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Adam Osȩkowski

Abstract Let α ≥ 0, and let X, Y be Itō processes

dXt = φt dBt + ψt dt, dYt = ζt dBt + ξt dt

such that |X0| ≥ |Y0|, |φ| ≥ |ζ|, and αψ ≥ |ξ|. The purpose of the paper is to determine
the optimal universal constant Cα in the weak-type estimate

sup
λ

λP

(
sup

t
|Yt | ≥ λ

)
≤ Cα sup

t
E|Xt|.

Then the inequality is extended, with unchanged constant, to the more general setting
when X is a submartingale and Y is α-strongly differentially subordinate to X. As an
application, a related estimate for subharmonic functions is established. The inequali-
ties generalize and unify the earlier results of Burkholder, Choi, and Hammack for Itō
processes, stochastic integrals, and smooth functions on Euclidean domains.

1. Introduction

Let (Ω, F ,P) be a complete probability space, filtered by a nondecreasing right-
continuous family (Ft)t≥0 of sub-σ-fields of F . Assume, in addition, that F0

contains all the sets of probability zero. Let B = (Bt)t≥0 be an adapted Brownian
motion starting from zero such that (Bt − Bs)t≥s is independent of Fs for all
s ≥ 0. Let X = (Xt)t≥0, Y = (Yt)t≥0 be Itō processes with respect to B (see Ikeda
and Watanabe [12]):

Xt = X0 +
∫ t

0+

φs dBs +
∫ t

0+

ψs ds,

(1.1)

Yt = Y0 +
∫ t

0+

ζs dBs +
∫ t

0+

ξs ds,

where (φs)s≥0, (ψs)s≥0, (ζs)s≥0, (ξs)s≥0 are predictable and satisfy

P

(∫ t

0+

|φs|2 ds < ∞ and
∫ t

0+

|ψs| ds < ∞ for all t > 0
)

= 1,
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P

(∫ t

0+

|ζs|2 ds < ∞ and
∫ t

0+

|ξs| ds < ∞ for all t > 0
)

= 1.

Assuming control of X0 over Y0, φ over ζ , and ψ over ξ, what can be said about
the sizes of X and Y ?

This problem has gained some interest in the literature. Burkholder [4]
showed that if X is a nonnegative submartingale and we have the domination
X0 ≥ |Y0|, |φs| ≥ |ζs| and ψs ≥ |ξs| for all s, then

λP(Y ∗ ≥ λ) ≤ 3‖X‖1

for any λ > 0 and

‖Y ‖p ≤ max
{
(p − 1)−1,2p − 1

}
‖X‖p, 1 < p < ∞

(see also [5] for more general inequalities under the assumption of strong dif-
ferential subordination). Here we have used the notation X∗ = supt≥0 |Xt| and
‖X‖p = supt ‖Xt‖p for p ≥ 1. Furthermore, both inequalities are sharp. These
results have been strengthened by Choi [6] and [7], who showed that if α ≥ 0 is
a fixed number, X is a nonnegative submartingale and, in addition,

(1.2) |X0| ≥ |Y0|, |φs| ≥ |ζs|, and αψs ≥ |ξs| for all s,

then

λP(Y ∗ ≥ λ) ≤ (α + 2)‖X‖1

for any λ > 0 and

‖Y ‖p ≤ max
{
(p − 1)−1, (α + 1)p − 1

}
‖X‖p, 1 < p < ∞.

Again, the constants α+2 and max{(p − 1)−1, (α+1)p − 1} are optimal. There is
a natural question about the validity of the above estimates without the assump-
tion on the sign of X . The purpose of the present paper is to answer this question
and, as an application, to establish some related results for subharmonic func-
tions on open subsets of R

n.
In fact, we study this problem under a weaker assumption. For any semi-

martingales X and Y , we say that Y is differentially subordinate to X if the
process ([X,X]t − [Y,Y ]t)t≥0 is nondecreasing and nonnegative as a function of t

(see Bañuelos and Wang [1] or Wang [14] for discussion). Here [X,X] denotes
the quadratic variance process of X (see, e.g., Dellacherie and Meyer [10]). This
type of domination implies many interesting inequalities if X and Y are martin-
gales or local martingales (see [14]). However, it turns out to be too weak for our
purposes. We work under the assumption of α-strong differential subordination
(α-subordination in short), introduced by Wang [14] in the particular case α = 1,
and by Osȩkowski [13] for general α ≥ 0. The definition is the following. Let X

be an adapted submartingale, let Y be an adapted semimartingale, and write
the Doob-Meyer decompositions

