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Abstract. The perturbed eigenvalue problem −∆u − ∆pu = λV (x)u, with
p ∈ (1, N) \ {2} and V a weight function which takes nonnegative values and
may have singular points, is studied in an Orlicz–Sobolev setting on general
open sets from RN with N ≥ 3. The analysis of these problems leads to a full
characterization of the set of parameters λ for which the problem possesses
nontrivial solutions as being an unbounded open interval.

1. Introduction and main results

Let Ω ⊆ RN (N ≥ 3) be an open set, and let V : Ω → [0,∞) be a function
which satisfies the hypotheses{

V ∈ L1
loc(Ω), V = V1 + V2, V1 ∈ LN/2(Ω),

lim|x|→∞ |x|2V2(x) = 0, limx→y |x− y|2V2(x) = 0 for any y ∈ Ω.
(1.1)

For example, a weight function V which satisfies condition (1.1) could be V (x) =
|x|−2(1 + |x|2)−1[log(2 + 1/|x|2)]−2/N . (Other examples can be found in [6, Sec-
tion 3].)

In [6], Szulkin and Willem analyzed the eigenvalue problem

−∆u = λV (x)u, u ∈ D1,2
0 (Ω), (1.2)
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where D1,2
0 (Ω) stands for the closure of C∞

0 (Ω) under the L2-norm of the gradient
(see Section 2 for the accurate definition of D1,2

0 (Ω)). Using an elementary argu-
ment based on a simple minimization procedure, the existence of infinitely many
eigenvalues of (1.2) was proved in [6, Theorems 2.2, 2.3].

Motivated by the results from [6], the goal of this paper is to give a complete
description of the set of parameters λ for which the following perturbed eigenvalue
problem has nontrivial solutions:

−∆u−∆pu = λV (x)u, u ∈ D1,Φp

0 (Ω), (1.3)

where p ∈ (1, N) \ {2} and Φp : R → R is given by Φp(t) := t2

2
+ |t|p

p
, and the

Orlicz–Sobolev-type space D1,Φp

0 (Ω) is obtained as the closure of C∞
0 (Ω) under

the Luxemburg-type norm

‖u‖ := inf
{
µ > 0;

∫
Ω

Φp

( |∇u(x)|
µ

)
dx ≤ 1

}
(see Section 2 for more details regarding the definition and properties of Φp and

D1,Φp

0 (Ω)).

Definition 1.1. We say that u is a weak solution of equation (1.3) if there exists

u ∈ D1,Φp

0 (Ω) \ {0} such that∫
Ω

∇u∇w dx+

∫
Ω

|∇u|p−2∇u∇w dx = λ

∫
Ω

V (x)uw dx, ∀w ∈ D1,Φp

0 (Ω). (1.4)

The main result of our paper is formulated in the following theorem.

Theorem 1.2. Assume condition (1.1) is fulfilled. Then the set of parameters λ
for which problem (1.3) possesses nontrivial solutions is exactly the open interval
(λ1,+∞), where λ1 is given by

λ1 := inf
u∈C∞

0 (Ω)\{0}

∫
Ω
|∇u(x)|2 dx∫

Ω
V (x)u2(x) dx

. (1.5)

Note that by [6, Theorem 2.2] it is obvious that λ1 defined in (1.5) is achieved

in D1,2
0 (Ω), which is larger than D1,Φp

0 (Ω) (see Section 2 for details).
On the other hand, arguments similar to those used in the proof of Theorem 1.2

can be applied here to establish the following result.

Theorem 1.3. Assume that Ω ⊂ RN (N ≥ 3) is an open set and that V : Ω →
[0,∞) is a function satisfying the following hypotheses:{

V ∈ L1
loc(Ω), V = V1 + V2, V1 ∈ LN/p(Ω),

lim|x|→∞ |x|pV2(x) = 0, limx→y |x− y|pV2(x) = 0 for any y ∈ Ω.
(1.6)

Then the set of parameters λ for which the problem

−∆u−∆pu = λV (x)|u|p−2u, u ∈ D1,Φp

0 (Ω), (1.7)
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possesses nontrivial weak solutions is exactly the open interval (µ1,+∞), where
µ1 is given by

µ1 := inf
u∈C∞

0 (Ω)\{0}

∫
Ω
|∇u|p dx∫

Ω
V (x)|u|p dx

. (1.8)

The structure of the paper is as follows. In Section 2, we introduce the function
spaces that will be used throughout the paper and state a couple of properties of
these spaces. In Section 3 we present the variational setup for the main problem
(1.3) and provide the proof of Theorem 1.2. The basic idea of the proof will be
to associate to problem (1.3) the so-called energy functional whose nontrivial
critical points offer solutions to our problem. The specificity of the proof will be
given by the fact that the energy functional will be defined on a corresponding
Nehari manifold on which it achieves its minimum in an element which proves to
be a critical point of the functional. This method is described, for instance, in [2,
Section 2.3.3] (see also [5] for more applications of the method). However, here
we cannot apply the method exactly as in [2, Section 2.3.3] since our problem
possesses some particularities which ask for a more careful analysis.

