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Abstract. We show that every dominated linear operator from a Banach–
Kantorovich space over an atomless Dedekind-complete vector lattice to a
sequence Banach lattice `p(Γ) or c0(Γ) is narrow. As a consequence, we obtain
that an atomless Banach lattice cannot have a finite-dimensional decomposi-
tion of a certain kind. Finally, we show that the order-narrowness of a linear
dominated operator T from a lattice-normed space V to the Banach space with
a mixed norm (W,F ) over an order-continuous Banach lattice F implies the
order-narrowness of its exact dominant |||T |||.

1. Introduction and preliminaries

Narrow operators generalize compact operators defined on function spaces (see
[11] for the first systematic study; see also the recent monograph [12]). Dif-
ferent classes of narrow operators in framework of vector lattices and lattice-
normed spaces were considered in [9], [10]. In the present article, we continue the
investigation of narrow operators in lattice-normed spaces and show that every
dominated linear operator from a Banach–Kantorovich space over an atomless
Dedekind-complete vector lattice to a sequence Banach lattice is narrow. As a
consequence, we obtain that an atomless Banach lattice cannot have a finite-
dimensional decomposition of a certain kind.

We also consider a domination problem for the exact dominant of a dominated
linear operator. In the classical sense, the domination problem can be stated as
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follows. Let E, F be vector lattices, and let S, T : E → F be linear operators
with 0 ≤ S ≤ T . Let P be some property of linear operators R : E → F so
that P(R) means that R possesses P . Does P(T ) imply P(S)? Another version:
if |S| ≤ T , then does P(T ) imply P(S)? (See [3] for a survey on the domination
problem for “small” operators.)

In the rest of this section we detail some basic definitions and facts. (For general
information on vector lattices, Banach spaces, and lattice-normed spaces, see
[1], [2], [4]–[6].)

Consider a vector space V and a real archimedean vector lattice E. A map
||| · ||| : V → E is called a vector norm if it satisfies the following axioms:

(1) |||v||| ≥ 0; |||v||| = 0 ⇔ v = 0, ∀v ∈ V ,
(2) |||v1 + v2||| ≤ |||v1|||+ |||v2|||, v1, v2 ∈ V ,
(3) |||λv||| = |λ||||v|||, λ ∈ R, v ∈ V .

A vector norm is called decomposable if

(4) for all e1, e2 ∈ E+ and x ∈ V from |||x||| = e1+ e2, it follows that there exist
x1, x2 ∈ V such that x = x1 + x2 and |||xk||| = ek, k := 1, 2.

A triple (V, ||| · |||, E)—also designated (V,E), or V for short—is called a lattice-
normed space if ||| · ||| is a E-valued vector norm in the vector space V . If the norm
||| · ||| is decomposable, then the space V itself is called decomposable. We say that a
net (vα)α∈∆ (bo)-converges to an element v ∈ V , and we write v = (bo)- limα vα if
there exists a decreasing net (eξ)ξ∈Ξ in E+ such that infξ∈Ξ(eξ) = 0 and if for every
ξ ∈ Ξ there is an index α(ξ) ∈ ∆ such that |||v−vα(ξ)||| ≤ eξ for all α ≥ α(ξ). A net
(vα)α∈∆ is called (bo)-fundamental if the net (vα − vβ)(α,β)∈∆×∆ (bo)-converges
to zero. A lattice-normed space is called (bo)-complete if every (bo)-fundamental
net (bo)-converges to an element of this space. Let e be a positive element of a
vector lattice E. By [0, e], we denote the set {v ∈ V : |||v||| ≤ e}. A set D ⊂ V is
called (bo)-bounded if there exists e ∈ E+ such that D ⊂ [0, e]. Every decompos-
able (bo)-complete lattice-normed space is called a Banach–Kantorovich space.
All lattice-normed spaces we consider below are decomposable.