(1.3) X = X0 + M + C, Y = Y0 + N + D,
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where M , N are local martingale parts and C,D are finite variation processes.
In general, the decompositions may not be unique; however, we assume that C is
predictable, and this determines the first of them. Let α be a fixed nonnegative
number. We say that Y is α-subordinate to X if Y is differentially subordinate to
X and there is a decomposition (1.3) for Y such that the process (αCt − |D|t)t≥0

is nondecreasing and nonnegative as a function of t. Here |D|t denotes the total
variation of D on the interval [0, t]. Two observations are in order. First, in the
setting of Itō processes described in (1.1), if |X0| ≥ |Y0|, |φs| ≥ |ζs|, and αψs ≥ |ξs|
for all s, then, obviously, Y is α-subordinate to X . Second, the above domination
extends to the case when Y takes values in a certain separable Hilbert space H
(which can be assumed to be 	2): one applies the Doob-Meyer decomposition for
each coordinate of Y and then rewrites the definition of α-subordination with
[Y,Y ] =

∑∞
j=1[Y

j , Y j ] and |D| =
∑∞

j=1 |Dj |.
Now we are ready to state one of the main results of the paper.

THEOREM 1.1

Let α ≥ 0 be fixed. Suppose that X is a submartingale and Y is an H-valued
semimartingale which is α-subordinate to X. Then

(1.4) sup
λ>0

λP(Y ∗ ≥ λ) ≤ Cα‖X‖1,

where

Cα =

{
(α + 1)[1 + (α + 1)1/α] if α ≥ 1,

6 if α ≤ 1.

The constant is the best possible. It is already the best possible if H = R, and we
restrict ourselves to the class of Itō processes (1.1) satisfying (1.2).

This theorem generalizes the following result of Hammack [11]. Suppose that X

is a submartingale and Y is an Itō integral of H with respect to X , where H is
a predictable process with values in the unit ball of H. Then

sup
λ>0

λP(Y ∗ ≥ λ) ≤ 6‖X‖1,

and the inequality is sharp. This is an immediate consequence of our result stated
above since Y is 1-subordinate to X . Indeed, as the decomposition of Y we take
Yt = Y0 +

∫ t

0+
Hs dMs +

∫ t

0+
Hs dCs, where M , C come from (1.3), and we observe

that

[X,X]t −[Y,Y ]t =
∫ t

0

(1 − |Hs|2)d[X,X]s and Ct − |Dt| =
∫ t

0

(1− |Hs|)dCs

for all t ≥ 0.
To establish Theorem 1.1, we deal with the following stronger statement.
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THEOREM 1.2

Under the assumptions of Theorem 1.1, we have

(1.5) sup
λ>0

λP(Y ∗ ≥ λ) ≤ Kα‖X+‖1 − (Cα − Kα)EX0,

where

Kα =

{
(α + 1)1+1/α if α ≥ 1,

4 if α ≤ 1.

The inequality is sharp. In consequence, if the submartingale X starts from zero,
then

(1.6) sup
λ>0

λP(Y ∗ ≥ λ) ≤ Kα‖X‖1.

This inequality is also sharp.

Concerning the moment inequalities, we have the following negative result.

THEOREM 1.3

Let 1 ≤ p < ∞ and β > 0. Then there is a nontrivial pair (X,Y ) of Itō processes
as in (1.1) such that

(i) X0 = Y0 = 0,

(ii) X is a submartingale, Y is a martingale,
(iii) |φs| = |ζs| for all s > 0

and

‖Y ‖1 ≥ β‖X‖p.

In other words, moment inequalities fail to hold even under the most restrictive
zero-domination.

A few words about the proof and the organization of the paper. The proof of (1.5)
is based on Burkholder’s method: the inequality follows if one constructs a certain
special function and exploits its properties. We do this in Section 2. Section 3
concerns the sharpness of the estimate, and we also prove Theorem 1.3 there. In
the final part of the paper we present an application: a weak-type inequality for
smooth functions on Euclidean domains.

2. Proof of (1.5)

Let α be a fixed nonnegative number, and let ν be a positive integer. Consider
the following subsets of R × R

ν . If α ≥ 1, then

Dα
1 =

{
(x, y) : α|x| + |y| ≥ 1, x ≤ 0

}
,

Dα
2 =

{
(x, y) : |x| + |y| ≥ 1, x ≥ 0

}
,

Dα
3 = (R × R

ν) \ (Dα
1 ∪ Dα

2 ).
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If α ∈ [0,1), then let Dα
i = D1

i for i = 1,2,3. The proof rests on the special
functions Uα : R × R

ν → R given as follows. If α ≥ 1, then

(2.1) Uα(x, y) =

{
1 − Kαx+ if (x, y) ∈ Dα

1 ∪ Dα
2 ,

1 − (αx − |y| + 1)(αx + α|y| + 1)1/α if (x, y) ∈ Dα
3 ,

and Uα(x, y) = U1(x, y) for α ∈ [0,1).

LEMMA 2.1

The functions Uα enjoy the following.
(i) We have the majorization

Uα(x, y) ≥ 1Dα
1 ∪Dα

2
(x, y) − Kαx+.

