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Abstract. In this paper, upper semicontinuity and continuity of the set-
valued metric generalized inverse T ∂ in nearly dentable spaces are investigated
using the methods of Banach space geometry. Moreover, it is proved that if
X is a nearly dentable space and if C is a closed convex set of X, then C is
approximatively compact if and only if PC(x) is compact for any x ∈ X.

1. Introduction and preliminaries

Let (X, ‖ · ‖) be a real Banach space. Let S(X) and B(X) denote the unit
sphere and the unit ball of X, respectively. By X∗ we denote the dual space of X.
Let N,R, and R+ denote the set of natural numbers, reals, and nonnegative reals,
respectively. By xn

w−→ x, we denote that {xn}∞n=1 is weakly convergent to x. By
C we denote the closed hull of C, while dist(x,C) denotes the distance of x and
C, and B(x, r) denotes the closed ball centered at x and of radius r > 0. Let
C ⊂ X be a nonempty subset of X. Then the set-valued mapping PC : X → C,

PC(x) =
{
z ∈ C : ‖x− z‖ = dist(x,C) := inf

y∈C
‖x− y‖

}
,

is said to be the metric projection operator from X onto C. A nonempty set
C is said to be a Chebyshev set if PC(x) is a singleton. A subspace L ⊂ X
is said to be a maximal subspace of X if there exists x∗ ∈ S(X∗) such that
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L = {x ∈ X : x∗(x) = 0}. Moreover, if a maximal subspace L is a Chebyshev set,
then L is said to be a Chebyshev maximal subspace.

It is well known that geometric properties of Banach spaces have also brought
great attention to many mathematicians, and such is the case, for example, of
differentiability (see [9]), nonsquareness (see [6]), the Mazur intersection property
(see [3]), the Banach–Saks property (see [2]), and the approximative compactness
(see [1], [4], [8], [11]).

Definition 1.1 (see [8]). A nonempty subset C of X is said to be approxima-
tively compact if, for any {yn}∞n=1 ⊂ C and any x ∈ X satisfying ‖x− yn‖ →
infy∈C ‖x − y‖ as n → ∞, the sequence {yn}∞n=1 has a subsequence converging
to an element in C. Also, X is considered approximatively compact if every
nonempty closed convex subset of X is approximatively compact.

Definition 1.2. A Banach space X is said to be nearly dentable if, for any f ∈
S(X∗) and any open set UAf

⊃ Af , we have Af 6= ∅ and Af ∩co(B(X)\UAf
) = ∅,

where Af = {x : f(x) = ‖x‖ = 1}.

In the present article, we present the history of near dentability and related
notions. This notion was introduced in [13] as a property of Banach spaces that
guarantees that the metric projection operator is upper-semicontinuous. By the
James theorem, it is easy to see that if X is a nearly dentable space, then X is
reflexive; Shang, Cui, and Fu in [13] proved that X is approximatively compact
if and only if X is a nearly dentable space and if X is a nearly strictly convex
space. In 2015, Shang and Cui [12] proved that if X is a nearly dentable space
and if H is a hyperplane of X, then H is approximatively compact if and only if
PH(x) is compact for any x ∈ X.

Definition 1.3 (see [1, p. 39]). Set-valued mapping F : X → Y is said to be
upper-semicontinuous at x0 if, for each norm open set W with F (x0) ⊂ W , there
exists a norm neighborhood U of x0 such that F (x) ⊂ W for all x in U . Note
that F is called lower-continuous at x0 if, for any y ∈ F (x0) and any {xn}∞n=1 in
X with xn → x0, there exists yn ∈ F (xn) such that yn → y as n → ∞. Also, F
is called continuous at x0 if F is upper-semicontinuous and is lower-continuous
at x0.

Let T be a linear bounded operator from X into Y . Let D(T ), R(T ), and N(T )
denote the domain, range, and null space of T , respectively. If N(T ) 6= {0} or
R(T ) 6= Y , then the operator equation Tx = y is generally ill posed; that is, there
exists y0 ∈ Y such that ‖Tx− y0‖ 6= 0 for any x ∈ D(T ). In applications, one
usually looks for the best approximative solution (bas) to the equation Tx = y.
A point x0 ∈ D(T ) is said to be the best approximative solution to the operator
equation Tx = y if

‖Tx0 − y‖ = inf
{
‖Tx− y‖ : x ∈ D(T )

}
and if

‖x0‖ = min
{
‖v‖ : v ∈ D(T ), ‖Tv − y‖ = inf

x∈D(T )
‖Tx− y‖

}
.
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Nashed and Votruba in [10] introduced the concept of the set-valued metric gen-
eralized inverse T as follows.