2. Function spaces

Assume that Ω ⊂ RN (N ≥ 3) is an open set. In this section we will point out
the definitions and some elementary properties of the function spaces which will
be used in the analysis of problem (1.3).

For each q ∈ (1, N) denote by Lq(Ω) the Lebesgue space endowed with the
norm

‖u‖Lq(Ω) :=
(∫

Ω

|u|q dx
)1/q

,

and denote by D1,q
0 (Ω) the Sobolev space defined as the closure of C∞

0 (Ω) under
the norm

‖u‖q := ‖∇u‖Lq(Ω).

Further, our aim is that of introducing the Orlicz–Sobolev-type space where
problem (1.3) will be analyzed. We provide its definition and a brief review of
the basic properties of that space. (For more details, see the books by Adams [1]
and Rao and Ren [4] and the paper by Fukagai et al. [3].)

For p ∈ (1, N) \ {2}, define φp : R → R by

φp(t) = t+ |t|p−2t.

It is easy to check that φp is an odd, increasing homeomorphism from R onto R.
Next, define

Φp(t) :=

∫ t

0

φp(s) ds =
t2

2
+

|t|p

p
.

Note that Φp(0) = 0, Φp is convex, and limt→∞Φp(t) = +∞, which makes Φp a
Young function. Moreover, since Φp(t) = 0 if and only if t = 0, limt→0Φp(t)/t = 0,
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and limt→∞ Φp(t)/t = +∞, Φp is an N-function (see [1] or [3] for more details).
Let Φ?

p be the complementary function of Φp given by

Φ?
p(t) = sup

{
st− Φp(s) : s ≥ 0

}
for all t ≥ 0.

Φ?
p is also an N -function.
Define

φ−
p := inf

t>0

tφp(t)

Φp(t)
and φ+

p := sup
t>0

tφp(t)

Φp(t)
.

It is elementary to check that

φ−
p = p and φ+

p = 2 if p ∈ (1, 2),

and that

φ−
p = 2 and φ+

p = p if p ∈ (2,∞).

Thus we always have

1 < φ−
p ≤ tφp(t)

Φp(t)
≤ φ+

p < ∞ for all t > 0. (2.1)

Moreover, relation (2.1) and [3, Lemma 2.5, (2.7)] imply that

1 <
φ+
p

φ+
p − 1

≤
tφ−1

p (t)

Φ?
p(t)

≤
φ−
p

φ−
p − 1

< ∞ for all t > 0. (2.2)

Further, define the Orlicz space LΦp(Ω) as the space of measurable functions
u : Ω → R such that

‖u‖LΦp := sup
{∫

Ω

uv dx :

∫
Ω

Φ?
p

(
|v|

)
dx ≤ 1

}
< ∞. (2.3)

Endowed with the Orlicz norm (2.3), LΦp(Ω) is a Banach space. An equivalent
norm on LΦp(Ω) is the Luxemburg norm defined by

‖u‖Φp := inf
{
µ > 0 :

∫
Ω

Φp

(u(x)
µ

)
dx ≤ 1

}
. (2.4)

The Orlicz–Sobolev space D1,Φp

0 (Ω) is defined as the closure of C∞
0 (Ω) under the

norm ‖u‖ := ‖|∇u|‖Φp . We note that (2.1) and (2.2) imply that Φp and Φ?
p satisfy

the ∆2-condition

Φp(2t) ≤ KΦp(t) ∀t ≥ 0 (2.5)

for some constant K > 0 (see [1, p. 232]). Thus LΦp(Ω) and D1,Φp

0 (Ω) are reflexive
Banach spaces (see [1, Theorem 8.19] and [1, p. 232]). On the other hand (see,
e.g., [3, Lemma 2.1]), we have