Let (V,E) be a lattice-normed space. A subspace V0 of V is called a (bo)-ideal of
V if, for v ∈ V and u ∈ V0, from |||v||| ≤ |||u|||, it follows that v ∈ V0. A subspace V0 of
a decomposable lattice-normed space V is a (bo)-ideal if and only if V0 = h(L) :=
{v ∈ V : |||v||| ∈ L}, where L is an order ideal in E (see [4, Proposition 2.1.6.1]).
Let V be a lattice-normed space and let y, x ∈ V . If |||x||| ⊥ |||y||| = 0, then we call
the elements x, y disjoint and write x ⊥ y. The equality x =

∐n
i=1 xi means that

x =
∑n

i=1 xi and xi ⊥ xj if i 6= j. For n = 2, we write x = x1 t x2 if x1 ⊥ x2. An
element z ∈ V is called a fragment of x ∈ V if z ⊥ (x− z). Two fragments x1, x2

of x are called mutually complemented if x = x1 + x2. The notation z v x means
that z is a fragment of x. The set of all fragments of an element v ∈ V is denoted
by Fv.

Consider some important examples of lattice-normed spaces. We begin with
simple extreme cases, namely, vector lattices and normed spaces. If V = E,
then the absolute value of an element can be taken as its lattice norm: |||v||| :=
|v| = v ∨ (−v), v ∈ E. The decomposability of this norm follows from the Riesz
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decomposition property holding in every vector lattice (see [2, Theorem 1.13]). If
E = R, then V is a normed space.

Let Q be a compact topological space and let X be a Banach space. Let V :=
C(Q,X) be the space of continuous vector-valued functions from Q to X. Assign
E := C(Q,R). Given f ∈ V , we define its lattice norm by the relation |||f ||| : t 7→
‖f(t)‖X (t ∈ Q). Then ||| · ||| is a decomposable norm (see [4, Lemma 2.3.2]).

Let (Ω,Σ, µ) be a σ-finite measure space, let E be an order-dense ideal in
L0(Ω), and let X be a Banach space. We use L0(Ω, X) to denote the space of
(equivalence classes of) Bochner µ-measurable vector functions acting from Ω to
X. As usual, vector-functions are equivalent if they have equal values at almost
all points of the set Ω. For a measurable vector-function f : Ω → X, the map
t 7→ ‖f(t)‖, t ∈ Ω, is a scalar measurable function which is denoted by the symbol
|||f ||| ∈ L0(µ). Assign by the definition

E(X) :=
{
f ∈ L0(µ,X) : |||f ||| ∈ E

}
.

Then (E(X), E) is a lattice-normed space with a decomposable norm (see [4,
Lemma 2.3.7]). If E is a Banach lattice, then the lattice-normed space E(X) is a
Banach space with respect to the norm ‖|f |‖ := ‖‖f(·)‖X‖E.

Let E be a Banach lattice and let (V,E) be a lattice-normed space. By defini-
tion, |||x||| ∈ E+ for every x ∈ V , and we can introduce some mixed norm in V by
the formula ∥∥|x|∥∥ :=

∥∥|||x|||∥∥, ∀x ∈ V.

The normed space (V, ‖| · |‖) is called a space with a mixed norm. In view of the
inequality ||||x||| − |||y|||| ≤ |||x− y||| and monotonicity of the norm in E, we have∥∥|||x||| − |||y|||

∥∥ ≤
∥∥|x− y|

∥∥, ∀x, y ∈ V,

so a vector norm is a norm-continuous operator from (V, ‖| · |‖) to E. A lattice-
normed space (V,E) is called a Banach space with a mixed norm if the normed
space (V, ‖| · |‖) is complete with respect to the norm convergence.

Consider lattice-normed spaces (V,E) and (W,F ), a linear operator T : V →
W , and a positive operator S ∈ L+(E,F ). If the condition

|||Tv||| ≤ S|||v|||, ∀v ∈ V

is satisfied, then we say that S dominates or majorizes T or that S is dominant
or majorant for T . In this case, T is called a dominated or majorizable operator.
The set of all dominants of the operator T is denoted by maj(T ). If there is the
least element in maj(T ) with respect to the order induced by L+(E,F ), then it is
called the least or the exact dominant of T , and it is denoted by |||T |||. The set of all
dominated operators from V to W is denoted by M(V,W ). (Narrow operators in
vector lattices were first introduced in [7]. Later in the setting of lattice-normed
spaces, linear order-narrow operators were investigated in [9]. Recently in [8],
the connection between narrow operators and the theory of vector measures was
established.)