Definition 1.4 (see [10, p. 834]). Let X,Y be Banach spaces, and let T be a linear
operator from X to Y . The set-valued mapping T ∂ : Y → X defined by

T ∂(y) =
{
x0 ∈ D(T ) : x0 is a best approximative solution to T (x) = y

}
for any y ∈ D(T ∂) is said to be the (set-valued) metric generalized inverse of T ,
where

D(T ∂) =
{
y ∈ Y : T (x) = y has a best approximative solution in X

}
.

During the last three decades, the linear generalized inverses of linear operators
in Banach spaces and their applications have been investigated by many authors.
In 2008, Chen et al. [4] gave some necessary and sufficient conditions for T to have
a continuous Moore–Penrose metric generalized inverse in Banach spaces. Also in
2008, Hudzik, Wang, and Zheng [7] gave criteria for the metric generalized inverses
of linear operators and their homogeneous selections in terms of Moore–Penrose
conditions. Other research on generalized inverses of linear operators can be found
in [5], [14]–[16].

In the following, the author proves that if X is a nearly dentable space, then Y
is a Banach space, D(T ) is a closed subspace of X, and R(T ) is a Chebyshev max-
imal subspace of Y . Then the following statements are equivalent: (1) PR(T )(y)
is a compact set for any x ∈ T−1(PR(T )(y0)); (2) T

∂(y0) is a compact set and the
set-valued mapping T ∂ is upper-semicontinuous at y0; (3) T ∂(y0) is a compact
set, and the set-valued mapping T ∂|{αy0:α∈R} is continuous at y0. Moreover, it is
proved that if X is a nearly dentable space, then Y is a Banach space, D(T ) is
a closed subspace of X, and R(T ) is a Chebyshev maximal subspace of Y . Then
the following statements are equivalent: (1) N(T ) is an approximatively compact
subspace of D(T ); (2) T ∂(y) is a compact set for any y ∈ Y , and the set-valued
mapping T ∂ is upper-semicontinuous; (3) T ∂(y) is a compact set for any y ∈ Y ,
and the set-valued mapping T ∂|{αy:α∈R} is continuous. Finally, the author proves
that if X is a nearly dentable space, then the set Af is compact if and only if x
is an H-point for any x ∈ Af .

2. Main results

In 2015, Shang and Cui [12] studied upper semicontinuity and continuity of
the set-valued metric generalized inverse T ∂ in approximatively compact Banach
spaces. Moreover, we know that if X is approximatively compact, then X is
nearly dentable. It is very natural to ask whether the set-valued metric generalized
inverse T ∂ is continuous for a nearly dentable Banach space. In Theorems 2.1
and 2.6, the author answers the question.

Theorem 2.1. Let X be a nearly dentable space, let Y be a Banach space, let
D(T ) be a closed subspace of X, and let R(T ) be a Chebyshev maximal subspace
of Y . Then the following statements are equivalent:

(1) PR(T )(y) is a compact set for any x ∈ T−1(PR(T )(y0));
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(2) T ∂(y0) is a compact set, and the set-valued mapping T ∂ is upper-
semicontinuous at y0;

(3) T ∂(y0) is a compact set, and the set-valued mapping T ∂|{αy0:α∈R} is con-
tinuous at y0.

In order to prove the theorem, we first give some lemmas.

Lemma 2.2. Let X be a Banach space, and let H be a Chebyshev maximal
subspace of X. Then the metric projector operator PH is continuous.

Proof. Since H is a Chebyshev maximal subspace of X, there exists x∗
0 ∈ S(X∗)

such that H = {x ∈ X : x∗
0(x) = 0}. Let xn → x as n → ∞. Pick zn ∈ H and

z ∈ H such that ‖xn − zn‖ = dist(xn, H) and ‖x − z‖ = dist(x,H). Since H
is a Chebyshev maximal subspace of X, we have zn = PH(xn) and z = PH(x).
Moreover, there exist yn ∈ S(X) and y ∈ S(X) such that

x− z = αy and xn − zn = αnyn

for all n ∈ N , where α ∈ R and {αn}∞n=1 ⊂ R. Then it is easy to see that

x− z =
x∗
0(x)

x∗
0(y)

y and xn − zn =
x∗
0(x)

x∗
0(yn)

yn. (2.1)

Let {y1,n}∞n=1 ⊂ S(X), and let x∗
0(y1,n) → 1 as n → ∞. Then

z1,n = x− x∗
0(x)

x∗
0(y1,n)

y1,n ∈ H and lim
n→∞

‖x− z1,n‖ =
∣∣x∗

0(x)
∣∣.

