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Abstract In this paper, we review several recent results concerning well-posedness of
the one-dimensional, cubic nonlinear Schrödinger equation (NLS) on the real line R and
on the circle T for solutions below the L2-threshold. We point out common results for
NLS on R and the so-called Wick-ordered NLS (WNLS) on T, suggesting that WNLS
may be an appropriate model for the study of solutions below L2(T). In particular, in
contrast with a recent result of Molinet, who proved that the solution map for the peri-
odic cubic NLS equation is not weakly continuous from L2(T) to the space of distribu-
tions, we show that this is not the case for WNLS.

1. Introduction

In this paper, we consider the one-dimensional cubic nonlinear Schrödinger equa-
tion (NLS)

(1.1)

{
iut − uxx ± |u|2u = 0,

u|t=0 = u0, (x, t) ∈ T × R or R × R,

where u is a complex-valued function and T = R/2πZ; (1.1) arises in various
physical settings for the description of wave propagation in nonlinear optics,
fluids, and plasmas (see [36] for a general review). It also arises in quantum
field theory as a mean field equation for many-body boson systems. It is known
to be one of the simplest partial differential equations (PDEs) with complete
integrability (see [1], [2], [20]).

As a completely integrable PDE, (1.1) enjoys infinitely many conservation
laws, starting with conservation of mass, momentum, and Hamiltonian:

N(u) =
ˆ

|u|2 dx, P (u) = Im
ˆ

uux dx,

(1.2)
H(u) =

1
2

ˆ
|ux|2 dx ± 1

4

ˆ
|u|4 dx.
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In the focusing case (with the − sign), (1.1) admits soliton and multisoliton
solutions. Moreover, (1.1) is globally well posed in L2 thanks to the conservation
of the L2-norm (see [37] on R and [3] on T).

It is also well known that (1.1) is invariant under several symmetries. In
the following, we concentrate on the dilation symmetry and the Galilean sym-
metry. The dilation symmetry states that if u(x, t) is a solution to (1.1) on R
with initial condition u0, then uλ(x, t) = λ−1u(λ−1x,λ−2t) is also a solution to
(1.1) with the λ-scaled initial condition uλ

0 (x) = λ−1u0(λ−1x). Associated to the
dilation symmetry, there is a scaling-critical Sobolev index sc such that the homo-
geneous Ḣsc -norm is invariant under the dilation symmetry. In the case of the
one-dimensional cubic NLS, the scaling-critical Sobolev index is sc = −1/2. It
is commonly conjectured that a PDE is ill posed in Hs for s < sc. Indeed, on
the real line, Christ, Colliander, and Tao [12] showed that the data-to-solution
map is unbounded from Hs(R) to Hs(R) for s < −1/2. The Galilean invariance
states that if u(x, t) is a solution to (1.1) on R with initial condition u0, then
uβ(x, t) = ei(β/2)xei(β2/4)tu(x + βt, t) is also a solution to (1.1) with the initial
condition uβ

0 (x) = ei(β/2)xu0(x). Note that the L2-norm is invariant under the
Galilean symmetry.∗ It turns out that this symmetry also leads to a kind of
ill-posedness in the sense that the solution map cannot be smooth in Hs for
s < s∞

c = 0. Indeed, a simple application of Bourgain’s idea in [5] shows that the
solution map of (1.1) cannot be C3 in Hs for s < s∞

c = 0 (see Section 2 for more
results in this direction).

Recently, Molinet [34] showed that the solution map for (1.1) on T cannot be
continuous in Hs(T) for s < 0 (see [14] and [9] for related results). His argument
is based on showing that the solution map† is not continuous from L2(T) endowed
with weak topology to the space of distributions (C∞(T))∗. Several remarks are
in order. First, on the real line, there is no corresponding result (i.e., failure
of continuity of the solution map for s < 0). Also, the discontinuity in [34] is
precisely caused by 2μ(u)u, where μ(u) :=

ffl
|u|2 dx = (1/2π)

´ 2π

0
|u|2 dx.

Our main goal in this paper is to propose an alternative formulation of the
periodic cubic NLS below L2(T) to avoid this undesirable behavior. In particular,
we show that this model has properties similar to those of (1.1) on the real line
even below L2. We consider the Wick-ordered cubic NLS (WNLS)

(1.3)

{
iut − uxx ± (|u|2 − 2

ffl
|u|2)u = 0,

u|t=0 = u0,

for (x, t) ∈ T × R. Clearly, (1.1) and (1.3) are equivalent for u0 ∈ L2(T). If u

satisfies (1.1) with u0 ∈ L2(T), then v(t) = e∓2iμ(u0)tu(t) satisfies (1.3). However,
for u0 /∈ L2(T), we cannot freely convert solutions of (1.3) into solutions of (1.1).

∗The Galilean symmetry does not preserve the momentum. Indeed, P (uβ) = (β/2)N(u) +
P (u).

