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Abstract Let (X , d,μ) be a metric measure space, let L be a linear operator that has a
bounded H∞-functional calculus and satisfies the Davies–Gaffney estimate, let Φ be a
concave function on (0, ∞) of critical lower type p−

Φ ∈ (0,1], and letρ(t) ≡ t−1/Φ−1(t−1)

for all t ∈ (0, ∞). In this paper, the authors introduce the generalized VMO space
VMOρ,L(X ) associated with L and establish its characterization via the tent space. As
applications, the authors show that (VMOρ,L(X ))∗ = BΦ,L∗ (X ), where L∗ denotes the
adjoint operator of L in L2(X ) and BΦ,L∗ (X ) the Banach completion of the Orlicz–
Hardy space HΦ,L∗ (X ).
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1. Introduction

John and Nirenberg [24] introduced the space BMO(Rn), which is defined to be
the space of all f ∈ L1

loc(R
n) such that

‖f ‖BMO(Rn) ≡ sup
ball B⊂Rn

1
|B|

∫
B

|f(x) − fB | dx < ∞,

where in what follows, fB ≡ 1
|B|
∫

B
f(x)dx. The space BMO(Rn) was proved to

be the dual of the Hardy space H1(Rn) by Fefferman and Stein [14].
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Sarason [28] introduced the space VMO(Rn), which is defined to be the space
of all f ∈ BMO(Rn) such that

lim
c→0

sup
ball B⊂Rn

rB ≤c

1
|B|

∫
B

|f(x) − fB | dx = 0,

where rB denotes the radius of the ball B. In order to represent H1(Rn) as a dual
space, Coifman and Weiss [8] introduced the space CMO(Rn), which is defined
to be the closure of all infinitely differentiable functions with compact support in
the BMO(Rn)-norm and was originally denoted by the symbol VMO(Rn) in [8],
and they proved that (CMO(Rn))∗ = H1(Rn). For more properties of BMO(Rn),
VMO(Rn), and CMO(Rn), we refer the reader to Janson [18] and Bourdaud [5].

Let L be a linear operator in L2(Rn) that generates an analytic semigroup
{e−tL}t≥0 with kernels satisfying an upper bound of Poisson type. The Hardy
space H1

L(Rn), the BMO space BMOL(Rn), and Morrey spaces associated with
L were introduced and studied in [4], [11], [13]. Duong and Yan [12] further proved
that (H1

L(Rn))∗ = BMOL∗ (Rn), where L∗ denotes the adjoint operator of L in
L2(Rn). Moreover, recently, Deng et al. [9] introduced the space VMOL(Rn), the
space of vanishing mean oscillation associated with the operator L, and proved
that (VMOL(Rn))∗ = H1

L∗ (Rn) and also

VMOΔ(Rn) = CMO(Rn) = VMO√
Δ(Rn)

with equivalent norms, where Δ is the Laplace operator −
∑n

i=1
∂2

∂x2
i
. Let Φ on

(0, ∞) be a continuous, strictly increasing, subadditive function of upper type
1 and of critical lower type p−

Φ ≤ 1 but near to 1 (see Section 2.4 below for the
definition). Let ρ(t) ≡ t−1/Φ−1(t−1) for all t ∈ (0, ∞). A typical example of such
Orlicz functions is Φ(t) ≡ tp for all t ∈ (0, ∞) and p ≤ 1 but near to 1. Jiang and
Yang [22] introduced the VMO-type space VMOρ,L(Rn) and proved that the
dual space of VMOρ,L∗ (Rn) is the space BΦ,L(Rn), where BΦ,L(Rn) denotes the
Banach completion of the Orlicz–Hardy space HΦ,L(Rn) in [23].

Let L be a second-order divergence form elliptic operator with complex
bounded measurable coefficients, and let Φ be a continuous, strictly increas-
ing, concave function of critical lower-type p−

Φ ∈ (0,1]. Jiang and Yang [19]
studied the VMO-type spaces VMOρ,L(Rn) and proved that the dual space
of VMOρ,L∗ (Rn) is the space BΦ,L(Rn), where BΦ,L(Rn) denotes the Banach
completion of the Orlicz–Hardy space HΦ,L(Rn) in [20]. (We remark that the
assumptions on pΦ in [19], [20] can be relaxed into the same assumptions on p−

Φ ;
see Remark 2.2(ii) below.) In particular, when Φ(t) ≡ t for all t ∈ (0, ∞), then
ρ(t) ≡ 1 and (VMO1,L(Rn))∗ = H1

L∗ (Rn), which was also independently obtained
by Song and Xu [29], where H1

L∗ (Rn) denotes the Hardy space first introduced
by Hofmann and Mayboroda [16] (see also [17]).

Let (X , d) be a metric space endowed with a doubling measure μ, and let
L be a nonnegative self-adjoint operator satisfying Davies–Gaffney estimates.
Hofmann et al. [15] introduced the Hardy space H1

L(X ) associated to L. Jiang and
Yang [21] further introduced the Orlicz–Hardy space HΦ,L(X ). Anh [1] studied
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the VMO space VMOL(X ) associated to L and proved that the dual space of
VMOL(X ) is the Hardy space H1

L(X ). Recently, Duong and Li [10] observed
that the assumption “L is a nonnegative self-adjoint operator” in [15] can be
replaced by a weaker assumption that “L has a bounded H∞-functional calculus
on L2(X )” and introduced the Hardy space Hp

L(X ) with p ∈ (0,1], which was
further generalized by Anh and Li [2] to the Orlicz–Hardy spaces HΦ,L(X ).

From now on, we always assume that L is a linear operator which has a
bounded H∞-functional calculus and satisfies Davies–Gaffney estimates and that
Φ is a continuous, strictly increasing, concave function of critical lower-type p−

Φ ∈
(0,1]. In this paper, we introduce the generalized VMO space VMOρ,L(X ) asso-
ciated with L and establish its characterization via the tent space in [21]. Then,
we further prove that (VMOρ,L(X ))∗ = BΦ,L∗ (X ), where BΦ,L∗ (X ) denotes the
Banach completion of the Orlicz–Hardy space HΦ,L∗ (X ) in [2]. When Φ(t) ≡ t

for all t ∈ (0, ∞), we denote VMOρ,L(X ) simply by VMOL(X ). As a special case
of the main results in this paper, we show that (VMOL(X ))∗ = H1

L∗ (X ), which,
when L is nonnegative self-adjoint, was already obtained by Anh [1].

Precisely, the paper is organized as follows. In Section 2, we recall some
known notions and notation concerning metric measure spaces X , then describe
some basic assumptions on the considered operator L and the Orlicz function
Φ and present some properties of the operator L and the Orlicz function Φ
considered in this paper.

In Section 3, we first obtain the ρ-Carleson measure characterization (see
Theorem 3.1 below) of the space BMOρ,L(X ) in [2] via first establishing a
Calderón reproducing formula (see Proposition 3.3 below). Differently from the
Calderón reproducing formula in [21, Proposition 4.6], the Calderón reproduc-
ing formula in Proposition 3.3 below holds for all molecules instead of atoms
in [21], which brings us some extra difficulty due to the lack of the support of
molecules. Then we introduce the generalized VMO space VMOρ,L(X ) associ-
ated with L, and the tent space T ∞

Φ,v(X ), and establish some basic properties of
these spaces. In particular, we characterize the space VMOρ,L(X ) via T ∞

Φ,v(X )
(see Theorem 3.4 below). To this end, we first need to make clear the dual
relation between HΦ,L∗ (X ) and BMOρ,L(X ) (see Theorem 3.2 below), which is
deduced from a technical result on the optimal representation of finite linear
combinations of molecules (see Theorem 3.1 below). We remark that variants of
Theorems 3.1 and 3.2 below have already been given, respectively, in [2, Theo-
rems 3.15, 3.13, 3.16] without a detailed proof of [2, Theorem 3.15]. We give a
detailed proof of Theorem 3.1 below which induces more accurate indices appear-
ing in Theorems 3.1 and 3.2 below, comparing with [2, Theorems 3.13, 3.15] (see
Remark 3.2 below). Moreover, the proof of Theorem 3.1 below simplifies the
proof of [15, Theorem 5.4] in a subtle way, and the proof of [15, Theorem 5.4]
strongly depends on the support of atoms (see Remark 3.1 below).

In Section 4, we first obtain, in Theorem 4.1 below, the dual space of the
tent space T ∞

Φ,v(X ) in Definition 3.4 below, from which we further deduce that
(VMOρ,L(X ))∗ = BΦ,L∗ (X ) in Theorem 4.2 below, where BΦ,L∗ (X ) denotes the
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Banach completion of HΦ,L∗ (X ). In particular, we obtain (VMOL(X ))∗ =
H1

L∗ (X ).
Finally we make some conventions on notation. Throughout the whole paper,

we denote by C a positive constant which is independent of the main parameters,
but it may vary from line to line. The constant with subscripts, such as C1, does
not change in different occurrences. We also use C(γ, . . .) to denote a positive
constant depending on the indicated parameters γ, . . . . The symbol A � B means
that A ≤ CB. If A � B and B � A, then we write A ∼ B. We also set N ≡
{1,2, . . .} and Z+ ≡ N ∪ {0}. The symbol B(x, r) denotes the ball {y ∈ X : d(x, y) <

r}; moreover, let CB(x, r) ≡ B(x,Cr). For a measurable set E, denote by χE the
characteristic function of E and by E� the complement of E in X .

2. Preliminaries

In this section, we first recall some notions and notation on metric measure spaces
and then describe some basic assumptions on the operator L considered in this
paper and its functional calculus; finally, we also present some basic assumptions
and properties on Orlicz functions.

2.1. Metric measure spaces
Throughout the whole paper, let X be a set, let d be a metric on X , and let μ be
a nonnegative Borel regular measure on X . Moreover, assume that there exists a
constant C1 ≥ 1 such that for all x ∈ X and r > 0,

(2.1) V (x,2r) ≤ C1V (x, r) < ∞,

where B(x, r) ≡ {y ∈ X : d(x, y) < r} and

(2.2) V (x, r) ≡ μ
(
B(x, r)

)
.

Observe that if d is further assumed to be a quasi-metric, then (X , d,μ) is
called a space of homogeneous type in the sense of Coifman and Weiss [7] (see
also [8]).

Notice that the doubling property (2.1) implies the following strong homo-
geneity property : there exist some positive constants C and n, depending on C1,
such that

(2.3) V (x,λr) ≤ CλnV (x, r)

uniformly for all λ ≥ 1, x ∈ X , and r > 0. The parameter n measures the dimen-
sion of the space X in some sense. Also, there exist constants C ∈ (0, ∞) and
N ∈ [0, n], depending on C1, such that

(2.4) V (x, r) ≤ C
(
1 +

d(x, y)
r

)N
V (y, r)

uniformly for all x, y ∈ X and r > 0. Indeed, the property (2.4) with N = n

is a simple corollary of the strong homogeneity property (2.3). In the case of
Euclidean spaces, Lie groups of polynomial growth and, more generally, Ahlfors
regular spaces, N can be chosen to be zero.
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In what follows, for any ball B ⊂ X , we set

(2.5) U0(B) ≡ B and Uj(B) ≡ 2jB\2j−1B for j ∈ N.

The following covering lemma established in [1, Lemma 2.1] plays a key role
in the sequel.

LEMMA 2.1

For any � > 0, there exists N� ∈ N, depending on �, such that for all balls B(xB ,

�r), with xB ∈ X and r > 0, there exists a family {B(xB,i, r)}N�
i=1 of balls such

that

(i) B(xB , �r) ⊂
⋃N�

i=1 B(xB,i, r);
(ii) N� ≤ C�n;
(iii)
∑N�

i=1 χB(xB,i,r) ≤ C.

Here C is a positive constant independent of xB , r, and �.

2.2. Holomorphic functional calculi
We now recall some basic notions of holomorphic functional calculi introduced
by McIntosh [25].

Let 0 < ν < γ < π. Define the closed sector Sν in the complex plane C by set-
ting Sν ≡ {z ∈ C : |argz| ≤ ν} ∪ {0}, and denote by S0

ν its interior. We employ the
following subspaces, H∞(S0

ν) and Ψ(S0
ν), of the space H(S0

ν) of all holomorphic
functions on S0

ν :

H∞(S0
ν) ≡
{

b ∈ H(S0
ν) : ‖b‖L∞(S0

ν) ≡ sup
z∈S0

ν

|b(z)| < ∞
}

and

Ψ(S0
ν) ≡
{

ψ ∈ H(S0
ν) : there exist s ∈ (0, ∞) and C ∈ (0, ∞) such that

for all z ∈ S0
ν , |ψ(z)| ≤ C|z|s(1 + |z|2s)−1

}
.

Given ν ∈ (0, π), a closed operator L in L2(Rn) is said to be of type ν if σ(L) ⊂
Sν , where σ(L) denotes its spectra and if, for all γ > ν, there exists a positive
constant Cγ such that for all λ /∈ Sγ , ‖(L − λI)−1‖L2(Rn)→L2(Rn) ≤ Cγ |λ| −1. Let
X and Y be two linear normed spaces, and let T be a continuous linear operator
from X to Y . Here and in what follows, ‖T ‖X →Y denotes the operator norm
of T from X to Y . Let θ ∈ (ν, γ), and let Γ be the contour {ξ = re±iθ : r ≥ 0}
parameterized clockwise around Sν . Then if L is of type ν and ψ ∈ Ψ(S0

ν), the
operator ψ(L) is defined by

ψ(L) ≡ 1
2πi

∫
Γ

(L − λI)−1ψ(λ)dλ,

where the integral is absolutely convergent in L(L2(Rn),L2(Rn)) (the class of
all bounded linear operators in L2(Rn)). By the Cauchy theorem, we know that
ψ(L) is independent of the choices of ν and γ such that θ ∈ (ν, γ). Moreover, if
L is one-to-one and has dense range, and b ∈ H∞(S0

γ), then b(L) is defined by
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setting b(L) ≡ [ψ(L)]−1(bψ)(L), where ψ(z) ≡ z(1 + z)−2 for all z ∈ S0
γ . It was

proved by McIntosh [25] that b(L) is a well-defined linear operator in L2(Rn).
Moreover, the operator L is said to have a bounded H∞-calculus in L2(Rn) if, for
all γ ∈ (ν,π), there exists a positive constant C̃γ such that for all b ∈ H∞(S0

γ),
b(L) ∈ L(L2(Rn),L2(Rn)) and

(2.6) ‖b‖L2(Rn)→L2(Rn) ≤ C̃γ ‖b‖L∞(S0
γ).

2.3. Assumptions on the operator L

Throughout the whole paper, we always suppose that the considered operators
L satisfy the following assumptions.

ASSUMPTION (L)1

The operator L has a bounded H∞-calculus in L2(X ).

ASSUMPTION (L)2

The semigroup {e−tL}t>0 generated by L is analytic on L2(X ) and satisfies the
Davies–Gaffney estimate; namely, there exist positive constants C2 and C3 such
that for all closed sets E and F in X , t ∈ (0, ∞) and f ∈ L2(E),

(2.7) ‖e−tLf ‖L2(F ) ≤ C2 exp
{

− [dist(E,F )]2

C3t

}
‖f ‖L2(E),

where dist(E,F ) ≡ infx∈E,y∈F d(x, y) and the space L2(E) denotes the set of all
μ-measurable functions on E such that ‖f ‖L2(E) ≡ {

∫
E

|f(x)|2 dμ(x)}1/2 < ∞.

