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Abstract We construct a family of irreducible representations of the quantum contin-
uous gl∞ whose characters coincide with the characters of representations in the mini-
mal models of the Wn-algebras of gln type. In particular, we obtain a simple combina-
torial model for all representations of the Wn-algebras appearing in the minimal models
in terms of n interrelating partitions.

1. Introduction

In [FFJ+] we initiated a study of representations of the algebra which we denote
by E and call quantum continuous gl∞. This algebra depends on two parameters
q1, q2 and is closely related to the Ding-Iohara algebra introduced in [DI] and then
considered in [FHH+] and [FT]. Conjecturally, the algebra E is isomorphic to the
infinite spherical double affine Hecke algebra constructed in [ScV1] and [ScV2]
(see also [BS], [S]).

We argued that the representation theory of the algebra E has many fea-
tures similar to the representation theory of gl∞. In particular, it has a family
of vector representations. The algebra E is not a Hopf algebra. However there
is a “comultiplication rule” which, under some conditions, defines an action of
E on a tensor product of E -modules. We used the comultiplication rule and the
vector representations to construct Fock modules by the standard semiinfinite
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construction (which can also be called an inductive limit construction or semi-
infinite wedge representation). Similarly to the case of gl∞, the Fock modules
have a natural basis labeled by partitions.

On the other hand, due to the quantum nature of the algebra E , the represen-
tation theory of E is richer than that of gl∞. In [FFJ+], we used the semiinfinite
construction to define another family of modules for the case when q1−r

1 qk+1
3 = 1

with r ∈ Z>1, k ∈ Z>0. These modules do not have gl∞-analogues. Their bases
are given by the so-called (k, r)-admissible partitions λ satisfying λi − λi+k ≥ r.

In [FJMM] it was shown that when the parameters q, t satisfy q1−rtk+1 = 1,
the Macdonald polynomials Pλ(q, t) with (k, r)-admissible partitions λ form a
basis of the smallest ideal in the space of symmetric polynomials stable under
the Macdonald operators (see also [K], [SV]). The E -module we constructed is
an inductive limit of these ideals in an appropriate sense.

In this paper we continue the study of representations of E started in [FFJ+].
We find that this algebra has a large class of modules which are tame in the fol-
lowing sense. The algebra E has a commutative subalgebra generated by ψ+

i , ψ−
−i,

where i ∈ Z≥0, which serves as an analogue of a Cartan subalgebra. We call a
module tame if this subalgebra acts diagonally with the simple joint spectrum.

In contrast to [FFJ+], to construct new modules we do not use the semi-
infinite constructions but use the Fock spaces as building blocks. Namely, we
consider subquotients of the tensor product of several Fock spaces.

The Fock space depends on a continuous parameter u and has a basis labeled
by partitions. Therefore the tensor product of n Fock modules depends on n

complex parameters ui, where i = 1, . . . , n, and has a basis labeled by n-tuples
of partitions. The subalgebra of ψ±

i acts diagonally in this basis. Remarkably,
all submodules and quotient modules we study also have a basis of n-tuples of
partitions with some conditions. It means that we never have to deal with linear
combinations of the basic vectors and all considerations are purely combinatorial.

For generic parameters q1, q2, ui, where i = 1, . . . , n, the tensor products of
Fock modules are irreducible. We consider special values which we call reso-
nances. In the case of the resonances, the E -action on the tensor product of the
Fock spaces is not defined. However we find a “subquotient” for which it is well
defined. This subquotient is an irreducible E -module with a basis labeled by n

partitions λ(1), . . . , λ(n) with conditions

λ(i)
s ≥ λ

(i+1)
s+bi

− ai, where i = 1, . . . , n, s ∈ Z>0.

Here λ(n+1) = λ(1) and ai, bi ∈ Z≥0 are the parameters of the module. The con-
ditions with i = 1, . . . , n − 1 correspond to the submodules appearing under res-
onances ui/ui+1 = qai+1

1 qbi+1
3 , where q3 = (q1q2)−1. The i = n condition corre-

sponds to the quotient module appearing under the resonance qp′

1 qp
3 = 1, where

p′ =
∑n

i=1(ai + 1), p =
∑n

i=1(bi + 1).
We use a recursion to compute the graded character of the subquotient and

find that it coincides with the character of the Wn-module from the minimal
(p′, p)-theory labeled by the ŝln-weights η =

∑n
i=1 aiωi and ξ =

∑n
i=1 biωi (see
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Theorem 4.5). The recursion in the case n = 2 is similar to the recursion in
[ABB+].

For the information on Wn and its representations we refer to [FKW]. The
Wn-modules are not well understood apart from the Virasoro n = 2 case, and we
hope that such a relatively simple combinatorial description sheds new light on
the subject. Moreover, there are many indications that the relation between E
and Wn-algebras is much deeper than the one described in this paper.

The paper is constructed as follows. In Section 2 we recall the main defini-
tions and constructions from [FFJ+]. In Section 3 we construct the subquotients
of the tensor products of Fock modules and prove that they are tame and irre-
ducible. In Section 4 we describe the recursion for the set of n-tuples of partitions
with conditions, give a solution of the recursion in a bosonic form, and compare
it to the characters of Wn-algebras. In Section 5 we show several isomorphisms
of E -modules, in particular, the isomorphism of the subquotients in the case
p = n + 1 to the E -modules with bases of (k, r)-admissible partitions of [FFJ+].

2. Quantum continuous gl∞

In this section we recall the basic definitions about quantum continuous gl∞ and
its representations following [FFJ+].

2.1. Algebra
Let q1, q2, q3 ∈ C be complex parameters satisfying the relation q1q2q3 = 1. In
this paper we assume that neither qi is a root of unity. Let

g(z,w) = (z − q1w)(z − q2w)(z − q3w).

The quantum continuous gl∞ is an associative algebra E with generators ei, fi,
where i ∈ Z, ψ+

i , ψ−
−i, where i ∈ Z≥0, and (ψ±

0 )−1 satisfying the following defining
relations:

g(z,w)e(z)e(w) = −g(w,z)e(w)e(z),
(2.1)

g(w,z)f(z)f(w) = −g(z,w)f(w)f(z),

g(z,w)ψ±(z)e(w) = −g(w,z)e(w)ψ±(z),
(2.2)

g(w,z)ψ±(z)f(w) = −g(z,w)f(w)ψ±(z),

(2.3) [e(z), f(w)] =
δ(z/w)
g(1,1)

(
ψ+(z) − ψ−(z)

)
,

(2.4) [ψ±
i , ψ±

j ] = 0, [ψ±
i , ψ∓

j ] = 0,

(2.5) ψ±
0 (ψ±

0 )−1 = (ψ±
0 )−1ψ±

0 = 1,

(2.6)
[
e0, [e1, e−1]

]
= 0,

[
f0, [f1, f−1]

]
= 0.
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Here δ(z) =
∑

n∈Z
zn denotes the formal delta function, and the generating series

of the generators of E are given by

e(z) =
∑
i∈Z

eiz
−i, f(z) =

∑
i∈Z

fiz
−i, ψ±(z) =

∑
±i≥0

ψ±
i z−i.

Note that the algebra E depends on the unordered set of parameters {q1, q2, q3}
as all qi enter the relations symmetrically through the function g(z,w).

The algebra generated by {ψ+
i , ψ−

−i}i∈Z≥0 is commutative. We call an E -
module V tame if the operators {ψ+

i , ψ−
−i}i∈Z≥0 act by diagonalizable operators

with simple joint spectrum.
The elements ψ±

0 ∈ E are central and invertible. For x, y ∈ C
×, we say that

an E -module V is of level (x, y) if ψ+
0 acts by x and ψ−

0 acts by y.
Let φ±

∅ (z) ∈ C[[z∓1]] be a formal series in z∓1. We call an E -module V highest
weight module with highest vector v ∈ V and highest weight φ±

∅ (z) if v generates
V and

f(z)v = 0, ψ+(z)v = φ+
∅ (z)v, ψ−(z)v = φ−

∅ (z)v.

The comultiplication rule (see [FFJ+], [DI]) is given by

(2.7) Δe(z) = e(z) ⊗ 1 + ψ−(z) ⊗ e(z),

(2.8) Δf(z) = f(z) ⊗ ψ+(z) + 1 ⊗ f(z),

(2.9) Δψ±(z) = ψ±(z) ⊗ ψ±(z).

These formulas do not define a comultiplication in the usual sense since the right-
hand sides are not elements of E ⊗ E as they contain infinite sums. However,
under some conditions the comultiplication rule does give an E -module structure
on V1 ⊗ V2. We will discuss these conditions somewhere else. In [FFJ+] and in
this paper we use the comultiplication rule as a way to obtain the formulas for
the E -action, and then we check directly that the answer is consistent with the
relations in the algebra E .