†Strictly speaking, Molinet’s result applies to the flow map; that is, for each nonzero u0 ∈
L2(T), the map: u0 → u(t) is not continuous.
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The effect of this modification can be seen more clearly on the Fourier side.
By writing the cubic nonlinearity as |̂u|2u(n) =

∑
n=n1−n2+n3

û(n1)û(n2)û(n3),
we see that the additional term in (1.3) precisely removes resonant interactions
caused by n2 = n1 or n3 (see Section 4). Such a modification does not seem to
have a significant effect on R, since ξ2 = ξ1 or ξ3 is a set of measure zero in the
hyperplane ξ = ξ1 − ξ2 + ξ3 (for fixed ξ).

It turns out that (1.3) on T shares many common features with (1.1) on R
(see Section 2). Equation (1.3) (in the defocusing case on T2) first appeared in the
work of Bourgain [4] and [7], in the study of the invariance of the Gibbs measure,
as an equivalent formulation of the Wick-ordered Hamiltonian equation, related
to renormalization in the Euclidean ϕ4

2 quantum field theory (see Section 3).
There are several results on (1.3). Using a power series method, Christ [10]

proved the local-in-time existence of solutions in F Lp(T) for p < ∞, where the
Fourier–Lebesgue space F Lp(T) is defined by the norm ‖f ‖F Lp(T) = ‖f̂(n)‖�̂p

n(Z).
In the periodic case, we have F Lp(T) � L2(T) for p > 2. Grünrock and Herr [22]
established the same result (with uniqueness) via the fixed point argument.

On the one hand, Molinet’s ill-posedness result does not apply to (1.3) since
we have removed the part responsible for the discontinuity. On the other hand,
by a slight modification of the argument in [8], we see that the solution map
for (1.3) is not uniformly continuous below L2(T) (see [16]). This, in particular,
implies that one cannot expect well-posedness of (1.3) in Hs(T) for s < 0 via the
standard fixed point argument.

There are, however, positive results for (1.3) in Hs(T) for s < 0. Christ,
Holmer, and Tataru [15] established an a priori bound on the growth of (smooth)
solutions in the Hs-topology for s ≥ −1/6. In Section 4, we show that the solution
map for (1.3) is continuous in L2(T) endowed with weak topology. These results
have counterparts for (1.1) on R.

In [16], Colliander and Oh considered the well-posedness question of (1.3)
below L2(T) with randomized initial data of the form

(1.4) u0(x;ω) =
∑
n∈Z

gn(ω)√
1 + |n|2α

einx,

where {gn}n∈Z is a family of independent standard complex-valued Gaussian
random variables. It is known (see [40]) that u0(ω) ∈ Hα−1/2−ε \ Hα−1/2 almost
surely in ω for any ε > 0 and that u0 of the form (1.4) is a typical element in the
support of the Gaussian measure

(1.5) dρα = Z−1
α exp

(
− 1

2

ˆ
|u|2 − 1

2
|Dαu|2 dx

) ∏
x∈T

du(x),

where D =
√

−∂2
x. In [16], local-in-time solutions were constructed for (1.3)

almost surely (with respect to ρα) in Hs(T) for each s > −1/3 (s = α − 1/2 − ε

for small ε > 0), and global-in-time solutions almost surely in Hs(T) for all
s > −1/12. The argument is based on the fixed point argument around the linear
solution, exploiting nonlinear smoothing under randomization on initial data.
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The same technique can be applied to study the well-posedness issue of (1.3)
with initial data of the form

(1.6) u0(x;ω) = v0(x) +
∑
n∈Z

gn(ω)√
1 + |n|2α

einx,

where v0 is in L2(T). The initial data of the form (1.6) may be of physical
importance since smooth data may be perturbed by a rough random noise; that
is, initial data, which are smooth in an ideal situation, may be of low regularity
in practice due to a noise. This is one of the reasons that we are interested in
having a formulation of NLS below L2.

Another physically relevant issue is the study of (1.3) with initial data of
the form (1.4) when α = 0. The Gaussian measure ρα then corresponds to the
white noise on T (up to a multiplicative constant). It is conjectured (see [40])
that the white noise is invariant under the flow of the cubic NLS (1.1). In [35],
Oh, Quastel, and Valkó proved that the white noise is a weak limit of probability
measures that are invariant under the flow of (1.1) and (1.3). Note that the
white noise ρ0 is supported on H−1/2−ε(T) \ H−1/2(T) for ε > 0 (more precisely,
on B

−1/2
2,∞ ). Such a low regularity seems to be out of reach at this point. Hence,

the result in [35] implies only a version of “formal” invariance of the white noise
due to lack of well-defined flow of NLS on the support of the white noise. In view
of Molinet’s ill-posedness below L2(T), we need to pursue this issue with (1.3)
in place of (1.1). In this respect, the result in [16] can be regarded as a partial
progress toward this goal.

Note that the white noise (i.e., u0 in (1.4) with α = 0 up to multiplicative con-
stant) can be regarded as a Gaussian randomization (on the Fourier coefficients)
of the delta function δ(x) =

∑
n einx. It is known (see [28]) that in considering

the Cauchy problem (1.1) on R with the delta function as initial condition, we
have either nonexistence or nonuniqueness in C([−T,T ]; S ′(R)). Moreover, on T,
Christ [11] proved a nonuniqueness result of (1.3) in the class C([−T,T ];Hs(T))
for s < 0. Christ’s result states that one cannot have unconditional uniqueness∗

in Hs(T), s < 0. However, this is not an issue since, in discussing well-posedness,
we usually construct a unique solution in C([−T,T ];Hs) ∩ XT , where XT is an
auxiliary function space (such as Strichartz spaces or Xs,b-spaces).