(ii) If (x, y) ∈ Dα
3 , then

(2.2) Uαx(x, y) + α|Uαy(x, y)| ≤ 0.

(iii) If (x, y) ∈ Dα
3 and |y| 	= 0, then for any h ∈ R, k ∈ R

ν ,

Uαxx(x, y)h2 + 2
(
Uαxy(x, y)h,k

)
+

(
kUαyy(x, y), k

)
(2.3)

≤ cα(x, y)(|k|2 − h2),

where cα(x, y) = (α + 1)(αx + α|y| + 1)1/α−1 ≥ 0 for α ≥ 1, and cα(x, y) = 2 for
α ∈ [0,1).

(iv) If (x, y) ∈ Dα
3 , then for any h ∈ R, k ∈ R

ν satisfying |k| ≤ |h|, we have

(2.4) Uα(x + h, y + k) ≤ Uα(x, y) + Uαx(x, y)h +
(
Uαy(x, y), k

)
.

(v) Assume that (x, y) ∈ R × R
ν satisfies |y| ≤ |x|. Then Uα(x, y) ≤ −(α+1)x

for α ≥ 1 and Uα(x, y) ≤ −2x for α ∈ [0,1).

Proof
It is easy to see that we may restrict ourselves to the case α ≥ 1.

(i) We only need to prove the majorization on Dα
3 . Then the inequality takes

the form

1 − (αx − |y| + 1)(αx + α|y| + 1)1/α ≥ −Kαx+.

For a fixed x, the left-hand side increases as |y| increases. Hence it suffices to
show the estimate for y = 0: 1 − (αx + 1)1+1/α ≥ −Kαx+. This is evident for
x ≤ 0 (then αx+1 ≤ 1), while for x ≥ 0 we use the fact that the function F (x) =
1 − (αx + 1)1+1/α is concave and lies above the linear G(x) = −Kαx on [0,1]
since F (0) = G(0) and F (1) = G(1) + 1 > G(1).

Before we proceed, let us mention the following easy consequence, which is
used below. By the fact that Uα is continuous and 1Dα

1 ∪Dα
2

is upper semicontin-
uous, we see that for any η > 1 there is R = R(η) > 0 such that R(η) → 0 as η ↓ 1
and

(2.5) Uα(x, y) ≥ 1Dα
1 ∪Dα

2
(ηx, ηy) − Kαx+ − R(η).
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(ii) A direct computation shows that

Uαx(x, y) = −(α + 1)(αx + α|y| + 1)1/α−1[αx + 1 + (α − 1)|y|],
(2.6)

Uαy(x, y) = (α + 1)(αx + α|y| + 1)1/α−1y,

so

Uαx(x, y) + α|Uαy(x, y)| = −(α + 1)(αx + α|y| + 1)1/α−1(αx + 1 − |y|) ≤ 0.

(iii) A little calculation leads to

Uαxx(x, y)h2 + 2
(
Uαxy(x, y)h,k

)
+

(
kUαyy(x, y), k

)
= I1 + I2,

where

I1 = (α + 1)(αx + α|y| + 1)1/α−1(|k|2 − h2),

I2 = (α + 1)(1 − α)|y|(αx + α|y| + 1)1/α−2[h + (y, k)/|y|]2 ≤ 0.

This proves the claim.
(iv) If h = 0, the bound is trivial. Suppose, then, that h 	= 0, and consider

a function G : R → R given by G(t) = Uα(x + t, y + tk/h). Let t0 = sup{t : (x +
t, y + tk/h) ∈ Dα

1 } < 0 and t1 = inf{t : (x + t, y + tk/h} ∈ Dα
2 } > 0. We have that

G is continuous, equal to 1 on (−∞, t0], and linear on [t1, ∞). In addition, G is
concave on (t0, t1); this is guaranteed by (iii) and the assumption |k| ≤ |h|. Thus
rewriting (2.4) in the form G(h) ≤ G(0) + G′(0)h, we see that it suffices to prove
that G′(0) ≤ 0 and G′(0) ≥ G′(t1+) = −Kα. By (ii), we have

G′(0) ≤ Uαx(x, y) + |Uαy(x, y)| · |k|
h

≤ Uαx(x, y) + α|Uαy(x, y)| ≤ 0.

Furthermore, using (y, k)/h ≥ −|y| and the estimate x + |y| ≤ 1 coming from the
definition of Dα

3 ,

G′(0) = −(α + 1)(αx + α|y| + 1)1/α−1
[
αx + 1 + (α − 1)|y| − (y, k)

h

]
≥ −(α + 1)(αx + α|y| + 1)1/α

≥ −(α + 1)1/α+1 = −Kα.

(v) By (iv), we have

Uα(x, y) ≤ Uα(0,0) + Uαx(0,0)x +
(
Uαy(0,0), y

)
= −(α + 1)x.