According to [2, p. 111], an element e > 0 of a vector lattice E is called an
atom whenever 0 ≤ f1 ≤ e, 0 ≤ f2 ≤ e, and f1 ⊥ f2 imply that either f1 = 0 or
f2 = 0.
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Definition 1.1. A vector lattice E is said to be atomless if it has no atom. We say
that a vector lattice E is purely atomic if there is a collection (fi)i∈I of atoms in
E+, called a generating collection of atoms, such that fi ⊥ fj for i 6= j and such
that, for every e ∈ E, if |e| ∧ fi = 0 for each i ∈ I, then e = 0.

Lemma 1.2 ([8, Proposition 1.6]). Any vector lattice E with the principal pro-
jection property has a decomposition E = E0 ⊕ E1 into mutually complemented
bands, where E0 is a purely atomic vector lattice and E1 is an atomless vector
lattice.

Lemma 1.3. Let (V,E) be a lattice-normed space over vector lattice E with the
principal projection property, and let E = E0 ⊕ E1, where E0, E1 are mutually
complemented bands in E. Then V has a decomposition V = V0 ⊕ V1, where
(Vi, Ei) are lattice-normed spaces over Ei, i ∈ {0, 1}.

Proof. Take an arbitrary element x ∈ V . Then |||x||| = e has the unique decompo-
sition e = e0 t e1, ei ∈ Ei, i ∈ {0, 1}. By the decomposability of the vector norm
of the space V there exists the unique decomposition of the element x = x0 + x1,
|||xi||| = ei, i ∈ {0, 1} (see [4, Proposition 2.1.2.3]). Let V0 = {x0 : x = x0 + x1, x ∈
V } and let V1 = {x1 : x = x0+x1, x ∈ V }. It is clear that V0, V1 are vector spaces
and that vector norm ||| · ||| : Vi → Ei, i ∈ {0, 1} is well defined. �

Now we are ready to give some definitions.

Definition 1.4. Let (V,E) be a lattice-normed space over a vector lattice E and
X be a Banach space. A linear operator T : V → X is called order-to-norm-
continuous if T sends (bo)-convergent nets in V to norm-convergent nets in X.

Definition 1.5. Let (V,E) be a lattice-normed space over an atomless vector
lattice E, and let X be a Banach space. A linear operator T : V → X is called
narrow if for every v ∈ V and ε > 0 there exist mutually complemented fragments
v1, v2 of v such that ‖Tv1 − Tv2‖ < ε.

Note that if a vector lattice E is atomless then, for every nonzero element
x ∈ V , the set Fx has infinite cardinality. Nevertheless, the following two lemmas
show that if a vector lattice E has a principal projection property, then there is
no need to restrict to the atomless vector lattice in this definition.

Lemma 1.6. Let (V,E) be a lattice-normed space over a vector lattice E, x ∈ V ,
let Fx be a finite set, and let T : V → X be a narrow operator. Then Tx = 0.

Proof. Assume that Tx 6= 0. Since the operator T is narrow, there exists y ∈ Fx,
such that Ty 6= 0. Note that Fy is the proper subset of the Fx. Using the same
arguments, we find a fragment z ∈ Fx such that Fz = {0, z} and Tz 6= 0. Hence
by the narrowness, ‖Tz‖ < ε for every ε > 0, and we have a contradiction. �

Lemma 1.7. Let (V,E) be a lattice-normed space over a vector lattice E with a
principal projection property; let E = E0 ⊕E1 be the decomposition into a purely
atomic band E0 and an atomless band E1; let V be the decomposition V = V0⊕V1

where (Vi, Ei) are lattice-normed spaces over Ei, i ∈ {0, 1}; let X be a Banach
space; and let T : V → X be a narrow operator. Then Tx = 0 for every x ∈ V0.
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Proof. Take an nonzero element x ∈ V0. Then |||x||| = e ∈ E0+ > 0, and there
exists a finite number f1, . . . , fn of mutually disjoint positive atoms in E0 and
λ1, . . . , λn ∈ R+ such that 0 < e ≤

∑n
i=1 λifi. Taking into account that f1, . . . , fn

are atoms, we deduce that Fe and therefore Fx are finite sets. Thus by Lemma 1.6,
we have Tx = 0. �

Next is the definition of an order-narrow operator.