Lastly, another physical motivation for the study of NLS in the low-regularity
setting is the localized induction approximation model for the flow of a vortex
filament. The filament at time t is given by a curve X(x, t) in R3 satisfying

(1.7) Xt = Xx × Xxx,

where x is the arc length. Then, under the Hasimoto transform [24],

(1.8) u(x, t) = c(x, t) exp
(
i

ˆ x

τ(y, t)dy
)
,

∗We say that a solution u is unconditionally unique if it is unique in C([0, T ];Hs) with-
out intersecting with any auxiliary function space. Unconditional uniqueness is a concept of

uniqueness which does not depend on how solutions are constructed (see [26]).
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where c(x, t) and τ(x, t) are the curvature and the torsion of X(x, t), and the
transformed function u satisfies the focusing cubic (1.1) on R. Gutiérrez, Rivas,
and Vega [23] showed that a smooth filament can develop a sharp corner in finite
time, which corresponds, under (1.8), to a Dirac delta singularity for u in (1.1).
This necessitates the study of NLS in the low-regularity setting.

This paper is organized as follows. In Section 2, we compare the results for
NLS (1.1) on R and WNLS (1.3) on T. In Section 3, we recall basic aspects of the
Wick ordering and the derivation of (1.3) on T2 following [4]. In Section 4, we
present the proof of the weak continuity of the solution map for (1.3) in L2(T).

2. NLS on R and Wick-ordered NLS on T

In this section, we present several results that are common to (1.1) on R and
(1.3) on T. We show a summary of these results in Table 1 below. This analogy
suggests that WNLS (1.3) on T is an appropriate model to study when interested
in solutions below L2(T).

2.1. Well-posedness in L2

On the real line, Tsutsumi [37] proved global well-posedness of (1.1) in L2(R). His
argument is based on the smoothing properties of the linear Schrödinger operator
expressed by the Strichartz estimates and the conservation of the L2-norm. For
the problem on the circle, Bourgain [3] introduced the Xs,b-space and proved
global well-posedness of (1.1) in L2(T). His argument is based on the periodic
L4-Strichartz and the conservation of the L2-norm. The same argument can be
applied to establish global well-posedness of (1.3) in L2(T).

2.2. Ill-posedness in Hs for s < 0
An application of Bourgain’s argument in [5] shows that the solution maps for
(1.1) on R and (1.3) on T are not C3 in Hs for s < 0. The method consists of
examining the differentiability at δ = 0 of the solution map with initial condition
u0 = δφ for some suitable φ, that is, differentiability at the zero solution in a
certain direction.

On R, Kenig, Ponce, and Vega [28] proved the failure of uniform continuity of
the solution map for (1.1) in Hs(R) for s < 0 in the focusing case, by constructing
a family of smooth soliton solutions. In the defocusing case, Christ, Colliander,
and Tao [12] established the same result by constructing a family of smooth

Table 1. Corresponding results for NLS on R and WNLS on T (and NLS on T)

NLS on R WNLS on T NLS on T

GWP in L2 [37] [3] [3]

Ill-posedness below L2 [28], [12] [8] [8], [34]

Well-posedness in F Lp, p < ∞ [21] (GWP for p ∈ (2,5/2)) [10], [22] False [10]

A priori bound for s ≥ −1/6 [29] ([13] for s > −1/12) [15] Not known

Weak continuity in L2 [19] Theorem 2.1 False [34]
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approximate solutions. On T, Burq, Gérard, and Tzvetkov [8] (also see [12])
constructed a family of explicit solutions supported on a single mode and showed
the corresponding result for (1.1). By a slight modification of their argument,
we can also establish the same result for (1.3). It is worthwhile to note that the
momentum diverges to ∞ in these examples.

The above ill-posedness results state that the solution map is not smooth
or uniformly continuous in Hs below s < s∞

c = 0. This does not say that (1.1)
on R and (1.3) on T are ill-posed below L2; that is, it is still possible to con-
struct continuous flow below L2. These results instead state that the fixed point
argument cannot be used to show well-posedness of (1.1) on R and (1.3) on T
below L2, since such a method would make solution maps smooth. Compare the
above results with the ill-posedness result by Molinet [34]—the discontinuity of
the solution map below L2(T) for the periodic NLS (1.1).

2.3. Well-posedness in F Lp

Define the Fourier–Lebesgue space F Ls,p(R) equipped with the norm
‖f ‖F Ls,p(R) = ‖ 〈ξ〉sf̂(ξ)‖Lp(R) with 〈 · 〉 = 1 + | · |. When s = 0, we set F Lp =
F L0,p. The homogeneous F L̇s,p-norm is invariant under the dilation scaling when
sp = −1.