Note that this comultiplication rule is compatible with permutations of qi.
We say that a set of complex parameters v1, . . . , vn is generic if no monomial

in vi is equal to 1:
∏n

i=1 vji

i = 1 with ji ∈ Z implies that j1 = · · · = jn = 0.
Clearly, q1, q2 are generic if and only if q1, q3 are generic, and q1, q2 are generic

if and only if q2, q3 are generic. If a set of parameters is generic, then any subset
of that set is also generic. Throughout the paper we assume that neither qi is
a root of unity. That is, we always assume that q1 is generic, and q2 is generic,
and q3 is generic.

The algebra E is Z-graded. The degrees of generators are given by

(2.10) deg ei = 1, deg fi = −1, degψ±
i = 0.

In fact, E is Z
2-graded (see [FFJ+, Lemma 2.4]), but we do not need the second

component of the grading in this paper.



Tensor products of Fock modules and Wn-characters 369

2.2. Vector representations
For u ∈ C

×, let V (u) be a complex vector space spanned by the basis |i〉u, where
i ∈ Z.

We also use the notation u〈i| with i ∈ Z for the dual basis. When it is clear,
we skip the subscript u and write simply |i〉, 〈i|.

LEMMA 2.1

The formulas

(1 − q1)e(z)|i〉 = δ(qi
1u/z)|i + 1〉,

(q−1
1 − 1)f(z)|i〉 = δ(qi−1

1 u/z)|i − 1〉,

ψ+(z)|i〉 =
(1 − qi

1q3u/z)(1 − qi
1q2u/z)

(1 − qi
1u/z)(1 − qi−1

1 u/z)
|i〉,

ψ−(z)|i〉 =
(1 − q−i

1 q−1
3 z/u)(1 − q−i

1 q−1
2 z/u)

(1 − q−i
1 z/u)(1 − q−i+1

1 z/u)
|i〉

define a structure of an irreducible tame E -module on V (u) of level (1,1).

Proof
These formulas define an E -module by [FFJ+] and [FHH+]. It is easy to check
that it is tame and irreducible. �

We call the E -module V (u) the vector representation. Note that q1 plays a special
role in the definition of V (u), while q2 and q3 participate symmetrically. There-
fore there are two other vector representations obtained from V (u) by switching
roles of qi. We do not use these other two modules in this paper.

Note that the vector representation is not a highest weight representation.
The comultiplication rule defines an E -module structure on the tensor prod-

uct of vector representations V (u1) ⊗ · · · ⊗ V (un) for generic q1, q2, u1, . . . , un.
This is again an irreducible representation of level (1,1).

If these parameters are not generic, the comultiplication rule may fail to
define the action of series e(z) and f(z). In general, some matrix coefficients
are well defined and some are not. Also, some matrix coefficients which are
generically nonzero become zero for special values of parameters.

The study of this phenomena is reduced to the case n = 2, and the following
simple lemma about tensor products of two vector representations of E describes
the situation.

LEMMA 2.2

In V (u) ⊗ V (v), all matrix coefficients of operators ψ±(z), e(z), and f(z) are
well defined except possibly for

〈i| ⊗ 〈j|e(z)|i〉 ⊗ |j − 1〉, 〈i| ⊗ 〈j|f(z)|i + 1〉 ⊗ |j〉.
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Each of these matrix coefficients is undefined if and only if

v/u = qi−j
1 or v/u = qi−j+1

1

and is equal to zero if and only if

v/u = qi−j
1 q−1

2 or v/u = qi−j
1 q−1

3 .

Moreover, the matrix coefficients

〈i + 1| ⊗ 〈j|e(z)|i〉 ⊗ |j〉, 〈i| ⊗ 〈j|f(z)|i〉 ⊗ |j + 1〉

are always nonzero.

Proof
The proof is straightforward. �

2.3. Fock modules
A partition λ is the sequence (λs)s∈Z≥1 , such that λs ∈ Z and λs ≥ λs+1 for all
s. Let P be the set of all partitions. Let P + ⊂ P be the set of finite partitions:
λ ∈ P is in P + if and only if only finitely many λs are nonzero.

For s ∈ Z≥1, denote 1s = (δsm)m∈Z≥1 . For example, we have λ + 1s =
(λ1, . . . , λs−1, λs + 1, λs+1, . . . ).

For u ∈ C, let F (u) be a complex vector space spanned by |λ〉u, where λ ∈
P +.

We use the notation u〈λ| with λ ∈ P + for the dual basis. When it is clear
we omit the subscript u and write simply 〈λ| and |λ〉.

For a partition λ we denote by 〈λ|ψ±(z)i|λ〉 the eigenvalue of the series ψ±(z)
on the vector |λi − i + 1〉uq−i+1

2
∈ V (uq−i+1

2 ), that is,

ψ±(z)|λi − i + 1〉uq−i+1
2

= 〈λ|ψ±(z)i|λ〉 |λi − i + 1〉uq−i+1
2

.

The subscript i in ψ±(z)i indicates the ith component λi of the partition λ and
at the same time the shifts

λi 	→ λi − i + 1, u 	→ uq−i+1
2

in the vector |λi − i + 1〉uq−i+1
2

.
Similarly, we introduce the matrix coefficients 〈λ+1i|e(z)i|λ〉 and 〈λ|f(z)i|λ+

1i〉:

〈λ + 1i|e(z)i|λ〉 =
δ(qλi

1 qi−1
3 u/z)

1 − q1
, 〈λ|f(z)i|λ + 1i〉 =

q1δ(qλi
1 qi−1

3 u/z)
1 − q1

.

In what follows we multiply these delta functions by rational functions
〈λ|ψ±(z)j |λ〉. We mean that they are multiplied by the values of the rational
functions at the support of the delta function F (z)δ(v/z) = F (v)δ(v/z).

Let ∅ be the empty partition, ∅i = 0, i ∈ Z≥1. Introduce the series ψ±
∅ (z) ∈

C[[z±1]] by

ψ+
∅ (z) =

1 − q2z

1 − z
, ψ−

∅ (z) = q2
1 − q−1

2 z−1

1 − z−1
.
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Define the action of e(z) on F (u) by

(2.11) 〈λ + 1i|e(z)|λ〉 = 〈λ + 1i|e(z)i|λ〉
i−1∏
j=1

〈λ|ψ−(z)j |λ〉,

and set all other matrix coefficients to be zero. Define the action of f(z) on F (u)
by

(2.12) 〈λ|f(z)|λ + 1i〉 = 〈λ|f(z)i|λ + 1i〉ψ+
∅ (uqi

3/z)
∞∏

j=i+1

〈λ|ψ+(z)j |λ〉
〈 ∅|ψ+(z)j | ∅ 〉 ,

and set all other matrix coefficients to be zero. Define the action of ψ±(z) on
F (u) by

(2.13) 〈λ|ψ±(z)|λ〉 = ψ±
∅ (u/z)

∞∏
j=1

〈λ|ψ±(z)j |λ〉
〈 ∅|ψ±(z)j | ∅ 〉 ,

and set all other matrix coefficients to be zero.
Note that although the formulas are written using infinite products, each

product in fact is finite since λj = 0 = ∅j for all but finitely many indices j.
For example, explicitly we have

ψ+(z)|λ〉 = ψλ(u/z)|λ〉,
(2.14)

ψλ(u/z) =
1 − qλ1−1

1 q−1
3 u/z

1 − qλ1
1 u/z

∞∏
i=1

(1 − qλi
1 qi

3u/z)(1 − q
λi+1−1
1 qi−1

3 u/z)

(1 − q
λi+1
1 qi

3u/z)(1 − qλi −1
1 qi−1

3 u/z)
.

LEMMA 2.3

Formulas (2.11), (2.12), and (2.13) define a structure of an irreducible tame E -
module on F (u) of level (1, q2). It is a highest weight module with highest vector
| ∅ 〉 and highest weight ψ±

∅ (u/z).

Proof
These formulas define an E -module by [FFJ+] (see also [FT]). It is easy to check
that it is tame and irreducible (see also Theorem 3.4 below). The highest weight
conditions are obvious. �

We call F (u) the Fock module. It is an analogue of a Fock module for gl∞. This
module appeared in [FT] from geometric considerations.

2.4. The module Gk,r
a

Assume q1−r
1 qk+1

3 = 1, where r, k+1 ∈ Z≥2. More precisely, we mean that qx
1 qy

3 =
1 if and only if x = (1 − r)κ, y = (k + 1)κ for some κ ∈ Z.

Fix a sequence of nonnegative integers a = (a1, . . . , ak) satisfying
∑k

i=1 ai = r,
and set cj =

∑j
i=1 ai. Define the vacuum partition Λ0 ∈ P by

Λ0
νk+i+1 = −νr − ci, where ν ∈ Z≥0, i = 0, . . . , k − 1.
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We define the sets of (k, r)-admissible partitions

P k,r
a = {Λ ∈ P |Λj − Λj+k ≥ r for j ∈ Z≥1; Λi = Λ0

i for all sufficiently large i}.