This completes the proof. �

For any semimartingale X there exists a unique continuous local martingale part
Xc of X satisfying

[X,X]t = |X0|2 + [Xc,Xc]t +
∑

0<s≤t

| �Xs|2

for all t ≥ 0. (Here �Xs = Xs − Xs− is the jump of X at time s > 0.) Further-
more, [Xc,Xc] = [X,X]c, the pathwise continuous part of [X,X]. We need [14,
Lemma 1], which can be stated as follows.



Bounds for Itō processes and subharmonic functions 881

LEMMA 2.2

If X and Y are semimartingales, then Y is differentially subordinate to X if and
only if Y c is differentially subordinate to Xc, |Y0| ≤ |X0|, and for any s > 0 we
have | �Ys| ≤ | �Xs|.

Now we turn to the proofs of the announced estimates.

Proof of (1.5)
Let us start with some reductions. First, we may assume that ‖X+‖1 < ∞; oth-
erwise, there is nothing to prove. Second, by homogeneity, it suffices to prove
that

(2.7) P(Y ∗ ≥ 1) ≤ Kα‖X+‖1 − (Cα − Kα)EX0.

The third observation is that we may restrict ourselves to the case α ≥ 1: indeed,
if X , Y satisfy the assumptions of Theorem 1.1 with some α < 1, then they satisfy
the assumptions for α = 1 as well, and Cα = C1, Kα = K1 for α ∈ [0,1). The next
step is to reduce (1.4) to the case of finite-dimensional Hilbert spaces H. To
do this, we observe that we may take H to be equal to 	2. For a fixed positive
integer ν, the truncated process

Y
(ν)
t = (Y 1

t , Y 2
t , . . . , Y ν

t ,0,0, . . .)

is α-subordinate to X and, in addition, for any δ < 1, we have P(Y ∗ ≥ 1) ≤
limν→∞ P(Y (ν)∗ ≥ δ). Thus having established (2.7) for finite-dimensional H, we
may write

δP(Y ∗ ≥ 1) ≤ Kα‖X+‖1 − (Cα − Kα)EX0,

and it suffices to let δ ↑ 1 to obtain (2.7) in full generality. Therefore, from now
on, H = R

ν for some positive integer ν.
The main tool in the proof is the Itō formula. However, we are not allowed to

apply it to the function Uα since it is not sufficiently smooth. Therefore, we need
to use some extra approximation arguments. Fix a number η > 1, and introduce
the stopping time τ = inf{t : (Xt, Yt) /∈ Dα

3 /η} (here Dα
3 /η = {(x, y) ∈ R × R

ν :
(ηx, ηy) ∈ Dα

3 }). Suppose that δ > 0 satisfies

(2.8) dist(Dα
1 ∪ Dα

2 ,Dα
3 /η) > δ,

and consider a C∞-function g : R × R
ν → [0, ∞), supported on the ball of center

(0,0) ∈ R × R
ν and radius δ, satisfying

∫
R×Rν g = 1. Introduce a function U δ

α :
R × R

ν → R, given by the convolution

U δ
α(x, y) =

∫
R×Rν

Uα(x − u, y − v)g(u, v)dudv.

Observe that by (2.8), if (x, y) ∈ Dα
3 /η, then for all (u, v) lying in the support

of g we have (x − u, y − v) ∈ Dα
3 . Consequently, for these (x, y), the function U δ

α

enjoys the properties described in Lemma 2.1(ii), (iii), (iv). In (iii), we replace
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cα(x, y) by

cδ
α(x, y) =

∫
R×Rν

cα(x − u, y − v)gδ(u, v)dudv ≥ 0.

Indeed, note that Uα is of class C1 in Dα
3 (see (2.6)), so the properties follow

from the integration.
The function U δ

α is of class C∞, so we may apply Itō’s formula and obtain

(2.9) U δ
α(Xτ ∧t, Yτ ∧t) = U δ

α(X0, Y0) + I1 + I2/2 + I3 + I4,

where (recall M , N , C, D given by (1.3) with the decomposition of Y coming
from the α-subordination)

I1 =
∫ τ ∧t

0+

U δ
αx(Xs−, Ys−)dMs +

∫ τ ∧t

0+

U δ
αy(Xs−, Ys−)dNs,

I2 =
∫ τ ∧t

0+

U δ
αxx(Xs−, Ys−)d[M c,M c] + 2

ν∑
i=1

∫ τ ∧t

0+

U δ
αxyi

(Xs−, Ys−)d[M c,N ic]

+
ν∑

i,j=1

∫ τ ∧t

0+

U δ
αyiyj

(Xs−, Ys−)d[N ic,N jc]s,

I3 =
∫ τ ∧t

0+

U δ
αx(Xs−, Ys−)dCs +

∫ τ ∧t

0+

U δ
αy(Xs−, Ys−)dDs,

I4 =
∑

0<s≤τ ∧t

[
U δ

α(Xs, Ys) − U δ
α(Xs−, Ys−)

− U δ
αx(Xs−, Ys−)ΔXs −

(
U δ

αy(Xs−, Ys−),ΔYs

)]
.