In [39], Vargas and Vega constructed (both local and global-in-time) solutions
for initial data with infinite L2-norm under certain conditions. This class of initial
data, in particular, contains those satisfying

(2.1)
∣∣∣ dj

dξj
û0(ξ)

∣∣∣ � 〈ξ〉 −α−j , j = 0,1, for some α >
1
6
.

We point out that u0 satisfying (2.1) is in F Lp(R) with p > 1/α. Grünrock [21]
considered (1.1) on R with initial data in F Lp(R) and proved local well-posedness
for p < ∞ and global well-posedness for 2 < p < 5/2. The method relies on the
Fourier restriction norm method. For the global-in-time argument, he adapted
Bourgain’s [6] high-low method, where he separated a function in terms of the
size of its Fourier coefficient instead of its frequency size as in [6].

On T, Christ [10] applied the power series method to construct local-in-time
solutions (without uniqueness) for (1.3) in F Lp(T) for p < ∞. Grünrock and
Herr [22] proved the same result (with uniqueness in a suitable Xs,b-space) via
the fixed point argument. A subtraction of 2(

ffl
|u|2 dx)u in the nonlinearity in

(1.3) is essential for continuous dependence. In [10], it was also stated (without
proof) that (1.3) is globally well-posed in F Lp for sufficiently small (smooth)
initial data.

2.4. A priori bound
Koch and Tataru [29] established an a priori bound on (smooth) solutions for (1.1)
in Hs(R) for s ≥ −1/6 in the following form: given any M > 0, there exist T,C > 0
such that for any initial u0 ∈ L2 with ‖u0‖Hs ≤ M , we have supt∈[0,T ] ‖u(t)‖Hs ≤
C‖u0‖Hs , where u is a solution of (1.1) with initial condition u0 (see [13] for
a related result). This result yields the existence of weak solutions (without
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uniqueness). In the periodic setting, Christ, Holmer, and Tataru [15] proved the
same result for (1.3) when s ≥ −1/6. In [29], relating mKdV and NLS through
modulated wave train solutions, Koch and Tataru indicated how the regularity
s = −1/6 arises by associating mKdV with initial data in L2 to (1.1) with initial
data in H−1/6.

2.5. Weak continuity in L2

The Galilean invariance for (1.1) yields the critical regularity s∞
c = 0. That is, the

solution map is not uniformly continuous in Hs for s < s∞
c = 0. However, it does

not imply that the solution map is not continuous in Hs for s < 0 (at least on R).
Heuristically speaking, given s0 ∈ R, one can consider the weak continuity of the
solution map in Hs0 as an intermediate step between establishing the continuity
in (the strong topology of) Hs0 and proving the continuity in Hs for s < s0. For
example, recall that if fn converges weakly in Hs0 , then it converges strongly in
Hs for s < s0 (at least in bounded domains). Indeed if there is sufficient regularity
for the solution map in Hs for some s < s0, then its weak continuity in Hs0 can
be treated by the approach used in the works of Martel and Merle [32], [33] and
Kenig and Martel [27] related to the asymptotic stability of solitary waves. In
these works, weak continuity of the flow map plays a central role in the study
of the linearized operator around the solitary wave and in rigidity theorems (see
[18] for a nice discussion on this issue).

There are several recent results in this direction. On R, Goubet and Molinet
[19] proved the weak continuity of the solution map for (1.1) in L2(R). Cui and
Kenig [17] and [18] proved the weak continuity in the s∞

c -critical Sobolev spaces
for other dispersive PDEs. However, on T, Molinet [34] showed that the solution
map for (1.1) is not continuous from L2(T) endowed with weak topology to the
space of distributions (C∞(T))∗. This, in particular, implies that the solution
map for (1.1) is not weakly continuous in L2(T).

When considering the cubic WNLS (1.3), we remove one of the resonant
interactions. Indeed, we have the following result on the weak continuity of the
solution map for (1.3).

THEOREM 2.1 (WEAK CONTINUITY OF WNLS ON L2(T))

Suppose that u0,n converges weakly to u0 in L2(T). Let un and u denote the
unique global solutions of (1.3) with initial data u0,n and u0, respectively. Then,
given T > 0, we have the following:

(a) un converges weakly to u in L4
T,x := L4([−T,T ];L4(T)).

(b) For any |t| ≤ T , un(t) converges weakly to u(t) in L2(T). Moreover, this
weak convergence is uniform for |t| ≤ T ; that is, for any φ ∈ L2(T),

lim
n→∞

sup
|t|≤T

| 〈un(t) − u(t), φ〉L2 | = 0.
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We do not expect the weak continuity in the Strichartz space, that is, in L6
T,x

(with |t| ≤ T ). This is due to the failure of the L6
x,t-Strichartz estimate in the peri-

odic setting (see [3]). Although the proof of Theorem 2.1 is essentially contained
in [34], we present it in Section 4 for the completeness of our presentation.

3. Wick ordering

3.1. Gaussian measures and Hermite polynomials
In this subsection, we briefly go over the basic relation between Gaussian mea-
sures and Hermite polynomials. For the following discussion, we refer to the
works of Kuo [30], Ledoux and Talagrand [31], and Janson [25]. A nice summary
is given by Tzvetkov in [38, Section 3] for the hypercontractivity of the Ornstein–
Uhlenbeck semigroup related to products of Gaussian random variables.