‖u‖φ
+
p

Φp
≤

∫
Ω
Φp

(∣∣u(x)∣∣) dx ≤ ‖u‖φ
−
p

Φp
∀u ∈ LΦp(Ω), ‖u‖Φp < 1, (2.6)

and

‖u‖φ
−
p

Φp
≤

∫
Ω
Φp

(∣∣u(x)∣∣) dx ≤ ‖u‖φ
+
p

Φp
∀u ∈ LΦp(Ω), ‖u‖Φp > 1. (2.7)
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Finally, note that, by the definition of the Luxemburg norm, we have

1 ≥
∫
Ω

Φp

( |∇u(x)|
‖∇u‖Φp

)
dx =

1

p

∫
Ω

|∇u(x)|p

‖∇u‖pΦp

dx+
1

2

∫
Ω

|∇u(x)|2

‖∇u‖2Φp

for any u ∈ D1,Φp

0 (Ω). The above inequality implies that

‖∇u‖Lp(Ω) ≤ p
√
p‖∇u‖Φp and

‖∇u‖L2(Ω) ≤
√
2‖∇u‖Φp for any u ∈ D1,Φp

0 (Ω),

or

‖u‖p ≤ p
√
p‖u‖ and ‖u‖2 ≤

√
2‖u‖ for any u ∈ D1,Φp

0 (Ω).

It follows that D1,Φp

0 (Ω) is continuously embedded in D1,p
0 (Ω) and D1,2

0 (Ω).
On the other hand, by [6, Lemma 2.1] we know that the application T :

D1,2
0 (Ω) → R defined by

T (u) =

∫
Ω

V (x)u2 dx

is weakly continuous; that is, if {un} ⊂ D1,2
0 (Ω) weakly converges to u ∈ D1,2

0 (Ω)
in D1,2

0 (Ω), then T (un) → T (u). In particular, we deduce that application T is

weakly continuous on D1,Φp

0 (Ω).

3. Proof of the main result

We start by pointing out a result related with λ1 introduced by relation (1.5)
from Theorem 1.2. This quantity will play a key role in our analysis of problem
(1.3).

Lemma 3.1. Let λ1 be defined by relation (1.5) from Theorem 1.2. Define

ν1 := inf
u∈C∞

0 (Ω)\{0}

1
p

∫
Ω
|∇u|p dx+ 1

2

∫
Ω
|∇u|2 dx

1
2

∫
Ω
V (x)u2 dx

. (3.1)

Then ν1 = λ1.

Proof. First, note that, for each u ∈ C∞
0 (Ω) \ {0}, we have

inf
w∈C∞

0 (Ω)\{0}

∫
Ω
|∇w|2 dx∫

Ω
V (x)w2 dx

≤
∫
Ω
|∇u|2 dx∫

Ω
V (x)u2 dx

≤
1
p

∫
Ω
|∇u|p dx+ 1

2

∫
Ω
|∇u|2 dx

1
2

∫
Ω
V (x)u2 dx

.

Thus we get

inf
w∈C∞

0 (Ω)\{0}

∫
Ω
|∇w|2 dx∫

Ω
V (x)w2 dx

≤ inf
u∈C∞

0 (Ω)\{0}

1
p

∫
Ω
|∇u|p dx+ 1

2

∫
Ω
|∇u|2 dx

1
2

∫
Ω
V (x)u2 dx

,

or

λ1 ≤ ν1.

On the other hand, for each u ∈ C∞
0 (Ω) \ {0} and each t > 0, we have

inf
w∈C∞

0 (Ω)\{0}

1
p

∫
Ω
|∇w|p dx+ 1

2

∫
Ω
|∇w|2 dx

1
2

∫
Ω
V (x)w2 dx

≤
tp−2

p

∫
Ω
|∇u|p dx+ 1

2

∫
Ω
|∇u|2 dx

1
2

∫
Ω
V (x)u2 dx

.
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Letting t → +∞ if p ∈ (1, 2) or t → 0 if p ∈ (2,∞), we obtain

inf
w∈C∞

0 (Ω)\{0}

1
p

∫
Ω
|∇w|p dx+ 1

2

∫
Ω
|∇w|2 dx

1
2

∫
Ω
V (x)w2 dx

≤
∫
Ω
|∇u|2 dx∫

Ω
V (x)u2 dx

for any u ∈ C∞
0 (Ω) \ {0}. Taking the inf as u ∈ C∞

0 (Ω) \ {0} in the right-hand
side of the above inequality, we conclude that ν1 ≤ λ1, and, consequently, the
conclusion of our lemma holds true. �

The conclusion of Theorem 1.2 will be a simple consequence of the next two
propositions.

Proposition 3.2. For each λ ∈ (−∞, λ1], problem (1.3) has no nontrivial solu-
tion.