Definition 1.8. Let (V,E) and (W,F ) be lattice-normed spaces with E atomless.
A linear operator T : V → W is called order-narrow if for every v ∈ V there

exists a net of decompositions v = v1α t v2α such that (Tv1α − Tv2α)
(bo)−→ 0.

2. Main results

In this section, we investigate narrow operators from a Banach–Kantorovich
space to sequence Banach lattices. The first result here is the following theorem.

Theorem 2.1. Let (V,E) be a Banach–Kantorovich space over an atomless
Dedekind-complete vector lattice E, and let Γ be any set. Let X = X(Γ) denote
one of the Banach lattices c0(Γ) or `p(Γ) with 1 ≤ p < ∞. Then every order-to-
norm-continuous linear dominated operator T : V → X is narrow.

For the proof, we need two auxiliary lemmas.

Lemma 2.2 ([9, Lemma 4.11]). Let (V,E) be a Banach–Kantorovich space over
an atomless Dedekind-complete vector lattice E, and let F be a finite-dimensional
Banach space. Then every order-to-norm-continuous dominated linear operator
T : V → F is narrow.

Lemma 2.3 ([4, Proposition 4.1.2]). Let (V,E), (W,F ) be lattice-normed spaces
with V decomposable, and let F be Dedekind-complete. Then every dominated
linear operator T : V → W has the exact dominant |||T |||.

Proof of Theorem 2.1. Let T : V → X be a dominated operator, let v ∈ V , and
let ε > 0. Note that by Lemma 2.3, the operator T has the exact dominant |||T |||.
Take an arbitrary u ∈ Fv. Since u ⊥ (v − u), we have the estimation,

|||Tu||| ≤ |||Tu|||+ |||T (v − u)|||
≤ |||T ||||||u|||+ |||T ||||||v − u|||
= |||T ||||||v||| = f ∈ F+.

Then we choose a finite subset Γ0 ⊂ Γ such that

(1) |f(γ)| ≤ ε/4 for all γ ∈ Γ \ Γ0, if X = c0(Γ), and
(2)

∑
γ∈Γ\Γ0

(f(γ))p ≤ (ε/4)p if X = `p(Γ).

Let P be the projection of X onto X(Γ0) along X(Γ\Γ0), and let Q = Id−P be
the orthogonal projection. Obviously, both P and Q are positive linear bounded
operators. Since S = P ◦T : V → X(Γ0) is a finite-rank order-to-norm-continuous
dominated operator, by Lemma 2.2, S is narrow, and hence, there are mutually
complemented fragments v1, v2 of v with ‖S(v1)−S(v2)‖ < ε/2. Since |T (vi)| ≤ f ,
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by the positivity of Q we have Q(Tvi) ≤ Qf and ‖Q(T (vi))‖ ≤ ‖Q(f)‖ for
i = 1, 2. Moreover, by (1) and (2), ‖Q(f)‖ ≤ ε/4. Then∥∥T (v1)− T (v2)

∥∥ =
∥∥S(v1) +Q

(
T (v1)

)
− S(v2)−Q

(
T (v2)

)∥∥
≤

∥∥S(v1)− S(v2)
∥∥+

∥∥Q(
T (v1)

)∥∥+
∥∥Q(

T (v2)
)∥∥

<
ε

2
+
∥∥Q(f)

∥∥+
∥∥Q(f)

∥∥ < ε. �

For a space with a mixed norm, we obtain the following consequence of Theo-
rem 2.1.

Lemma 2.4. Let (V,E) be a Banach space with a mixed norm over an atomless
order-continuous Banach lattice E, and let Γ be any set. Let X = X(Γ) denote
one of the Banach lattices c0(Γ) or `p(Γ) with 1 ≤ p < ∞. Then every continuous
dominated linear operator T : V → X is narrow.

