisfy Assumption (D).
Then VMO, 1,(X) N L*(X) is dense in VMO, ,(X).

Proof

Let f € VMO, (X) and M > (1/pg —1/2)n/2. Then by Theorem 3.4, we have
h = (tQL)Me_tsz € T2, (X). Similarly to the proof of Proposition 4.2, by
Lemma 3.3, there exist {hg }ren C T3, (X) C T2, (X) such that [|h— Ryl g (x) —
0, as k — co. Thus, by (i) and (iv) of Proposition 4.2, we see that 7p 1hy €
L*(X)NVMO,, 1(X) and

(4.4) |7z,1(h — hi)llB7mO, L (20) S 1P — hillzge () — O,

as k — oo.

Let o be a (®, M, €) p-molecule. Then by the definition of He 1 (X), we know
that e~La € Ty (X), which, together with Lemma 3.2, the fact that (Tip(X))* =
T (X), and (He, (X)) =BMO, 1(X), further implies that

ar=con [ et
im Ww
kl—’ooc //XX(O o) DfPLre™alw) t
- é1 ) Iclingo X(WL11hk(x))a(‘r) d,Uf(CC) = (C,l )<7TL’1h,O[>.

Since the set of finite combinations of molecules is dense in Hg 1,(X), we then
see that f = (C(M)/Cy)rr 1h in BMO, 1,(X).
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Now, for each k €N, let fr, = (C(M)/Ci)nr1hg. Then f, € VMO, (X)N
L?(X), and, moreover, by (4.4), we have || f — fi|lBmo, , (x) — 0, as k — oo, which
completes the proof of Lemma 4.8. |

The symbol (-,-) in the following theorem means the duality between the space
BMO,, 1,(X) and the space Bg r+(X) in the sense of Lemma 4.7 with L and L*
exchanged.

THEOREM 4.2
Let L satisfy Assumptions (L)1 and (L)2, and let © satisfy Assumption (P).
Then the dual space of VMO, (X)), (VMO, (X))*, coincides with the space
Bg 1+(X) in the following sense.

For any g € Bg (X)), define the linear functional £ by setting, for all f €
VMO, 1(X),

(4.5) ()= (/.9)-

Then there exists a positive constant C independent of g such that

14lvmo, . (x))* < CllgllBy, v (x)-

Conwversely, for any £ € (VMO,, (X))*, there exist g € By, 1-(X) such that
(4.5) holds and a positive constant C, independent of £, such that

19l By . (x) < Cllll(vMo, 1 ()= -

Proof

By Lemma 4.7, we have (Bg,r+(X))* = BMO, 1(X). Definition 3.3 implies
that VMO, 1(X) C BMO, (X), which further implies that Bg p«(X) C
(VMO, (X))*.

Conversely, let M > (1/pg — 1/2)n/2 and £ € (VMO,, 1(X))*. By Proposi-
tion 4.2, 7, 1 is bounded from Tgfv()() to VMO, 1.(X), which implies that fory, 1
is a bounded linear functional on Tgfv(X ). Thus, by Theorem 4.1, there exists
g € Tp(X) such that for all g € T3, (X), Lomrpa(f) =(f,9)-

Now, suppose that f € VMO, ,(X) N L?(X). By Theorem 3.4, we conclude
that (t2L)Me_t2Lf € T5°,(X). Moreover, from the proof of Lemma 4.8, we deduce
that f = (C(M)/Cy)mp1(((2L)Me "L f) in BMO, 1, (X). Thus

1) = Solbom (1) e )

_ 2[\M L du(x) dt
= o P st S,

By Lemma 4.2, Tg)b(X) is dense in T (X). Since g € Tp(X), we choose {g ren C
T2276(X) such that gy — g in To(X). By Proposition 4.2(iii), we see that e m(9),
WL*,M(gk) S B.:p’L* (X) and

(4.6)

7L a1(9 = 91l Ba o) S N9 = Gl 7y () = 05
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as k — oo. This, together with (4.6), Theorem 4.1, the dominated convergence
theorem, and Lemma 4.7, implies that

g(f) _ Cé]\l4) kh_{lolo /\/XX(OVOO) (tzL)Me_tsz(m)gk(x,t) M
(47) _ C(C(]Y) klir{:o-//\) f((E) ‘/Ooo(t2L*)Me_t2L* (gk(’t))(x) %du((ﬂ)

= G dm (e as(g) = g (Fomae a(9)

Since VMO,, ,(X)NL3(X) is dense in VMO, 1,(X), we finally conclude that (4.7)
holds for all f S VMOp7L(X)7 and ||€||(VMOp,L(X))* = (1/Ol)||7TL*,Z\/Ig||B¢7L*(X)'
In this sense, we have (VMO, (X))* C Bg, r+(X), which completes the proof of
Theorem 4.2. g
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