REMARK 2.1

By the functional calculus of L on L2(X ), it is easy to see that if an operator
L satisfies Assumptions (L)1 and (L)2, the adjoint operator L∗ also satisfies
Assumptions (L)1 and (L)2, and, therefore, the following Lemmas 2.2 and 2.3
also hold for L∗.

By Assumptions (L)1 and (L)2, we have the following technical result which was
obtained by Anh and Li [2, Proposition 2.2].

LEMMA 2.2

Let L satisfy Assumptions (L)1 and (L)2. Then for any fixed k ∈ Z+ (resp., j, k ∈
Z+ with j ≤ k), the family {(t2L)ke−t2L}t>0 (resp., {(t2L)j(I + t2L)−k }t>0) of
operators also satisfies the Davies–Gaffney estimate (2.7) with positive constants
C2, C3 depending only on n and k (resp., n, j, and k).

By (2.6), we have the following useful lemma.

LEMMA 2.3

Let L satisfy Assumptions (L)1 and (L)2. Then for any fixed k ∈ N, the operator
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given by setting, for all f ∈ L2(X ) and x ∈ X ,

Sk
Lf(x) ≡

(∫ ∫
Γ(x)

|(t2L)ke−t2Lf(y)|2 dμ(y)
V (x, t)

dt

t

)1/2

,

is bounded on L2(X ).

2.4. Orlicz functions
Let Φ be a positive function on R+ ≡ (0, ∞). The function Φ is said to be of
upper (resp., lower) type p for some p ∈ [0, ∞), if there exists a positive constant
C such that for all t ∈ [1, ∞) (resp., t ∈ (0,1]) and s ∈ (0, ∞),

(2.8) Φ(st) ≤ CtpΦ(s).

Obviously, if Φ is of lower type p for some p ∈ (0, ∞), then limt→0+ Φ(t) = 0. So
for the sake of convenience, if it is necessary, we may assume that Φ(0) = 0. If Φ
is of both upper-type p1 and lower-type p0, then Φ is said to be of type (p0, p1).
Let

p+
Φ ≡ inf

{
p ∈ (0, ∞) : there exists a positive constant C

(2.9)
such that (2.8) holds for all t ∈ [1, ∞) and s ∈ (0, ∞)

}
and

p−
Φ ≡ sup

{
p ∈ (0, ∞) : there exists a positive constant C

(2.10)
such that (2.8) holds for all t ∈ (0,1) and s ∈ (0, ∞)

}
.

It is easy to see that p−
Φ ≤ p+

Φ for all Φ. In what follows, p−
Φ and p+

Φ are respectively
called the critical lower-type index and the critical upper-type index of Φ.

Throughout the whole paper, we always assume that Φ satisfies the following
assumption.

ASSUMPTION (Φ)

Let Φ be a positive, continuous, strictly increasing function on (0, ∞) which is
of critical lower type p−

Φ ∈ (0,1]. Also assume that Φ is concave.

REMARK 2.2

(i) Recall that the function Φ is called of strictly lower-type p if (2.8) holds
with C ≡ 1 for all t ∈ (0,1) and s ∈ (0, ∞). Then the strictly critical lower-type
index pΦ of Φ is defined by

pΦ ≡ sup
{
p ∈ (0, ∞) : Φ(st) ≤ tpΦ(s) holds for all t ∈ (0,1) and s ∈ (0, ∞)

}
.

Obviously, pΦ ≤ p−
Φ ≤ p+

Φ . Moreover, it was proved in [20, Remark 2.1] that Φ is
also of strictly lower-type pΦ. In other words, pΦ is attainable.

However, p−
Φ and p+

Φ may not be attainable. For example, for p ∈ (0,1], if
Φ(t) ≡ tp for all t ∈ (0, ∞), then Φ satisfies Assumption (Φ) and pΦ = p−

Φ =
p+
Φ = p; for p ∈ [1/2,1], if Φ(t) ≡ tp/ ln(e + t) for all t ∈ (0, ∞), then Φ satisfies
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Assumption (Φ) and p−
Φ = p = p+

Φ , p−
Φ is not attainable but p+

Φ is attainable; for
p ∈ (0,1/2], if Φ(t) ≡ tp ln(e + t) for all t ∈ (0, ∞), then Φ satisfies Assumption
(Φ) and p−

Φ = p = p+
Φ , p−

Φ is attainable but p+
Φ is not attainable.

(ii) We observe that, via the Aoki–Rolewicz theorem in [3] and [26], all results
in [2], [19], [20], and [21] are still true if the assumptions on pΦ are replaced by
the same assumptions on p−

Φ .

Notice that if Φ satisfies Assumption (Φ), then Φ(0) = 0. For any positive function
Φ̃ of critical lower-type p−

Φ̃
, if we set Φ(t) ≡

∫ t

0
(Φ̃(s)/s)ds for t ∈ [0, ∞), then

by [30, Proposition 3.1], Φ is equivalent to Φ̃; namely, there exists a positive
constant C such that C−1Φ̃(t) ≤ Φ(t) ≤ CΦ̃(t) for all t ∈ [0, ∞); moreover, Φ is
a positive, strictly increasing, concave, and continuous function of critical lower-
type p−

Φ̃
. Notice that all our results of this paper are invariant on equivalent Orlicz

functions. From this, we deduce that all results with Φ as in Assumption (Φ) also
hold for all positive functions Φ̃ of the same critical lower-type p−

Φ as Φ.
Let Φ satisfy Assumption (Φ). A measurable function f on X is said to be in

the space LΦ(X ) if
∫

X Φ(|f(x)|)dμ(x) < ∞. Moreover, for any f ∈ LΦ(X ), define

‖f ‖LΦ(X ) ≡ inf
{

λ ∈ (0, ∞) :
∫

X
Φ
( |f(x)|

λ

)
dμ(x) ≤ 1

}
.

Since Φ is strictly increasing, we define the function ρ(t) on (0, ∞) by

(2.11) ρ(t) ≡ t−1

Φ−1(t−1)

for all t ∈ (0, ∞), where Φ−1 is the inverse function of Φ. Then the types of Φ and
ρ have the following relation. If 0 < p0 ≤ p1 ≤ 1 and Φ is an increasing function,
then Φ is of type (p0, p1) if and only if ρ is of type (p−1

1 − 1, p−1
0 − 1) (see [30] for

its proof).

3. The space VMOρ,L(X )

In this section, we introduce the generalized vanishing mean oscillation spaces
associated with L. Throughout this section, we always assume that L satisfies
Assumptions (L)1 and (L)2.

We first recall the notion of tent spaces in [27], which, when X ≡ Rn, were
first introduced by Coifman, Meyer, and Stein [6].

For any ν > 0 and x ∈ X , let Γν(x) ≡ {(y, t) ∈ X × (0, ∞) : d(x, y) < νt}
denote the cone of aperture ν with vertex x ∈ X . For any closed set F of X , denote
by RνF the union of all cones with vertices in F , namely, RνF ≡

⋃
x∈F Γν(x);

and for any open set O in X , denote the tent over O by Tν(O), which is defined as
Tν(O) ≡ [Rν(O�)]�. It is easy to see that Tν(O) = {(x, t) ∈ X × (0, ∞) : d(x,O�) ≥
νt}. In what follows, we denote R1(F ), Γ1(x), and T1(O) simply by R(F ), Γ(x),
and Ô, respectively.



Vanishing mean oscillation spaces associated with operators 213

For all measurable functions g on X × (0, ∞) and x ∈ X , define

Aν(g)(x) ≡
(∫ ∫

Γν(x)

|g(y, t)|2 dμ(y)
V (x, t)

dt

t

)1/2

and

Cρ(g)(x) ≡ sup
B
x

1
ρ(μ(B))

( 1
μ(B)

∫ ∫
B̂

|g(y, t)|2 dμ(y)dt

t

)1/2

,

where the supremum is taken over all balls B containing x. We denote A1(g)
simply by A(g).

Recall that for p ∈ (0, ∞), the tent space T p
2 (X ) is defined to be the space of

all measurable functions g on X × (0, ∞) such that ‖g‖T p
2 (X ) ≡ ‖A(g)‖Lp(X ) < ∞,

which was introduced by Coifman, Meyer, and Stein [6] for X ≡ Rn and by Russ
[27] for a space X of homogeneous type. Let Φ satisfy Assumption (Φ). In what
follows, we denote by TΦ(X ) the space of all measurable functions g on X × (0, ∞)
such that A(g) ∈ LΦ(X ), and for any g ∈ TΦ(X ), we define its norm by

‖g‖TΦ(X ) ≡ ‖ A(g)‖LΦ(X ) = inf
{

λ > 0 :
∫

X
Φ
(A(g)(x)

λ

)
dμ(x) ≤ 1

}
;

the space T ∞
Φ (X ) is defined to be the space of all measurable functions g on

X × (0, ∞) satisfying ‖g‖T ∞
Φ (X ) ≡ ‖ Cρ(g)‖L∞(X ) < ∞.

Recall that a function a on X × (0, ∞) is called a TΦ(X )-atom if

(i) there exists a ball B ⊂ X such that suppa ⊂ B̂;
(ii)
∫∫

B̂
|a(x, t)|2 dμ(x)dt

t ≤ [μ(B)]−1[ρ(μ(B))]−2.

Since Φ is concave, from Jensen’s inequality and Hölder’s inequality we
deduce that for all TΦ(X )-atoms a, ‖a‖TΦ(X ) ≤ 1 (see [21] for the details). More-
over, the following atomic decomposition for elements in TΦ(X ) is just [21, The-
orem 3.1].

LEMMA 3.1

Let Φ satisfy Assumption (Φ). Then for any f ∈ TΦ(X ), there exist TΦ(X )-atoms
{aj } ∞

j=1 and {λj } ∞
j=1 ⊂ C such that for almost every (x, t) ∈ X × (0, ∞),

(3.1) f(x, t) =
∞∑

j=1

λjaj(x, t),

and the series converges in TΦ(X ). Moreover, there exists a positive constant C

such that for all f ∈ TΦ(X ),

Λ({λjaj } ∞
j=1) ≡ inf

{
λ > 0 :

∞∑
j=1

μ(Bj)Φ
( |λj |

λμ(Bj)ρ(μ(Bj))

)
≤ 1
}

(3.2)
≤ C‖f ‖TΦ(X ),

where B̂j appears as the support of aj .
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DEFINITION 3.1

Let L satisfy Assumptions (L)1 and (L)2, let Φ satisfy Assumption (Φ), let ρ be
as in (2.11), let M ∈ N, ε ∈ (0, ∞), and let B be a ball. A function β ∈ L2(X )
is called a (Φ,M, ε)L-molecule adapted to the ball B if there exists a function
b ∈ D(LM ) such that

(i) β = LMb;
(ii) For every k ∈ {0,1, . . . ,M } and j ∈ Z+, there holds

‖(r2
BL)kb‖L2(Uj(B)) ≤ r2M

B 2−jε[μ(2jB)]−1/2
[
ρ
(
μ(2jB)

)]−1
,

where Uj(B) for j ∈ Z+ is as in (2.5).

Let φ = LMν be a function in L2(X ), where ν ∈ D(LM ). Following [15] and [16],
for ε > 0, M ∈ N, and a fixed x0 ∈ X , we introduce the space

(3.3) MM,ε
Φ (L) ≡

{
φ = LMν ∈ L2(X ) : ‖φ‖MM,ε

Φ (L) < ∞
}
,

where

‖φ‖MM,ε
Φ (L) ≡ sup

j∈Z+

{
2jε[V (x0,2j)]1/2ρ

(
V (x0,2j)

) M∑
k=0

‖Lkν‖L2(Uj(B(x0,1)))

}
(see also [2]).

Notice that if φ ∈ MM,ε
Φ (L) for some ε > 0 with norm 1, then φ is a (Φ,M, ε)L-

molecule adapted to the ball B(x0,1). Conversely, if β is a (Φ,M, ε)L-molecule
adapted to any ball, then β ∈ MM,ε

Φ (L).
Let At denote either (I + t2L)−1 or e−t2L, and let A∗

t denote either (I +
t2L∗)−1 or e−t2L∗

. For any f ∈ (MM,ε
Φ (L∗))∗, the dual space of MM,ε

Φ (L∗), we
claim that (I − At)Mf ∈ L2

loc(X ) in the sense of distributions. Indeed, for any
ball B, if ψ ∈ L2(B), then it follows from the Davies–Gaffney estimate (2.7) and
Remark 2.1 that (I − A∗

t )Mψ ∈ MM,ε
Φ (L∗) for every ε > 0. Thus, there exists a

nonnegative constant C(t, rB,dist(B,x0)), depending on t, rB , and dist(B,x0),
such that for all ψ ∈ L2(B),∣∣〈(I − At)Mf,ψ〉

∣∣ ≡
∣∣〈f, (I − A∗

t )
Mψ〉
∣∣

≤ C
(
t, rB,dist(B,x0)

)
‖f ‖(MM,ε

Φ (L∗))∗ ‖ψ‖L2(B),

which implies that (I − At)Mf ∈ L2
loc(X ) in the sense of distributions.

Finally, for any M ∈ N, define

(3.4) MM
Φ,L(X ) ≡

⋂
ε>n(1/p−

Φ −1/p+
Φ)

(
MM,ε

Φ (L∗)
)∗

,

where p+
Φ and p−

Φ are, respectively, as in (2.9) and (2.10).

DEFINITION 3.2

Let L, Φ, and ρ be as in Definition 3.1, and let M > (1/p−
Φ − 1/2)n/2. A function
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f ∈ MM
Φ,L(X ) is said to be in the space BMOM

ρ,L(X ) if

‖f ‖BMOM
ρ,L(X ) ≡ sup

B⊂ X

1
ρ(μ(B))

[ 1
μ(B)

∫
B

|(I − e−r2
BL)Mf(x)|2 dμ(x)

]1/2

< ∞,

where the supremum is taken over all balls B of X .

Now, let us recall some notions on the Orlicz–Hardy spaces associated with L.
For all f ∈ L2(X ) and x ∈ X , define

SLf(x) ≡
(∫ ∫

Γ(x)

|t2Le−t2Lf(y)|2 dμ(y)dt

t

)1/2

.

The Orlicz–Hardy space HΦ,L(X ) is defined to be the completion of the set {f ∈
L2(X ) : SLf ∈ LΦ(X )} with respect to the quasi-norm ‖f ‖HΦ,L(X ) ≡ ‖SLf ‖LΦ(X ).

The Orlicz–Hardy space HΦ,L(X ) was introduced and studied in [2] (see
also [21]). If Φ(t) ≡ tp for p ∈ (0,1] and all t ∈ (0, ∞), then the space HΦ,L(X )
coincides with the Hardy space Hp

L(X ), which was introduced and studied by
Duong and Li [10].

Let the space Hmol,ε,M
Φ,fin,L (X ) denote the space of finite linear combinations of

(Φ,M, ε)L-molecules. By [2, Corollary 3.8], we obtain that Hmol,ε,M
Φ,fin,L (X ) is dense

in HΦ,L(X ) (see also [21, Corollary 4.2]).
In what follows, for M ∈ N, let C(M) be the positive constant such that

(3.5) C(M)
∫ ∞

0

t2(M+1)e−2t2 dt

t
= 1.