Therefore, by ‖x− z‖ = |x∗
0(x)|(‖y‖/|x∗

0(y)|) ≥ |x∗
0(x)|, we obtain ‖x − z‖ =

dist(x,H) = |x∗
0(x)|. Similarly, we have ‖xn− zn‖ = dist(xn, H) = |x∗

0(xn)| for all
n ∈ N . Therefore, by formula (2.1), we obtain |x∗

0(y)| = ‖y‖ = 1 and |x∗
0(yn)| =

‖yn‖ = 1 for all n ∈ N . We claim that y = yn for all n ∈ N . In fact, suppose that
y 6= y1. Then

z1,0 = x− x∗
0(x)

x∗
0(y1)

y1 ∈ H and ‖x− z1,0‖ =
∣∣x∗

0(x)
∣∣ = dist(x,H).

This implies that z1,0 ∈ PH(x) and z1,0 6= z. Hence we obtain that H is not a
Chebyshev subspace of X, which is a contradiction. Therefore, by formula (2.1)
and y = yn, we obtain

zn = xn −
x∗
0(x)

x∗
0(y)

y → x− x∗
0(x)

x∗
0(y)

y = z as n → ∞.

This implies that the projector operator PH is continuous. This completes the
proof of the lemma. �

Lemma 2.3. Let X be a nearly dentable Banach space, and let C be a closed
convex set of X. Then the following statements are equivalent:

(1) the set PC(x0) is compact;
(2) if {yn}∞n=1 ⊂ C and ‖x0 − yn‖ → infy∈C ‖x0 − y‖ as n → ∞, then the

sequence {yn}∞n=1 has a subsequence converging to an element in C.
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Proof. (1) ⇒ (2). Suppose that {yn}∞n=1 ⊂ C, that ‖x0 − yn‖ → infy∈C ‖x0 − y‖
as n → ∞, and that the sequence {yn}∞n=1 does not have a Cauchy subsequence.
Moreover, we may assume, without loss of generality, that x0 = 0. For clarity, we
will divide the proof into two parts.

Case I. Let {yn}∞n=1 ∩ PC(0) be an infinite set. Since PC(0) is a compact set,
the sequence {yn}∞n=1 has a subsequence converging to an element in C.

Case II. Let {yn}∞n=1 ∩ PC(0) be a finite set. Then we may assume without
loss of generality that {yn}∞n=1 ∩ PC(0) = ∅. We claim that, for any x ∈ PC(0),
there exists εx > 0 such that {yn}∞n=1 ∩ B(x, εx) = ∅. Otherwise, there exists a
subsequence {ynk

}∞k=1 of {yn}∞n=1 such that ynk
→ x as k → ∞. This implies that

the sequence {yn}∞n=1 has a subsequence converging to an element in C, which is
a contradiction. Hence

{yn}∞n=1 ∩
( ⋃
x∈PC(0)

{
z ∈ X : ‖x− z‖ < εx

})
= ∅. (2.2)

Moreover, we may assume without loss of generality that 0 /∈ C. Otherwise, it is
easy to see that (2) is true. Hence d = dist(0, C) > 0. This implies that

intB(0, d) ∩ C = ∅ and B(0, d) ∩ C = PC(0).

Therefore, by the separation theorem, there exists f ∈ S(X∗) such that

d = sup
{
f(x) : x ∈ intB(0, d)

}
≤ inf

{
f(x) : x ∈ C

}
.

Therefore, by intB(0, d) = B(0, d), we have

d = sup
{
f(x) : x ∈ B(0, d)

}
≤ inf

{
f(x) : x ∈ C

}
.

Since PC(0) ⊂ C, we get f(x) ≥ d for any x ∈ PC(0). Since PC(0) ⊂ B(0, d), we
have f(x) ≤ d for any x ∈ PC(0). This implies that f(x) = d for any x ∈ PC(0).
Hence PC(0) ⊂ {x ∈ B(0, d) : f(x) = d}. Moreover, since B(0, d) ∩ C = PC(0),
we obtain that dist(y, C) > 0 for any y ∈ {x ∈ B(0, d) : f(x) = d}\PC(0). Let
4εy = dist(y, C) for any y ∈ {x ∈ B(0, d) : f(x) = d}\PC(0). Then

{yn}∞n=1 ∩
{
z ∈ X : ‖z − y‖ < 2εy

}
= ∅ (2.3)

for any y ∈ {x ∈ B(0, d) : f(x) = d}\PC(0). Hence we define a sequence {zn}∞n=1,
where

zn =
nd

n+ 1
· yn
‖yn‖

, n ∈ N.