Let ν be the Gaussian measure with mean zero and variance σ, and let
Hn(x;σ) be the Hermite polynomial of degree n with parameter σ. They are
defined by

etx−(1/2)σt2 =
∞∑

n=0

Hn(x;σ)
n!

tn.

The first three Hermite polynomials are H0(x;σ) = 1, H1(x;σ) = x, and H2(x;
σ) = x2 − σ. It is well known that every function f ∈ L2(ν) has a unique series
expansion

f(x) =
∞∑

n=0

an
Hn(x;σ)√

n!σn
,

where an = (n!σn)−1/2
´ ∞

− ∞ f(x)Hn(x;σ)dν(x), n ≥ 0. Moreover, we have
‖f ‖2

L2(ν) =
∑∞

n=0 a2
n. In the following, we set Hn(x) := Hn(x; 1).

Now, consider the Hilbert space L2(Rd, μd) with dμd = (2π)−d/2 exp(−|x|2/
2)dx, x = (x1, . . . , xd) ∈ Rd. We define a homogeneous Wiener chaos of order n

to be an element of the form
∏d

j=1 Hnj (xj), n = n1 + · · · +nd. Denote by Kn the
collection of the homogeneous chaoses of order n. Given a homogeneous polyno-
mial Pn(x) = Pn(x1, . . . , xd) of degree n, we define the Wick-ordered monomial
: Pn(x) : to be its projection onto Kn. In particular, we have : xn

j : = Hn(xj) and
:
∏d

j=1 x
nj

j : =
∏d

j=1 Hnj (xj) with n = n1 + · · · + nd.
In the following, we discuss the key estimate for the well-posedness results

of the cubic WNLS of [4] and [16]. Consider the Hartree–Fock operator L =
Δ − x · ∇, which is the generator for the Ornstein–Uhlenbeck semigroup. Then,
by the hypercontractivity of the Ornstein–Uhlenbeck semigroup U(t) = eLt, we
have the following proposition.

PROPOSITION 3.1

Fix q ≥ 2. For every f ∈ L2(Rd, μd) and t ≥ (1/2) log(q − 1), we have

(3.1) ‖U(t)f ‖Lq(Rd,μd) ≤ ‖f ‖L2(Rd,μd).
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It is known that the eigenfunction of L with eigenvalue −n is precisely the
homogeneous Wiener chaos of order n. Thus, we have the following dimension-
independent estimate.

PROPOSITION 3.2

Let F (x) be a linear combination of homogeneous chaoses of order n. Then, for
q ≥ 2, we have

(3.2) ‖F (x)‖Lq(Rd,μd) ≤ (q − 1)n/2‖F (x)‖L2(Rd,μd).

The proof is basically the same as that in [38, Propositions 3.3–3.5]. We only
have to note that F (x) is an eigenfunction of U(t) with eigenvalue e−nt. The
estimate (3.2) follows from (3.1) by evaluating (3.1) at time t = 1/2 log(q − 1).
In [4], [16], and [38], Proposition 3.2 was used in a crucial manner to estimate
random elements in the nonlinearity after dyadic decompositions.

In order to motivate : |u|4 :, the Wick-ordered |u|4, for a complex-valued
function u, we consider the Wick ordering on complex Gaussian random variables.
Let g denote a standard complex-valued Gaussian random variable. Then, g can
be written as g = x + iy, where x and y are independent standard real-valued
Gaussian random variables. Note that the variance of g is Var(g) = 2.

Next, we investigate the Wick-ordering on |g|2n for n ∈ N, that is, the pro-
jection of |g|2n onto K2n. When n = 1, |g|2 = x2 + y2 is Wick-ordered into

: |g|2 : = (x2 − 1) + (y2 − 1) = |g|2 − Var(g).

When n = 2, |g|4 = (x2 + y2)2 = x4 + 2x2y2 + y4 is Wick-ordered into

: |g|4 : = (x4 − 6x2 + 3) + 2(x2 − 1)(y2 − 1) + (y4 − 6y2 + 3)

= x4 + 2x2y2 + y4 − 8(x2 + y2) + 8(3.3)

= |g|4 − 4Var(g)|g|2 + 2Var(g)2,

where we use H4(x) = x4 − 6x2 +3. In general, we have : |g|2n : ∈ K2n. Moreover,
we have

(3.4) : |g|2n : = |g|2n +
n−1∑
j=0

aj |g|2j = |g|2n +
n−1∑
j=0

bj : |g|2j : .

This follows from the fact that |g|2n, as a polynomial in x and y only with
even powers, is orthogonal to any homogeneous chaos of odd order, and it is
radial; that is, it depends only on |g|2 = x2 + y2. Note that : |g|2n : can also
be obtained from the Gram–Schmidt process applied to |g|2k, k = 0, . . . , n, with
μ2 = (2π)−1 exp(−(x2 + y2)/2)dxdy.