Proof. It is enough to prove that every continuous operator T : V → X is order-
to-norm-continuous. Indeed, take a net (vα)α∈Λ which is (bo)-convergent to zero.
This means that (|||vα|||)α∈Λ ⊂ E+ is (o)-convergent to zero. Since E is an order-
continuous Banach lattice, we have ‖|vα|‖ = ‖|||vα|||‖ −→ 0. Taking into account
the fact that T is a continuous operator, we have ‖Tvα‖α∈Λ −→ 0. Hence, the
operator T is order-to-norm-continuous, and by Theorem 2.1 we deduce that T
is narrow. �

The idea used in the proof of Theorem 2.1 could be generalized as follows.

Definition 2.5. Let E, F be ordered vector spaces. We say that a linear operator
T : E → F is quasimonotone with a constant M > 0 if for each x, y ∈ E+ the
inequality x ≤ y implies that Tx ≤ MTy. An operator T : E → F is said to be
quasimonotone if it is quasimonotone with some constant M > 0.

If T 6= 0 in the above definition, we easily obtain M ≥ 1. Observe also that the
quasimonotone operators with constant M = 1 exactly are the positive operators.

Recall that a sequence of elements (en)
∞
n=1 (resp., of finite-dimensional sub-

spaces (En)
∞
n=1) of a Banach space E is called a basis (resp., a finite-dimensional

decomposition, or FDD, for short) if for every e ∈ E there exists a unique sequence
of scalars (an)

∞
n=1 (resp., sequence (un)

∞
n=1 of elements un ∈ En) such that e =∑∞

n=1 anen (resp., e =
∑∞

n=1 un). Every basis (en) generates the FDDEn = {λen :
λ ∈ R}. Any basis (en) (resp., any FDD(En)) of a Banach space generates the
corresponding basis projections (Pn) defined by

Pn

( ∞∑
k=1

akek

)
=

n∑
k=1

akek

(
resp., Pn

( ∞∑
k=1

uk

)
=

n∑
k=1

uk

)
,

which are uniformly bounded. (For more details about these notions, we refer the
reader to [5].) The orthogonal projections to Pn’s defined by Qn = Id−Pn, where
Id is the identity operator on E, we will call the residual projections associated
with the basis (en)

∞
n=1 (resp., to the FDD(En)

∞
n=1).
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Definition 2.6. A basis (en) (resp., an FDD(En)) of a Banach lattice E is called
residually quasimonotone if there is a constant M > 0 such that all corresponding
residual projections are quasimonotone with the constant M .

In other words, an FDD(En) of E is residually quasimonotone if the corre-
sponding approximation of smaller in-modulus elements is better, up to some
constant multiple: if x, y ∈ E with |x| ≤ |y|, then ‖x − Pnx‖ ≤ M‖y − Pny‖ for
all n (observe that ‖z − Pnz‖ → 0 as n → ∞ for all z ∈ E).

Theorem 2.7. Let (V,E) be a Banach–Kantorovich space over an atomless
Dedekind-complete vector lattice E, and let F be a Banach lattice with a resid-
ually quasimonotone basis or, more generally, a residually quasimonotone FDD.
Then every continuous dominated linear operator T : V → F is narrow.

Proof. Let (Fn) be an FDD of F with the corresponding projections (Pn), and let
M > 0 be such that for every n ∈ N the operator Qn = Id−Pn is quasimonotone
with constant M . Let T : V → F be a dominated linear operator, let v ∈ V , and
let ε > 0. Choose f ∈ F+ so that |Tx| ≤ f for all x v v. Since limn→∞ Pnf = f ,
we have limn→∞Qnf = 0. Choose n so that

‖Qnf‖ ≤ ε

4M
. (2.1)

Since S = Pn ◦ T : V → En is a finite-rank dominated linear operator by
Lemma 2.2, and since S is narrow, there are mutually complemented fragments
v1, v2 of v such that ‖Sv1−Sv2‖ < ε/2. Since |Tvi| ≤ f , by the quasimonotonicity
of Qn we have ‖Qn(Tvi)‖ ≤ M‖Qnf‖ for i = 1, 2. Then by (2.1),

‖Tv1 − Tv2‖ =
∥∥Sv1 +Q(Tv1)− Sv2 −Q(Tv2)

∥∥
≤ ‖Sv1 − Sv2‖+

∥∥Q(Tv1)
∥∥+

∥∥Q(Tv2)
∥∥

<
ε

2
+M‖Qf‖+M‖Qf‖ < ε. �

Remark 2.8. An atomless order-continuous Banach lattice E cannot admit a
residually quasimonotone FDD.