Then

‖zn − yn‖ =
∥∥∥ nd

n+ 1
· yn
‖yn‖

− yn

∥∥∥ =
∣∣∣ nd

(n+ 1)‖yn‖
− 1

∣∣∣ · ‖yn‖ → 0 (2.4)

and

f(zn) = f
( nd

n+ 1
· yn
‖yn‖

)
=

nd

n+ 1
f
( yn
‖yn‖

)
< d. (2.5)

Therefore, by formulas (2.4) and (2.5), we have zn /∈ {x ∈ B(0, d) : f(x) = d}
and zn ∈ B(0, d). Noticing formula (2.4), we then get, for any y ∈ {x ∈ B(0, d) :
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f(x) = d}\PC(0), that there exists ny ∈ N such that ‖zn − yn‖ < εy/4 whenever
n > ny. Therefore, by formula (2.3), we have

‖zn − y‖ ≥ ‖y − yn‖ − ‖yn − zn‖ ≥ εy −
εy
4

=
3

4
εy (2.6)

whenever n > ny. Since zn /∈ {x ∈ B(0, d) : f(x) = d} and zn ∈ B(0, d), it holds
that

min
{
‖z1 − y‖, ‖z2 − y‖, . . . , ‖zny − y‖

}
> 0 (2.7)

for any y ∈ {x ∈ B(0, d) : f(x) = d}\PC(0). Let

ηy = min
{3

4
εy,min

{
‖z1 − y‖, ‖z2 − y‖, . . . , ‖zny − y‖

}}
for any y ∈ {x ∈ B(0, d) : f(x) = d}\PC(0). Then ηy > 0. Therefore, by formulas
(2.6) and (2.7), we have

{zn}∞n=1 ∩
{
z ∈ X : ‖y − z‖ < ηy

}
= ∅ (2.8)

for any y ∈ {x ∈ B(0, d) : f(x) = d}\PC(0). Moreover, by formulas (2.2) and
(2.3), for any x ∈ PC(0), there exists nx ∈ N such that ‖zn − yn‖ < εx/4 whenever
n > nx. Therefore, by formula (2.2), we have

‖zn − x‖ ≥ ‖x− yn‖ − ‖yn − zn‖ ≥ εx −
1

4
εx =

3

4
εx

for any x ∈ PC(0). Moreover, by zn /∈ {x ∈ B(0, d) : f(x) = d},

min
{
‖z1 − x‖, ‖z2 − x‖, . . . , ‖znx − x‖

}
> 0

for any x ∈ PC(0). Let

ηx = min
{3

4
εx,min

{
‖z1 − x‖, ‖z2 − x‖, . . . , ‖znx − x‖

}}
for any x ∈ PC(0). Then ηx > 0. This implies that

{zn}∞n=1 ∩
{
z ∈ X : ‖x− z‖ < ηx

}
= ∅ (2.9)

for any x ∈ PC(0). Let

Vf =
( ⋃
y∈{x∈B(0,d):f(x)=d}\PC(0)

{
z ∈ X : ‖y − z‖ < ηy

})
∪
( ⋃
x∈PC(0)

{
z ∈ X : ‖x− z‖ < ηx

})
.

Then, by formulas (2.8) and (2.9), we have {zn}∞n=1 ∩ Vf = ∅.
Since ‖0− yn‖ → infy∈C ‖0− y‖ as n → ∞, it holds that the sequence {yn}∞n=1

is a bounded sequence. Since X is a nearly dentable space, X is a reflexive space.
Hence we may assume without loss of generality that yn →w y0 as n → ∞. Since
C is a closed convex set, we have that C is a weakly closed convex set. Hence
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y0 ∈ C. Moreover, by the Hahn–Banach theorem, there exists f0 ∈ S(X∗) such
that f0(y0) = ‖y0‖. Hence

dist(0, C) = lim
n→∞

‖0− yn‖ ≥ lim
n→∞

f0(yn − 0) = f0(y0) = ‖0− y0‖ ≥ dist(0, C).

This implies that y0 ∈ PC(0). Since yn →w y0 and ‖yn − zn‖ → 0 as n → ∞, we
obtain zn →w y0 as n → ∞. Since {zn}∞n=1 ⊂ B(0, d) and {zn}∞n=1 ∩ Vf = ∅, we
have{1

d
zn

}∞

n=1
⊂ 1

d
B(0, d) = B(X) and

{1

d
zn

}∞

n=1
∩ 1

d
Vf =

{1

d
zn

}∞

n=1
∩UAf

.