Now let us look at the terms in (2.9). We have EI1 = 0 by the properties of
stochastic integrals. Furthermore, I2 is nonpositive. To see this, we proceed as in
[14]. We approximate the integrals by appropriate Riemann sums and apply (2.3)
to the function U δ

α (which is permitted since (Xs−, Ys−) ∈ Dα
3 /λ). This yields

I2 ≤ cδ
α(x, y)

(
−[Xc,Xc]τ ∧t + [Y c, Y c]τ ∧t − (−[Xc,Xc]0 + [Y c, Y c]0)

)
≤ 0

due to the differential subordination of Y c to Xc. To deal with I3, note that by
α-subordination, and then by (2.2),

I3 ≤
∫ τ ∧t

0+

U δ
αx(Xs−, Ys−)dCs +

∫ τ ∧t

0+

|U δ
αy(Xs−, Ys−)|d|Ds|

≤
∫ τ ∧t

0+

U δ
αx(Xs−, Ys−)dCs +

∫ τ ∧t

0+

α|U δ
αy(Xs−, Ys−)| dCs ≤ 0.

Finally, I4 ≤ 0 due to Lemma 2.1(iv): here we use the inequality | �Ys| ≤ | �Xs|
coming from the differential subordination. Thus we have shown that

(2.10) EU δ
α(Xτ ∧t, Yτ ∧t) ≤ EU δ

α(X0, Y0).
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Now, note that |Uα(x, y)| ≤ L + Kαx+ for some absolute constant L, which
implies that |U δ

α(x, y)| ≤ L + Kα(x+ + δ). Moreover, Uα is continuous; thus, let-
ting δ → 0 in (2.10) and using Lebesgue’s dominated convergence theorem, one
obtains

EUα(Xτ ∧t, Yτ ∧t) ≤ EUα(X0, Y0) ≤ −(α + 1)EX0.

Here in the last passage we have exploited Lemma 2.1(v) together with the fact
that |Y0| ≤ |X0|. Combining this with (2.5), we get

P
(
(Xτ ∧t, Yτ ∧t) /∈ Dα

3 /η
)

≤ KαEX+
τ ∧t − (α + 1)EX0 + R(η).

Now {Y ∗ ≥ 1} ⊆ {τ < ∞} =
⋃

t{(Xτ ∧t, Yτ ∧t) /∈ Dα
3 /η}, so

P(Y ∗ ≥ 1) ≤ Kα sup
t

EX+
τ ∧t − (α + 1)EX0 + R(η)

≤ Kα sup
t

EX+
t − (α + 1)EX0 + R(η)

by Doob’s optional sampling theorem. (The process (X+
t )t≥0 is a submartingale.)

Letting η ↓ 1 completes the proof of (1.5). �

3. Sharpness and lack of moment estimates

3.1. Sharpness
We construct examples of Itō processes X , Y , which will exhibit the optimality
of the constants Cα, Kα in (1.4) and (1.6), respectively. This also proves that
the estimate (1.5) is sharp.

The construction consists of two parts. The first step is to find, for any ε > 0,
an appropriate pair (F,G) of Itō processes starting from zero such that

P(G∗ ≥ 1) = 1 and ‖F∞ ‖1 ≤ K−1
α + ε

and another pair (F,G) of Itō processes, satisfying F0 = −G0 ≡ −C−1
α ,

P(G∗ ≥ 1) = 1 and ‖F∞ ‖1 ≤ C−1
α + ε.

Here, as usual, F∞ denotes the pointwise limit of Ft as t → ∞. Next, in the
second part, we modify these pairs so that the above conditions are satisfied, but
with ‖F∞ ‖1 replaced by ‖F ‖1. This immediately yields the claim.

Part I. We present a unified construction which produces both pairs (F,G)
mentioned above. Assume first that α ≥ 1, let x0 ∈ {−C−1

α ,0}, and pick a large
positive integer N . Set δ = 1/(2N), and let (Bt)t≥0 be a one-dimensional Brow-
nian motion started at x0. For n = 1,2, . . . ,N , let

	n =
−1 + 2(n − 1)δ

α + 1
, rn = (2n − 1)δ,

and put 	N+1 = 0, rN+1 = 2. Introduce the stopping times τi = τi(α), 0 ≤ i ≤
N + 1, as follows: τ0 ≡ 0 and, by induction,

τn = inf
{
t > τn−1 : Bt ≤ 	n or Bt ≥ rn

}
, n = 1,2, . . . ,N + 1.
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Note that the sequence (	n) is increasing; hence, if Bτk
= 	k for some k, then

τk = τk+1 = · · · = τN+1. We are ready to introduce Itō processes F = (Ft)t≥0 and
G = (Gt)t≥0. Let F0 ≡ −G0 ≡ x0, let

dFt = 1{t≤τN+1} dBt + 1{τN+1<t≤τN+1−BτN+1 } dt,

and let

dGt =
(N+1∑

n=1

(−1)n1{τn−1<t≤τn }

)
dBt + αsgn(GτN+1)1{τN+1<t≤τN+1−BτN+1 } dt.