Proof. First, note that, assuming that for some λ ∈ (−∞, 0] problem (1.3) has a
nontrivial solution, we arrive at a contradiction by taking w = u in relation (1.4).
Thus, for any λ ∈ (−∞, 0], we cannot find nontrivial solutions of problem (1.3).

Next, let λ ∈ (0, λ1). We assume that there exists a solution of (1.3) with u 6= 0.
By the definition of λ1 given by (1.5) and taking w = u in (1.4), we get

0 <
λ1 − λ

2

∫
Ω

V (x)u2 dx

≤ 1

2

∫
Ω

|∇u|2 dx− λ

2

∫
Ω

V (x)u2 dx

≤ 1

2

∫
Ω

|∇u|2 dx+
1

p

∫
Ω

|∇u|p dx− λ

2

∫
Ω

V (x)u2 dx = 0,

which represents a contradiction.
Finally, we show that for λ = λ1 problem (1.3) has no nontrivial solution. We

assume by contradiction that there exists u 6= 0 a solution of problem (1.3) with
λ = λ1. Then, by relations (1.4) with w = u and (1.5), we deduce∫

Ω

|∇u|2 dx+

∫
Ω

|∇u|p dx = λ1

∫
Ω

V (x)u2 dx ≤
∫
Ω

|∇u|2 dx,

which implies that
∫
Ω
|∇u|p dx = 0, or ‖u‖p = 0. It follows that u = 0. This is a

contradiction. �

Proposition 3.3. For each λ > λ1 problem (1.3) has nontrivial weak solutions.

In order to prove Proposition 3.3, we start by defining for each λ > λ1 the

so-called energy functional associated to problem (1.3) as Jλ : D1,Φp

0 (Ω) → R
given by

Jλ(u) =
1

p

∫
Ω

|∇u|p dx+
1

2

∫
Ω

|∇u|2 dx− λ

2

∫
Ω

V (x)u2 dx.

It is standard to check that Jλ ∈ C1(D1,Φp

0 (Ω) \ {0},R) with its derivative given
by
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J ′
λ(u), w

〉
=

∫
Ω

|∇u|p−2∇u∇w dx+

∫
Ω

∇u∇w dx− λ

∫
Ω

V (x)uw dx

for all u ∈ D1,Φp

0 (Ω) \ {0} and w ∈ D1,Φp

0 (Ω).

Note that we cannot establish the coercivity of Jλ on D1,Φp

0 (Ω), and conse-
quently we cannot apply the direct method in the calculus of variations in order
to find critical points for this functional. In this context, our idea will be to ana-

lyze the energy functional on a subset of D1,Φp

0 (Ω), namely, the so-called Nehari
manifold defined by

Nλ :=
{
u ∈ D1,Φp

0 (Ω) \ {0};
〈
J ′
λ(u), u

〉
= 0

}
=

{
u ∈ D1,Φp

0 (Ω) \ {0};
∫
Ω

|∇u|p dx+

∫
Ω

|∇u|2 dx = λ

∫
Ω

V (x)u2 dx
}
.

We point out that, for each u ∈ Nλ, we have

Jλ(u) =
(1
p
− 1

2

)∫
Ω

|∇u|p dx, (3.2)

and

λ

∫
Ω

V (x)u2 dx >

∫
Ω

|∇u|2 dx. (3.3)

Next, we will establish a few properties of Nλ and of the restriction of Jλ to Nλ

which will prove to be useful in establishing the conclusion of Proposition 3.3.

Lemma 3.4. We have that Nλ 6= ∅.

Proof. Indeed, since λ > λ1, it follows that there exists w ∈ D1,Φp

0 (Ω) \ {0} for
which ∫

Ω

|∇w|2 dx < λ

∫
Ω

V (x)w2 dx.

Then there exists t > 0 such that tw ∈ Nλ; that is,

t2
∫
Ω

|∇w|2 dx+ tp
∫
Ω

|∇w|p dx = λt2
∫
Ω

V (x)w2 dx,

which is obvious with

t =
(λ ∫

Ω
V (x)w2 dx−

∫
Ω
|∇w|2 dx∫

Ω
|∇w|p dx

)1/(p−2)

> 0.
�

Let

m := inf
τ∈Nλ

Jλ(τ).

By (3.2) we deduce that Jλ(u) ≥ 0 for all u ∈ Nλ if p ∈ (1, 2) and Jλ(u) < 0 for
all u ∈ Nλ if p ∈ (2,∞). Thus m ≥ 0 if p ∈ (1, 2) and m < 0 if p ∈ (2,∞).