Recall that a variant of the following representation of finite linear combina-
tions of molecules was given by [2, Theorem 3.15] without a detailed proof. The
following Theorem 3.1 gives more accurate ranges of ε and M , comparing with
[2, Theorem 3.15].

THEOREM 3.1

Let L, Φ, and M be as in Definition 3.2, and let ε ∈ (0,M − (1/p−
Φ − 1/2)n/2).

Assume that f =
∑N

i=0 λiai, where N ∈ N, {ai}N
i=0 is a family of (Φ,2M,ε)L-

molecules, {λi}N
i=0 ⊂ C, and

∑N
i=0 |λi| < ∞. Then there exists a representation

of f =
∑2N

i=0 μimi, where {mi}2N
i=1 are (Φ,M, ε)L-molecules, {μi}2N

i=0 ⊂ C, and∑2N
i=0 |μi| ≤ C‖f ‖HΦ,L(X ), where C is a positive constant, depending only on

X ,L,M, ε, and n.

Proof
Throughout this proof, we choose p̃Φ ∈ (0, p−

Φ) such that M > (1/p̃Φ − 1/2)n/2
and ε ∈ (0,M − (1/p̃Φ − 1/2)n/2). Therefore, Φ is of lower-type p̃Φ, and hence ρ

is of upper-type 1/p̃Φ − 1.
Since {ai}N

i=0 is a family of (Φ,2M,ε)L-molecules, by definition there exist
a family {bi}N

i=0 of functions and a family {Bi}N
i=0 of balls such that for every

i ∈ {0,1, . . . ,N }, ai = L2Mbi satisfies Definition 3.1(ii). Fix a point x0 ∈ X . Let
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C̃(M) ≡ 2C(M)/(M + 1), where C(M) is as in (3.5). Then

C̃(M)
∫ ∞

0

t2(M+2)e−2t2 dt

t
= 1.

By this and the L2-functional calculus, for f =
∑N

i=0 λiai ∈ L2(X ), we have

f = C̃(M)
∫ ∞

0

(t2L)M+2e−2t2Lf
dt

t

= C̃(M)
∫ ∞

K1

(t2L)M+2e−2t2Lf
dt

t
+ C̃(M)

∫ K1

0

· · · ≡ f1 + f2,

where K1 is a positive constant which is determined later.
Let us start with the term f1. Set μ ≡ N −1‖f ‖HΦ,L(X ). Substituting f =∑N

i=0 λiai into f1, we have

f1 = C̃(M)
N∑

i=0

λi

∫ ∞

K1

(t2L)M+2e−2t2Lai
dt

t
=

N∑
i=0

μimi,K1 ,

where μi ≡ C̃(M)μ, mi,K1 ≡ LMfi,K1 , and

fi,K1 ≡ μ−1λi

∫ ∞

K1

t2(M+2)L2e−2t2Lai
dt

t
.

Then, obviously,
∑N

i=0 |μi| =
∑N

i=0 μi = C(M)‖f ‖HΦ,L(X ). We now claim that
for an appropriate choice of K1 and i ∈ {0,1, . . . ,N }, mi,K1 is a (Φ,M, ε)L-
molecule adapted to the ball Bi. Observe that ai = L2Mbi, for i ∈ {0,1, . . . ,N }.
By Minkowski’s inequality, for k ∈ {0,1, . . . ,M }, i ∈ {0,1, . . . ,N }, and j ∈ Z+,

‖(r2
Bi

L)kfi,K1 ‖L2(Uj(Bi))

≤ μ−1|λi|
∫ ∞

K1

t−2M ‖(t2L)2(M+1)e−2t2L(r2
Bi

L)kbi‖L2(Uj(Bi))
dt

t

≤ μ−1|λi|
∞∑

l=0

∫ ∞

K1

t−2M

×
∥∥(t2L)2(M+1)e−2t2L

(
χUl(Bi)[(r

2
Bi

L)kbi]
)∥∥

L2(Uj(Bi))

dt

t

≡ μ−1|λi|
∞∑

l=0

Hl,

where Ul(Bi) for l ∈ Z+ is as in (2.5). When l < j − 1, by Lemma 2.2, μ(2jBi) �
2n(j−l)μ(2lBi), ρ(μ(2jBi)) � 2n(j−l)(1/p̃Φ−1)ρ(μ(2lBi)), and Definition 3.1(ii), we
conclude that

Hl �
∫ ∞

K1

t−2M ‖(r2
Bi

L)kbi‖L2(Ul(Bi))

( t

2jrBi

)ε+n(1/p̃Φ−1/2) dt

t

�
∫ ∞

K1

t−2Mr4M
Bi

2−lε[μ(2lBi)]−1/2
[
ρ
(
μ(2lBi)

)]−1
( t

2jrBi

)ε+n(1/p̃Φ−1/2) dt

t
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� r2M
Bi

2−jε[μ(2jBi)]−1/2
[
ρ
(
μ(2jBi)

)]−1

× 2−l(ε+(1/p̃Φ−1/2)n/2)
(rBi

K1

)2[M −ε/2−(1/p̃Φ−1/2)n/2]

.

When l ∈ {j − 1, j, j + 1}, from Lemma 2.2 and Definition 3.1(ii), it follows that

Hl �
∫ ∞

K1

t−2M ‖(r2
Bi

L)kbi‖L2(Uj(Bi))
dt

t

� r2M
Bi

2−jε[μ(2jBi)]−1/2
[
ρ
(
μ(2jBi)

)]−1
(rBi

K1

)2M

.

When l > j +1, by Lemma 2.2, μ(2jBi) � μ(2lBi), ρ(μ(2jBi)) � ρ(μ(2lBi)), and
Definition 3.1(ii), we obtain

Hl �
∫ ∞

K1

t−2M ‖(r2
Bi

L)kbi‖L2(Ul(Bi))

( t

2lrBi

)ε dt

t

� r2M
Bi

2−jε[μ(2jBi)]−1/2
[
ρ
(
μ(2jBi)

)]−12−lε
(rBi

K1

)2M −ε

.

Combining these estimates, by choosing K1 > max{rB1 , . . . , rBN
}, we further con-

clude that there exists a positive constant C̃, independent of i, such that

‖(r2
Bi

L)kfi,K1 ‖L2(Uj(Bi)) ≤ C̃r2M
Bi

2−jε[μ(2jBi)]−1/2
[
ρ
(
μ(2jBi)

)]−1

× μ−1|λi|
(rBi

K1

)2[M −ε/2−(1/p̃Φ−1/2)n/2]

.

Then, by choosing

K1 ≡ max
0≤i≤N

{
rBi

[
C̃μ−1 max

0≤i≤N
|λi|
]1/(2[M −ε/2−(1/p̃Φ−1/2)n/2])}

,

we see that for i ∈ {0,1, . . . ,N }, mi,K1 is a (Φ,M, ε)L-molecule adapted to the
ball Bi, which shows the claim.

We now consider the term f2. Set μ ≡ N −1‖f ‖HΦ,L(X ). Substituting f =∑N
i=0 λiai into f2, we have

f2 = C̃(M)
N∑

i=0

λi

∫ K1

0

(t2L)M+1e−t2L(t2Le−t2Lai)
dt

t
=

N∑
i=0

μimi,K1 ,

where μi ≡ C(M)μ, mi,K1 ≡ LMfi,K1 , and

fi,K1 ≡ μ−1λi

∫ K1

0

t2(M+1)Le−t2L(t2Le−t2Lai)
dt

t
.

Then, obviously,
∑N

i=0 |μi| =
∑N

i=0 μi = C(M)‖f ‖HΦ,L(X ). We now claim that
for K1 as above and i ∈ {0,1, . . . ,N }, mi,K1 is a (Φ,M, ε)L-molecule adapted to
the ball 2K0Bi, where K0 ∈ (0, ∞) is determined later. To show the claim, for
i ∈ {0,1, . . . ,N } and j ∈ Z+, set Ωj,K0 ≡ 2j+K0+2Bi\2j+K0−2Bi, and write

fi,K1 = μ−1λi

∫ K1

0

t2(M+1)Le−t2L([t2Le−t2Lai]χΩj,K0
)
dt

t
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+ μ−1λi

∫ K1

0

t2(M+1)Le−t2L([t2Le−t2Lai]χΩ�
j,K0

)
dt

t

≡ gi,K1,K0 + hi,K1,K0 .

Then, by Minkowski’s inequality, for k ∈ {0,1, . . . ,M }, i ∈ {0,1, . . . ,N }, and
j ∈ Z+,

‖(22K0r2
Bi

L)kgi,K1,K0 ‖L2(Uj(2K0Bi))

≤ μ−1|λi|r2M
Bi

∥∥∥∫ K1

0

( t

rBi

)2M −2k

22kK0

× (t2L)k+1e−t2L([t2Le−t2Lai]χΩj,K0
)
dt

t

∥∥∥
L2(Uj(2K0Bi))

≤ μ−1|λi|
∞∑

l=0

∫ K1

0

( t

rBi

)2M −2k

22kK0 ‖χUl(2K0Bi)t
2Le−t2Lai‖L2(Ωj,K0 )

dt

t

≡ μ−1|λi|
∞∑

l=0

Hl.

When l < j − 2, from Lemma 2.2, μ(2j+K0Bi) � 2n(j−l)μ(2l+K0Bi),
ρ(μ(2j+K0Bi)) � 2n(j−l)(1/p̃Φ−1)ρ(μ(2l+K0Bi)), and Definition 3.1(ii), it follows
that

Hl �
∫ K1

0

( t

rBi

)2M −2k

22kK0 ‖ai‖L2(Ul(2K0Bi))

( t

2j+K0rBi

)ε+n(1/p̃Φ−1/2) dt

t

�
∫ K1

0

( t

rBi

)2M −2k

22kK0r4M
Bi

2−(l+K0)ε[μ(2l+K0Bi)]−1/2
[
ρ
(
μ(2l+K0Bi)

)]−1

×
( t

2j+K0rBi

)ε+n(1/p̃Φ−1/2) dt

t

� (2K0rBi)
2M2−jε[μ(2j+K0Bi)]−1/2

[
ρ
(
μ(2j+K0Bi)

)]−12−l[ε+(1/p̃Φ−1/2)n/2]

× 2−2K0[M −k+ε+(1/p̃Φ−1/2)n/2]K
2M −2k+ε+n(1/p̃Φ−1/2)
1

× r
2M+2k−ε−n(1/p̃Φ−1/2)
Bi

.

When l ∈ {j − 2, . . . , j + 2}, by Lemma 2.2 and Definition 3.1(ii), we see that

Hl �
∫ K1

0

( t

rBi

)2M −2k

22kK0 ‖ai‖L2(Uj(2K0Bi))

dt

t

� (2K0rBi)
2M2−jε[μ(2j+K0Bi)]−1/2

×
[
ρ
(
μ(2j+K0Bi)

)]−12−2K0(M −k+ε/2)K2M −2k
1 r2M+2k

Bi
.

When l > j + 2, from Lemma 2.2, μ(2jBi) � μ(2lBi), ρ(μ(2j+K0Bi)) �
ρ(μ(2l+K0Bi)), and Definition 3.1(ii), we infer that

Hl �
∫ K1

0

( t

rBi

)2M −2k

22kK0 ‖ai‖L2(Ul(2K0Bi))

( t

2l+K0rBi

)ε dt

t
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�
∫ K1

0

( t

rBi

)2M −2k

22kK0r4M
Bi

2−(l+K0)ε[μ(2l+K0Bi)]−1/2
[
ρ
(
μ(2l+K0Bi)

)]−1

×
( t

2l+K0rBi

)ε dt

t

� (2K0rBi)
2M2−jε[μ(2j+K0Bi)]−1/2

[
ρ
(
μ(2j+K0Bi)

)]−12−lε

× 2−2K0(M −k+ε)K2M −2k+ε
1 r2M+2k−ε

Bi
.

Then we estimate hi,K1,K0 . By Minkowski’s inequality and Definition 3.1(ii),
for k ∈ {0,1, . . . ,M }, i ∈ {0,1, . . . ,N }, and j ∈ Z+, we conclude that

‖(22K0r2
Bi

L)khi,K1,K0 ‖L2(Uj(2K0Bi))

≤ μ−1|λi|r2M
Bi

∥∥∥∫ K1

0

( t

rBi

)2M −2k

22kK0

× (t2L)k+1e−t2L([t2Le−t2Lai]χΩ�
j,K0

)
dt

t

∥∥∥
L2(Uj(2K0Bi))

≤ μ−1|λi|
∫ K1

0

( t

rBi

)2M −2k

22kK0

( t

2j+K0rBi

)ε+n(1/p̃Φ−1/2)

× ‖t2Le−t2Lai‖L2(X )
dt

t

� (2K0rBi)
2M2−jε[μ(2j+K0Bi)]−1/2

[
ρ
(
μ(2j+K0Bi)

)]−1

× 2−2K0[M −k+ε+(1/p̃Φ−1/2)n/2]

× K
2M −2k+ε+n(1/p̃Φ−1/2)
1 r

2M+2k−ε−n(1/p̃Φ−1/2)
Bi

.

Combining these estimates, by choosing K1 > max{rB1 , . . . , rBN
}, we further

see that

‖(22K0r2
Bi

L)kfi,K1 ‖L2(Uj(2K0Bi))

� (2K0rBi)
2M2−jε[μ(2j+K0Bi)]−1/2

[
ρ
(
μ(2j+K0Bi)

)]−1

× 2−2K0(M −k+ε/2)K
2M −2k+ε+(1/p̃Φ−1/2)n/2
1 r2M+2k

Bi
.

Then, by choosing

K0 ≡ max
0≤k≤M

( ln(K2M −2k+ε+(1/p̃Φ−1/2)n/2
1 max0≤i≤N {r2M+2k

Bi
})

2 ln2(M − k + ε/2)

)
,

we conclude that for i ∈ {0,1, . . . ,N }, mi,K1 is a (Φ,M, ε)L-molecule adapted
to the ball 2K0Bi, which shows the claim and hence completes the proof of
Theorem 3.1. �

REMARK 3.1

We point out that the proof of Theorem 3.1 also works for [15, Theorem 5.4].
Moreover, due to the lack of the support of molecules, we show that mi,K1 for
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i ∈ {1, . . . ,N } is a (Φ,M, ε)L-molecule adapted to the ball 2K0Bi, instead of
Bi as in the proof of [15, Theorem 5.4], which also simplifies the proof of [15,
Theorem 5.4].

By Theorem 3.1, with the argument the same as for the proofs of [2, Theo-
rems 3.13, 3.16], we obtain the following dual theorem. We omit the details.

THEOREM 3.2

Let L, Φ, ρ, and M be as in Definition 3.2. Then for any function f ∈ BMOM
ρ,L(X ),

the linear functional �, defined by �(g) ≡ 〈f, g〉 initially on Hmol,ε,2M̃
Φ,fin,L∗ (X ) with

M̃ > M and ε ∈ (0, M̃ − (1/p−
Φ − 1/2)n/2), has a unique extension to HΦ,L∗ (X )

and, moreover, ‖�‖(HΦ,L∗ (X ))∗ ≤ C‖f ‖BMOM
ρ,L(X ) for some nonnegative constant

C independent of f .
Conversely, for any � ∈ (HΦ,L∗ (X ))∗, there exists f ∈ BMOM

ρ,L(X ) such that
�(g) ≡ 〈f, g〉 for all g ∈ Hmol,ε,M

Φ,fin,L∗ (X ) and ‖f ‖BMOM
ρ,L(X ) ≤ C‖�‖(HΦ,L∗ (X ))∗ , where

C is a nonnegative constant independent of �.