We recall the semiinfinite construction of E -modules given in [FFJ+]. Let W k,r
a (u)

be the space spanned by |Λ〉, where Λ ∈ P k,r
a .

REMARK 2.4

Note that our notation is different from the one used in [FFJ+]. The module
W k,r

c (u) in [FFJ+] is denoted by W k,r
a (u) here, where cj =

∑j
i=1 ai. The formulas

for the action are shorter in terms of ci; on the other hand, ai are natural
parameters for many related objects appearing in this paper.

Define series ϕ±
∅ (z) ∈ C[[z±1]] by

ϕ+
∅ (z) =

1 − q3z

1 − z
, ϕ−

∅ (z) = q3
1 − q−1

3 z−1

1 − z−1
.

Define the action of e(z) on W k,r
a (u) by

(2.15) 〈Λ + 1i|e(z)|Λ〉 = 〈Λ + 1i|e(z)i|Λ〉
i−1∏
j=1

〈Λ|ψ−(z)j |Λ〉,

and set all other matrix coefficients to be zero. Define the action of f(z) on
W k,r

a (u) by

〈Λ|f(z)|Λ + 1i〉
(2.16)

= 〈Λ|f(z)i|Λ + 1i〉
∞∏

j=i+1

〈Λ|ψ+(z)j |Λ〉
〈Λ0|ψ+(z)j |Λ0〉

k−1∏
j=0

ϕ+
∅ (uq

Λ0
i+j+1

1 qi+j
3 /z)),

and set all other matrix coefficients to be zero. Define the action of ψ±(z) on
W k,r

a (u) by

(2.17) 〈Λ|ψ±(z)|Λ〉 =
k−1∏
i=0

ϕ±
∅ (uq−ai

1 qi
3/z))

∏
i≥1

〈Λ|ψ±(z)i|Λ〉
〈Λ0|ψ±(z)i|Λ0〉 ,

and set all other matrix coefficients to be zero.

LEMMA 2.5

Suppose q1−r
1 qk+1

3 = 1 with r, k + 1 ∈ Z≥2. Then formulas (2.15), (2.16), and
(2.17) define a structure of an irreducible tame E -module on W k,r

a (u) of level
(1, qk

3 ). It is a highest weight module with highest vector |Λ0〉 and highest weight∏k−1
i=0 ϕ±

∅ (uq−ai
1 qi

3/z).

Proof
These formulas define an E -module by [FFJ+]. It is easy to check that it is tame
and irreducible. (It also follows from Theorem 5.3 of this paper.) The highest
weight conditions are obvious. �
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Let qp′

1 qp
3 = 1, and let p = k + 1, p′ = k + r, where as above, r, k + 1 ∈ Z≥2. This

is equivalent to q1−r
1 qk+1

2 = 1. Again, by that we mean that qx
1 qy

3 = 1 if and only
if x = (k + r)κ, y = (k + 1)κ for some κ ∈ Z.

Let Gk,r
a be the space spanned by |λ〉, where λ ∈ P k,r

a . Define the action of
operators e(z), f(z), ψ±(z) on Gk,r

a by formulas (2.15), (2.16), and (2.17), where
q2 is replaced with q3 and q3 is replaced with q2.

LEMMA 2.6

Suppose qp′

1 qp
3 = 1, and suppose p = k + 1, p′ = k + r, where k + 1, r ∈ Z≥2.

Then formulas (2.15), (2.16), and (2.17), where q2 is replaced with q3 and q3 is
replaced with q2, define a structure of an irreducible tame E -module on Gk,r

a of
level (1, qk

2 ). It is a highest weight module with highest vector |Λ0〉 and highest
weight

∏k−1
i=0 ψ±

∅ (uq−ai
1 qi

2/z)).

Proof
The lemma follows from Lemma 2.5 and the symmetry of the algebra E with
respect to permutations of parameters q1, q2, q3. �

3. Construction of E -modules

In this section we construct E -modules Mp′,p
a,b (u) as subquotients of tensor prod-

ucts of Fock modules.

3.1. Generic tensor products
Consider a tensor product of n Fock modules F (u1) ⊗ · · · ⊗ F (un) with n ≥ 2. In
this section we assume that q1, q2, u1, . . . , un are generic.

A basis of F (u1) ⊗ · · · ⊗ F (un) is given by |λ(1)〉u1
⊗ · · · ⊗ |λ(n)〉un

, where
λ(i) ∈ P + for i = 1, . . . , n.

We use the following notation. We write basic vectors in F (ui) with upper
index i and skip the index ui: we write simply |λ(i)〉 instead of |λ(i)〉ui

. Moreover,
we use the notation |λ(1), . . . , λ(n)〉 and 〈λ(1), . . . , λ(n)| for |λ(1)〉 ⊗ · · · ⊗ |λ(n)〉 and
〈λ(1)| ⊗ · · · ⊗ 〈λ(n)|. Sometimes we use the bold font notation λ = (λ(1), . . . , λ(n)),
and then we denote 1s in the ith place by 1(i)

s :

λ + 1(i)
s = (λ(1), . . . , λ(i) + 1s, . . . , λ

(n)).

Define a Z-grading on F (u1) ⊗ · · · ⊗ F (un) by (cf. (2.10))

deg(|λ(1)〉 ⊗ · · · ⊗ |λ(n)〉) =
n∑

i=1

|λ(i)| =
n∑

i=1

∞∑
s=1

λ(i)
s .

LEMMA 3.1

Assume that q1, q2, u1, . . . , un are generic. The comultiplication rule defines on
F (u1) ⊗ · · · ⊗ F (un) a structure of an irreducible graded tame E -module of level
(1, qn

2 ).
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The module F (u1) ⊗ · · · ⊗ F (un) is a highest weight module with highest
vector | ∅(1)〉 ⊗ · · · ⊗ | ∅(n)〉 and highest weight

∏n
i=1 ψ±

∅ (ui/z).

Proof
To check that the comultiplication rule gives well-defined formulas, it is sufficient
to consider the case n = 2. In the case n = 2, the well-definedness is obvious due
to Lemma 2.2.

These formulas give a well-defined action of E ; that is, the relations in E are
respected. Indeed, the check is reduced to the case of a tensor product of vector
representation, which is done in [FFJ+, Lemma 2.5].

Let us prove the simplicity of the spectrum of ψ(z). Recall the eigenvalue
ψλ(u/z) of ψ+(z) on |λ〉 in F (u) (see (2.14)). Assume that

n∏
i=1

ψλ(i)(ui/z) =
n∏

i=1

ψμ(i)(ui/z).

We need to show that this implies λ(i) = μ(i) for i = 1, . . . , n.

Note that ψλ(i)(ui/z) has a pole at z = q
λ

(i)
1

1 ui. Since q1, q2, u1, . . . , un are

generic, this pole can be canceled only by the poles z = q
μ

(i)
1

1 ui or z = q
μ

(i)
1 −1

1 ui.
The latter is impossible because in such a case λ

(i)
1 = μ

(i)
1 − 1, and the pole

z = q
μ

(i)
1

1 ui is not canceled. Therefore we obtain λ
(i)
1 = μ

(i)
1 for i = 1, . . . , n. Cancel

the terms with λ
(i)
1 and μ

(i)
1 , and replace ui with ui/q3. Then the same argument

gives λ
(i)
2 = μ

(i)
2 for i = 1, . . . , n. Repeating the process, we obtain λ(i) = μ(i) for

i = 1, . . . , n.
Since the representation is tame, to show that it is irreducible it is sufficient

to check that the matrix coefficients 〈λ + 1(i)
s |e(z)|λ〉 and 〈λ|f(z)|λ + 1(i)

s 〉 are
nonzero for all i, s. This is reduced to the n = 2 case where it follows from
Lemma 2.2. �

3.2. Resonance in ui/ui+1, q1, q3

We turn to special values of parameters. In doing so we always keep in mind
that the matrix coefficients of the considered modules are rational functions of
parameters, sometimes multiplied by the delta functions. When we go to special
values of parameters, we just take limits of these rational functions. In particular,
we first cancel factors at generic values of parameters as much as possible and
then simply substitute the special values.

Consider the tensor product of n Fock modules F (u1) ⊗ · · · ⊗ F (un) with
n ≥ 2, and let

(3.1) ui = ui+1q
ai+1
1 qbi+1

3 , where ai, bi ∈ Z≥0 and i = 1, . . . , n − 1.

Let a = (a1, . . . , an−1), b = (b1, . . . , bn−1), u1 = u, and let

Ma,b(u) = span
{

| λ(1), . . . , λ(n)〉
∣∣ λ(i)

s ≥ λ
(i+1)
s+bi

− ai,

where s ∈ Z≥1, i = 1, . . . , n − 1
}
.
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Note that if ai were negative for some i, then the space Ma,b would be trivial.
The following lemma shows that the definition of Ma,b(u) is in fact a super-

position of n = 2 conditions. Note that for 1 ≤ i < j ≤ n, we have

ui = ujq
aij+1
1 q

bij+1
3 , aij =

j−1∑
l=i

(al + 1) − 1, bij =
j−1∑
l=i

(bl + 1) − 1.