Next, our idea will be to prove that m can be achieved on Nλ. In order to show
that, we will analyze two separate cases: p ∈ (1, 2) and p ∈ (2, N).
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The case p ∈ (1, 2).

Lemma 3.5. Every minimizing sequence of functional Jλ on Nλ is bounded in

D1,Φp

0 (Ω) provided that p ∈ (1, 2).

Proof. Let {un} ⊂ Nλ be a minimizing sequence of Jλ on Nλ; that is,∫
Ω

|∇un|p dx −→
(1
p
− 1

2

)−1

m as n → ∞.

We assume by contradiction that
∫
Ω
|∇un|2 dx → ∞ as n → ∞. Then, since

for each n we have un ∈ Nλ, we deduce that
∫
Ω
V (x)u2

n dx → ∞ as n → ∞.
Let

wn :=
un

(
∫
Ω
V (x)u2

n dx)
1/2

.

Since inequality (3.3) holds true for any n, we deduce that
∫
Ω
|∇wn|2 dx < λ for

any n. Thus the sequence {wn}n is bounded in D1,2
0 (Ω).

Since here it holds that the sequence {
∫
Ω
V u2

n dx}n is unbounded while the
sequence {

∫
Ω
|∇un|p dx}n is bounded, we have∫

Ω

|∇wn|p dx =

∫
Ω
|∇un|p dx

(
∫
Ω
V (x)u2

n dx)
p/2

−→ 0 as n → ∞. (3.4)

The above relation shows that {wn}n is bounded in D1,p
0 (Ω). Consequently, {wn}n

is bounded in D1,Φp

0 (Ω), too. It follows that there exists w0 ∈ D1,Φp

0 (Ω) such that

wn converges weakly to w0 in D1,Φp

0 (Ω) (and consequently in D1,p
0 (Ω) and D1,2

0 (Ω))
and limn→∞

∫
Ω
V (x)w2

n dx =
∫
Ω
V (x)w2

0 dx.
By (3.4), we have∫

Ω

|∇w0|p dx ≤ lim inf
n→∞

∫
Ω

|∇wn|p dx = 0,

which implies that w0 = 0.
On the other hand, since

∫
Ω
V (x)w2

n dx = 1 for any n, we get that∫
Ω
V (x)w2

0 dx = 1, and that is a contradiction with w0 = 0. Thus the sequence

{
∫
Ω
|∇un|2 dx}n is bounded, and since λ1

∫
Ω
V (x)u2

n dx ≤
∫
Ω
|∇un|2 dx for each n,

the sequence {
∫
Ω
V (x)u2

n dx}n is bounded, too. Taking into account that un ∈ Nλ,
it follows that the sequence {

∫
Ω
|∇un(x)|p dx}n is also bounded, and the proof of

this lemma is clear. �

Lemma 3.6. If p ∈ (1, 2), then m > 0.

Proof. As we already noted, m ≥ 0 when p ∈ (1, 2). We assume by contradiction
that m = 0. Let {un}n ⊂ Nλ be a minimizing sequence for m = 0; that is,∫

Ω

∣∣∇un(x)
∣∣p dx → 0 as n → ∞. (3.5)

Using the same arguments as in the proof of Lemma 3.5, we infer that {un}n
is bounded in D1,Φp

0 (Ω) and, consequently, that it is also bounded in D1,p
0 (Ω) and

D1,2
0 (Ω). It follows that there exists u0 ∈ D1,Φp

0 (Ω) such that {un}n converges
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weakly to u0 in D1,Φp

0 (Ω), D1,p
0 (Ω), and D1,2

0 (Ω), and limn→∞
∫
Ω
V (x)u2

n dx =∫
Ω
V (x)u2

0 dx. Clearly,∫
Ω

|∇u0|p dx ≤ lim inf
n→∞

∫
Ω

|∇un|p dx = 0.

Thus u0 = 0. Consequently, {un}n converges weakly to 0 in D1,Φp

0 (Ω), D1,p
0 (Ω),

and D1,2
0 (Ω), and

lim
n→∞

∫
Ω

V (x)u2
n dx = 0.

Let

wn :=
un

(
∫
Ω
V (x)u2

n dx)
1/2

.

Taking into account that inequality (3.3) holds true for each n, we obtain that∫
Ω

|∇wn|2 dx =

∫
Ω
|∇un|2 dx∫

Ω
V (x)u2

n dx
< λ (3.6)

for any n. Consequently, the sequence {wn}n is bounded in D1,2
0 (Ω).