Proof. The Banach lattice E is a lattice-normed space (E,E), where the vector
norm coincides with the absolute value. Thus, it is enough to observe that the
identity operator of such a Banach lattice is not narrow. �

Recall that a vector lattice E is said to possesses the strong Freudenthal prop-
erty, if for f, e ∈ E such that |f | ≤ λ|e|, λ ∈ R+ f can be e-uniformly approxi-
mated by linear combinations

∑n
k=1 λkπke, where π1, . . . , πn are order projections

in E.
Denote by E0+ the conic hull of the set |||V ||| = {|||v||| : v ∈ V } (i.e., the set of

elements of the form
∑n

k=1 |||vk|||, where v1, . . . , vn ∈ V , n ∈ N).

Theorem 2.9 ([4, Theorem 4.1.8]). Let (V,E), (W,F ) be lattice-normed spaces.
Suppose that E possesses the strong Freudenthal property, suppose that V is
decomposable, and suppose that F is Dedekind-complete. Then the exact domi-
nant of an arbitrary operator T ∈ M(V,W ) can be calculated by the following
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formulas:

|||T |||(e) = sup
{ n∑

i=1

|||Tvi||| :
n∑

i=1

|||vi||| = e, |||vi||| ⊥ |||vj|||; i 6= j;n ∈ N; e ∈ E0+

}
,

|||T |||(e) = sup
{
|||T |||(e0) : e0 ∈ E0+; e0 ≤ e

}
, e ∈ E+,

|||T |||(e) = |||T |||(e+)− |||T |||(e−), e ∈ E.

The next theorem is the second main result of the article. Here, we generalized
the first part of the Theorem 5.1 from [9].

Theorem 2.10. Let (V,E) be a lattice-normed space, let E be atomless and
possessed of the strong Freudenthal property, let (W,F ) be a Banach space with
a mixed norm, let F be a Banach lattice with an order-continuous norm, and
let T be a (bo)-continuous dominated linear operator from V to W . If T is an
order-narrow operator, then the same is its exact dominant |||T ||| : E → F .

Proof. Since the lattice-normed space V is decomposable and the Banach lattice
F is Dedekind-complete, by the Lemma 2.3 every dominated operator T : V → W
has the exact dominant |||T |||. By ([9, Lemma 3.4]), instead of order-narrowness,
we will consider narrowness. Fix any e ∈ E0+ and ε > 0. Since{ n∑

i=1

|||Tvi||| :
n∐

i=1

|||vi||| = e;n ∈ N
}

is an increasing net, there exists a net of finite collections {vα1 , . . . , vαnα
} ⊂ V ,

α ∈ Λ with e =
⊔nα

i=1 |||vαi |||, α ∈ Λ, and (|||T |||(e) −
∑nα

i=1 |||Tvαi |||) ≤ yα
(o)−→ 0, where

0 ≤ yα, α ∈ Λ, is an decreasing net and inf(yα)α∈Λ = 0. The norm in F is
order-continuous, and therefore we may assume that ‖|||T |||(e)−

∑nα

i=1 |||Tvαi |||‖ ≤ ε
3

for some {vα1 , . . . , vαnα
}, α ∈ Λ. Since T is an order-narrow operator, we may

assume that there exists a finite set of a nets of decompositions vαi = uβα

i t wβα

i ,
i ∈ {1, . . . , nα}, which depends of α, indexed by the same set ∆, such that

|||Tuβα

i − Twβα

i ||| (bo)−→ 0, i ∈ {1, . . . , nα}. By [9, Lemma 3.4] and the fact that the

norm in F is order-continuous, we may assume that |‖Tuβα

i − Twβα

i |‖ < ε
3nα

for

every i ∈ {1, . . . , nα} and some βα. Let f
βα =

∐nα

i=1 |||u
βα

i ||| and gβα =
∐nα

i=1 |||w
βα

i |||.
Then we have

0 ≤
∥∥∥|||T |||(fβα)−

nα∑
i=1

|||Tuβα

i |||
∥∥∥ ≤

∥∥∥|||T |||(e)− nα∑
i=1

|||Tvαi |||
∥∥∥,

0 ≤
∥∥∥|||T |||(gβα)−

nα∑
i=1

|||Twβα

i |||
∥∥∥ ≤

∥∥∥|||T |||(e)− nα∑
i=1

|||Tvαi |||
∥∥∥.