REMARK 3.2

(i) Theorem 3.1 is just [2, Theorems 3.15] but with the ranges of indices M

and ε replaced, respectively, by M > (1/p−
Φ − 1/2)n/2 and ε ∈ (0,M − (1/p−

Φ −
1/2)n/2).

(ii) By Theorem 3.2, we see that for all M > (1/p−
Φ − 1/2)n/2, the spaces

BMOM
ρ,L(X ) for different M coincide with equivalent norms; thus, in what follows,

we denote BMOM
ρ,L(X ) simply by BMOρ,L(X ).

The following two propositions are just [2, Propositions 3.11, 3.12] (see also [21,
Propositions 4.4, 4.5]).

PROPOSITION 3.1

Let L, Φ, ρ, and M be as in Definition 3.2. Then f ∈ BMOρ,L(X ) if and only if
f ∈ MM

Φ,L(X ) and

sup
B⊂ X

1
ρ(μ(B))

[ 1
μ(B)

∫
B

∣∣[I − (I + r2
BL)−1]Mf(x)

∣∣2 dμ(x)
]1/2

< ∞.

Moreover, the quantity appearing in the left-hand side of the above formula is
equivalent to ‖f ‖BMOM

ρ,L(X ).

PROPOSITION 3.2

Let L, Φ, ρ, and M be as in Definition 3.2. Then there exists a positive constant
C such that for all f ∈ BMOρ,L(X ),

sup
B⊂ X

1
ρ(μ(B))

[ 1
μ(B)

∫ ∫
B̂

|(t2L)Me−t2Lf(x)|2 dμ(x)dt

t

]1/2

≤ C‖f ‖BMOM
ρ,L(X ).
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The following Proposition 3.3 and Lemma 3.2 are kinds of Calderón reproducing
formulae.

PROPOSITION 3.3

Let L, Φ, ρ, and M be as in Definition 3.2, let ε, ε1 ∈ (0, ∞), and let M̃ >

M + ε1 +n/4+ (1/p−
Φ − 1)N/2, where N is as in (2.4). Fix x0 ∈ X . Assume that

f ∈ MM
Φ,L(X ) satisfies

(3.6)
∫

X

|(I − (I + L)−1)Mf(x)|2

1 + [d(x,x0)]n+ε1+2N(1/p−
Φ −1)

dμ(x) < ∞.

Then for all (Φ, M̃ , ε)L∗-molecules α,

〈f,α〉 = C(M)
∫ ∫

X ×(0,∞)

(t2L)Me−t2Lf(x)t2L∗e−t2L∗ α(x)
dμ(x)dt

t
,

where C(M) is as in (3.5).

Proof
For R > δ > 0, write

C(M)
∫ R

δ

∫
X

(t2L)Me−t2Lf(x)t2L∗e−t2L∗ α(x)
dμ(x)dt

t

=
〈
f,C(M)

∫ R

δ

(t2L∗)M+1e−2t2L∗
α

dt

t

〉

= 〈f,α〉 −
〈
f,α − C(M)

∫ R

δ

(t2L∗)M+1e−2t2L∗
α

dt

t

〉
.

Since α is a (Φ, M̃ , ε)L∗-molecule, by Definition 3.1, there exists b ∈ L2(X ) such
that α = (L∗)M̃b. Notice that

f = [I − (I + L)−1 + (I + L)−1]Mf

=
M∑

k=0

(
M

k

)
[I − (I + L)−1]M −k(I + L)−kf =

M∑
k=0

(
M

k

)
[I − (I + L)−1]ML−kf,

where
(
M
k

)
denotes the binomial coefficient, which, together with the H∞-func-

tional calculus, further implies that〈
f,α − C(M)

∫ R

δ

(t2L∗)M+1e−2t2L∗
α

dt

t

〉

=
M∑

k=0

(
M

k

)〈
[I − (I + L)−1]Mf,LM̃ −kb − C(M)

×
∫ R

δ

(t2L∗)M+1e−2t2L∗
(L∗)M̃ −kb

dt

t

〉
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=
M∑

k=0

(
M

k

)〈
[I − (I + L)−1]Mf,C(M)

×
∫ δ

0

(t2L∗)M+1e−2t2L∗
(L∗)M̃ −kb

dt

t

〉

+
M∑

k=0

(
M

k

)〈
[I − (I + L)−1]Mf,C(M)

×
∫ ∞

R

(t2L∗)M+1e−2t2L∗
(L∗)M̃ −kb

dt

t

〉

≡
M∑

k=0

(
M

k

)
(H + J).

For J, by (3.6) and Hölder’s inequality, we conclude that

|J| �
{∫

X

|(I − (I + L)−1)Mf(x)|2

1 + [d(x,x0)]n+ε1+2N(1/p−
Φ −1)

dμ(x)
}1/2

×
{∫

X

∣∣∣∫ ∞

R

(t2L∗)M+M̃ −k+1e−2t2L∗
b(x)

1

t2(M̃ −k)+1
dt
∣∣∣2

×
(
1 + [d(x,x0)]n+ε1+2N(1/p−

Φ −1)
)
dμ(x)
}1/2

�
∫ ∞

R

∥∥(t2L∗)M+M̃ −k+1e−2t2L∗
b
(
1 + [d(·, x0)]n+ε1+2N(1/p−

Φ −1)
)1/2∥∥

L2(X )

× 1

t2(M̃ −k)+1
dt.

Let B0 ≡ B(x0,1). Notice that there exist Ñ , d ∈ N such that for all j ∈ N, j ≥ Ñ ,

Uj(B0) ⊂
d⋃

i=−d

Uj+i(B),

where B is the ball adapted to α and Uj(B) for j ∈ Z+ is as in (2.5). By choosing
j0 ≥ Ñ , we conclude that

|J| �
∫ ∞

R

∥∥(t2L∗)M+M̃ −k+1e−2t2L∗
b

×
(
1 + [d(·, x0)]n+ε1+2N(1/p−

Φ −1)
)1/2∥∥

L2(2j0B0)

1

t2(M̃ −k)+1
dt

+
∞∑

j=j0+1

∫ ∞

R

∥∥(t2L∗)M+M̃ −k+1e−2t2L∗
b

×
(
1 + [d(·, x0)]n+ε1+2N(1/p−

Φ −1)
)1/2∥∥

L2(Uj(B0))

1

t2(M̃ −k)+1
dt ≡ J1 + J2.
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For all ε̃ > 0, let C1 ≡ 2(n+ε1+2N(1/p−
Φ −1))j0/2‖b‖L2(X ) and R1 ≡ (C1/ε̃ )1/(2(M̃ −k));

then for all R > R1, we obtain

J1 � 2j0/2(n+ε1+2N(1/p−
Φ −1))

∫ ∞

R

dt

t2(M̃ −k)+1
‖b‖L2(X ) � ε̃.

Letting C2 ≡ r
(1/p−

Φ −1/2)n/2+2M̃
B and R1 ≡ (C2/ε̃ )1/(2(M̃ −k)), we then know that

for all R > R1,

J2 �
∞∑

j=j0+1

2(n+ε1+2N(1/p−
Φ −1))j/2

×
d∑

i=−d

{∫ ∞

R

‖(t2L∗)M+M̃ −k+1e−2t2L∗
(χŨj+i(B)b)‖L2(Uj+i(B))

1

t2(M̃ −k)+1
dt

+
∫ ∞

R

‖(t2L∗)M+M̃ −k+1e−2t2L∗
(χ(Ũj+i(B))�b)‖L2(Uj+i(B))

1

t2(M̃ −k)+1
dt
}

,

where Ũj+i(B) ≡ 2j+i+1B\2j+i−1B. Then, since∫ ∞

R

‖(t2L∗)M+M̃ −k+1e−2t2L∗
(χŨj+i(B)b)‖L2(Uj+i(B))

1

t2(M̃ −k)+1
dt

� 1

R2(M̃ −k)
‖b‖L2(Ũj+i(B)) � 2−(n+ε1+2N(1/p−

Φ −1))j/2ε̃,

and
∫∞

R
‖(t2L∗)M+M̃ −k+1e−2t2L∗

(χ(Ũj+i(B))�b)‖L2(Uj+i(B))1/(t2(M̃ −k)+1)dt sat-
isfies the same estimate, we see that J2 � ε̃. Thus, limR→∞ J = 0.

To consider H, let f̃ ≡ [I − (I + L)−1]Mf . Then

SM+1 ≡
〈
f̃ ,

∫ δ

0

(t2L∗)M+1e−2t2L∗
(L∗)M̃ −kb

dt

t

〉

= − 1
4

〈
f̃ ,

∫ δ

0

(t2L∗)M ∂

∂t
(e−2t2L∗

)(L∗)M̃ −kb
dt

t

〉

= − 1
4

〈f̃ , (δ2L∗)Me−2δ2L∗
(L∗)M̃ −kb〉

+
M

2

〈
f̃ ,

∫ δ

0

(t2L∗)Me−2t2L∗
(L∗)M̃ −kb

dt

t

〉
.

Thus,

SM+1 = − 1
4

〈f̃ , (δ2L∗)Me−2δ2L∗
(L∗)M̃ −kb〉 +

M

2
SM

=
M∑

�=1

−M !
2�+1(M − � + 1)!

〈f̃ , (δ2L∗)M −�+1e−2δ2L∗
(L∗)M̃ −kb〉 +

M !
2M

S1.

For all � ∈ {1, . . . ,M }, from Hölder’s inequality, we infer that

| 〈f̃ , (δ2L∗)M −�+1e−2δ2L∗
(L∗)M̃ −kb〉|
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�
{∫

X

|(I − (I + L)−1)Mf(x)|2

1 + [d(x,x0)]n+ε1+2N(1/p−
Φ −1)

dμ(x)
}1/2

×
{∫

X
|(δ2L∗)M −�+1e−2δ2L∗

(L∗)M̃ −kb(x)|2

×
(
1 + [d(x,x0)]n+ε1+2N(1/p−

Φ −1)
)
dμ(x)
}1/2

� 2[n+ε1+2N(1/p−
Φ −1)]j0/2‖(δ2L∗)M −�+1e−2δ2L∗

(L∗)M̃ −kb‖L2(2j0B0)

+
∞∑

j=j0+1

2[n+ε1+2N(1/p−
Φ −1)]j/2

×
{∥∥(δ2L∗)M −�+1e−2δ2L∗(

χ⋃j+d+1
i=j−d−1 Ui(B)(L

∗)M̃ −kb
)∥∥

L2(Uj(B0))

+
∥∥(δ2L∗)M −�+1e−2δ2L∗(

χ(
⋃j+d+1

i=j−d−1 Ui(B))�(L∗)M̃ −kb
)∥∥

L2(Uj(B0))

}
.

By the L2-functional calculus, we see that limδ→0(δ2L∗)M −�+1e−2δ2L∗
(L∗)M̃ −kb =

0 in L2(X ), and by Lemma 2.2, we know that
∞∑

j=j0+1

2[n+ε1+2N(1/p−
Φ −1)]j/2

×
{∥∥(δ2L∗)M −�+1e−2δ2L∗(

χ⋃j+d+1
i=j−d−1 Ui(B)(L

∗)M̃ −kb
)∥∥

L2(Uj(B0))

+
∥∥(δ2L∗)M −�+1e−2δ2L∗(

χ(
⋃j+d+1

i=j−d−1 Ui(B))�(L∗)M̃ −kb
)∥∥

L2(Uj(B0))

}
�

∞∑
j=j0+1

2[n+ε1+2N(1/p−
Φ −1)]j/2

[
‖(L∗)M̃ −kb‖L2(

⋃j+d+1
i=j−d−1 Ui(B))

+ e−(2jrB)/δ ‖(L∗)M̃ −kb‖L2(X )

]
� ε̃.

From

S1 =
〈
f̃ ,

∫ δ

0

(t2L∗)e−2t2L∗
(L∗)M̃ −kb

dt

t

〉
= 〈f̃ , (e−2δ2L∗ − I)(L∗)M̃ −kb〉

and

lim
δ→0

‖(e−2δ2L∗ − I)(L∗)M̃ −kb‖L2(X ) = 0,

it follows that limδ→0 H = 0, which completes the proof of Proposition 3.3. �

Instead of [21, Proposition 4.6] by Proposition 3.3 here, repeating the proof of
[21, Corollary 4.3], we obtain the following Lemma 3.2. The details are omitted.

LEMMA 3.2

Let L, Φ, ρ, and M be as in Definition 3.2, and let ε ∈ (0, ∞). If f ∈ BMOρ,L(X ),
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then for any (Φ,M, ε)L∗-molecule α, there holds

〈f,α〉 = C(M)
∫ ∫

X ×(0,∞)

(t2L)Me−t2Lf(x)t2L∗e−t2L∗ α(x)
dμ(x)dt

t
.

Recall that a measure dμ on X × (0, ∞) is called a ρ-Carleson measure if

‖dμ‖ρ ≡ sup
B⊂ X

{ 1
μ(B)[ρ(μ(B))]2

∫ ∫
B̂

|dμ|
}1/2

< ∞,

where the supremum is taken over all balls B of X .
Using Theorem 3.2 and Proposition 3.2, similarly to the proof of [21, Theo-

rem 4.2], we obtain the following ρ-Carleson measure characterization of
BMOρ,L(X ).

THEOREM 3.3

Let L, Φ, ρ, and M be as in Definition 3.2. Fix x0 ∈ X . Then the following are
equivalent:

(i) f ∈ BMOρ,L(X );
(ii) f ∈ MM

Φ,L(X ) satisfies∫
X

|(I − (I + L)−1)Mf(x)|2

1 + [d(x,x0)]n+ε1+2N(1/p−
Φ −1)

dμ(x) < ∞

for some ε1 ∈ (0, ∞), and dμf is a ρ-Carleson measure, where dμf is defined by
dμf (x, t) ≡ |(t2L)Me−t2Lf(x)|2 dμ(x)dt

t for all (x, t) ∈ X × (0, ∞).

Moreover, ‖dμf ‖ρ is equivalent to ‖f ‖BMOρ,L(X ).

Proof
It follows from Proposition 3.1 and the proof of Lemma 3.2 that (i) implies (ii).