On the other hand, since for each n we have un ∈ Nλ and p ∈ (1, 2), we infer
that∫
Ω

|∇wn|p dx =
(∫

Ω

V (x)u2
n dx

)(2−p)/2(
λ−

∫
Ω

|∇wn|2 dx
)
→ 0 as n → ∞. (3.7)

Relations (3.7) and (3.6) imply that {wn}n is bounded in D1,Φp

0 (Ω). It follows

that there exists w0 ∈ D1,Φp

0 (Ω) such that wn converges weakly to w0 in D1,Φp

0 (Ω),
D1,p

0 (Ω), and D1,2
0 (Ω), and

lim
n→∞

∫
Ω

V (x)w2
n dx =

∫
Ω

V (x)w2
0 dx.

Taking into account (3.7), we find that∫
Ω

|∇w0|p dx ≤ lim inf
n→∞

∫
Ω

|∇wn|p dx = 0,

or w0 = 0. But
∫
Ω
V (x)w2

n dx = 1 for each n, and thus
∫
Ω
V (x)w2

0 dx = 1, a
contradiction with w0 = 0. In conclusion, m > 0, and consequently the conclusion
of Lemma 3.6 holds true. �

Lemma 3.7. If p ∈ (1, 2), then there exists u ∈ Nλ such that Jλ(u) = m.

Proof. Let {uk}k ⊂ Nλ be a minimizing sequence for m; that is, Jλ(uk) −→ m as

k → ∞. By Lemma 3.5, we have that {uk}k is bounded in D1,Φp

0 (Ω). Thus there

exists u ∈ D1,Φp

0 (Ω) such that uk converges weakly to u in D1,Φp

0 (Ω), D1,p
0 (Ω),

and D1,2
0 (Ω), and limk→∞

∫
Ω
V (x)u2

k dx =
∫
Ω
V (x)u2 dx and uk(x) → u(x) for a.e.

x ∈ Ω.
By the above pieces of information, we deduce that

Jλ(u) ≤ lim inf
k→∞

Jλ(uk) = m.
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Since uk ∈ Nλ for each k, we have∫
Ω

|∇uk|2 dx+

∫
Ω

|∇uk|p dx = λ

∫
Ω

V (x)u2
k dx for all k. (3.8)

If u ≡ 0 in Ω, then
∫
Ω
V (x)u2

k dx → 0 as k → ∞, and by (3.8) we obtain∫
Ω
|∇uk|2 dx +

∫
Ω
|∇uk|p dx → 0 or

∫
Ω
Φp(|∇uk|) dx → 0 as k → ∞. Combining

that fact with relation (2.6), we infer that uk converges strongly to 0 in D1,Φp

0 (Ω),
and consequently in D1,p

0 (Ω) and D1,2
0 (Ω).

Thus we deduce that

0 < λ

∫
Ω

V (x)u2
k dx−

∫
Ω

|∇uk|2 dx =

∫
Ω

|∇uk|p dx −→ 0

as k → ∞. Next, we can apply a similar argument as the one used in the proof
of Lemma 3.6 in order to arrive at a contradiction. Consequently, u 6= 0.

Letting k → ∞ in (3.8), we deduce that∫
Ω

|∇u|2 dx+

∫
Ω

|∇u|p dx ≤ λ

∫
Ω

V (x)u2 dx.

If we have the equality above, then u ∈ Nλ and everything is clear. Otherwise, if
we have ∫

Ω

|∇u|2 dx+

∫
Ω

|∇u|p dx < λ

∫
Ω

V (x)u2 dx,

then we will show that we will arrive at a contradiction. We assume that∫
Ω

|∇u|2 dx+

∫
Ω

|∇u|p dx < λ

∫
Ω

V (x)u2 dx. (3.9)

Let t > 0 be such that tu ∈ Nλ; that is, t = (
λ
∫
Ω V (x)u2 dx−

∫
Ω |∇u|2 dx∫

Ω |∇u|p dx
)1/(p−2). Note

that, by (3.9) and 1
p−2

< 0, we get t ∈ (0, 1). Finally, since tu ∈ Nλ with t ∈ (0, 1),

we have

0 < m ≤ Jλ(tu) =
(1
p
− 1

2

)∫
Ω

∣∣∇(tu)
∣∣p dx = tp

(1
p
− 1

2

)∫
Ω

|∇u|p dx

≤ tp lim inf
k→∞

Jλ(uk) = tpm < m,

a contradiction. Thus (3.9) cannot hold true. Therefore, u ∈ Nλ, and by

Jλ(u) ≤ lim inf
k→∞

Jλ(uk) = m,

we conclude that Jλ(u) = m. The proof of Lemma 3.7 is complete. �

The case p ∈ (2, N).