LEMMA 3.2

We have |λ(1), . . . , λ(n)〉 ∈ Ma,b(u) if and only if for all i, j, 1 ≤ i < j ≤ n, |λ(i)〉 ⊗
|λ(j)〉 ∈ Maij ,bij (ui).

Proof
The lemma is straightforward. �

We have an obvious inclusion of vector spaces Ma,b(u) → F (u1) ⊗ · · · ⊗ F (un).
In particular, the space Ma,b(u) inherits the Z-grading.

We define the action of operators ψ±(z), e(z), f(z) on Ma,b(u) by using
the action of E on the tensor product F (u1) ⊗ · · · ⊗ F (un). Namely, let the
matrix coefficients of operators ψ±(z), e(z), f(z) acting on Ma,b(u) in the basis
|λ(1), . . . , λ(n)〉 be the same as the corresponding matrix coefficients for the tensor
action.

PROPOSITION 3.3

Assume that q1, q2, u are generic. Then the action of operators ψ±(z), e(z), f(z)
in Ma,b(u) is well defined and gives a structure of a graded E -module.

Proof
Consider the case n = 2. Let a1 = a, b1 = b.

It is sufficient to perform the following checks.

(i) If |λ,μ〉 ∈ Ma,b(u), then the matrix coefficients 〈λ,μ|e(z)|λ,μ − 1s〉,
〈λ,μ|f(z)|λ + 1s, μ〉 are well defined.

(ii) If |λ,μ〉 ∈ Ma,b(u), then

|λ,μ + 1s〉 /∈ Ma,b(u) ⇒ 〈λ,μ + 1s|e(z)|λ,μ〉 = 0,

|λ − 1s, μ〉 /∈ Ma,b(u) ⇒ 〈λ − 1s, μ|f(z)|λ,μ〉 = 0.

All the checks are straightforward using Lemma 2.2.
For example, let |λ〉 ⊗ |μ〉, |λ + 1s〉 ⊗ |μ〉 ∈ Ma,b(u), and consider 〈λ| ⊗

〈μ|f(z)|λ + 1s〉 ⊗ |μ〉. By Lemma 2.2 (where u = vqa+1
1 qb+1

3 ), the poles of this
matrix coefficient happen if

uq1−s
2 /(vq1−l

2 ) = qμl −l−λs+s
1 or uq1−s

2 /(vq1−l
2 ) = qμl −l−λs+s−1

1

for some l ∈ Z≥1, which means qμl −λs −a−1
1 = qs−l+b+1

3 or qμl −λs −a−2
1 = qs−l+b+1

3 .
Equivalently, l = s + b + 1, and λs = μs+b+1 − a − 1 or λs = μs+b+1 − a − 2. This
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is impossible because

λs ≥ μs+b − a ≥ μs+b+1 − a > μs+b+1 − a − 1 > μs+b+1 − a − 2.

Similarly, let |λ〉 ⊗ |μ〉 ∈ Ma,b(u), and let |λ〉 ⊗ |μ + 1s〉 /∈ Ma,b(u). Then
we have s − b ≥ 1 and λs−b = μs − a. It follows that the coefficient 〈λ| ⊗
〈μ + 1s|e(z)|λ〉 ⊗ |μ〉 vanishes by Lemma 2.2 since vq1−s

2 /(uq
1−(s−b)
2 ) = qb−a

1 q2 =
q

λs−b −μs+b−1
1 q−1

3 .
We omit further details.
Since all the necessary checks reduce to the case of n = 2 due to Lemma 3.2,

the general case of Proposition 3.3 follows. �

THEOREM 3.4

Assume that q1, q2, and u are generic. Then Ma,b(u) is an irreducible, tame,
highest-weight E -module with highest weight

∏n
i=1 ψ±

∅ (ui/z).

Proof
First, let us show that the module is tame. Assume that for some |λ(1), . . . , λ(n)〉,
|μ(1), . . . , μ(n)〉 ∈ Ma,b(u), we have

n∏
i=1

ψλ(i)(ui/z) =
n∏

i=1

ψμ(i)(ui/z).

Recall that ψλ(i)(ui/z) has a pole at z = q
λ

(i)
1

1 ui (see (2.14)). We show that for

i = 1, . . . , n, λ
(i)
1 = μ

(i)
1 by showing that the pole z = q

λ
(i)
1

1 ui in the left-hand side

is canceled by the pole z = q
μ

(i)
1

1 ui in the right-hand side.

Suppose that the pole z = q
λ

(i)
1

1 ui is canceled by zeros of ψλ(j)(uj/z). There

are two possible cases: q
λ

(i)
1

1 ui = q
λ(j)

s
1 qs

3uj , where s ∈ Z≥1, and q
λ

(i)
1

1 ui = q
λ

(j)
s+1−1

1 ×
qs−1
3 uj , where s ∈ Z≥0.

Suppose q
λ

(i)
1

1 ui = q
λ(j)

s
1 qs

3uj , where s ∈ Z≥1. Since s ≥ 1 and (3.1) holds, it
implies that j > i and

λ
(i)
1 = λ(j)

s −
j−1∑
l=i

(al + 1), s =
j−1∑
l=i

(bl + 1).

But then we have

λ
(i)
1 ≥ λ

(j)

1+
∑j−1

l=i bl
−

j−1∑
l=i

al > λ
(j)∑j−1

l=i (bl+1)
−

j−1∑
l=i

(al + 1) = λ
(i)
1 ,

which is a contradiction.
Suppose q

λ
(i)
1

1 ui = q
λ

(j)
s+1−1

1 qs−1
3 uj , where s ∈ Z≥0. By a similar argument, we

show that it is possible only if s = 0, j = i − 1, bi−1 = 0, and λ
(i)
1 = λ

(i−1)
1 − ai−1.

Now suppose that the pole z = q
λ

(i)
1

1 ui is canceled by poles of ψμ(j)(uj/z).

We again have two cases. For example, suppose q
λ

(i)
1

1 ui = q
μ

(j)
s+1

1 qs
3uj and (i,1) �=
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(j, s + 1). Then we necessarily have i < j and

λ
(i)
1 = μ

(j)
s+1 −

j−1∑
l=i

(al + 1), s =
j−1∑
l=i

(bl + 1).

It implies that

μ
(i)
1 ≥ μ

(j)

1+
∑j−1

l=i bl
−

j−1∑
l=i

al > μ
(j)∑j−1

l=i (bl+1)
−

j−1∑
l=i

(al + 1) = λ
(i)
1 .

Similarly, we obtain μ
(i)
1 > λ

(i)
1 in the other case of q

λ
(i)
1

1 ui = q
μ(j)

s −1
1 qs−1

3 uj .
We claim λ

(1)
1 = μ

(1)
1 . Indeed, for i = 1 the cancellation of the poles with

zeros is impossible, and as we saw, the cancellation of poles z = q
λ

(1)
1

1 u1 and

z = q
μ

(1)
1

1 u1 with other poles implies both μ
(1)
1 > λ

(1)
1 and λ

(1)
1 > μ

(1)
1 , which is a

contradiction.
Next, we claim that λ

(2)
1 = μ

(2)
1 . Indeed, since the terms with λ

(1)
1 and μ

(1)
1

cancel each other, the cancellation of the poles z = q
λ

(2)
1

1 u1 and z = q
μ

(2)
1

1 u1 with
zeros is again impossible, and cancellation with other poles leads to a contradic-
tion.

Repeating, we obtain λ
(i)
1 = μ

(i)
1 for i = 1, . . . , n.

Cancel the corresponding factors, and replace ui with uiq
−1
3 . Then, a similar

argument gives λ
(i)
2 = μ

(i)
2 , where i = 1, . . . , n. Repeating the argument, we prove

that the module Ma,b(u) is tame.
Now, to prove that Ma,b(u) is irreducible, it is sufficient to show that if vectors

|λ〉, |λ + 1(i)
s 〉 are both in Ma,b(u), then 〈λ+1(i)

s |e(z)|λ〉 and 〈λ|f(z)|λ + 1(i)
s 〉 are

nonzero. It is similar to that of Proposition 3.3. We omit further details. �

The character of Ma,b(u) is given in Theorem 4.6.
The tensor action of E on the space F (u1) ⊗ · · · ⊗ F (un) for generic ui does

not have a limit to the case (3.1) in the basis |λ(1), . . . , λ(n)〉. This limit exists
only on Ma,b(u). However, we think of Ma,b(u) as “a submodule of F (u1) ⊗
· · · ⊗ F (un)”.

REMARK 3.5

Note that in the case of (3.1), the action of operators ψ±
±i on F (u1) ⊗ · · · ⊗ F (un)

is well defined; however, the joint spectrum of ψ±
±i is not simple. For example,

consider the case n = 2, a1 = b1 = 0. Thus we consider F (u) ⊗ F (uq2). Then the
vectors | ∅ 〉u ⊗ |(2,2)〉uq2

and |(1)〉u ⊗ |(2,1)〉uq2
have the same ψ±

±i-eigenvalues.