To show that (ii) implies (i), let M̃ > M + ε1 + n/4 + (1/p−
Φ − 1)N/2. From

Proposition 3.3, we deduce that

〈f, g〉 = C(M)
∫ ∫

X ×(0,∞)

(t2L)Me−t2Lf(x)t2L∗e−t2L∗ g(x)
dμ(x)dt

t
,

where g is any finite combination of (Φ,M, ε)L∗-molecules. Then t2L∗e−t2L∗
g ∈

TΦ(X ). By Lemma 3.1, there exist {λj } ∞
j=1 ⊂ C and TΦ(X )-atoms {aj } ∞

j=1 sup-
ported in {B̂j } ∞

j=1 such that (3.1) and (3.2) hold. This, together with Fatou’s
lemma and Hölder’s inequality, implies that

| 〈f, g〉| =
∣∣∣C(M)

∫ ∫
X ×(0,∞)

(t2L)Me−t2Lf(x)t2L∗e−t2L∗ g(x)
dμ(x)dt

t

∣∣∣
�
∑

j

|λj |
∫ ∞

0

∫
X

|(t2L)Me−t2Lf(x)aj(x, t)| dμ(x)dt

t

�
∑

j

|λj | ‖aj ‖T 2
2 (X )

(∫ ∫
B̂j

|(t2L)Me−t2Lf(x)|2 dμ(x)dt

t

)1/2
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�
∑

j

|λj | ‖dμf ‖ρ � ‖(t2L∗)Me−t2L∗
g‖TΦ(X )‖dμf ‖ρ ∼ ‖g‖HΦ,L∗ (X )‖dμf ‖ρ.

By this and Theorem 3.2, we conclude that f ∈ (HΦ,L∗ (X ))∗ = BMOρ,L(X ),
which completes the proof of Theorem 3.3. �

Now we introduce the space VMOρ,L(X ).

DEFINITION 3.3

Let L, Φ, ρ, and M be as in Definition 3.2. An element f ∈ BMOρ,L(X ) is said to
be in the space VMOM

ρ,L(X ) if it satisfies the limiting conditions γ1(f) = γ2(f) =
γ3(f) = 0, where x0 ∈ X is a fixed point, c ∈ (0, ∞),

γ1(f) ≡ lim
c→0

sup
B:rB ≤c

1
ρ(μ(B))

[ 1
μ(B)

∫
B

|(I − e−r2
BL)Mf(x)|2 dμ(x)

]1/2

,

γ2(f) ≡ lim
c→∞

sup
B:rB ≥c

1
ρ(μ(B))

[ 1
μ(B)

∫
B

|(I − e−r2
BL)Mf(x)|2 dμ(x)

]1/2

,

and

γ3(f) ≡ lim
c→∞

sup
B:B⊂[B(x0,c)]�

1
ρ(μ(B))

[ 1
μ(B)

∫
B

|(I − e−r2
BL)Mf(x)|2 dμ(x)

]1/2

.

For any f ∈ VMOM
ρ,L(X ), define ‖f ‖VMOM

ρ,L(X ) ≡ ‖f ‖BMOρ,L(X ).

DEFINITION 3.4

Let Φ satisfy Assumption (Φ), and let ρ be as in (2.11). The space T ∞
Φ,v(X ) is

defined to be the space of all f ∈ T ∞
Φ (X ) satisfying η1(f) = η2(f) = η3(f) = 0 with

the same norm as the space T ∞
Φ (X ), where x0 ∈ X is a fixed point, c ∈ (0, ∞),

η1(f) ≡ lim
c→0

sup
B:rB ≤c

1
ρ(μ(B))

[ 1
μ(B)

∫ ∫
B̂

|f(y, t)|2 dμ(y)dt

t

]1/2

,

η2(f) ≡ lim
c→∞

sup
B:rB ≥c

1
ρ(μ(B))

[ 1
μ(B)

∫ ∫
B̂

|f(y, t)|2 dμ(y)dt

t

]1/2

,

and

η3(f) ≡ lim
c→∞

sup
B:B⊂[B(x0,c)]�

1
ρ(μ(B))

[ 1
μ(B)

∫ ∫
B̂

|f(y, t)|2 dμ(y)dt

t

]1/2

.

It is easy to see that T ∞
Φ,v(X ) is a closed linear subspace of T ∞

Φ (X ).
Further, denote by T ∞

Φ,1(X ) the space of all f ∈ T ∞
Φ (X ) with η1(f) = 0, and

denote by T 2
2,b(X ) the space of all f ∈ T 2

2 (X ) with bounded support. Obviously,
we have T 2

2,b(X ) ⊂ T ∞
Φ,v(X ) ⊂ T ∞

Φ,1(X ). Finally, denote by T ∞
Φ,0(X ) the closure of

T 2
2,b(X ) in the space T ∞

Φ,1(X ).
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LEMMA 3.3

Let L and Φ be as in Definition 3.1, and let T ∞
Φ,v(X ) and T ∞

Φ,0(X ) be defined as
above. Then T ∞

Φ,v(X ) and T ∞
Φ,0(X ) coincide with equivalent norms.

Proof
Since T 2

2,b(X ) ⊂ T ∞
Φ,v(X ) and T ∞

Φ,v(X ) is a closed linear subspace of T ∞
Φ (X ), we

conclude that T ∞
Φ,0(X ) = T 2

2,b(X ) ⊂ T ∞
Φ,v(X ).

Conversely, for any f ∈ T ∞
Φ,v(X ), by the definition of T ∞

Φ,v(X ), for any ε > 0,
there exist positive constants a0, b0, and c0 such that

sup
B:rB ≤a0

1
μ(B)[ρ(μ(B))]2

∫ ∫
B̂

|f(y, t)|2 dμ(y)dt

t
< ε,(3.7)

sup
B:rB ≥b0

1
μ(B)[ρ(μ(B))]2

∫ ∫
B̂

|f(y, t)|2 dμ(y)dt

t
< ε,(3.8)

and

sup
B:B⊂[B(x0,c0)]�

1
μ(B)[ρ(μ(B))]2

∫ ∫
B̂

|f(y, t)|2 dμ(y)dt

t
< ε.(3.9)

Let K0 ≡ max{a−1
0 , b0, c0}, and for all (y, t) ∈ X × (0, ∞), let

g(y, t) ≡ f(y, t)χB(x0,2K0)×((2K0)−1,2K0)(y, t).

Obviously, g ∈ T 2
2,b(X ). To complete the proof of Lemma 3.3, we need to show

that

‖f − g‖2
T ∞
Φ (X ) � ε.

We consider the following three cases for all balls B in (3.7), (3.8), and (3.9).
Case (i): rB < a0 or rB > b0. In this case, from (3.7) and (3.8), we deduce

that

‖f − g‖2
T ∞
Φ (X ) ≤ 2

μ(B)[ρ(μ(B))]2

∫ ∫
B̂

|f(y, t)|2 dμ(y)dt

t
≤ 2ε.

Case (ii): a0 ≤ rB ≤ b0 and B ⊂ [B(x0, c0)]�. In this case, by (3.9), we con-
clude that

‖f − g‖2
T ∞
Φ (X ) ≤ 2

μ(B)[ρ(μ(B))]2

∫ ∫
B̂

|f(y, t)|2 dμ(y)dt

t
≤ 2ε.

Case (iii): a0 ≤ rB ≤ b0 and B ∩ B(x0, c0) �= ∅. In this case, we have∫ ∫
B̂

|f(y, t) − g(y, t)|2 dμ(y)dt

t
≤
∫ (2K0)

−1

0

∫
B

|f(y, t)|2 dμ(y)dt

t

≤
∫ (2K0)

−1

0

∫
B(xB ,2ka0)

|f(y, t)|2 dμ(y)dt

t
,

where xB is the center of B and k is the smallest integer such that 2ka0 >

rB . Then, by Lemma 2.1, we pick a family of balls with the same radius a0,
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{B(xB,i, a0)}Nk
i=1, such that B(xB ,2ka0) ⊂

⋃Nk

i=1 B(xB,i, a0), Nk � 2kn, and∑Nk

i=1 χB(xB,i,a0) � 1. Therefore, combining the fact that ρ is an increasing func-
tion, we obtain∫ ∫

B̂

|f(y, t) − g(y, t)|2 dμ(y)dt

t
≤
∫ (2K0)

−1

0

∫
⋃Nk

i=1 B(xB,i,a0)

|f(y, t)|2 dμ(y)dt

t

≤
Nk∑
i=1

∫ ∫
B̂(xB,i,a0)

|f(y, t)|2 dμ(y)dt

t

� ε

Nk∑
i=1

μ
(
B(xB,i, a0)

)[
ρ
(
μ(B(xB,i, a0))

)]2

� ε[ρ(μ(B))]2
Nk∑
i=1

μ
(
B(xB,i, a0)

)
� εμ(B)

[
ρ
(
μ(B)
)]2

,

which completes the proof of Lemma 3.3. �

DEFINITION 3.5

Let L, Φ, ρ, and M be as in Definition 3.2. The space ṼMOM
ρ,L(X ) is defined to

be the space of all elements f ∈ BMOM
ρ,L(X ) that satisfy the limiting conditions

γ̃1(f) = γ̃2(f) = γ̃3(f) = 0, where c ∈ (0, ∞),

γ̃1(f) ≡ lim
c→0

sup
B:rB ≤c

1
ρ(μ(B))

[ 1
μ(B)

∫
B

∣∣(I − [I + r2
BL]−1)Mf(x)

∣∣2 dμ(x)
]1/2

,

γ̃1(f) ≡ lim
c→∞

sup
B:rB ≥c

1
ρ(μ(B))

[ 1
μ(B)

∫
B

∣∣(I − [I + r2
BL]−1)Mf(x)

∣∣2 dμ(x)
]1/2

,

and

γ̃1(f) ≡ lim
c→∞

sup
B:B⊂[B(0,c)]�

1
ρ(μ(B))

×
[ 1
μ(B)

∫
B

∣∣(I − [I + r2
BL]−1)Mf(x)

∣∣2 dμ(x)
]1/2

.

PROPOSITION 3.4

Let L, Φ, ρ, and M be as in Definition 3.2. Then f ∈ VMOM
ρ,L(X ) if and only if

f ∈ ṼMOM
ρ,L(X ).

Proof
Suppose that f ∈ ṼMOM

ρ,L(X ). To see f ∈ VMOM
ρ,L(X ), it suffices to show that

(3.10)
1

ρ(μ(B))[μ(B)]1/2

[∫
B

|(I − e−r2
BL)Mf(x)|2 dμ(x)

]1/2

�
∞∑

k=0

2−kδk(f,B),
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where

δk(f,B) ≡ sup
{B′ ⊂2k+1B:rB′ ∈[2−1rB ,rB ]}

1
ρ(μ(B))[μ(B)]1/2

(3.11)

×
[∫

B

∣∣(I − [I + r2
BL]−1)Mf(x)

∣∣2 dμ(x)
]1/2

.

Indeed, since f ∈ ṼMOM
ρ,L(X ), by Definition 3.5 and Proposition 3.1, we

conclude that δk(f,B) � ‖f ‖BMOρ,L(X ) and for all k ∈ Z+,

lim
c→0

sup
B:rB ≤c

δk(f,B) = lim
c→∞

sup
B:rB ≥c

δk(f,B) = lim
c→∞

sup
B:B⊂[B(x0,c)]�

δk(f,B) = 0.

Then by the dominated convergence theorem for series, we have

γ1(f) = lim
c→0

sup
B:rB ≤c

1
ρ(μ(B))[μ(B)]1/2

[∫
B

|(I − e−r2
BL)Mf(x)|2 dμ(x)

]1/2

�
∞∑

k=1

2−k lim
c→0

sup
B:rB ≤c

δk(f,B) = 0.

Similarly we see that γ2(f) = γ3(f) = 0, and hence f ∈ VMOM
ρ,L(X ).

Let us now prove (3.10). Write

(3.12) f = (I − [I + r2
BL]−1)Mf +

{
I − (I − [I + r2

BL]−1)M
}
f ≡ f1 + f2.

By Lemma 2.2, we have

‖(I − e−r2
BL)Mf1‖L2(B)

≤
∞∑

k=0

‖(I − e−r2
BL)M (f1χUk(B))‖L2(B)

�
∞∑

k=0

e−c22k ‖f1χUk(B)‖L2(X )(3.13)

� ρ
(
μ(B)
)
[μ(B)]1/2

∞∑
k=0

e−c22k

2knδk(f,B)

� ρ
(
μ(B)
)
[μ(B)]1/2

∞∑
k=0

2−kδk(f,B),

where Uk(B) for all k ∈ Z+ is as in (2.5), c is a positive constant, and the
third inequality follows from Lemma 2.1 that there exists a collection, {Bk,1,

Bk,2, . . . ,Bk,Nk
}, of balls such that each ball Bk,i is of radius rB , B(xB ,2k+1rB) ⊂⋃Nk

i=1 Bk,i, and Nk � 2nk.
To estimate the remaining term, by the formula

(3.14) I − (I − [I + r2
BL]−1)M =

M∑
j=1

M !
j!(M − j)!

(r2
BL)−j(I − [I + r2

BL]−1)M
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(which relies on the fact that (I − (I + r2L)−1)(r2L)−1 = (I + r2L)−1 for all
r ∈ (0, ∞)) and Minkowski’s inequality, we obtain

‖(I − e−r2
BL)Mf2‖L2(B)

�
M∑

j=1

{∫
B

∣∣∣(I − e−r2
BL)M −j

[
−
∫ rB

0

s

r2
B

e−s2L ds
]j

f1(x)
∣∣∣2 dμ(x)

}1/2

�
M∑

j=1

M −j∑
i=0

∫ rB

0

· · ·
∫ rB

0

s1

r2
B

· · · sj

r2
B

‖e−(ir2
B+s2

1+···+s2
j )Lf1‖L2(B) ds1 · · · dsj

�
M∑

j=1

M −j∑
i=0

∫ rB

0

· · ·
∫ rB

0

s1

r2
B

· · · sj

r2
B

(3.15)

×
∞∑

k=0

e−c(2krB)2/(ir2
B+s2

1+···+s2
j )‖f1χUk(B)‖L2(X ) ds1 · · · dsj

� ρ
(
μ(B)
)
[μ(B)]1/2

∞∑
k=0

e−(c22k)/M2knδk(f,B)

� ρ
(
μ(B)
)
[μ(B)]1/2

∞∑
k=0

2−kδk(f,B),

where c is a positive constant and in the penultimate inequality, we used the fact
that
∫ rB

0
· · ·
∫ rB

0
(s1/r2

B) · · · (sj/r2
B)ds1 · · · dsj ∼ 1. Combining the estimates (3.13)

and (3.15), we obtain (3.10), which further implies that ṼMOM
ρ,L(X ) ⊂

VMOM
ρ,L(X ).

By borrowing some ideas from the proof of [16, Lemma 8.1], similarly to the
proof above, we conclude that VMOM

ρ,L(X ) ⊂ ṼMOM
ρ,L(X ) and the details are

omitted. This finishes the proof of Proposition 3.4. �

We now characterize the space VMOM
ρ,L(X ) via the tent space.

THEOREM 3.4

Let L, Φ, and ρ be as in Definition 3.1, let M , M1 ∈ N, and let M1 ≥ M >

(1/p−
Φ − 1/2)n/2. Then the following are equivalent:

(i) f ∈ VMOM
ρ,L(X );

(ii) f ∈ MM1
Φ,L(X ) and (t2L)M1e−t2Lf ∈ T ∞

Φ,v(X ).

Moreover, ‖(t2L)M1e−t2Lf ‖T ∞
Φ (X ) is equivalent to ‖f ‖BMOρ,L(X ).