Lemma 3.8. The Nehari manifold Nλ is bounded in D1,Φp

0 (Ω) provided p ∈
(2, N).
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Proof. First, we prove that if {un}n ⊂ Nλ, then {
∫
Ω
|∇un|2 dx}n is bounded.

Assume the contrary; that is,
∫
Ω
|∇un|2 dx → +∞ as n → ∞.

Let wn := un/(
∫
Ω
|∇un|2 dx)1/2. Then

∫
Ω
|∇wn|2 dx = 1 for any n, which means

that {wn}n is bounded in D1,2
0 (Ω). Thus there exists w ∈ D1,2

0 (Ω) such that wn

converges weakly to w in D1,2
0 (Ω),

∫
Ω
V (x)w2

n dx →
∫
Ω
V (x)w2 dx, and wn(x) →

w(x) for a.e. x ∈ Ω as n → ∞.
Since un ∈ Nλ, for each n, it follows that (3.3) holds true for un, or

λ
∫
Ω
V w2

n dx > 1 for each n. Passing to the limit as n → ∞, we obtain that

λ

∫
Ω

V (x)w2 dx ≥ 1. (3.10)

On the other hand, since un ∈ Nλ, for each n, and p ∈ (2, N), we have∫
Ω

|∇wn|p dx =
(∫

Ω

|∇un|2 dx
)(2−p)/2(

λ

∫
Ω

V (x)w2
n dx− 1

)
→ 0 as n → ∞.

(3.11)

Relation (3.11) implies that wn converges strongly to 0 in D1,p
0 (Ω). In particular,

this means that wn(x) → 0 for a.e. x ∈ Ω, and consequently w = 0, which contra-
dicts (3.10). It follows that {

∫
Ω
|∇un|2 dx}n is bounded provided that {un}n ⊂ Nλ.

We recall that∫
Ω

|∇u|2 dx ≥ λ1

∫
Ω

V (x)u2 dx for any u ∈ D1,2
0 (Ω)

and that Nλ ⊂ D1,Φp

0 (Ω) ⊂ D1,2
0 (Ω), and consequently∫

Ω

|∇un|2 dx ≥ λ1

∫
Ω

V (x)u2
n dx for any n.

Thus the sequence {
∫
Ω
V (x)u2

n dx}n is bounded. Since un ∈ Nλ for each n, we
deduce that the sequence {

∫
Ω
|∇un|p dx}n is bounded, too. It follows that actually

{
∫
Ω
Φp(|∇un|) dx}n is bounded, which, in view of relations (2.6) and (2.7), shows

that {un}n is bounded in D1,Φp

0 (Ω). This completes the proof of Lemma 3.8. �

Lemma 3.9. If p ∈ (2, N), then m ∈ (−∞, 0).

Proof. We already pointed out that m < 0. We will show that m 6= −∞. By
Lemma 3.8 there exists a positive constant M such that ‖u‖Φp ≤ M for every
u ∈ Nλ. Using (2.6) and (2.7), we deduce that there exists a positive constant M1

such that
∫
Ω
|∇u|p dx ≤ M1 for all u ∈ Nλ. Since p ∈ (2, N), the above inequality

yields Jλ(u) = (1
p
− 1

2
)
∫
Ω
|∇u|p dx ≥ (1

p
− 1

2
)M1.

We obtain in this way that Jλ is bounded from below on Nλ, which implies
that m 6= −∞. Thus m ∈ (−∞, 0), and the proof of Lemma 3.9 is complete. �

Lemma 3.10. There exists u ∈ Nλ such that Jλ(u) = m provided that p ∈ (2, N).

Proof. Let {un}n ⊂ Nλ be a minimizing sequence for Jλ on Nλ; that is,

Jλ(un) =
(1
p
− 1

2

)∫
Ω

|∇un|p dx → m as n → ∞.
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Since by Lemma 3.8 we have that Nλ is bounded, we deduce that there exists

u0 ∈ D1,Φp

0 (Ω) such that un converges weakly to u0 in D1,Φp

0 (Ω), and consequently
in D1,2

0 (Ω) and D1,p
0 (Ω), and

∫
Ω
V (x)u2

n dx →
∫
Ω
V (x)u2

0 dx as n → ∞. Taking
into account the above pieces of information, we deduce that∫

Ω

|∇u0|2 dx ≤ lim inf
n→∞

∫
Ω

|∇un|2 dx

and that (1
2
− 1

p

)(∫
Ω

|∇u0|2 dx− λ

∫
Ω

V (x)u2
0 dx

)
≤ lim inf

n→∞

(1
2
− 1

p

)(∫
Ω

|∇un|2 dx− λ

∫
Ω

V (x)u2
n dx

)
.