3.2. Wick-ordered cubic NLS
In [4], Bourgain considered the issue of the invariant Gibbs measure for (1.1) on
T2 in the defocusing case. In this subsection, we present his argument to derive
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(1.3) on T2. First, consider the finite-dimensional approximation to (1.1):

(3.5)

{
iuN

t − ΔuN + PN (|uN |2uN ) = 0,

u|t=0 = PNu0, (x, t) ∈ T2 × R,

where uN = PNu and PN is the Dirichlet projection onto the frequencies |n| ≤ N .
This is a Hamiltonian equation with Hamiltonian H(uN ), where H is as in (1.2)
with the + sign. On T2, the Gaussian part dρ = Z−1 exp(−1/2

´
| ∇u|2 dx) ×∏

x∈T2 du(x) of the Gibbs measure is supported on
⋂

s<0 Hs(T2) \ L2(T2). How-
ever, the nonlinear part

´
|PNu|4 dx of the Hamiltonian diverges to ∞ as N → ∞

almost surely on the support of the Wiener measure ρ. Hence, we need to renor-
malize the nonlinearity.

A typical element in the support of the Wiener measure ρ is given by

(3.6) u(x;ω) =
∑
n∈Z2

gn(ω)√
1 + |n|2

ein·x,

where {gn}n∈Z is a family of independent standard complex-valued Gaussian
random variables.∗ For simplicity, assume that Var(gn) = 1. For u of the form
(3.6), define aN by

aN = E
[ 

|uN |2 dx
]

=
∑

|n|≤N

1
1 + |n|2 .

We have aN ∼ logN for large N . We define the Wick-ordered truncated Hamil-
tonian HN by

HN (uN ) =
1
2

ˆ
T2

| ∇uN |2 dx +
1
4

ˆ
T2

: |uN |4 : dx

(3.7)
=

1
2

ˆ
T2

| ∇uN |2 dx +
1
4

ˆ
T2

|uN |4 − 4aN |uN |2 + 2a2
N dx

(cf. (3.7) with (3.3)). From (3.7), we obtain a Hamiltonian equation that is the
Wick-ordered version of (3.5):

(3.8) iuN
t − ΔuN + PN (|uN |2uN ) − 2aNuN = 0.

Let cN =
ffl

|uN |2 − aN . We see that c∞(ω) = limN →∞ cN (ω) < ∞ almost surely.
Under the change of variables vN = e−2icN tuN , (3.8) becomes

(3.9) ivN
t − ΔvN + PN

(
|vN |2 − 2

 
|vN |2

)
vN = 0.

Finally, letting N → ∞, we obtain the Wick-ordered NLS

(3.10) ivt − Δv +
(

|v|2 − 2
 

|v|2
)
v = 0.

∗The expression (3.6) is a representation of elements in the support of dρ̃ =

Z̃−1 exp(−1/2
´

|u|2 − 1/2
´

| ∇u|2)
∏

x∈T2 du(x) due to the problems at the zero Fourier mode

for ρ. However, we do not worry about this issue.
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On T, one can repeat the same argument. Note the following issue. On the one
hand, the assumption that u(t) is of the form (1.4) and is natural for α ∈ N ∪ {0} in
view of the conservation laws. On the other hand, cN =

ffl
|uN |2 − E[

ffl
|uN |2] < ∞

for α > 1/4. That is, α = 1 is the smallest integer value of such α. In this case,
there is no need for the WNLS (1.3) since u ∈ H1/2− ⊂ L2 a.s. for α = 1.

4. Weak continuity of the Wick-ordered cubic NLS in L2(T)

In this section, we present the proof of Theorem 2.1. First, write (1.3) as an
integral equation:

(4.1) u(t) = S(t)u0 ± i

ˆ t

0

S(t − t′)N (u)(t′)dt′,

where N (u) = (|u|2 − 2
ffl

|u|2)u and S(t) = e−i∂2
xt. Define N1(u1, u2, u3) and

N2(u1, u2, u3) by

N1(u1, u2, u3) =
∑

n=n1−n2+n3
n2 	=n1,n3

û1(n1)û2(n2)û3(n3)einx,

N2(u1, u2, u3) = −
∑

n

û1(n)û2(n)û3(n)einx.

Moreover, let Nj(u) := Nj(u,u,u). Then, we have N (u) = N1(u) + N2(u).
In [3], Bourgain established global well-posedness of (1.1) (and (1.3)) by

introducing a new weighted space-time Sobolev space Xs,b whose norm is given
by

‖u‖Xs,b(T×R) = ‖ 〈n〉s〈τ − n2〉bû(n, τ)‖L2
n,τ (Z×R)

where 〈 · 〉 = 1 + | · |. Define the local-in-time version Xs,b
δ on [−δ, δ] by

‖u‖Xs,b
δ

= inf
{

‖ũ‖Xs,b ; ũ|[−δ,δ] = u
}
.

In the following, we list the estimates needed for local well-posedness of (1.3).
Let η(t) be a smooth cutoff function such that η = 1 on [−1,1] and η = 0 on
[−2,2].

• Homogeneous linear estimate: for s, b ∈ R, we have

(4.2) ‖η(t)S(t)f ‖Xs,b ≤ C1‖f ‖Hs .