3.3. Resonance in q1, q3

Consider the tensor product of n Fock modules F (u1) ⊗ · · · ⊗ F (un) with n ≥ 2.
Assume (3.1), and let p′, p be some integers such that

an = p′ − 1 −
n−1∑
i=1

(ai + 1), bn = p − 1 −
n−1∑
i=1

(bi + 1)
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belong to Z≥0. Assume further that

(3.2) qp′

1 qp
3 = 1, p �= p′.

More precisely, by equality (3.2) we mean that qx
1 qy

3 = 1 if and only if x = p′κ,
y = pκ for some κ ∈ Z.

We use a cyclic modulo n convention for indices and suffixes: un+1 = u1,
λ(0) = λ(n), and so on. Let

Mp′,p
a,b (u)

(3.3)
= span

{
| λ(1), . . . , λ(n)〉

∣∣ λ(i)
s ≥ λ

(i+1)
s+bi

− ai, where s ∈ Z≥1, i = 1, . . . , n
}
.

The following lemma shows that the definition of Mp′,p
a,b (u) is in fact a super-

position of n = 2 conditions.

LEMMA 3.6

We have |λ(1), . . . , λ(n)〉 ∈ Mp′,p
a,b (u) if and only if for all i, j, 1 ≤ i < j ≤ n, |λ(i)〉 ⊗

|λ(j)〉 ∈ Mp′,p
aij ,bij

(ui).

Proof
The lemma is straightforward. �

We have an obvious surjective map of linear spaces: Ma,b(u) → Mp′,p
a,b (u) send-

ing |λ(1), . . . , λ(n)〉 to either zero or to |λ(1), . . . , λ(n)〉. In particular, the space
Mp′,p

a,b (u) inherits the Z-grading.

We define the action of operators ψ±(z), e(z), f(z) on Mp′,p
a,b (u) as the fac-

torized action of E on Ma,b(u). Namely, let the matrix coefficients of operators
ψ±(z), e(z), f(z) in the basis |λ(1), . . . , λ(n)〉 be the same as the corresponding
matrix coefficients in Ma,b(u).

PROPOSITION 3.7

The action of operators ψ±(z), e(z), f(z) in Mp′,p
a,b (u) is well defined and gives a

structure of a graded E -module.

Proof
Consider the case n = 2, and set a1 = a, b1 = b.

It is sufficient to perform the following checks.

(i) If |λ,μ〉 ∈ Mp′,p
a,b (u), then the matrix coefficients 〈λ,μ + 1s|e(z)|λ,μ〉,

〈λ − 1s, μ|f(z)|λ,μ〉 are well defined.
(ii) If |λ,μ〉 ∈ Mp′,p

a,b (u), then

|λ,μ − 1s〉 /∈ Mp′,p
a,b (u) ⇒ 〈λ,μ|e(z)|λ,μ − 1s〉 = 0,

|λ + 1s, μ〉 /∈ Mp′,p
a,b (u) ⇒ 〈λ,μ|f(z)|λ + 1s, μ〉 = 0.

All the checks are straightforward using Lemma 2.2.
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For example, consider 〈λ| ⊗ 〈μ + 1s|e(z)|λ〉 ⊗ |μ〉.
By Lemma 2.2, the poles of this matrix coefficient happen if vq1−s

2 /(uq1−l
2 ) =

qλl −l−μs+s
1 or uq1−s

2 /(vq1−l
2 ) = qλl −l−μs+s−1

1 . It means qλl −μs+a+1
1 ql−s+b+1

3 = 1
or qλl −μs+a

1 ql−s+b+1
3 = 1. Equivalently, due to (3.2),

l = s − b − 1 + γ(b1 + b2 + 2), λl − μs + a1 + 1 = γ(a1 + a2 + 2)

or

l = s − b − 1 + γ(b1 + b2 + 2), λl − μs + a1 = γ(a1 + a2 + 2)

for some γ ∈ Z.
Therefore

λl = μl+b1+1−γ(b1+b2+2) + γ(a1 + a2 + 2) − a1 − 1

or

λl = μl+b1+1−γ(b1+b2+2) + γ(a1 + a2 + 2) − a1.

First, let γ < 0. Then

λl − μl−γ(b1+b2+2)+b1+1 ≥ λl − μl−γ+b1+1 + γ(a1 + a2) ≥ λl − μl+b1 + γ(a1 + a2)

≥ −a1 + γ(a1 + a2),

and therefore the poles of the matrix coefficient do not occur.
Let γ > 0. Then

λl − μl−γ(b1+b2+2)+b1+1)

≤ λl−(γ−1)(b1+b2) − μl−γ(b1+b2+2)+b1+1 + (γ − 1)(a1 + a2)

≤ a2 + (γ − 1)(a1 + a2),

and again, such a pole is impossible.
Let now γ = 0. That is, s = l + b1 + 1, and λl − μl+b1+1 = −a1 or λl −

μl+b1+1 = −a1 − 1. Since λl − μl+b1+1 ≥ λl − μl+b1 ≥ −a1, the second case is
impossible, and in the first case we have μl+b1+1 = μl+b1 . Therefore our matrix
coefficient was zero already for generic u, v, q1, q2. Note that we use b1 ≥ 0 here;
otherwise, in the case l = 1 the index of μs−1 = μl+b1 is nonpositive and the
coefficient does not have to be zero.

We omit further details.
The general case of Proposition 3.7 reduces to the case of n = 2 by Lemma 3.6.

�

THEOREM 3.8

Assume in addition that p > n. Then the E -module Mp′,p
a,b (u) is an irreducible,

tame, highest-weight E -module with highest weight
∏n

i=1 ψ±
∅ (ui/z).

Proof
The proof is similar to the proof of Theorem 3.4.
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Assume that for some |λ(1), . . . , λ(n)〉, |μ(1), . . . , μ(n)〉 ∈ Mp′,p
a,b (u), we have

n∏
i=1

ψλ(i)(ui/z) =
n∏

i=1

ψμ(i)(ui/z).

We then show that this implies λ(i) = μ(i).
For example, let us check that the pole z = qλ

(i)
1 ui is not canceled by the zero

z = q
λ(j)

s
1 qs

3uj of ψλ(j)(uj/z), that is, q
λ

(i)
1

1 ui = q
λ(j)

s
1 qs

3uj .
It is easy to see that i = j is impossible.
Consider the case j > i. Then for some κ ∈ Z we have

λ
(i)
1 = λ(j)

s −
j−1∑
l=i

(al + 1) − κp′, s =
j−1∑
l=i

(bl + 1) + κp.

Since s ≥ 1, we obtain κ ≥ 0. This is impossible since

λ
(i)
1 ≥ λ

(i)
1+κp − κp′ ≥ λ

(j)

1+
∑j−1

l=i bl+κp
−

j−1∑
l=i

al − κp′ > λ(j)
s −

j−1∑
l=i

(al + 1) − κp′.

Here we used al, bl ≥ 0.
In the case j < i, we have

λ
(i)
1 = λ(j)

s +
i−1∑
l=j

(al + 1) − κp′, s = −
i−1∑
l=j

(bl + 1) + κp.

Since s ≥ 1, we obtain κ ≥ 1. This is impossible since

λ
(i)
1 ≥ λ

(i)
1+(κ−1)p − (κ − 1)p′

> λ
(j)

1−
∑i−1

l=j bl+κp−n
+

i−1∑
l=j

(al + 1) − κp′ ≥ λ(j)
s +

j−1∑
l=i

(al + 1) − κp′.

The case q
λ

(i)
1

1 ui = q
λ

(j)
s+1−1

1 qs−1
3 uj is again possible only if j = i − 1, s = 0,

and bi−1 = 0.
Note that since p > n, there exists i such that bi−1 �= 0. In such a case the

pole z = qλ
(i)
1 ui is not canceled with a zero.

We omit further details. �

Note that if some of bi were negative, then the theorem would not hold.
The character of Mp′,p

a,b (u) is given in Theorem 4.5.
The tensor action of E on the space Ma,b(u) for generic q1, q2 does not

have a limit to the case (3.2) in the basis |λ(1), . . . , λ(n)〉. However, we think
of Mp′,p

a,b (u) as “a quotient module of Ma,b(u)” and even as “a subquotient of
F (u1) ⊗ · · · ⊗ F (un)”.
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4. Characters

All modules considered in Section 3 are graded modules with finite-dimensional
graded components. Therefore we have well-defined formal characters which we
study in this section.

4.1. Finitized characters and recursion
Recall that we have constructed a family of E -modules Mp′,p

a,b . Here p, p′ are posi-
tive integers satisfying p, p′ ≥ n, p′ �= p, and a = (a1, . . . , an−1), b = (b1, . . . , bn−1) ∈
Z

n−1
≥0 are such that there exist an, bn ∈ Z≥0 satisfying

n∑
i=1

(ai + 1) = p′,
n∑

i=1

(bi + 1) = p.