This implies that {zn/d}∞n=1 ⊂ B(X)\UAf
. Moreover, it is easy to see that UAf

⊃
Af . Since X is a nearly dentable space, we get

Af ∩ co
(
B(X)\UAf

)
= ∅.

Since X is a reflexive space, Af and co(B(X)\UAf
) are weakly compact. There-

fore, by the separation theorem, there exist g ∈ S(X∗) and r > 0 such that

inf
{
g(x) : x ∈ Af

}
− r ≥ sup

{
g(x) : x ∈ co

(
B(X)\UAf

)}
. (2.10)

Since {zn/d}∞n=1 ⊂ B(X)\UAf
and y0/d ∈ Af , by formula (2.10), it holds that

g
(1
d
y0

)
− r ≥ sup

{
g(x) : x ∈

{1

d
zn

}∞

n=1

}
.

Then g(y0)− r/d ≥ g(zn) for all n ∈ N , which contradicts zn →w y0 as n → ∞.
Hence the sequence {yn}∞n=1 has a Cauchy subsequence. Then it is easy to see
that the sequence {yn}∞n=1 has a subsequence converging to an element in C.

(2) ⇒ (1) is obvious. This completes the proof of the lemma. �

Proof of Theorem 2.1. (1) ⇒ (2). Let y0 ∈ Y and PR(T )(x) be compact for any
x ∈ T−1(PR(T )(y0)). We next will prove that T ∂ is upper-semicontinuous at y0;
that is, for any {yn}∞n=1 ⊂ Y , yn → y0 ∈ Y , and any norm open set W with
T ∂(y0) ⊂ W , there exists a natural number N0 such that T ∂(yn) ⊂ W when-
ever n > N0. Otherwise, we may assume that there exists xn ∈ T ∂(yn) such
that {xn}∞n=1 ∩W = ∅. Since R(T ) is a Chebyshev maximal subspace of Y , by
Lemma 2.2 it holds that the metric projector operator PR(T ) is continuous. There-
fore, by yn → y0, we get PR(T )(yn) → PR(T )(y0) as n → ∞. Noticing that
Txn = PR(T )(yn), we obtain that Txn → PR(T )(y0) as n → ∞. Since T is a
bounded linear operator, it holds that N(T ) is a closed subspace of D(T ). Put

T : D(T )/N(T ) → R(T ), T [x] = Tx,

where [x] ∈ D(T )/N(T ) and x ∈ D(T ). It is easy to see that R(T ) = R(T ).

Moreover, R(T ) = R(T ). In fact, suppose that R(T ) 6= R(T ). Then there exists

y′ ∈ R(T ) such that y′ /∈ R(T ). It is easy to see that {y ∈ R(T ) : ‖y′ − y‖ =
dist(y′, R(T ))} = ∅. This implies that R(T ) is not a Chebyshev subspace of Y ,

which is a contradiction. Since R(T ) = R(T ), we get that R(T ) is a Banach space.
It is, moreover, clear that T is a bounded linear operator and that N(T ) = {0}.
This implies that the bounded linear operator T is both injective and surjective.
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Therefore, by the inverse operator theorem, T
−1

is a bounded linear operator.
Hence

[xn] = T
−1(

PR(T )(yn)
)
→ T

−1(
PR(T )(y0)

)
= [x0] as n → ∞. (2.11)

This implies that ‖[xn]‖ → ‖[x]‖ as n → ∞. Noticing that

xn ∈ T ∂(yn),
∥∥[xn]

∥∥ = inf
z∈N(T )

‖xn + z‖, T [xn] = T (xn + z) = PR(T )(yn),

x0 ∈ T ∂(y0),
∥∥[x0]

∥∥ = inf
z∈N(T )

‖x0 + z‖, T [x0] = T (x0 + z) = PR(T )(y0),

it is easy to see that ‖[xn]‖ = ‖xn‖ and ‖[x0]‖ = ‖x0‖. Since ‖[xn]‖ → ‖[x0]‖,
‖[xn]‖ = ‖xn‖, and ‖[x0]‖ = ‖x0‖, we have ‖xn‖ → ‖x0‖ as n → ∞. We will
derive a contradiction for each of the following two cases.

Case I. Let x0 = 0. Then, by formula (2.11), we have [xn] → [x0] = 0 as
n → ∞. This implies that ‖[xn]‖ → 0 as n → ∞. Hence ‖xn‖ → 0 as n → ∞.
Since x0 = 0, we have 0 ∈ T ∂(y) ⊂ W . Moreover, by ‖xn‖ → 0, we have xn → 0
as n → ∞, which contradicts {xn}∞n=1 ∩W = ∅.