Clearly, F is a submartingale which dominates G in a sense described in (1.2).
For a better understanding of these two processes, it is convenient to look at
the properties of (Ft,Gt)t≥0 at two stages: for t ≤ τN+1, where it has martingale
behavior, and for t > τN+1, where F is nondecreasing. The pair starts from
(x0, −x0), and for t ∈ (τn−1, τn], n ≤ N , it moves along the line of slope (−1)n

until it reaches the set {(x, y) : −αx + |y| = 1} or Gτn = (−1)nδ. If the first
possibility occurs, we have τn = τN+1; in the second case, the move continues
and the slope switches to (−1)n+1. On t ∈ (τN , τN+1] the behavior is similar,
but here we stop the move if F reaches zero or 2. One easily checks that at
the end of the first stage, (FτN+1 , |GτN+1 |) = (2,1) (i.e., when Bτn = rn for all
n = 1,2, . . . ,N + 1) or −αFτN+1 + |GτN+1 | = 1 (i.e., when Bτn = 	n for some n).
Now, in the first case, the pair stops ultimately: we have FτN+1 = BτN+1 = 2, so
the event {τN+1 < t ≤ τN+1 − BτN+1 } is empty. If the second possibility occurs,
then (FτN+1+t, |GτN+1+t|) = (FτN+1 + t, |GτN+1+t| + αt) for t ∈ [0, −FτN+1 ], and
then the pair stops. We see that τ := τN+1 + 1 can be regarded as the terminal
stopping time of the pair (F,G): we have dFt = dGt = 0 for t ≥ τ .

In the case α ∈ [0,1), the construction is similar. Let τj = τj(1), j = 0,1,2, . . . ,

let N + 1 be the stopping times coming from the case α = 1, and let τN+2 =
inf{t > τN+1 : Bt ≤ −2 or Bt ≥ 0}. The pair (F,G) is given by F0 = −G0 ≡ x0

and

dFt = 1{t≤τN+2} dBt + 1{τN+2<t≤τN+2−BτN+2 } dt,

dGt =
(N+1∑

n=1

(−1)n1{τn−1<t≤τn }

)
dBt + sgn(GτN+1)1{τN+1<t≤τN+2} dBt.

Therefore, comparing to the case α ≥ 1, we see that the second stage splits into
two steps: a martingale move of (F,G) along the line −x + y = 1 or x + y =
−1 on the interval [τN+1, τN+2] and the second step, for t ≥ τN+2, when F is
nondecreasing. We see that G is a martingale which is differentially subordinate
to F ; hence, G is α-subordinate to F for any α ≥ 0. We define the terminal
stopping time by τ := τN+2 + 2.

Now we prove the aforementioned bounds for F and G.

LEMMA 3.1

We have G∗ ≥ 1 almost surely and ‖F ‖1 ≤ 2. Furthermore, for any ε > 0 there
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is N such that

‖F∞ ‖1 = ‖Fτ ‖1 ≤
(
1 + (α + 1)x0

)
(1 + α)−(α+1)/α + ε.

REMARK 3.1

Note that (1+(α+1)x0)(1+α)−(α+1)/α is equal to C−1
α or K−1

α (resp., depending
on whether x0 = −C−1

α or x0 = 0).

Proof of Lemma 3.1
The first two properties are obvious: we have |Gτ | = 1 and |Ft| ≤ 2 for any
t ≥ 0. We prove the third condition only for α ≥ 1; for the remaining α the
calculations can be performed in a similar manner. Note that Fτ ∈ {0,2} and
Fτ = 2 if and only if τ1 < τ2 < · · · < τN and FτN+1 = 2; that is, Bτn = rn for all
n = 1,2, . . . ,N + 1. For convenience, let r0 = x0, and note that by the definition
of τn and elementary properties of Brownian motion, we may write the following:

P(Fτ = 2) =
N+1∏
n=1

rn−1 − 	n

rn − 	n

=
r0 − 	1
r1 − 	1

· rN − 	N+1

rN+1 − 	N+1

N∏
n=2

rn−1 − 	n

rn − 	n

=
x0 + (α + 1)−1

δ + (α + 1)−1
· 1 − δ

2
·

N∏
n=2

(
1 − 2δ(α + 1)

1 + δ[(2n − 1)α + 1]

)

≤ (1 + x0(α + 1))(1 − δ)
2(1 + δ(α + 1))

exp
[

−2δ(α + 1)
N∑

n=2

(
1 + δ[(2n − 1)α + 1]

)−1
]

≤ (1 + x0(α + 1))(1 − δ)
2(1 + δ(α + 1))

(1 + δ + (2N + 1)δα
1 + δ + 5δα

)−(α+1)/α

.