We always assume that an, bn are determined from a,b as above. Throughout
this section, b is fixed. We also assume that p′ > n.

The module Mp′,p
a,b has a basis labeled by the set of n-tuples of partitions

P p′,p
a,b :=

{
(λ(1), . . . , λ(n))

∣∣ λ(j) ∈ P +, λ
(i)
j ≥ λ

(i+1)
j+bi

− ai,
(4.1)

where i = 1, . . . , n, j ∈ Z>0

}
,

where λ(i) = (λ(i)
j )j>0 and λ(n+1) = λ(1). In this section, we study their characters

(4.2) χp′,p
a,b :=

∑
(λ(1),...,λ(n))∈P p′ ,p

a,b

q
∑n

i=1
∑∞

j=1 λ
(i)
j .

Our goal is to show that they coincide with the characters of modules from
the Wn-minimal series of sln-type, up to an overall factor corresponding to the
presence of an extra Heisenberg algebra (see Theorem 4.5 below).

As a technical tool for studying (4.2), let us introduce a finitized version of
the characters. For N ∈ Z

n, define the subset

P p′,p
a,b [N] :=

{
(λ(1), . . . , λ(n)) ∈ P p′,p

a,b

∣∣ λ
(i)
Ni+1 = 0, where i = 1, . . . , n

}
and its character

χp′,p
a,b [N] :=

∑
(λ(1),...,λ(n))∈P p′ ,p

a,b [N]

q
∑n

i=1
∑∞

j=1 λ
(i)
j .

We set also

(4.3) χp′,p
a,b [N] = 0 if Ni < 0 for some i.

Clearly we have

(4.4) χp′,p
a,b [0] = 1.

In the following, we extend the suffix i for ai by ai+n = ai. A similar con-
vention is used for bi,Ni.



382 Feigin, Feigin, Jimbo, Miwa, and Mukhin

PROPOSITION 4.1

The finitized characters χp′,p
a,b [N] satisfy the following recursion relations for each

i = 1, . . . , n:

χp′,p
a,b [N] = χp′,p

a,b [N − 1i] + qNiχp′,p
a−1i−1+1i,b

[N]
(4.5)

if Ni+1 − Ni ≤ bi and ai−1 ≥ 1,

(4.6) χp′,p
a,b [N] = χp′,p

a,b [N − 1i] if Ni − Ni−1 = bi−1 + 1 and ai−1 = 0.

In the right-hand side of (4.5), a − 1i−1 +1i means a+11 for i = 1 and a − 1n−1

for i = n.

Proof
We fix i and assume first that Ni > 0. Then the set P p′,p

a,b [N] is partitioned into
a disjoint union of subsets P ′ � P ′ ′, where

P ′ =
{
λ ∈ P p′,p

a,b [N]
∣∣ λ

(i)
Ni

= 0
}
, P ′ ′ =

{
λ ∈ P p′,p

a,b [N]
∣∣ λ

(i)
Ni

> 0
}
.

By the definition, P ′ coincides with P p′,p
a,b [N − 1i].

Suppose Ni+1 − Ni ≤ bi and ai−1 ≥ 1. For λ ∈ P ′ ′, the conditions involving
λ(i) read

λ
(i−1)
j ≥ λ

(i)
j+bi−1

− 1 − (ai−1 − 1),

λ
(i)
j ≥ λ

(i+1)
j+bi

− ai.

Since Ni +1+ bi > Ni+1 and ai ≥ 0, the second condition is void if j > Ni. Hence
it can be replaced by

λ
(i)
j − θ(j ≤ Ni) ≥ λ

(i+1)
j+bi

− (ai + 1),

where θ(P ) = 1 if the statement P is true and θ(P ) = 0 otherwise. This gives rise
to a bijection P ′ ′ → P p′,p

a−1i−1+1i,b
[N] sending λ to λ̃ with λ̃

(i′)
j = λ

(i′)
j − δi′,iθ(j ≤

Ni). The recursion (4.5) follows from this. When Ni = 0, the same consideration
applies to show that P p′,p

a,b [N] is in bijective correspondence with P p′,p
a−1i−1+1i,b

[N].
Next, suppose Ni − Ni−1 = bi−1 + 1 and ai−1 = 0. (In this case necessarily

Ni > 0.) The condition λ
(i−1)
Ni−1+1 ≥ λ

(i)
Ni

− ai−1 implies λ
(i)
Ni

= 0, so that P ′ ′ = ∅.
Hence (4.6) holds true. �

In general, the recursions (4.5) and (4.6) are not enough to determine the char-
acters χp′,p

a,b [N] completely. Nevertheless, they are in certain region of the para-
meters a,b,N, as the following proposition shows.

PROPOSITION 4.2

The set{
χp′,p

a,b [N]
∣∣ Ni, ai ∈ Z≥0,Ni+1 − Ni ≤ bi + 1, where i = 1, . . . , n

}
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is uniquely determined by the recursion relations (4.5) and (4.6), along with the
initial condition (4.4) and the boundary condition (4.3).

Proof
The proof is by induction on d =

∑n
i=1 Ni. When d = 0, there is nothing to show.

Suppose d > 0, and assume that the assertion is true for
∑n

i=1 Ni < d. We divide
into two cases:

(a) Ni+1 − Ni ≤ bi for all i = 1, . . . , n,
(b) Ni+1 − Ni = bi + 1 for some i.

Consider case (a). Since p′ − n > 0, there is an i such that ai−1 > 0. Apply-
ing (4.5) successively for i, i + 1, . . . , we obtain

χp′,p
a,b [N] = χp′,p

a,b [N − 1i] + qNiχp′,p
a−1i−1+1i,b

[N]

= χp′,p
a,b [N − 1i] + qNiχp′,p

a−1i−1+1i,b
[N − 1i+1]

+ qNi+Ni+1χp′,p
a−1i−1+1i+1,b[N]

= · · ·

=
i+n−1∑

j=i

qNi+···+Nj−1χp′,p
a−1i−1+1j−1,b[N − 1j ]

+ qN1+···+Nnχp′,p
a,b [N].

Since N1 + · · · + Nn = d > 0, χp′,p
a,b [N] is determined in terms of those with∑n

i=1 Ni < d.
Next, consider case (b). Since

∑n
i=1(bi +1) > 0, we cannot have the equality

Ni+1 − Ni = bi + 1 for all i. Choose an i such that Ni − Ni−1 = bi−1 + 1 and
Ni+1 − Ni ≤ bi. If ai−1 = 0, then (4.6) implies χp′,p

a,b [N] = χp′,p
a,b [N − 1i] and we

are done. Otherwise, (4.5) is applicable. Repeating it ai−1 times we obtain

χp′,p
a,b [N] =

ai−1∑
j=1

q(j−1)Niχp′,p
a−(j−1)(1i−1−1i),b

[N − j1i]

+ qai−1Niχp′,p
a−ai−1(1i−1−1i),b

[N].

The last term reduces to the case ai−1 = 0 already discussed above. �

4.2. Bosonic formulas and comparison to Wn characters
Our next task is to relate χp′,p

a,b to the characters from the Wn-minimal series.
Let us prepare some notation concerning the affine Lie algebra ŝln. Denote the
simple roots by α0, . . . , αn−1 and the fundamental weights by ω0, . . . , ωn−1. We
set ρ =

∑n−1
i=0 ωi. Let W = Sn � Q be the affine Weyl group of type A

(1)
n−1, where

Q =
⊕n−1

i=1 Zαi denotes the classical root lattice. Further, let L =
⊕n−1

i=0 Zωi be
the weight lattice, and let L+

l = {
∑n−1

i=0 ciωi | c0, . . . , cn−1 ∈ Z≥0,
∑n−1

i=0 ci = l} be
the set of dominant integral weights of level l.
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The characters of the irreducible modules from the Wn-minimal series of sln-
type are parameterized by a pair of dominant integral weights (η,ξ) ∈ L+

p′ −n ×
L+

p−n. Explicitly, they are given by the alternating series (see [FKW]),

χp′,p
η,ξ =

∑
w∈W

(−1)�(w)qp′p/2|(w∗ξ−ξ)/p|2+((w∗ξ−ξ)/p,p′(ξ+ρ)−p(η+ρ))

(4.7)
=

∑
σ∈Sn

(−1)�(σ)
∑
α∈Q

qp′p/2(α,α)+(p′σ(ξ+ρ)−p(η+ρ),α)+(ξ+ρ−σ(ξ+ρ),η+ρ).

Here w ∗ ξ = w(ξ+ρ) − ρ = σ(ξ +ρ) − ρ+pα, where w = (σ,α), and �(w) denotes
the length function.