Case II. Let x0 6= 0. Pick x′ ∈ T−1(PR(T )(y0)). Then, by the definition of the
set-valued metric generalized inverse, there exists πN(T )(x

′) ∈ PN(T )(x
′) such that

x0 = x′−πN(T )(x
′). Since PR(T )(yn) → PR(T )(y0), by the definition of the quotient

space, there exists x1n ∈ T−1(PR(T )(yn)) such that ‖[x′]− [x1n]‖ → 0 as n → ∞.
Hence we may assume without loss of generality that ‖x′ − x1n‖ → 0 as n → ∞.
Moreover, by the definition of the set-valued metric generalized inverse, there
exists πN(T )(x1n) ∈ PN(T )(x1n) such that xn = x1n − πN(T )(x1n). Therefore, by
‖x1n − πN(T )(x1n)‖ = ‖xn‖ → ‖x0‖ and ‖x′ − x1n‖ → 0 as n → ∞, we have∥∥x′ − πN(T )(x

′)
∥∥ ≤ lim inf

n→∞

∥∥x′ − πN(T )(x1n)
∥∥

≤ lim sup
n→∞

∥∥x′ − πN(T )(x1n)
∥∥

≤ lim sup
n→∞

[
‖x′ − x1n‖+

∥∥x1n − πN(T )(x1n)
∥∥]

≤ ‖x0‖ =
∥∥x′ − πN(T )(x

′)
∥∥.

This implies that ‖x′ − πN(T )(x1n)‖ → ‖x′ − πN(T )(x
′)‖ as n → ∞. Since the set

PN(T )(x
′) is compact, by Lemma 2.3, the sequence {πN(T )(x1n)}∞n=1 has a Cauchy

subsequence. Hence we may assume without loss of generality that πN(T )(x1n) →
x ∈ N(T ) as n → ∞. Then ‖x′ − x‖ = ‖x′ − πN(T )(x

′)‖. This implies that
x′ − x ∈ T ∂(y0). Since xn = x1n − πN(T )(x1n) → x′ − x as n → ∞, there exists
n0 ∈ N such that xn ∈ W whenever n > n0, which is a contradiction. Hence the
set-valued mapping T ∂ is upper-semicontinuous at y0.

Pick x ∈ T−1(PR(T )(y0)). Then, by the definition of the set-valued metric gener-
alized inverse, we have T ∂(y0) = x−PN(T )(x). Since PN(T )(x) is compact, T ∂(y0)
is a compact set.

(2) ⇒ (3). Suppose that T ∂(y0) is a compact set, let the set-valued mapping T ∂

be upper-semicontinuous at y0, and let yn → y0, where {yn}∞n=1 ⊂ {αy0 : α ∈ R}.
Then there exists {αn}∞n=1 ⊂ R such that yn = αny0. If y0 = 0, then it is easy
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to see that (3) is true. If y0 6= 0, then we may assume without loss of generality
that αn 6= 0. Hence, for any y ∈ R(T ), we have

‖yn − y‖ =
∥∥∥yn − αn

( 1

αn

y
)∥∥∥ = αn

∥∥∥y0 − ( 1

αn

y
)∥∥∥ ≥ αn dist

(
y0, R(T )

)
.

Moreover, since R(T ) is a Chebyshev subspace of Y , we get∥∥yn − αnPR(T )(y0)
∥∥ = αn

∥∥y0 − PR(T )(y0)
∥∥ = αn dist

(
y0, R(T )

)
.

This implies that∥∥yn − αnPR(T )(y0)
∥∥ = αn dist

(
y0, R(T )

)
= dist

(
yn, R(T )

)
. (2.12)

Since R(T ) is a Chebyshev subspace of Y , by formula (2.12), we have{
PR(T )(yn)

}∞
n=1

⊂
{
αPR(T )(y0) : α ∈ R

}
. (2.13)

Pick x0 ∈ T−1(PR(T )(y0)). Then Tx0 = PR(T )(y0). This implies that T (αnx0) =
αnPR(T )(y0). Therefore, by formula (2.12), we have αnx0 ∈ T−1(PR(T )(yn)). There-
fore, by the definition of the set-valued metric generalized inverse, we obtain that

T ∂(y0) = x0 − PN(T )(x0) and T ∂(yn) = αnx0 − PN(T )(αnx0) (2.14)

for all n ∈ N . Let us define a subspace

X0 =
{
αx0 + y : α ∈ R, y ∈ N(T )

}
of X. Then X0 is a closed subspace of X, and N(T ) is a maximal subspace of
X0. Hence there exists f0 ∈ S((X0)

∗) such that

N(T ) =
{
x ∈ X0 : f0(x) = 0

}
.