Proof
We first show that (i) implies (ii). Let f ∈ VMOM

ρ,L(X ). By Proposition 3.2, we
know that (t2L)M1e−t2Lf ∈ T ∞

Φ (X ). To see that (t2L)M1e−t2Lf ∈ T ∞
Φ,v(X ), we
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claim that it suffices to show that for all balls B,

1
ρ(μ(B))[μ(B)]1/2

[∫ ∫
B̂

|(t2L)M1e−t2Lf(x)|2 dμ(x)dt

t

]1/2

(3.16)

�
∞∑

k=0

2−kδk(f,B),

where δk(f,B) is as in (3.11). Indeed, since f ∈ VMOM
ρ,L(X ) = ṼMOM

ρ,L(X ), we
conclude that for each k ∈ N, δk(f,B) � ‖f ‖BMOρ,L(X ) and

lim
c→0

sup
B:rB ≤c

δk(f,B) = lim
c→∞

sup
B:rB ≥c

δk(f,B)

= lim
c→∞

sup
B:B⊂[B(x0,c)]�

δk(f,B) = 0.

Then from the dominated convergence theorem for series, we infer that

η1(f) = lim
c→0

sup
B:rB ≤c

1
ρ(μ(B))[μ(B)]1/2

[∫ ∫
B̂

|(t2L)M1e−t2Lf(x)|2 dμ(x)dt

t

]1/2

�
∞∑

k=1

2−k lim
c→0

sup
B:rB ≤c

δk(f,B) = 0.

Similarly we see that η2(f) = η3(f) = 0, and hence (t2L)M1e−t2Lf ∈ T ∞
Φ,v(X ).

Let us now prove (3.16). Write f ≡ f1 + f2 as in (3.12). Then by Lemmas 2.2
and 2.3, similarly to the estimate of (3.13), we have{∫ ∫

B̂

|(t2L)M1e−t2Lf1(x)|2 dμ(x)dt

t

}1/2

≤
∞∑

k=0

{∫ ∫
B̂

|(t2L)M1e−t2L(f1χUk(B))(x)|2 dμ(x)dt

t

}1/2

� ‖f1‖L2(4B) +
∞∑

k=3

[∫ rB

0

exp
{

− (2krB)2

ct2

}dt

t

]1/2

‖f1χUk(B)‖L2(X )(3.17)

� ‖f1‖L2(4B) +
∞∑

k=3

{∫ rB

0

[ t2

(2krB)2
]n+1 dt

t

}1/2

‖f1χUk(B)‖L2(X )

� ρ
(
μ(B)
)
[μ(B)]1/2

∞∑
k=0

2−kδk(f,B),

where Uk(B) for all k ∈ Z+ is as in (2.5) and c is a positive constant. Apply-
ing (3.14), Lemma 2.2, and M1 > M to f2, we see that{∫ ∫

B̂

|(t2L)M1e−t2Lf2(x)|2 dμ(x)dt

t

}1/2

�
M∑

j=1

{∫ ∫
B̂

|(t2L)M1e−t2L(r2
BL)−jf1(x)|2 dμ(x)dt

t

}1/2
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�
M∑

j=1

∞∑
k=0

{∫ ∫
B̂

[ t2
r2
B

]2j

|(t2L)M1−je−t2L(f1χUk(B))(x)|2 dμ(x)dt

t

}1/2

�
M∑

j=1

{ 2∑
k=0

[∫ rB

0

( t2

r2
B

)2j dt

t

]1/2

‖f1‖L2(4B)(3.18)

+
∞∑

k=3

[∫ rB

0

exp
{

− (2krB)2

ct2

}dt

t

]1/2

‖f1χUk(B)‖L2(X )

}

� ‖f1‖L2(4B) +
∞∑

k=3

{∫ rB

0

[ t2

(2krB)2
]n+1 dt

t

}1/2

‖f1χUk(B)‖L2(X )

� ρ
(
μ(B)
)
[μ(B)]1/2

∞∑
k=0

2−kδk(f,B).

The estimates (3.17) and (3.18) imply (3.16), which completes the proof that
(i) implies (ii).

Conversely, let f ∈ MM1
Φ,L(X ) and (t2L)M1e−t2Lf ∈ T ∞

Φ,v(X ). By Proposi-
tion 3.2, we conclude that f ∈ BMOρ,L(X ). For any ball B, write(∫

B

|(I − e−r2
BL)Mf(x)|2 dμ(x)

)1/2

= sup
‖g‖L2(B)≤1

∣∣∣∫
B

(I − e−r2
BL)Mf(x)g(x)dμ(x)

∣∣∣
= sup

‖g‖L2(B)≤1

∣∣∣∫
B

f(x)(I − e−r2
BL∗ )Mg(x)dμ(x)

∣∣∣.
Notice that for any g ∈ L2(B), (I − e−r2

BL∗
)Mg is a multiple of a (Φ,M, ε)L∗ -

molecule (see [16, p. 43]). Then by Lemma 3.2 and Hölder’s inequality, we obtain[∫
B

|(I − e−r2
BL)Mf(x)|2 dμ(x)

]1/2

∼ sup
‖g‖L2(B)≤1

∣∣∣∫ ∫
X ×(0,∞)

(t2L)M1e−t2L

× f(x)t2L∗e−t2L∗
(I − e−r2

BL∗ )Mg(x)
dμ(x)dt

t

∣∣∣
∼

∞∑
k=0

{∫ ∫
Vk(B)

|(t2L)M1e−t2Lf(x)|2 dμ(x)dt

t

}1/2

× sup
‖g‖L2(B)≤1

{∫ ∫
Vk(B)

|t2L∗e−t2L∗
(I − e−r2

BL∗
)Mg(x)|2 dμ(x)dt

t

}1/2

≡
∞∑

k=0

σk(f,B)Ik,
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where V0(B) ≡ B̂ and Vk(B) ≡ (2̂kB)\(2̂k−1B) for k ∈ N. In what follows, for
k ≥ 2, let Vk,1 ≡ (2̂kB)\(2k−2B × (0, ∞)) and Vk,2 ≡ Vk(B)\Vk,1(B).

For k ∈ {0,1,2}, by Lemmas 2.2 and 2.3, we conclude that

Ik = sup
‖g‖L2(B)≤1

{∫ ∫
Vk(B)

|t2L∗e−t2L∗
(I − e−r2

BL∗
)Mg(x)|2 dμ(x)dt

t

}1/2

� sup
‖g‖L2(B)≤1

‖(I − e−r2
BL∗

)Mg‖L2(X ) � 1.

Now for k ≥ 3, write

Ik � sup
‖g‖L2(B)≤1

{∫ ∫
Vk,1(B)

|t2L∗e−t2L∗
(I − e−r2

BL∗
)Mg(x)|2 dμ(x)dt

t

}1/2

+ sup
‖g‖L2(B)≤1

{∫ ∫
Vk,2(B)

· · ·
}1/2

≡ Ik,1 + Ik,2.

Since for any (y, t) ∈ Vk,2(B), t ≥ 2k−2rB , from Minkowski’s inequality and Lem-
mas 2.2 and 2.3, it follows that

Ik,2 = sup
‖g‖L2(B)≤1

{∫ ∫
Vk,2(B)

|t2L∗e−t2L∗
(I − e−r2

BL∗
)Mg(x)|2 dμ(x)dt

t

}1/2

= sup
‖g‖L2(B)≤1

{∫ ∫
Vk,2(B)

∣∣∣t2L∗e−t2L∗
[

−
∫ r2

B

0

L∗e−sL∗
ds
]M

g(x)
∣∣∣2 dμ(x)dt

t

}1/2

� sup
‖g‖L2(B)≤1

∫ r2
B

0

· · ·
∫ r2

B

0

{∫ ∫
Vk,2(B)

|t2(L∗)M+1

× e−(t2+s1+···+sM )L∗
g(x)|2 dμ(x)dt

t

}1/2

ds1 · · · dsM

� sup
‖g‖L2(B)≤1

∫ r2
B

0

· · ·
∫ r2

B

0

{∫ 2krB

2k−2rB

t4‖g‖2
L2(B)

(t2 + s1 + · · · + sM )2(M+1)

dt

t

}1/2

ds1 · · · dsM

� 2−2kM .

Similarly, we see that Ik,1 � 2−2kM . Let p̃Φ ∈ (0, p−
Φ) be such that M > (1/p̃Φ −

1/2)n/2. Combining the above estimates and the fact that ρ is of upper-type
1/p̃Φ − 1, we finally conclude that

1
ρ(μ(B))[μ(B)]1/2

[∫
B

|(I − e−r2
BL)Mf(x)|2 dμ(x)

]1/2

�
∞∑

k=0

2−2kM 1
ρ(μ(B))[μ(B)]1/2

σk(f,B)

�
∞∑

k=0

2−k[2M −n(1/p̃Φ−1/2)] σk(f,B)
ρ(μ(2kB))[μ(2kB)]1/2

.
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Since (t2L)M1e−t2Lf ∈ T ∞
Φ,v(X ) ⊂ TΦ(X ), from M > (1/p̃Φ − 1/2)n/2 and the

dominated convergence theorem for series, we infer that

γ1(f) = lim
c→0

sup
B:rB ≤c

1
ρ(μ(B))[μ(B)]1/2

[∫
B

|(I − e−r2
BL)Mf(x)|2 dμ(x)

]1/2

�
∞∑

k=1

2−k[2M −n(1/p̃Φ−1/2)] lim
c→0

sup
B:rB ≤c

σk(f,B)
ρ(μ(2kB))[μ(2kB)]1/2

= 0.

Similarly, γ2(f) = γ3(f) = 0, which implies that f ∈ VMOM
ρ,L(X ) and hence com-

pletes the proof of Theorem 3.4. �

REMARK 3.3

It follows from Theorem 3.4 that for all M ∈ N and M > (1/p−
Φ − 1/2)n/2, the

spaces VMOM
ρ,L(X ) coincide with equivalent norms. Thus, in what follows, we

denote the VMOM
ρ,L(X ) simply by VMOρ,L(X ).

4. The dual space of VMOρ,L(X )

In this section, we show that the dual space of VMOρ,L(X ) is BΦ,L∗ (X ), where
the space BΦ,L∗ (X ) denotes the Banach completion of the space HΦ,L∗ (X ) (see
Definition 4.3 and Theorem 4.2 below).

The proof of the following proposition is similar to that of [23, Proposi-
tion 4.1]; we omit the details here.

PROPOSITION 4.1

Let Φ satisfy Assumption (Φ). Then the dual space of TΦ(X ) is T ∞
Φ (X ). More-

over, the pairing

〈f, g〉 →
∫

X ×(0,∞)

f(y, t)g(y, t)
dμ(y)dt

t

for all f ∈ T̃Φ(X ) and g ∈ T ∞
Φ (X ) realizes T ∞

Φ (X ) as being equivalent to the dual
of TΦ(X ).

We now introduce a new tent space T̃Φ(X ) and present some properties.

DEFINITION 4.1

Let p ∈ (0,1). The space T̃Φ(X ) is defined to be the space of all f =
∑∞

j=1 λjaj

in (T ∞
Φ (X ))∗, where {aj } ∞

j=1 are TΦ(X )-atoms and {λj } ∞
j=1 ⊂ C such that∑∞

j=1 |λj | < ∞. If f ∈ T̃Φ(X ), then define ‖f ‖T̃Φ(X ) ≡ inf
{∑∞

j=1 |λj |
}
, where the

infimum is taken over all the possible decompositions of f as above.

By [16, Lemma 3.1], T̃Φ(X ) is a Banach space. Moreover, from Definition 4.1,
it is easy to deduce that TΦ(X ) is dense in T̃Φ(X ); in other words, T̃Φ(X ) is a
Banach completion of TΦ(X ).
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LEMMA 4.1

Let Φ satisfy Assumption (Φ). Then TΦ(X ) is a dense subspace of T̃Φ(X ), and
there exists a positive constant C such that for all f ∈ TΦ(X ), ‖f ‖T̃Φ(X ) ≤
C‖f ‖TΦ(X ).

Proof
Let f ∈ TΦ(X ). By Theorem 3.1, there exist TΦ(X )-atoms {aj } ∞

j=1 and {λj } ∞
j=1 ⊂

C such that (3.1) and (3.2) hold.
For any L ∈ N, set σL ≡

∑L
j=1 |λj |. Since Φ is of upper-type 1, by this

together with ρ(t) = t−1/Φ−1(t−1) for all t ∈ (0, ∞), we obtain

∞∑
j=1

μ(Bj)Φ
( |λj |

σLμ(Bj)ρ(μ(Bj))

)
≥

L∑
j=1

μ(Bj)Φ
( 1

σLμ(Bj)ρ(μ(Bj))

) |λj |
σL

� 1,

which implies that
L∑

j=1

|λj | � Λ({λjaj } ∞
j=1) � ‖f ‖TΦ(X ).

Letting L → ∞, we further conclude that
∑∞

j=1 |λj | � ‖f ‖TΦ(X ).
Since f ∈ TΦ(X ) and (TΦ(X ))∗ = T ∞

Φ (X ), we see that

f ∈ TΦ(X ) ⊂
(
(TΦ(X ))∗)∗ =

(
T ∞

Φ (X )
)∗

.

Thus, f ∈ (T ∞
Φ (X ))∗ and ‖f ‖(T ∞

Φ (X ))∗ � ‖f ‖TΦ(X ). Recall that for any � ∈
(T ∞

Φ (X ))∗, its (T ∞
Φ (X ))∗-norm is defined by

‖�‖(T ∞
Φ (X ))∗ = sup

‖g‖T ∞
Φ (X )≤1

|�(g)|.

Observe also that aj ∈ (T ∞
Φ (X ))∗ for all j ∈ N. Now, from these observations, the

monotone convergence theorem, and Hölder’s inequality, it follows that

∥∥∥f −
L∑

j=1

λjaj

∥∥∥
(T ∞

Φ (X ))∗

= sup
‖g‖T ∞

Φ (X )≤1

∣∣∣∫
X ×(0,∞)

[
f(x, t) −

L∑
j=1

λjaj(x, t)
]
g(x, t)

dμ(x)dt

t

∣∣∣
≤ sup

‖g‖T ∞
Φ (X )≤1

∫
X ×(0,∞)

∞∑
j=L+1

|λj | |aj(x, t)g(x, t)| dμ(x)dt

t

= sup
‖g‖T ∞

Φ (X )≤1

∞∑
j=L+1

|λj |
∫

B̂j

|aj(x, t)g(x, t)| dμ(x)dt

t

≤ sup
‖g‖T ∞

Φ (X )≤1

∞∑
j=L+1

|λj | ‖aj ‖T 2
2 (X )‖gχ

B̂j
‖T 2

2 (X ) ≤
∞∑

j=L+1

|λj | → 0,
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as L → ∞. Thus, the series in (3.1) converges in (T ∞
Φ (X ))∗, which further implies

that f ∈ T̃Φ(X ) and ‖f ‖T̃Φ(X ) ≤
∑∞

j=1 |λj | � ‖f ‖TΦ(X ). This finishes the proof of
Lemma 4.1. �

LEMMA 4.2

Let Φ satisfy Assumption (Φ). Then T 2
2,b(X ) is dense in T̃Φ(X ).

Proof
Since TΦ(X ) is dense in T̃Φ(X ), to prove this lemma, it suffices to prove that
T 2

2,b(X ) is dense in TΦ(X ) in the norm ‖ · ‖T̃Φ(X ).
Fix x0 ∈ X . For any g ∈ TΦ(X ) and k ∈ N, let gk ≡ gχOk

, where

Ok ≡
{
(x, t) ∈ X × (0, ∞) : dist(x,x0) < k, t ∈ (1/k, k)

}
.