Here in the first inequality we have used the elementary bound 1 − x ≤ e−x and
in the second estimate we have exploited the fact that

2δ

N∑
n=2

(
1 + δ[1 + (2n − 1)α]

)−1 ≥
∫ (2N+1)δ

5δ

(1 + δ + αx)−1 dx

=
1
α

log
1 + δ + (2N + 1)δα

1 + δ + 5δα
.

The claim follows. Recall that δ = (2N)−1, so letting N → ∞ implies that the
above upper bound for P(Fτ = 2) converges to

(α + 1)x0 + 1
2

(1 + α)−(α+1)/α,

as needed. �

Part II. Note that there is no hope for the equality ‖F∞ ‖1 = ‖F ‖1 since the sub-
martingale F takes negative values. Thus we need some additional modification
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of the pair to ensure that the first moment of the dominating process is arbitrar-
ily close to ‖Fτ ‖1. The main idea is to work on small portions of the probability
space, using the appropriate copy of (F,G) on each portion. To be more precise,
let ε > 0 be given and fixed. For the sake of convenience, we split the reasoning
into four steps.

Step 1: An auxiliary parameter K. By Lemma 3.1, there are N and K > 0
such that

‖Ft‖1 ≤
(
1 + (α + 1)x0

)
(1 + α)−(α+1)/α + 2ε

whenever t ≥ K.
Step 2: Time-shifted copies of (F,G). For j = 0,1,2, . . . , let (F j ,Gj) be a pair

given by the above construction but with (Bt)t≥0 replaced by the time-shifted
Brownian motion

Bj
t =

{
x0 if t ≤ Kj,

x0 + Bt − BKj if t > Kj.

Then (F j
t ,Gj

t ) = (x0, −x0) for t ≤ Kj and

(3.1)
(
(F j

Kj+t,G
j
Kj+t)

)
t≥0

has the same distribution as (F,G).

Furthermore, F j , Gj are Itō processes with respect to the original Brownian
motion B, and F j dominates Gj in the sense of (1.2).

Step 3: Definition of (X,Y ). Fix a positive integer k, and consider a ran-
dom variable η independent of B, with the distribution P(η = j) = 1/k for
j = 0,1,2, . . . , k − 1. This random variable splits Ω into k parts {η = 0}, {η =
1}, . . . , {η = k − 1}. We define

(Xt, Yt) = (F j
t ,Gj

t ) on {η = j}

for t ≥ 0 and j = 0,1,2, . . . , k − 1. Then, by Step 2, both X and Y are Itō processes
with respect to B, and the domination (1.2) is satisfied.

Step 4: Final calculations. Observe that

P(Y ∗ ≥ 1) =
1
k

k−1∑
j=0

P(Gj∗ ≥ 1) = 1

and, for any t ≥ 0,

‖Xt‖1 =
1
k

k−1∑
j=0

‖F j
t ‖1.

Now, if t ≤ Kj, then F j
t = x0, so ‖F j

t ‖1 = −x0, and hence,

‖F j
t ‖1 ≤

(
1 + (α + 1)x0

)
(1 + α)−(α+1)/α + 2ε.

If t ∈ (Kj,Kj +K), then ‖F j
t ‖1 = ‖Ft−Kj ‖1 ≤ 2 in virtue of Lemma 3.1. Finally,

if t ≥ Kj + K, then by Step 1,

‖F j
t ‖1 = ‖Ft−Kj ‖1 ≤

(
1 + (α + 1)x0

)
(1 + α)−(α+1)/α + 2ε.
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In consequence, we obtain

sup
t≥0

‖Xt‖1 ≤ k − 1
k

[(
1 + (α + 1)x0

)
(1 + α)−(α+1)/α + 2ε

]
+

2
k

<
(
1 + (α + 1)x0

)
(1 + α)−(α+1)/α + 3ε,

provided k is sufficiently large. This completes the proof of the sharpness.

3.2. Lack of moment inequalities
The argumentation is similar to that in the previous subsection. Let B be a Brow-
nian motion starting from zero, let τ0 = inf{t > 0 : |Bt| = 1}, and by induction, let

τn = inf
{
t > τn−1 : Bt = −n − 1 or Bt ≥ 0

}
, n = 1,2, . . . .

Now, for a fixed positive integer N , let F0 = G0 ≡ 0, and let

dFt = 1{t≤τ2N −1} dBt + 1{τ2N −1<t≤τ2N −1−Bτ2N −1 } dt,

dGt =
(2N −1∑

n=1

(−1)n1{τn−1<t≤τn }

)
dBt.