We need also their finitization. For N ∈ Z
n
≥0 and η,ξ ∈ L, define

χp′,p
η,ξ [N] =

∑
w∈W

(−1)�(w)qp′p/2|(w∗ξ−ξ)/p|2+((w∗ξ−ξ)/p,p′(ξ+ρ)−p(η+ρ))

× (q)|N|

n∏
i=1

1
(q)Ni −(w∗ξ−ξ,ωi −ωi−1)

.

Here (q)m =
∏m

i=1(1 − qi) for m ∈ Z≥0, |N| =
∑n

i=1 Ni. We set also

1
(q)m

= 0 if m < 0.

We retain the modulo n convention for the indices, such as ωn = ω0.

PROPOSITION 4.3

(i) For all ξ,η ∈ L and i = 1, . . . , n, we have

χp′,p
η,ξ [N] = qNiχp′,p

η−ωi−1+ωi,ξ
[N] + (1 − q|N|)χp′,p

η,ξ [N − 1i].

(ii) If Ni+1 = Ni + (ξ + ρ,αi) and (η + ρ,αi) = 0 for i = 1, . . . , n, then

χp′,p
η,ξ [N] = 0.

(iii) If ξ ∈ L+
p−n, then

χp′,p
η,ξ [0] = 1.

Proof
The relation (i) can be verified directly, term by term. To see (ii), let σi be the
simple reflection with respect to the root αi. The assumption can be written as

Ni − (w ∗ ξ − ξ, ωi − ωi−1) = Ni+1 −
(
(σiw) ∗ ξ − ξ, ωi+1 − ωi

)
,

σi ∗ η = η .

Under these circumstances, the terms with w and σiw cancel out in the sum
pairwise.

Finally, under the assumption of (iii) and N = 0, only the term with w = id
survives. �
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PROPOSITION 4.4

For all N,a,b such that Ni, ai, bi ≥ 0 and Ni+1 − Ni ≤ bi + 1 for i = 1, . . . , n, we
have the equality

χp′,p
a,b [N] =

1
(q)|N|

χp′,p
η,ξ [N],

η =
n∑

i=1

aiωi, where ξ =
n∑

i=1

biωi.

We recall that an = p′ − n −
∑n−1

i=1 ai, bn = p − n −
∑n−1

i=1 bi.

Proof
This follows from Propositions 4.3 and 4.2. �

Letting Ni → ∞, we arrive at the following result.

THEOREM 4.5

The character of the module Mp′,p
a,b is given by

χp′,p
a,b =

1
(q)∞

χp′,p
η,ξ ,

η =
n∑

i=1

aiωi, where ξ =
n∑

i=1

biωi.

4.3. Characters of Ma,b

The module Ma,b has a basis labeled by the set of n-tuples of partitions

Pa,b :=
{
(λ(1), . . . , λ(n))

∣∣ λ(i) ∈ P , λ
(i)
j ≥ λ

(i+1)
j+bi

− ai,

where i = 1, . . . , n − 1, j ∈ Z>0

}
.

Define their characters

χa,b :=
∑

(λ(1),...,λ(n))∈Pa,b

q
∑n

i=1
∑∞

j=1 λ
(i)
j .

THEOREM 4.6

We have

χa,b =
1

(q)n
∞

∑
w∈Sn

(−1)�(w)q(ξ+ρ−w(ξ+ρ),η+ρ).

Proof
Clearly, the set Pa,b is the limit of the set P p′,p

a,b as p′, p → ∞. The theorem then
follows from Theorem 4.5. �
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5. Isomorphisms of representations

In this section we establish several isomorphisms between representations of E
discussed in this paper. All these isomorphisms preserve the basis described in
terms of partitions. This is no wonder since the modules are tame. In general,
we expect that any two highest-weight E -modules with the same highest weight
are isomorphic. We check this statement here in several cases. At the moment
our proofs are strictly computational.

5.1. Permutations of factors in the tensor products of Fock spaces
In this section we assume that q1, q2, u1, . . . , un are generic.

THEOREM 5.1

Let σ ∈ Sn, and let q1, q2, u1, . . . , un be generic. There exist nonzero constants
bλ, where λ = (λ(1), . . . , λ(n)) ∈ P n, such that the map

ι : F (u1) ⊗ · · · ⊗ F (un) → F (uσ(1)) ⊗ · · · ⊗ F (uσ(n)),

|λ(1)〉 ⊗ · · · ⊗ |λ(n)〉 	→ bλ|λ(σ(1))〉 ⊗ · · · ⊗ |λ(σ(n))〉

is an isomorphism of E -modules.

Proof
It is sufficient to prove the theorem in the case n = 2.

Let n = 2 and σ = (12). It is necessary and sufficient to show that there exist
coefficients bλ satisfying the conditions

b
λ+1

(i)
s

〈λ + 1(i)
s |e(z)|λ〉 = bλ〈λ′ + 1(3−i)

s |e(z)|λ′ 〉,

bλ〈λ|f(z)|λ + 1(i)
s 〉 = b

λ+1
(i)
s

〈λ′ |f(z)|λ′ + 1(3−i)
s 〉.

Here i = 1,2, and if λ = (λ(1), λ(2)), then λ′ = (λ(2), λ(1)).
In order that these equations for bλ be consistent, the following conditions

are necessary and sufficient:

〈λ|f(w)|λ + 1(i)
s 〉

〈λ′ |f(w)|λ′ + 1(3−i)
s 〉

=
〈λ′ + 1(3−i)

s |e(z)|λ′ 〉
〈λ + 1(i)

s |e(z)|λ〉
,(5.1)

〈λ + 1(i)
s + 1(j)

t |e(z)|λ + 1(i)
s 〉

〈λ′ + 1(3−i)
s + 1(3−j)

t |e(z)|λ′ + 1(3−i)
s 〉

· 〈λ + 1(i)
s |e(w)|λ〉

〈λ′ + 1(3−i)
s |e(w)|λ′ 〉

(5.2)

=
〈λ + 1(i)

s + 1(j)
t |e(z)|λ + 1(j)

t 〉
〈λ′ + 1(3−i)

s + 1(3−j)
t |e(z)|λ′ + 1(3−j)

t 〉
· 〈λ + 1(j)

t |e(w)|λ〉
〈λ′ + 1(3−j)

t |e(w)|λ′ 〉
.

The precise meaning of such equations is as follows. Suppose that δi(z) =
ci

∑
n∈Z

(u/z)n, where i = 1,2, are delta functions with the same support multi-
plied by nonzero constants ci. Then by the ratio δ1(z)/δ2(z) we mean the ratio
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c1/c2. For example, we have

〈λ + 1i|e(z)i|λ〉
〈λ|f(z)i|λ + 1i〉 = q−1

1 .

Equations (5.1) and (5.2) are checked by a straightforward computation. �

5.2. The Zn-symmetry of Mp′,p
a,b

In this section we assume that the parameters q1, q2, u1, . . . , un satisfy (3.1) and
(3.2).

THEOREM 5.2

Let parameters q1, q2, u1, . . . , un satisfy (3.1) and (3.2). There exist nonzero con-
stants cλ, where λ ∈ P p′,p

a,b , such that the map

ι : Mp′,p
(a1,...,an−1),(b1,...,bn−1)

→ Mp′,p
(a2,...,an),(b2,...,bn),

|λ(1)〉 ⊗ · · · ⊗ |λ(n−1)〉 ⊗ |λ(n)〉 	→ cλ|λ(2)〉 ⊗ · · · ⊗ |λ(n)〉 ⊗ |λ(1))〉

is an isomorphism of E -modules.

Proof
Clearly the set-theoretic map

ι : P p′,p
(a1,...,an−1),(b1,...,bn−1)

→ P p′,p
(a2,...,an),(b2,...,bn),

(λ(1), . . . , λ(n−1), λ(n)) 	→ (λ(2), . . . , λ(n), λ(1))

is a bijection.
Then the equations on the constants cλ are the same as in Theorem 5.1 with

σ = (1,2, . . . , n). Therefore, the theorem follows. �

5.3. The modules Mn+r,n+1
a,0 and Gn,r

a

In this section we assume the resonance condition

(5.3) qn+r
1 qn+1

3 = 1.

We consider the special case of Mp′,p
a,b , where

p′ = n + r, p = n + 1, r =
n∑

i=1

ai,

a = (a1, . . . , an−1),b = 0 = (0, . . . ,0︸ ︷︷ ︸
n−1

).

We abbreviate the representation Mn+r,n+1
a,0 to Mā, where ā = (a1, . . . , an),

and the set of n-tuple partitions Pn+r,n+1
a,0 to Pā:

Pā =
{
λ = (λ(1), . . . , λ(n))

∣∣ λ(i) ∈ P +, λ
(i)
j ≥ λ

(i+1)
j − ai,

where i = 1, . . . , n, j ∈ Z≥0

}
.
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Similarly, we abbreviate the representation Gn,r
a to Gā and the set P n,r

a to Pā.
Our aim is to prove that two representations Mā and Gā are isomorphic:

(5.4) ι : Mā
	−→ Gā.