The above facts yield(1
2
− 1

p

)(∫
Ω

|∇u0|2 dx− λ

∫
Ω

V (x)u2
0 dx

)
≤ lim inf

n→∞
Jλ(un) = m < 0. (3.12)

Thus ∫
Ω

|∇u0|2 dx < λ

∫
Ω

V (x)u2
0 dx,

and then u0 6= 0.
By the fact that un ∈ Nλ for every n, we have∫

Ω

|∇un|p dx+

∫
Ω

|∇un|2 dx = λ

∫
Ω

V (x)u2
n dx, ∀n.

Letting n → ∞ in the above relation and taking into account that un converges
weakly to u0 in D1,p

0 (Ω) and D1,2
0 (Ω) and

∫
Ω
V (x)u2

n dx →
∫
Ω
V (x)u2

0 dx as n → ∞,
we get ∫

Ω

|∇u0|p dx+

∫
Ω

|∇u0|2 dx ≤ λ

∫
Ω

V (x)u2
0 dx. (3.13)

Assume by contradiction that in (3.13) the strict inequality holds; that is,∫
Ω

|∇u0|p dx+

∫
Ω

|∇u0|2 dx < λ

∫
Ω

V (x)u2
0 dx. (3.14)

Taking

t0 =
(λ ∫

Ω
V (x)u2

0 dx−
∫
Ω
|∇u0|2 dx∫

Ω
|∇u0|p dx

)1/(p−2)

,

we have t0u0 ∈ Nλ, and it follows by (3.14) that t0 > 1. Then some simple
computations yield

Jλ(t0u0) =
(1
2
− 1

p

)
t20

(∫
Ω

|∇u0|2 dx− λ

∫
Ω

V (x)u2
0 dx

)
<

(1
2
− 1

p

)(∫
Ω

|∇u0|2 dx− λ

∫
Ω

V (x)u2
0 dx

)
≤ lim inf

n→∞
Jλ(un) = m,

which represents a contradiction. Thus inequality (3.14) cannot hold true.
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Therefore, in (3.13) only the equality holds true, which means u0 ∈ Nλ. By
(3.12) it follows that Jλ(u0) ≤ m, and thus Jλ(u0) = m. In other words, Jλ
attains its infimum on Nλ in u0. The proof of Lemma 3.10 is now complete. �

Proof of Proposition 3.3. Let u ∈ Nλ be such that Jλ(u) = m found in Lemma 3.7
for p ∈ (1, 2) and in Lemma 3.10 for p ∈ (2, N). Since u ∈ Nλ, we have∫
Ω
|∇u|2 dx +

∫
Ω
|∇u|p dx = λ

∫
Ω
V (x)u2 dx, and the fact that u 6= 0 implies∫

Ω
|∇u|2 dx < λ

∫
Ω
V (x)u2 dx. Let w ∈ D1,Φp

0 (Ω) be arbitrary but fixed. Then
there exists δ > 0 small enough such that, for each s ∈ (−δ, δ), function u + sw
does not vanish everywhere in Ω and λ

∫
Ω
V (x)(u+sw)2 dx >

∫
Ω
|∇(u+sw)|2 dx.

For each s ∈ (−δ, δ), let t(s) > 0 be given by

t(s) :=
(λ ∫

Ω
V (x)(u+ sw)2 dx−

∫
Ω
|∇(u+ sw)|2 dx∫

Ω
|∇(u+ sw)|p dx

)1/(p−2)

,

and note that t(s) · (u + sw) ∈ Nλ. Function t(s) is the composition of some
differentiable functions, and consequently it is differentiable. On the other hand,
since u ∈ Nλ, we infer that t(0) = 1.

Define γ : (−δ, δ) → R by γ(s) := Jλ(t(s)(u + sw)). Obviously, we have γ ∈
C1(−δ, δ) and γ(0) = mins∈(−δ,δ) γ(s). Thus we deduce

0 = γ′(0) =
〈
J ′
λ

(
t(0)u

)
, t′(0)u+ t(0)w

〉
= t′(0)

〈
J ′
λ(u), u

〉
+
〈
J ′
λ(u), w

〉
=

〈
J ′
λ(u), w

〉
,

where the latter equality holds because u ∈ Nλ. The proof of Proposition 3.3 is
now complete. �
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