The processes F , G satisfy the conditions (i), (ii), and (iii) described in Theo-
rem 1.3. In addition, if we set τ = inf{t > τ0 : Ft ≥ 0}, we have

(3.2) ‖Fτ ‖p =
1
2
, ‖Gτ ‖1 ≥

2N −1∑
k=1

1
2(k + 1)

.

The equality is trivial: Fτ = 1 on the set {Bτ0 = 1} (which has probability 1/2),
and Fτ = 0 on the complement of this event. To prove the inequality for ‖Gτ ‖1,
observe that if k = 1,2, . . . ,2N − 1, then

|Gτ | =
∣∣∣ k∑
n=1

(−1)k(Bτn − Bτn−1)
∣∣∣ = 2

⌊k + 1
2

⌋

on the set {τ = τk > τk−1}. Therefore, since

{τ = τk > τk−1} = {Bτ0 = −1,Bτ1 = −2, . . . ,Bτk−1 = −k,Bτk
= 0},

we obtain

‖Gτ ‖1 ≥
2N −1∑
k=1

2
⌊k + 1

2

⌋
P(τ = τk > τk−1)

=
2N −1∑
k=1

2
⌊k + 1

2

⌋
· 1
2k(k + 1)

,

which yields the desired estimate.
Thus, for any β one can choose N such that ‖G‖1 = ‖Gτ ‖1 > β‖Fτ ‖p. How-

ever, as before, this does not give the claim since ‖F ‖p > ‖Fτ ‖p. Therefore, the
pair (F,G) must be modified; this is done exactly in the same manner as pre-
viously, using small portions of the probability space and appropriate copies of
(F,G). The details are left to the reader.
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4. Inequality for smooth functions

As an application of Theorems 1.1 and 1.2, we present a weak-type estimate for
α-subordinate smooth functions on Euclidean domains. Suppose that Ω is an
open subset of R

n, n being a fixed positive integer, such that 0 ∈ Ω. Let Ω be
a bounded subdomain of Ω with 0 ∈ Ω and ∂Ω ⊂ Ω. Denote by μ the harmonic
measure on ∂Ω with respect to zero. Consider two real-valued C2-functions u, v

on Ω. Following [2], we say that v is differentially subordinate to u if

| ∇v(x)| ≤ | ∇u(x)| for x ∈ Ω.

Furthermore, for α ≥ 0, the function v is α-subordinate to u if it is differentially
subordinate to u and, in addition,

|Δv(x)| ≤ α|Δu(x)| for x ∈ Ω

(see [5], [9]). The inequalities comparing the sizes of u and v under the assumption
of (strong) differential subordination were studied by a number of authors (see,
e.g., [1]–[3], [5], [8], [9], [13]). Our contribution in this direction is described in
the following result.

THEOREM 4.1

Let α ≥ 0, and suppose that u is subharmonic, v is α-subordinate to u, and
|v(0)| ≤ |u(0)|. Then

(4.1) sup
λ>0

λμ
(

|v(x)| ≥ λ
)

≤ Cα

∫
∂Ω

|u(x)| dμ(x)

and

(4.2) sup
λ>0

λμ
(

|v(x)| ≥ λ
)

≤ Kα

∫
∂Ω

u(x)+ dμ(x) − (Cα − Kα)u(0).

Proof
Consider n-dimensional Brownian motion W starting from zero, and let τ denote
the exit time of Ω: τ = inf{t : Wt /∈ Ω}. Introduce the processes

X = (Xt)t≥0 =
(
u(Wτ ∧t)

)
t≥0

, Y = (Yt)t≥0 =
(
v(Wτ ∧t)

)
t≥0

,

and apply Itō’s formula: for any t ≥ 0,

Xt = u(0) +
∫ t

0

∇u(Wτ ∧s)dWs +
1
2

∫ t

0

�u(Wτ ∧s)ds = X0 + Mt + Ct,

Yt = v(0) +
∫ t

0

∇v(Wτ ∧s)dWs +
1
2

∫ t

0

�v(Wτ ∧s)ds = Y0 + Nt + Dt.

Since

[M,M ]t − [N,N ]t = |u(0)|2 − |v(0)|2 +
∫ t

0

(
| ∇u(Wτ ∧s)|2 − | ∇v(Wτ ∧s)|2

)
ds

and

αCt − |D|t =
1
2

∫ t

0

(
α�u(Wτ ∧s) − | �v(Wτ ∧s)|

)
ds,
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we see that α-subordination of the functions u and v implies that Y is
α-subordinate to X . Since μ(|v(x)| ≥ λ) ≤ P(Y ∗ ≥ λ) and ‖X+‖1 =∫

∂Ω
u(x)+ dμ(x), we see that (1.5) implies (4.2) and this, in turn, yields (4.1). �
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