Recall that the vector space Gā has a basis labeled by the set Pā of (n, r)-
admissible partitions. Let ι be a bijection given by

ι : Pā → Pā, λ 	→ Λ,

Λns+i = λ
(i)
s+1 + Λ0

ns+i for i = 1, . . . , n, s ∈ Z≥0.

THEOREM 5.3

There exist nonzero constants cΛ, Λ ∈ Pā, such that the linear map

ι : Mā → Gā,(5.5)

|λ〉 	→ cΛ|Λ〉, Λ = ι(λ),(5.6)

is an isomorphism of graded E -modules.

Proof
The proof is similar to the proof of Theorem 5.1. However, the checks are slightly
more involved, and we give some details.

Note that the vectors e(z)|Λ〉 are a finite linear combination of the vectors
|Λ + 1j 〉, where Λ + 1j = (Λ1,Λ2, . . . ,Λj−1,Λj + 1,Λj+1, . . . ), and f(z)|Λ〉 is a
finite linear combination of the vectors |Λ − 1j 〉.

Therefore, it is necessary and sufficient to show that there exist coefficients
cΛ satisfying the conditions

cΛ+1ns+i 〈λ + 1(i)
s+1|e(z)|λ〉 = cΛ〈Λ + 1ns+i|e(z)|Λ〉,

cΛ〈λ|f(z)|λ + 1(i)
s+1〉 = cΛ+1ns+i 〈Λ|f(z)|Λ + 1ns+i〉.

Here 〈λ + 1(i)
s+1|e(z)|λ〉 and 〈λ|f(z)|λ + 1(i)

s+1〉 denote the matrix coefficients of
e(z) and f(z), respectively, in the module Mā, and 〈Λ + 1ns+i|e(z)|Λ〉 and
〈Λ|f(z)|Λ + 1ns+i〉 are those in the module Gā.

In order that these equations for cΛ be consistent, the following conditions
are necessary and sufficient:

〈λ|f(w)|λ + 1(i)
s+1〉

〈Λ|f(w)|Λ + 1ns+i〉 =
〈Λ + 1ns+i|e(z)|Λ〉

〈λ + 1(i)
s+1|e(z)|λ〉

,(5.7)

〈λ + 1(i)
s+1 + 1(j)

t+1|e(z)|λ + 1(i)
s+1〉

〈Λ + 1ns+i + 1nt+j |e(z)|Λ + 1ns+i〉 ·
〈λ + 1(i)

s+1|e(w)|λ〉
〈Λ + 1ns+i|e(w)|Λ〉(5.8)

=
〈λ + 1(i)

s+1 + 1(j)
t+1|e(z)|λ + 1(j)

t+1〉
〈Λ + 1ns+i + 1nt+j |e(z)|Λ + 1nt+j 〉 ·

〈λ + 1(j)
t+1|e(w)|λ〉

〈Λ + 1nt+j |e(w)|Λ〉 ,

and the condition similar to (5.8) for f(z). Here we follow the conventions for
the ratios of delta functions with the same support as in (5.1) and (5.2).



Tensor products of Fock modules and Wn-characters 389

We rewrite the action of E on Gā in such a way that the matrix coefficients
of e(z) and f(z) acting on Gā are given in terms of certain quantities which are
used in the expressions for the matrix coefficients of e(z) and f(z) acting on Mā.
This makes the proof of these equations shorter.

The vector in Gā which corresponds to Λ ∈ Pā is given by a semiinfinite
tensor product:

|Λ〉 = |Λ1〉u ⊗ |Λ2 − 1〉uq−1
3

⊗ · · · ⊗ |Λj − j + 1〉q−j+1
3 u ⊗ · · · .

Let 〈Λ|ψ±(z)ns+i|Λ〉 be the matrix coefficient of ψ±(z) in the module
V (q−ns−i+1

3 u):

ψ±(z)|Λns+i − ns − i + 1〉q−ns−i+1
3 u

= 〈Λ|ψ±(z)ns+i|Λ〉|Λns+i − ns − i + 1〉q−ns−i+1
3 u.

Recall that we also write 〈λ(i)|ψ±(z)s+1|λ(i)〉 for the matrix coefficient of
ψ±(z) in the module V (q−s

2 ui):

ψ±(z)|λ(i)
s+1 − s〉

q−s
2 ui

= 〈λ(i)|ψ±(z)s+1|λ(i)〉 |λ(i)
s+1 − s〉

q−s
2 ui

,

where

(5.9) ui = q
−

∑i−1
j=1(aj+1)

1 q−i+1
3 u = q

−ci−1
1 qi−1

2 u.

Note that we consider these quantities as rational functions in z, not as series in
z±1; therefore, there is no distinction between ψ±(z).

The following is the basic equality for the proof of the isomorphism:

q
λ

(i)
s+1

1 qs
3ui = q

Λns+i

1 qns+i−1
2 u.

From this follows

〈λ(i)|ψ±(z)s+1|λ(i)〉 = 〈Λ|ψ±(z)ns+i|Λ〉.
Using these equalities one can write the formula for the actions of e(z), f(z)

in Gā in the form

〈Λ + 1ns+i|e(z)|Λ〉

=
δ(q

λ
(i)
s+1

1 qs
3ui/z)

1 − q1

i−1∏
j=1

(1 − q2uj/z

1 − uj/z

1 − qs+1
3 uj/z

1 − q2q
s+1
3 uj/z

s+1∏
m=1

〈λ(j)|ψ−(z)m|λ(j)〉
〈 ∅(j)|ψ−(z)m| ∅(j)〉

)

×
n∏

j=i

(1 − q2uj/z

1 − uj/z

1 − qs
3uj/z

1 − q2qs
3uj/z

s∏
m=1

〈λ(j)|ψ−(z)m|λ(j)〉
〈 ∅(j)|ψ−(z)m| ∅(j)〉

)
,

〈Λ|f(z)|Λ + 1ns+i〉

=
q1δ(q

λ
(i)
s+1

1 qs
3ui/z)

1 − q1

i∏
j=1

(1 − q2q
s+1
3 uj/z

1 − qs+1
3 uj/z

∞∏
m=s+2

〈λ(j)|ψ+(z)m|λ(j)〉
〈 ∅(j)|ψ+(z)m| ∅(j)〉

)

×
n∏

j=i+1

(1 − q2q
s
3uj/z

1 − qs
3uj/z

∞∏
m=s+1

〈λ(j)|ψ+(z)m|λ(j)〉
〈∅(j)|ψ+(z)m| ∅(j)〉

)
.
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We also have the following formulas for the matrix coefficients in Mā:

〈λ + 1(i)
s+1|e(z)|λ〉

=
δ(q

λ
(i)
s+1

1 qs
3ui/z)

1 − q1

1 − q2ui/z

1 − ui/z

1 − qs
3ui/z

1 − q2qs
3ui/z

s∏
m=1

〈λ(i)|ψ−(z)m|λ(i)〉
〈 ∅(i)|ψ−(z)m| ∅(i)〉

×
i−1∏
j=1

(1 − q2uj/z

1 − uj/z

∞∏
m=1

〈λ(j)|ψ−(z)m|λ(j)〉
〈∅(j)|ψ−(z)m| ∅(j)〉

)
,

〈λ|f(z)|λ + 1(i)
s+1〉

=
q1δ(q

λ
(i)
s+1

1 qs
3ui/z)

1 − q1

1 − q2q
s+1
3 ui/z

1 − qs+1
3 ui/z

∞∏
m=s+2

〈λ(i)|ψ+(z)m|λ(i)〉
〈 ∅(i)|ψ+(z)m| ∅(i)〉

×
n∏

j=i+1

(1 − q2uj/z

1 − uj/z

∞∏
m=1

〈λ(j)|ψ+(z)m|λ(j)〉
〈∅(j)|ψ+(z)m| ∅(j)〉

)
.

Here ∅(i) is used for the trivial partition λ(i) = (0,0, . . . ).
It is straightforward to check (5.7) and (5.8) by using these formulas. �

As a corollary we have a bosonic formula for the character of set of the (k, r)-
admissible partitions. Let

χk,r
a =

∑
Λ∈P k,r

a

q|Λ−Λ0| =
∑

Λ∈P k,r
a

q
∑∞

j=1(Λj −Λ0
j )

be the character of set of the (k, r)-admissible partitions.

COROLLARY 5.4

The character of the set of the (k, r)-admissible partitions P k,r
a coincides with the

character of the set P p′,p
a,0 with p′ = k + r, p = k + 1, and, in particular, we have

the bosonic formula

χk,r
a =

1
(q)∞

χ̄k+r,k+1
η,0 ,

where χ̄k+r,k+1
η,0 is given by (4.7) and η =

∑n
i=1 aiωi(ωn = ω0).

There are other known formulas of the sets of (k, r)-admissible partitions for
bosonic formulas (see [FJL+]; for fermionic formulas in the case (p = 3), see
[FJ+1], [FJ+2]).
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