By the dominated convergence theorem and the continuity of Φ, we conclude
that for any λ > 0,

lim
k→∞

∫
X

Φ
(A(g − gk)(x)

λ

)
dμ(x) =

∫
X

lim
k→∞

Φ
(A(g − gk)(x)

λ

)
dμ(x) = 0,

which implies that limk→∞ ‖g − gk ‖T̃Φ(X ) = 0. Then, by Lemma 4.1, we see that

‖g − gk ‖T̃Φ(X ) � ‖g − gk ‖TΦ(X ) → 0,

as k → ∞, which completes the proof of Lemma 4.2. �

LEMMA 4.3

Let Φ satisfy Assumption (Φ). Then (T̃Φ(X ))∗ = T ∞
Φ (X ) via the pairing

〈f, g〉 →
∫

X ×(0,∞)

f(y, t)g(y, t)
dμ(y)dt

t

for all f ∈ T̃Φ(X ) and g ∈ T ∞
Φ (X ).

Proof
By Proposition 4.1 and the definition of T̃Φ(X ), we see that (TΦ(X ))∗ = T ∞

Φ (X )
and TΦ(X ) ⊂ T̃Φ(X ), which further implies that (T̃Φ(X ))∗ ⊂ T ∞

Φ (X ).
Conversely, let g ∈ T ∞

Φ (X ). Then for any f ∈ T̃Φ(X ), choose a sequence of
TΦ(X )-atoms {aj } ∞

j=1 and {λj } ∞
j=1 ⊂ C such that f =

∑
j λjaj in (T ∞

Φ (X ))∗ and∑
j |λj | � ‖f ‖T̃Φ(X ). Thus, by Hölder’s inequality, we obtain

| 〈f, g〉| ≤
∑

j

∫
X ×(0,∞)

|aj(x, t)g(x, t)| dμ(x)dt

t

≤ ‖g‖T ∞
Φ (X )

∑
j

|λj | � ‖g‖T ∞
Φ (X )‖f ‖T̃Φ(X ),

which implies that g ∈ (T̃Φ(X ))∗ and hence completes the proof of Lemma 4.3.
�
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LEMMA 4.4

Let Φ satisfy Assumption (Φ). If f ∈ T̃Φ(X ), then

(4.1) ‖f ‖T̃Φ(X ) = sup
g∈T 2

2,b(X ),‖g‖T ∞
Φ (X )≤1

∣∣∣∫
X ×(0,∞)

f(x, t)g(x, t)
dμ(x)dt

t

∣∣∣.
Proof
Let f ∈ T̃Φ(X ). From Lemma 4.2, we deduce that

‖f ‖T̃Φ(X ) = sup
‖g‖T ∞

Φ (X )≤1

∣∣∣∫
X ×(0,∞)

f(x, t)g(x, t)
dμ(x)dt

t

∣∣∣.
Thus, for any β > 0, there exists g ∈ T ∞

Φ (X ) such that ‖g‖T 2
2,b(X ) ≤ 1 and∣∣∣∫

X ×(0,∞)

f(x, t)g(x, t)
dμ(x)dt

t

∣∣∣≥ ‖f ‖T̃Φ(X ) − β

2
.

Observe here that fg ∈ L1(X × (0, ∞)). Fix x0 ∈ X . Let

Ok ≡
{
(x, t) ∈ X × (0, ∞) : dist(x,x0) < k,1/k < t < k

}
.

Then there exists k ∈ N such that∣∣∣∫
X ×(0,∞)

f(x, t)g(x, t)χOk

dμ(x)dt

t

∣∣∣≥ ‖f ‖T̃Φ(X ) − β.

Obviously, gχOk
∈ T 2

2,b(X ). Thus, (4.1) holds, which completes the proof of
Lemma 4.4. �

The following lemma is a slight modification of [8, Lemma 4.2]; see also [22]. We
omit the details here.

LEMMA 4.5

Let Φ satisfy Assumption (Φ). Suppose that {fk } ∞
k=1 is a bounded family of

functions in T̃Φ(X ). Then there exist f ∈ T̃Φ(X ) and a subsequence {fkj } ∞
j=1

of {fk } ∞
k=1 such that for all g ∈ T 2

2,b(X ),

lim
j→∞

∫
X ×(0,∞)

fkj (x, t)g(x, t)
dμ(x)dt

t
=
∫

X ×(0,∞)

f(x, t)g(x, t)
dμ(x)dt

t
.

THEOREM 4.1

Let Φ satisfy Assumption (Φ). Then (T ∞
Φ,v(X ))∗, the dual space of the space

T ∞
Φ,v(X ), coincides with T̃Φ(X ) in the following sense.

For any g ∈ T̃Φ(X ), define the linear function � by setting, for all f ∈ T ∞
Φ (X ),

(4.2) �(f) ≡
∫

X ×(0,∞)

f(x, t)g(x, t)
dμ(x)dt

t
.

Then there exists a positive constant C, independent of g, such that

‖�‖(T ∞
Φ (X ))∗ ≤ C‖g‖T̃Φ(X ).
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Conversely, for any � ∈ (T ∞
Φ (X ))∗, there exists g ∈ T̃Φ(X ) such that (4.2)

holds for all f ∈ T ∞
Φ (X ) and ‖g‖T̃Φ(X ) ≤ C‖�‖(T ∞

Φ (X ))∗ , where C is a positive
constant independent of �.

Proof
From Lemma 4.2, we infer that T ∞

Φ,v(X ) ⊂ T ∞
Φ (X ) = (T̃Φ(X ))∗, which further

implies that T̃Φ(X ) ⊂ (T̃Φ(X ))∗ ⊂ (T ∞
Φ,v(X ))∗.

Conversely, let � ∈ (T ∞
Φ,v(X ))∗. Notice that for any f ∈ T 2

2,b(X ), without loss
of generality, we may assume that suppf ⊂ K, where K is a bounded set in
X × (0, ∞). Then we have ‖f ‖T ∞

Φ,v(X ) = ‖f ‖T ∞
Φ (X ) ≤ C(K)‖f ‖T 2

2,b(X ). Thus, �

induces a bounded linear functional on T 2
2,b(X ). Let Ok be as in the proof of

Lemma 4.4. By the Riesz representation theorem, there exists a unique gk ∈
L2(Ok) such that for all f ∈ L2(Ok),

�(f) =
∫

X ×(0,∞)

f(x, t)gk(x, t)
dμ(x)dt

t
.

Obviously, gk+1Ok = gk for all k ∈ N. Let g ≡ g1χO1 +
∑∞

k=2 gkχOk \Ok−1 . Then
g ∈ L2

loc(X × (0, ∞)), and for any f ∈ T 2
2,b(X ), we have

�(f) =
∫

X ×(0,∞)

f(y, t)g(y, t)
dμ(y)dt

t
.

Set g̃k ≡ gχOk
. Then for each k ∈ N, obviously, we see that g̃k ∈ T 2

2,b(X ) ⊂
TΦ(X ) ⊂ T̃Φ(X ). Then from Lemma 4.4, it follows that

‖g̃k ‖T̃Φ(X ) = sup
f ∈T 2

2,b(X ),‖f ‖T ∞
Φ (X )≤1

∣∣∣∫
X ×(0,∞)

f(x, t)g(x, t)χOk
(x, t)

dμ(x)dt

t

∣∣∣
= sup

f ∈T 2
2,b(X ),‖f ‖T ∞

Φ (X )≤1

|�(fχOk
)|

≤ sup
f ∈T 2

2,b(X ),‖f ‖T ∞
Φ (X )≤1

‖�‖(T ∞
Φ,v(X ))∗ ‖f ‖T ∞

Φ (X ) ≤ ‖�‖(T ∞
Φ,v(X ))∗ .

Thus, by Lemma 4.5, there exist g̃ ∈ T̃Φ(X ) and {g̃kj } ∞
j=1 ⊂ {g̃k } ∞

k=1 such that
for all f ∈ T 2

2,b(X ),

lim
j→∞

∫
X ×(0,∞)

f(x, t)g̃kj (x, t)
dμ(x)dt

t
=
∫

X ×(0,∞)

f(x, t)g̃(x, t)
dμ(x)dt

t
.

On the other hand, notice that for sufficient large kj , we have

�(f) =
∫

X ×(0,∞)

f(x, t)g(x, t)
dμ(x)dt

t

=
∫

X ×(0,∞)

f(x, t)g̃kj (x, t)
dμ(x)dt

t
=
∫

X ×(0,∞)

f(x, t)g̃(x, t)
dμ(x)dt

t
,

which implies that g = g̃ almost everywhere, and hence g ∈ T̃Φ(X ). By a density
argument, we conclude that (4.2) also holds for g and all f ∈ T ∞

Φ (X ), which
completes the proof of Theorem 4.1. �
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DEFINITION 4.2

Let L satisfy Assumptions (L)1 and (L)2, let Φ satisfy Assumption (Φ), let
M ∈ N, M > (1/p−

Φ − 1/2)n/2, and let ε ∈ (n(1/p−
Φ − 1/p+

Φ), ∞). An element
f ∈ (BMOρ,L∗ (X ))∗ is said to be in the space HM,ε

Φ,L (X ) if there exist {λj } ∞
j=1 ⊂ C

and (Φ,M, ε)L-molecules {αj } ∞
j=1 such that f =

∑∞
j=1 λjαj in (BMOρ,L∗ (X ))∗

and

Λ({λjαj } ∞
j=1) ≡ inf

{
λ > 0 :

∞∑
j=1

μ(Bj)Φ
( |λj |

λμ(Bj)ρ(μ(Bj))

)
≤ 1
}

< ∞,

where for each j, αj is adapted to the ball Bj .
If f ∈ HM,ε

Φ,L (X ), then its norm is defined by ‖f ‖HM,ε
Φ,L (X ) ≡ inf{Λ({λjαj } ∞

j=1)},
where the infimum is taken over all the possible decompositions of f as above.

By [21, Theorem 5.1], we see that for all M > (1/p−
Φ − 1/2)n/2 and ε ∈ (n(1/p−

Φ −
1/p+

Φ), ∞), the spaces HΦ,L(X ) and HM,ε
Φ,L (X ) coincide with equivalent norms.

Let us introduce the Banach completion of the space HΦ,L(X ).

DEFINITION 4.3

Let L satisfy Assumptions (L)1 and (L)2, let Φ satisfy Assumption (Φ), let
ε ∈ (n(1/p−

Φ − 1/p+
Φ), ∞), and let M > (1/p−

Φ − 1/2)n/2. The space BM,ε
Φ,L(X ) is

defined to be the space of all f =
∑∞

j=1 λjαj in (BMOρ,L∗ (X ))∗, where {λj } ∞
j=1 ⊂

C with
∑∞

j=1 |λj | < ∞ and {αj } ∞
j=1 are (Φ,M, ε)L-molecules. If f ∈ BM,ε

Φ,L(X ),
define ‖f ‖BM,ε

Φ,L (X ) ≡ inf
{∑∞

j=1 |λj |
}
, where the infimum is taken over all the

possible decompositions of f as above.

By [16, Lemma 3.1], we know that BM,ε
Φ,L(X ) is a Banach space. Moreover, from

Definition 4.2, it is easy to deduce that HΦ,L(X ) is dense in BM,ε
Φ,L(X ). More

precisely, we have the following lemma.

LEMMA 4.6

Let L satisfy Assumptions (L)1 and (L)2, let Φ satisfy Assumption (Φ), let ε ∈
(n(1/p−

Φ − 1/p+
Φ), ∞), and let M > (1/p−

Φ − 1/2)n/2. Then

(i) HΦ,L(X ) ⊂ BM,ε
Φ,L(X ) and the inclusion is continuous;

(ii) for any ε1 ∈ (n(1/p−
Φ − 1/p+

Φ), ∞) and M1 > (1/p−
Φ − 1/2)n/2, the spaces

BM,ε
Φ,L(X ) and BM1,ε1

Φ,L (X ) coincide with equivalent norms.

Proof
From Definition 4.3 and the molecular characterization of HΦ,L(X ), it is easy to
deduce (i).

Let us prove (ii). By symmetry, it suffices to show that BM,ε
Φ,L(X ) ⊂ BM1,ε1

Φ,L (X ).
Let f ∈ BM,ε

Φ,L(X ). By Definition 4.3, there exist (Φ,M, ε)L-molecules {αj } ∞
j=1

and {λj } ∞
j=1 ⊂ C such that f =

∑∞
j=1 λjαj in (BMOρ,L∗ (X ))∗ and

∑∞
j=1 |λj | �
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‖f ‖BM,ε
Φ,L (X ). By (i), for each j ∈ N, we see that αj ∈ HΦ,L(X ) ⊂ BM1,ε1

Φ,L (X ) and

‖αj ‖
B

M1,ε1
Φ,L (X )

� ‖αj ‖HΦ,L(X ) � 1. Since BM1,ε1
Φ,L (X ) is a Banach space, we see that

f ∈ BM1,ε1
Φ,L (X ) and ‖f ‖

B
M1,ε1
Φ,L (X )

≤
∑∞

j=1 |λj | ‖αj ‖
B

M1,ε1
Φ,L (X )

� ‖f ‖BM,ε
Φ,L (X ). Thus,

BM,ε
Φ,L(X ) ⊂ BM1,ε1

Φ,L (X ), which completes the proof of Lemma 4.6. �

Since the spaces BM,ε
Φ,L(X ) coincide for all ε ∈ (n(1/p−

Φ − 1/p+
Φ), ∞) and M >

(1/p−
Φ − 1/2)n/2, in what follows, we denote BM,ε

Φ,L(X ) simply by BΦ,L(X ).

LEMMA 4.7

Let L satisfy Assumptions (L)1 and (L)2, and let Φ satisfy Assumption (Φ).
Then (BΦ,L(X ))∗ = BMOρ,L∗ (X ).

Proof
Since (HΦ,L(X ))∗ = BMOρ,L∗ (X ) and HΦ,L(X ) ⊂ BΦ,L(X ), by duality, we con-
clude that (BΦ,L(X ))∗ ⊂ BMOρ,L∗ (X ).

Conversely, let ε ∈ (n(1/p−
Φ − 1/p+

Φ), ∞), M > (1/p−
Φ − 1/2)n/2, and f ∈

BMOρ,L∗ (X ). For any g ∈ BΦ,L(X ), by Definition 4.3, there exist (Φ,M, ε)L-
molecules {αj } ∞

j=1 and {λj } ∞
j=1 ⊂ C such that g =

∑∞
j=1 λjαj in (BMOρ,L∗ (X ))∗

and
∑∞

j=1 |λj | � ‖g‖BΦ,L(X ). Thus,

| 〈f, g〉| ≤
∞∑

j=1

|λj | | 〈f,αj 〉| �
∞∑

j=1

|λj | ‖f ‖BMOρ,L∗ (X )‖αj ‖HΦ,L(X )

� ‖f ‖BMOρ,L∗ (X )‖g‖BΦ,L(X ),

which implies that f ∈ (BΦ,L(X ))∗ and hence completes the proof of Lemma 4.7.
�

Let M ∈ N. For all F ∈ L2(X × (0, ∞)) with bounded support, define

(4.3) πL,MF ≡ C(M)
∫ ∞

0

(t2L)Me−t2LF (·, t) dt

t
,

where C(M) is as in (3.5).