Moreover, by formula (2.14), it holds that T ∂(y0) ⊂ X0 and T ∂(yn) ⊂ X0 for all
n ∈ N . From the proof of Lemma 2.2, we get

PN(T )(x0) =
{
x0 −

f0(x0)

f0(x)
x ∈ X0 : f0(x) = ‖x‖ = 1

}
and

PN(T )(αnx0) =
{
αnx0 −

f0(αnx0)

f0(x)
x ∈ X0 : f0(x) = ‖x‖ = 1

}
.

Then

T ∂(y0) = x0 − PN(T )(x0)

= x0 −
{
x0 −

f0(x0)

f0(x)
x ∈ X0 : f0(x) = ‖x‖ = 1

}
=

{f0(x0)

f0(x)
x ∈ X0 : f0(x) = ‖x‖ = 1

}
.

Similarly, we have

T ∂(yn) = T ∂(αny0) =
{f0(αnx0)

f0(x)
x ∈ X0 : f0(x) = ‖x‖ = 1

}



NEAR DENTABILITY AND CONTINUITY OF THE SET-VALUED METRIC 517

for all n ∈ N . Since yn = αny0 and yn → y0, by y0 6= 0, we have αn → 1 as
n → ∞. Hence, for any (f0(x0)/f0(z))z ∈ T ∂(y0), we have

lim
n→∞

f0(αnx0)

f0(z)
z =

f0(x0)

f0(z)
z and

f0(αnx0)

f0(z)
z ∈ T ∂(αny0) = T ∂(yn).

This implies that the set-valued mapping T ∂|{αy0:α∈R} is lower-semicontinuous
at y0. Since the set-valued mapping T ∂|{αy0:α∈R} is upper-semicontinuous at y0,
we obtain that the set-valued mapping T ∂|{αy0:α∈R} is continuous at y0.

(3) ⇒ (1). By the definition of the set-valued metric generalized inverse, we
have T ∂(y0) = x−PN(T )(x) for any x ∈ T−1(PR(T )(y0)). Since T

∂(y0) is compact,
by T ∂(y0) = x − PN(T )(x), it holds that the set PN(T )(x) is a compact set. This
completes the proof. �

Theorem 2.4. Let X be a nearly dentable space, let Y be a Banach space, let
D(T ) be a closed subspace of X, and let R(T ) be a Chebyshev maximal subspace
of Y . Then the following statements are equivalent:

(1) N(T ) is an approximatively compact subspace of D(T );
(2) T ∂(y) is a compact set, and the set-valued mapping T ∂ is upper-

semicontinuous for any y ∈ Y ;
(3) T ∂(y) is a compact set, and the set-valued mapping T ∂|{αy:α∈R} is contin-

uous for any y ∈ Y .

Proof. By Theorem 2.1, it is easy to see that (1) ⇒ (2) and (2) ⇒ (3) is true.
We next will prove that (3) ⇒ (1) is true. Let x ∈ D(T ). Then Tx ∈ R(T ).
Therefore, by the definition of the set-valued metric generalized inverse, we have
T ∂(Tx) = x−PN(T )(x). Since T

∂(y0) is a compact set, by T ∂(y0) = x−PN(T )(x),
we obtain that PN(T )(x) is a compact set. Therefore, by Lemma 2.3, it holds that
if {yn}∞n=1 ⊂ N(T ) and if ‖x− yn‖ → infy∈N(T ) ‖x− y‖ as n → ∞, then the
sequence {yn}∞n=1 has a subsequence converging to an element in N(T ). This im-
plies that N(T ) is an approximatively compact subspace of D(T ). This completes
the proof. �

Theorem 2.5. Let X be a nearly dentable space, and let C be a closed convex
set of X. Then the following statements are equivalent:

(1) PC(x) is compact for any x ∈ X,
(2) C is approximatively compact.

Proof. By Lemma 2.3, it is easy to see that Theorem 2.5 is true. This completes
the proof. �

Theorem 2.6. Let X and Y be nearly dentable spaces, let D(T ) be a closed
subspace of X, and let R(T ) be a Chebyshev subspace of Y . Then the following
statements are equivalent:

(1) N(T ) is an approximatively compact subspace of D(T ), and R(T ) is an
approximatively compact subspace of Y ;

(2) T ∂(y) is a compact set, and the set-valued mapping T ∂ is upper-
semicontinuous for any y ∈ Y ;
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(3) T ∂(y) is a compact set, and the set-valued mapping T ∂|{αy:α∈R} is contin-
uous for any y ∈ Y .