• Nonhomogeneous linear estimate: for s ∈ R and b > 1/2, we have

(4.3)
∥∥∥η(t)

ˆ t

0

S(t − t′)F (t′)dt′
∥∥∥

Xs,b
δ

� C(δ)‖F ‖Xs,b−1
δ

.

• Periodic L4-Strichartz estimate: Zygmund [41] proved

(4.4) ‖S(t)f ‖L4
x,t(T×[−1,1]) � ‖f ‖L2 ,

which was improved by Bourgain [3]:

(4.5) ‖u‖L4
x,t(T×[−1,1]) � ‖u‖X0,3/8 .
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These estimates allow us to prove local well-posedness of (1.3) via the fixed
point argument such that a solution u exists on the time interval [−δ, δ] with δ =
δ(‖u0‖L2). Moreover, we have ‖u‖

X
0,1/2+
δ

� ‖u0‖L2 . Such local-in-time solutions

can be extended globally in time thanks to the L2-conservation.
Now, fix u0 ∈ L2(T), and let u0,n converge weakly to u0 in L2(T). Denote by

un and u the unique global solutions of (1.3) with initial data u0,n and u0. By the
uniform boundedness principle, we have ‖u0,n‖L2 , ‖u0‖L2 ≤ C for some C > 0.
Hence, the local well-posedness guarantees the existence of the solutions un, u on
the time interval [−δ, δ] with δ = δ(C), uniformly in n. In the following, we assume
δ = 1. That is, we assume that all the estimates hold on [−1,1]. (Otherwise we
can replace [−1,1] by [−δ, δ] for some δ > 0 and iterate the argument in view of
the L2-conservation.)

4.1. Proof of Theorem 2.1(a)
First, we show that un converges to u as space-time distributions.

• Linear part: Since u0,n ⇀ u0 in L2(T), we have ‖u0,n − u0‖H−ε(T) → 0 for
any ε > 0. Let φ ∈ C∞

c (T × R) be a test function. Then, by Hölder inequality and
(4.2), we have¨

η(t)S(t)(u0,n − u0)φ(x, t)dxdt ≤ ‖η(t)S(t)(u0,n − u0)‖X−ε,1/2+ ‖φ‖Xε,−1/2−

� Cφ‖u0,n − u0‖H−ε → 0.

Hence, η(t)S(t)u0,n converges to η(t)S(t)u0 as space-time distributions.
• Nonlinear part: Let M(u) denote the Duhamel term; that is,

M(u)(t) := ±i

ˆ t

0

S(t − t′)N (u)(t′)dt′.

Similarly, define Mj(u1, u2, u3) by

Mj(u1, u2, u3)(t) := ±i

ˆ t

0

S(t − t′)Nj(u1, u2, u3)(t′)dt′

for j = 1,2. Also, let Mj(u) := Mj(u,u,u).

From the local theory, we have ‖un‖
X

0,1/2+
1

� ‖u0,n‖L2 ≤ C for all n. Thus,

there exists a subsequence unk
converging weakly to some v in X

0,1/2+
1 . It follows

from [34, Lemmas 2.2, 2.3] that Nj , j = 1,2, is weakly continuous from X
0,1/2+
1

into X
0,−7/16
1 . Hence, Nj(unk

) ⇀ Nj(v) in X
0,−7/16
1 .

Recall the following. Given Banach spaces X and Y with a continuous linear
operator T : X → Y , we have T ∗ : Y ∗ → X∗. If fn ⇀ f in X , then we have, for
φ ∈ Y ∗, 〈T (fn − f), φ〉 = 〈fn − f,T ∗φ〉 → 0 since T ∗φ ∈ X∗. Hence, Tfn ⇀ Tf

in Y .
It follows from (4.3) that the map F �−→

´ t

0
S(t − t′)F (t′)dt′ is linear and

continuous from X
0,−7/16
1 into X

0,1/2+
1 . Hence, M(unk

) ⇀ M(v) in X
0,1/2+
1 . In

particular, M(unk
) converges to M(v) as space-time distributions.
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Since unk
is a solution to (1.3) with initial data u0,nk

, we have

unk
= ηS(t)u0,nk

+ ηM(unk
).

By taking the limits of both sides, we obtain

v = ηS(t)u0 + ηM(v),

where the equality holds in the sense of space-time distributions. From the
uniqueness of solutions to (1.3) in X

0,1/2+
1 , we have v = u in X

0,1/2+
1 .

In fact, we can show that uniqueness of solutions to (1.3) holds in L4
x,t(T ×

[−1,1]) with little effort. For simplicity, we replace N (u) in (4.1) by |u|2u. Then,
by (4.4) and (4.5), we have

‖η(t)u‖L4
x,t

≤ ‖η(t)S(t)u0‖L4
x,t

+
∥∥∥η(t)

ˆ t

0

S(t − t′)|ηu(t′)|2ηu(t′)dt′
∥∥∥

L4
x,t

� ‖u0‖L2
x

+
∥∥∥η(t)

ˆ t

0

S(t − t′)|ηu(t′)|2ηu(t′)dt′
∥∥∥

X0,3/8
.