PROPOSITION 4.2

Let L satisfy Assumptions (L)1 and (L)2, let Φ satisfy Assumption (Φ), and
let M ∈ N. Then the operator πL,M , initially defined on T 2

2,b(X ), extends to a
bounded linear operator

(i) from T 2
2 (X ) to L2(X );

(ii) from TΦ(X ) to HΦ,L(X ), if M > (1/p−
Φ − 1/2)n/2;

(iii) from T̃Φ(X ) to BΦ,L(X ), if M > (1/p−
Φ − 1/2)n/2;

(iv) from T ∞
Φ,v(X ) to VMOρ,L(X ).
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Proof
Conclusions (i) and (ii) were established in [2, Proposition 3.6] (see also [21,
Lemma 3.1]).

By Lemma 4.2, we know that T 2
2,b(X ) is dense in T̃Φ(X ). Let f ∈ T 2

2,b(X ).
From (ii) and Lemma 4.6, we deduce that πL,Mf ∈ HΦ,L(X ) ⊂ BΦ,L(X ). More-
over, by Definition 4.1, there exist TΦ(X )-atoms {aj } ∞

j=1 and {λj } ∞
j=1 ⊂ C such

that f =
∑∞

j=1 λjaj in (T ∞
Φ (X ))∗ and

∑
j |λj | � ‖f ‖T̃Φ(X ). In addition, for any

g ∈ BMOρ,L∗ (X ), we have (t2L∗)Me−t2L∗
g ∈ T ∞

Φ (X ). Thus, by (TΦ(X ))∗ =
T ∞

Φ (X ), we conclude that

〈πL,M (f), g〉 = C(M)
∫

X ×(0,∞)

f(x, t)(t2L∗)Me−t2L∗ g(x)
dμ(x)dt

t

=
∞∑

j=1

λjC(M)
∫

X ×(0,∞)

aj(x, t)(t2L∗)Me−t2L∗ g(x)
dμ(x)dt

t

=
∞∑

j=1

λj 〈πL,M (aj), g〉,

which implies that πL,M (f) =
∑∞

j=1 λjπL,M (aj) in (BMOρ,L∗ (X ))∗. By (ii), we
further conclude that

‖πL,M (f)‖BΦ,L(X ) ≤
∞∑

j=1

|λj | ‖πL,M (aj)‖BΦ,L(X )

�
∞∑

j=1

|λj | ‖πL,M (aj)‖HΦ,L(X ) � ‖f ‖T̃Φ(X ).

Since T 2
2,b(X ) is dense in T̃Φ(X ), we see that πL,M extends to a bounded linear

operator from T̃Φ(X ) to BΦ,L(X ), which completes the proof of (iii).
Let us now prove (iv). From Lemma 3.3, we infer that T 2

2,b(X ) is dense
in T ∞

Φ,v(X ). Thus, to prove (iv), it suffices to show that πL,M maps T 2
2,b(X )

continuously into VMOρ,L(X ).
Let f ∈ T 2

2,b(X ). By (i), we see that πL,Mf ∈ L2(X ). Notice that (3.3) and
(3.4) with L and L∗ exchanged imply that L2(X ) ⊂ MM1

Φ,L(X ), when M1 ∈ N and
M1 > (1/p−

Φ − 1/2)n/2. Thus, πL,Mf ∈ MM1
Φ,L(X ). To show πL,Mf ∈ VMOρ,L(X ),

by Theorem 3.4, we still need to show that (t2L)M1e−t2LπL,Mf ∈ T ∞
Φ,v(X ).

For any ball B ≡ B(xB , rB), let V0(B) ≡ B̂ and Vk(B) ≡ (2̂kB)\(2̂k−1B) for
any k ∈ N. For all k ∈ Z+, let fk ≡ fχVk(B). Thus, for k ∈ {0,1,2}, by Lemma 2.2
and (i), we see that[∫ ∫

B̂

|(t2L)M1e−t2LπL,Mfk(x)|2 dμ(x)dt

t

]1/2

� ‖πL,Mfk ‖L2(X ) � ‖fk ‖T 2
2 (X ).

For k ≥ 3, let Vk,1(B) ≡ (2̂kB)\(2k−2B × (0, ∞)) and Vk,2(B) ≡ Vk(B)\Vk,1(B).
We further write fk = fkχVk,1(B) + fkχVk,2(B) ≡ fk,1 + fk,2. From Minkowski’s
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inequality, Lemma 2.3, and Hölder’s inequality, we deduce that[∫ ∫
B̂

|(t2L)M1e−t2LπL,Mfk,2(x)|2 dμ(x)dt

t

]1/2

∼
[∫ ∫

B̂

∣∣∣∫ 2krB

2k−2rB

(t2L)M1e−t2L(s2L)Me−s2L
(
fk,2(·, s)

)
(x)

ds

s

∣∣∣2 dμ(x)dt

t

]1/2

�
∫ 2krB

2k−2rB

[∫ ∫
B̂

|t2M1s2MLM+M1e−(s2+t2)L
(
fk,2(·, s)

)
(x)|2 dμ(x)dt

t

]1/2 ds

s

�
∫ 2krB

2k−2rB

[∫ rB

0

∣∣∣ t2M1s2M

(s2 + t2)M+M1

∣∣∣2‖fk,2(·, s)‖2
L2(X )

dt

t

]1/2 ds

s

� 2−2kM1

∫ 2krB

2k−2rB

‖fk,2(·, s)‖L2(X )
ds

s
� 2−2kM1 ‖fk,2‖T 2

2 (X ).

Similarly, we have[∫ ∫
B̂

|(t2L)M1e−t2LπL,Mfk,1(x)|2 dμ(x)dt

t

]1/2

� 2−2kM1 ‖fk,1‖T 2
2 (X ).

Let p̃Φ ∈ (0, p−
Φ) be such that M > (1/p̃Φ − 1/2)n/2 and M1 > (1/p̃Φ −

1/2)n/2. Combining the above estimates, since Φ is of lower-type p̃Φ, we finally
conclude that

1
ρ(μ(B))[μ(B)]1/2

[∫ ∫
B̂

|(t2L)M1e−t2LπL,Mf(x)|2 dμ(x)dt

t

]1/2

�
2∑

k=0

1
ρ(μ(B))[μ(B)]1/2

[∫ ∫
B̂

|(t2L)M1e−t2LπL,Mfk(x)|2 dμ(x)dt

t

]1/2

+
∞∑

k=3

2∑
i=1

1
ρ(μ(B))[μ(B)]1/2

×
[∫ ∫

B̂

|(t2L)M1e−t2LπL,Mfk,i(x)|2 dμ(x)dt

t

]1/2

�
2∑

k=0

1
ρ(μ(B))[μ(B)]1/2

‖fk ‖T 2
2 (X )

+
∞∑

k=3

2∑
i=1

2−2kM1

ρ(μ(B))[μ(B)]1/2
‖fk,i‖T 2

2 (X )

�
∞∑

k=0

2−2k[M1−(1/p̃Φ−1/2)n/2] 1
ρ(μ(2kB))[μ(2kB)]1/2

‖fk ‖T 2
2 (X ).

Since f ∈ T ∞
Φ,v(X ) ⊂ T ∞

Φ (X ), we have

1
ρ(μ(2kB))[μ(2kB)]1/2

‖fk ‖T 2
2 (X ) � ‖f ‖T ∞

Φ (X )



Vanishing mean oscillation spaces associated with operators 243

and, for all fixed k ∈ N,

lim
c→0

sup
B:rB ≤c

‖fk ‖T 2
2 (X )

ρ(μ(2kB))[μ(2kB)]1/2
= lim

c→∞
sup

B:rB ≥c

‖fk ‖T 2
2 (X )

ρ(μ(2kB))[μ(2kB)]1/2

= lim
c→∞

sup
B:B⊂[B(0,c)]�

‖fk ‖T 2
2 (X )

ρ(μ(2kB))[μ(2kB)]1/2
= 0.

Thus, by the dominated convergence theorem for series, we further conclude that

η1

(
(t2L)M1e−t2LπL,Mf

)
= lim

c→0
sup

B:rB ≤c

1
ρ(μ(B))[μ(B)]1/2

[∫ ∫
B̂

|(t2L)M1e−t2LπL,Mf(x)|2 dμ(x)dt

t

]1/2

�
∞∑

k=0

2−2k[M1−(1/p̃Φ−1/2)n/2] lim
c→0

sup
B:rB ≤c

‖fk ‖T 2
2 (X )

ρ(μ(2kB))[μ(2kB)]1/2
= 0.

Similarly, we have η2((t2L)M1e−t2LπL,Mf) = η3((t2L)M1e−t2LπL,Mf) = 0,
and hence (t2L)M1e−t2LπL,Mf ∈ T ∞

Φ,v(X ), which completes the proof of Propo-
sition 4.2. �

LEMMA 4.8

Let L satisfy Assumptions (L)1 and (L)2, and let Φ satisfy Assumption (Φ).
Then VMOρ,L(X ) ∩ L2(X ) is dense in VMOρ,L(X ).

Proof
Let f ∈ VMOρ,L(X ) and M > (1/p−

Φ − 1/2)n/2. Then by Theorem 3.4, we have
h ≡ (t2L)Me−t2Lf ∈ T ∞

Φ,v(X ). Similarly to the proof of Proposition 4.2, by
Lemma 3.3, there exist {hk }k∈N ⊂ T 2

2,b(X ) ⊂ T ∞
Φ,v(X ) such that ‖h − hk ‖T ∞

Φ (X ) →
0, as k → ∞. Thus, by (i) and (iv) of Proposition 4.2, we see that πL,1hk ∈
L2(X ) ∩ VMOρ,L(X ) and

(4.4) ‖πL,1(h − hk)‖BMOρ,L(X ) � ‖h − hk ‖T ∞
Φ (X ) → 0,

as k → ∞.
Let α be a (Φ,M, ε)L-molecule. Then by the definition of HΦ,L(X ), we know

that e−t2Lα ∈ TΦ(X ), which, together with Lemma 3.2, the fact that (TΦ(X ))∗ =
T ∞

Φ (X ), and (HΦ,L(X ))∗ = BMOρ,L(X ), further implies that

〈f,α〉 = C(M)
∫ ∫

X ×(0,∞)

(t2L)Me−t2Lf(x)t2L∗e−t2L∗ α(x)
dμ(x)dt

t

= lim
k→∞

C(M)
∫ ∫

X ×(0,∞)

hk(x)t2L∗e−t2L∗ α(x)
dμ(x)dt

t

=
C(M)

C1
lim

k→∞

∫
X

(
πL,1hk(x)

)
α(x)dμ(x) =

C(M)
C1

〈πL,1h,α〉.

Since the set of finite combinations of molecules is dense in HΦ,L(X ), we then
see that f = (C(M)/C1)πL,1h in BMOρ,L(X ).
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Now, for each k ∈ N, let fk ≡ (C(M)/C1)πL,1hk. Then fk ∈ VMOρ,L(X ) ∩
L2(X ), and, moreover, by (4.4), we have ‖f − fk ‖BMOρ,L(X ) → 0, as k → ∞, which
completes the proof of Lemma 4.8. �

The symbol 〈·, · 〉 in the following theorem means the duality between the space
BMOρ,L(X ) and the space BΦ,L∗ (X ) in the sense of Lemma 4.7 with L and L∗

exchanged.

THEOREM 4.2

Let L satisfy Assumptions (L)1 and (L)2, and let Φ satisfy Assumption (Φ).
Then the dual space of VMOρ,L(X ), (VMOρ,L(X ))∗, coincides with the space
BΦ,L∗ (X ) in the following sense.

For any g ∈ BΦ,L∗ (X ), define the linear functional � by setting, for all f ∈
VMOρ,L(X ),

(4.5) �(f) ≡ 〈f, g〉.

Then there exists a positive constant C independent of g such that

‖�‖(VMOρ,L(X ))∗ ≤ C‖g‖BΦ,L∗ (X ).

Conversely, for any � ∈ (VMOρ,L(X ))∗, there exist g ∈ BΦ,L∗ (X ) such that
(4.5) holds and a positive constant C, independent of �, such that

‖g‖BΦ,L∗ (X ) ≤ C‖�‖(VMOρ,L(X ))∗ .

Proof
By Lemma 4.7, we have (BΦ,L∗ (X ))∗ = BMOρ,L(X ). Definition 3.3 implies
that VMOρ,L(X ) ⊂ BMOρ,L(X ), which further implies that BΦ,L∗ (X ) ⊂
(VMOρ,L(X ))∗.

Conversely, let M > (1/p−
Φ − 1/2)n/2 and � ∈ (VMOρ,L(X ))∗. By Proposi-

tion 4.2, πL,1 is bounded from T ∞
Φ,v(X ) to VMOρ,L(X ), which implies that � ◦ πL,1

is a bounded linear functional on T ∞
Φ,v(X ). Thus, by Theorem 4.1, there exists

g ∈ T̃Φ(X ) such that for all g ∈ T ∞
Φ,v(X ), � ◦ πL,1(f) = 〈f, g〉.

Now, suppose that f ∈ VMOρ,L(X ) ∩ L2(X ). By Theorem 3.4, we conclude
that (t2L)Me−t2Lf ∈ T ∞

Φ,v(X ). Moreover, from the proof of Lemma 4.8, we deduce
that f = (C(M)/C1)πL,1((t2L)Me−t2Lf) in BMOρ,L(X ). Thus

�(f) =
C(M)

C1
� ◦ πL,1

(
(t2L)Me−t2Lf

)
(4.6)

=
C(M)

C1

∫ ∫
X ×(0,∞)

(t2L)Me−t2Lf(x)g(x, t)
dμ(x)dt

t
.

By Lemma 4.2, T 2
2,b(X ) is dense in T̃Φ(X ). Since g ∈ T̃Φ(X ), we choose {gk }k∈N ⊂

T 2
2,b(X ) such that gk → g in T̃Φ(X ). By Proposition 4.2(iii), we see that πL∗,M (g),

πL∗,M (gk) ∈ BΦ,L∗ (X ) and

‖πL∗,M (g − gk)‖BΦ,L∗ (X ) � ‖g − gk ‖T̃Φ(X ) → 0,
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as k → ∞. This, together with (4.6), Theorem 4.1, the dominated convergence
theorem, and Lemma 4.7, implies that

�(f) =
C(M)

C1
lim

k→∞

∫ ∫
X ×(0,∞)

(t2L)Me−t2Lf(x)gk(x, t)
dμ(x)dt

t

=
C(M)

C1
lim

k→∞

∫
X

f(x)
∫ ∞

0

(t2L∗)Me−t2L∗(
gk(·, t)
)
(x)

dt

t
dμ(x)(4.7)

=
1
C1

lim
k→∞

〈f,πL∗,M (gk)〉 =
1
C1

〈f,πL∗,M (g)〉.

Since VMOρ,L(X ) ∩ L2(X ) is dense in VMOρ,L(X ), we finally conclude that (4.7)
holds for all f ∈ VMOρ,L(X ), and ‖�‖(VMOρ,L(X ))∗ = (1/C1)‖πL∗,Mg‖BΦ,L∗ (X ).
In this sense, we have (VMOρ,L(X ))∗ ⊂ BΦ,L∗ (X ), which completes the proof of
Theorem 4.2. �
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