Now we may write∥∥|||T |||fβα − |||T |||gβα
∥∥ =

∥∥∥|||T |||fβα −
nα∑
i=1

|||Tuβα

i |||+
nα∑
i=1

|||Tuβα

i |||
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−
nα∑
i=1

|||Twβα

i |||+
nα∑
i=1

|||Twβα

i ||| − |||T |||gβα

∥∥∥
≤

∥∥∥|||T |||fβα −
nα∑
i=1

|||Tuβα

i |||
∥∥∥

+
∥∥∥|||T |||gβα −

nα∑
i=1

|||Twα
i |||
∥∥∥+

∥∥∥ nα∑
i=1

|||Tuβα

i ||| −
nα∑
i=1

|||Twβα

i |||
∥∥∥

≤ 2
(∥∥∥|||T |||(e)− nα∑

i=1

|||Tvαi |||
∥∥∥)+

nα∑
i=1

∥∥∥|||Tuβα

i ||| − |||Twβα

i |||
∥∥∥

≤ 2
(∥∥∥|||T |||(e)− nα∑

i=1

|||Tvαi |||
∥∥∥)+

nα∑
i=1

∥∥|Tuβα

i − Twβα

i |
∥∥

<
2ε

3
+

ε

3
= ε.

Therefore e = fβα t gβα , α ∈ Λ, βα ∈ ∆, is the desirable decomposition of the
element e. Now, let e ∈ E+. Note that D = {f ≤ e : f ∈ E0+} is a directed

set. Indeed, let f1 =
∐k

i=1 |||ui|||, f1 ≤ e; f2 =
∐n

j=1 |||wj|||, f2 ≤ e, ui, wj ∈ V ,

1 ≤ i ≤ k, 1 ≤ j ≤ n. Then by the decomposability of the vector norm there
exists the set of mutually disjoint elements (vij), 1 ≤ i ≤ k, 1 ≤ j ≤ n such that

ui =
∐n

j=1 vij for every 1 ≤ i ≤ k and wj =
∐k

i=1 vij for every 1 ≤ j ≤ n. Let

f =
∐

|||vij|||. It is clear that |||T |||fi ≤ |||T |||f , i ∈ {1, 2}. Let (eα)α∈Λ, eα ∈ D, be
the net, where |||T |||e = supα |||T |||eα. Fix α ∈ Λ such that ‖|||T |||e − |||T |||eα‖ < ε

2
. For

eα ∈ D there exists the net of decompositions eα = fβ
α t gβα, β ∈ ∆, such that

‖|||T |||fβ
α − |||T |||gβα‖ < ε

2
. Thus we have∥∥|||T |||(e− eα + fβ
α )− |||T |||gβα

∥∥ =
∥∥|||T |||(e− eα) + |||T |||fβ

α − |||T |||gβα
∥∥

≤
(∥∥|||T |||e− |||T |||eα

∥∥+
∥∥|||T |||fβ

α − |||T |||gβα
∥∥)

< ε.

Hence, e = ((e− eα) t fβ
α )) t gβα is the desirable decomposition of the element e.

Finally, for an arbitrary element e ∈ E we have e = e+− e−, and by Theorem 2.9
we have |||T |||(e) = |||T |||(e+)− |||T |||(e−). Thus, if e+ = fα

1 t fα
2 and e− = gα1 t gα2 are

necessary decompositions, then we have∥∥|||T |||(fα
1 + gα1 )− |||T |||(fα

2 + gα2 )
∥∥ =

∥∥|||T |||fα
1 − |||T |||fα

2 + |||T |||gα1 − |||T |||gα2 )
∥∥

≤
(∥∥|||T |||(fα

1 − fα
2 )
∥∥+

∥∥|||T |||(gα1 − gα2 )
∥∥)

< ε,

and e = (fα
1 + gα1 ) t (fα

2 + gα2 ) is the desirable decomposition. �
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