Moreover, we can use (4.3), duality, L4
x,tL

4
x,tL

4
x,tL

4
x,t-Hölder inequality, and (4.5)

to estimate the second term by

� ‖|ηu|2ηu‖X0,−3/8

= sup
‖v‖

X0,3/8=1

¨
v|ηu|2(ηu)dxdt ≤ sup

‖v‖
X0,3/8=1

‖v‖L4
x,t

‖ηu‖3
L4

x,t
≤ ‖ηu‖3

L4
x,t

.

This shows that u is indeed a unique solution in L4
x,t(T × [−1,1]).

It follows from (L4
x,t(T × [−1,1]))∗ ⊂ (X0,1/2+

1 )∗ that weak convergence in

X
0,1/2+
1 implies weak convergence in L4

x,t(T × [−1,1]). Hence, the subsequence

unk
converges weakly to u in X

0,1/2+
1 and L4

x,t(T × [−1,1]). The argument above

also shows that u is the only weak limit point of un in X
0,1/2+
1 and L4

x,t(T ×
[−1,1]). Then, it follows from the boundedness of un in X

0,1/2+
1 and L4

x,t(T ×
[−1,1]) that the whole sequence un converges weakly to u. Indeed, suppose that
the whole sequence un does not converge weakly to u. Then, there exists φ ∈
(X0,1/2+

1 )∗ such that 〈un, φ〉 � 〈u,φ〉. This, in turn, implies that there exists ε > 0
such that for any N ∈ N, there exists n ≥ N such that | 〈un − u,φ〉 | > ε. Given ε >

0, we can construct a subsequence unk
with | 〈unk

− u,φ〉 | > ε for each k. However,
by repeating the previous argument (from the uniform boundedness of unk

in
X

0,1/2+
1 ), unk

has a sub-subsequence converging to u, which is a contradiction.
This establishes Theorem 2.1(a) on [−1,1]. �

4.2. Proof of Theorem 2.1(b)
Recall the following embedding. For b > 1/2, we have

(4.6) ‖u‖L∞([−1,1];Hs) ≤ C2‖u‖Xs,b
1

.

Fix φ ∈ L2(T) in the following.
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• Linear part: Given ε > 0, choose ψ ∈ H1(T) such that ‖φ − ψ‖L2 < ε/

(2KC1C2), where K = supn ‖u0,n − u0‖L2 < ∞ and C1, C2 are as in (4.2) and
(4.6). Then, by (4.2) and (4.6), we have

sup
|t|≤1

| 〈S(t)(u0,n − u0), φ〉L2 |

≤ sup
|t|≤1

| 〈S(t)(u0,n − u0), ψ〉L2 | + sup
|t|≤1

| 〈S(t)(u0,n − u0), φ − ψ〉L2 |

≤ ‖S(t)(u0,n − u0)‖L∞([−1,1];H−1)‖ψ‖H1

+ ‖S(t)(u0,n − u0)‖L∞([−1,1];L2)‖φ − ψ‖L2

≤ Cψ ‖S(t)(u0,n − u0)‖
X

−1,1/2+
1

+
ε

(2KC1)
‖S(t)(u0,n − u0)‖

X
0,1/2+
1

≤ C‖u0,n − u0‖H−1 +
ε

(2K)
‖u0,n − u0‖L2 .

Hence, there exists N1 such that for n ≥ N1,

sup
|t|≤1

| 〈S(t)(u0,n − u0), φ〉L2 | < ε

since u0,n converges strongly to un in H−1.
• Nonlinear part: Since un ⇀ u in X

0,1/2+
1 , we see that N (un) converges

strongly to N (u) in X
−1,−7/16
1 (see the proof of [34, Lemmas 2.2, 2.3]). Then, it

follows from (4.3) that M(un) converges strongly to M(u) in X
−1,1/2+
1 .

Given ε > 0, choose ψ ∈ H1(T) such that ‖φ − ψ‖L2 < ε/(2KC2), where
K = supn ‖ M(un) − M(un)‖

X
0,1/2+
1

< ∞ and C2 is as in (4.6). Then, by (4.6),
we have

sup
|t|≤1

| 〈 M(un) − M(u), φ〉|

≤ sup
|t|≤1

| 〈 M(un) − M(u), ψ〉L2 | + sup
|t|≤1

| 〈 M(un) − M(u), φ − ψ〉L2 |

≤ ‖ M(un) − M(u)‖L∞([−1,1];H−1)‖ψ‖H1

+ ‖ M(un) − M(u)‖L∞([−1,1];L2)‖φ − ψ‖L2

≤ Cψ ‖ M(un) − M(u)‖
X

−1,1/2+
1

+
ε

2K
‖M(un) − M(u)‖

X
0,1/2+
1

.

Hence, there exists N2 such that for n ≥ N2,

sup
|t|≤1

| 〈 M(un) − M(u), φ〉 | < ε.

Therefore, we have

lim
n→∞

sup
|t|≤1

| 〈un(t) − u(t), φ〉L2 | = 0.

Given [−T,T ], we can iterate the argument above on each [j, j + 1] and obtain
Theorem 2.1. �
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