Proof. (1) ⇒ (2). Since R(T ) is an approximatively compact subspace of Y and
is a Chebyshev subspace of Y , we obtain that the metric projector operator PR(T )

is continuous. Therefore, by the proof of Theorem 2.1, we obtain that (1) ⇒ (2)
is true.

(2) ⇒ (3). From the proof of Theorem 2.1, (2) ⇒ (3) is obvious.
(3) ⇒ (1). Since R(T ) is a Chebyshev subspace of Y , we obtain that, for any

y ∈ Y , PR(T )(y) is a compact set. Therefore, by Theorem 2.5, we obtain that
R(T ) is an approximatively compact subspace of Y . Therefore, by the proof of
Theorem 2.1, (3) ⇒ (1) is obvious. This completes the proof. �

Finally, we will discuss the relationship between near dentability and other
geometric properties.

Definition 2.7 (see [4, p. 294]). A point x ∈ S(X) is said to be an H-point if, for
{xn}∞n=1 ⊂ S(X) and xn →w x as n → ∞, we have xn → x as n → ∞. Moreover,
if the set of all H-points is equal to S(X), then X is said to have the H-property.

Theorem 2.8. Let X be a nearly dentable space. Then the set Af is compact if
and only if x is an H-point for any x ∈ Af .

Proof. ⇐= Since X is a nearly dentable space, we obtain that X is reflexive.
Hence, for any {xn}∞n=1 ⊂ Af , there exist x

′ ∈ B(X) and a subsequence {xnk
}∞k=1

of {xn}∞n=1 such that xnk
→w x′ as k → ∞. It is easy to see that x′ ∈ Af . Then

x′ is an H-point. Hence xnk
→ x′ as k → ∞. This implies that the set Af is

compact.
=⇒ Pick x0 ∈ Af and xn →w x0 as n → ∞, where {xn}∞n=1 ⊂ S(X). Then

f(x0) = 1. For clarity, we will divide the proof into two parts.
Case I. Let {xn}∞n=1 ∩ Af be an infinite set. Since the set Af is compact,

there exists a subsequence {xnk
}∞k=1 of {xn}∞n=1 such that {xnk

}∞k=1 is a Cauchy
sequence. Therefore, by xn →w x0, we have xnk

→ x0 as k → ∞. Then xn → x0

as n → ∞. Otherwise, there exist ε0 > 0 and a subsequence {xnl
}∞l=1 of {xn}∞n=1

such that ‖xnl
− x0‖ ≥ ε0. From the previous proof, there exists a subsequence

{xni
}∞i=1 of {xnl

}∞l=1 such that xni
→ x0 as i → ∞, which is a contradiction.

Case II. Let {xn}∞n=1 ∩Af be a finite set. Then we may assume without loss of
generality that {xn}∞n=1 ∩ Af = ∅. We next will prove that there exists x′ ∈ Af

such that x′ is an accumulation point of {xn}∞n=1. In fact, suppose that x is not
an accumulation point of {xn}∞n=1 for any x ∈ Af . Then there exists εx > 0 such
that {xn}∞n=1 ∩ {y ∈ X : ‖y − x‖ < εx} = ∅ for any x ∈ Af . Put

UAf
=

⋃
x∈Af

{
y ∈ X : ‖y − x‖ < εx

}
.

Then it is easy to see that UAf
⊃ Af and {xn}∞n=1 ⊂ B(X)\UAf

. Since X is a
nearly dentable space, we have

Af ∩ co
(
B(X)\UAf

)
= ∅.
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Since X is a nearly dentable space, we obtain that X is reflexive. Hence Af and
co(B(X)\UAf

) are weakly compact. Therefore, by the separation theorem, there
exist g ∈ S(X∗) and r > 0 such that

inf
{
g(x) : x ∈ Af

}
− r ≥ sup

{
g(x) : x ∈ co

(
B(X)\UAf

)}
. (2.15)

Since x0 ∈ Af , by formula (2.15), we have g(x0)− r ≥ g(xn) for all n ∈ N , which
is a contradiction. Hence there exists x′ ∈ Af such that x′ is an accumulation
point of {xn}∞n=1. Then there exists a subsequence {xnk

}∞k=1 of {xn}∞n=1 such that
xnk

→ x′ as k → ∞. Therefore, by xn →w x0, it holds that x0 = x′. Then
xnk

→ x0 as k → ∞. Therefore, by the proof of Case I, it is easy to see that
xn → x0 as n → ∞. Hence x0 is an H-point. This completes the proof. �

Corollary 2.9. Let X be a nearly dentable space. Then the following statements
are equivalent:

(1) the set Af is compact for any f ∈ S(X∗),
(2) X has the H-property.
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