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Abstract. We generalize a result of Kamalov and we show that if G is an
amenable discrete group with an action α on a finite nuclear unital C∗-algebra
A such that the reduced crossed product A oα,r G has property T , then G is
finite and A is finite-dimensional. As an application, an infinite discrete group
H is nonamenable if and only if the corresponding uniform Roe algebra C∗

u(H)
has property T .

1. Introduction

Property T for unital C∗-algebras was introduced by Bekka in [1] and has been
studied by many different people. Recently, it was shown by Kamalov (in [6]) that

“. . . if G is a discrete amenable group acting on a commutative unital C∗-algebra
A such that the crossed product has property T , then G is finite and A is finite-
dimensional.”

The aims of this paper is to extend this result to the case of finite nuclear uni-
tal C∗-algebras, and to give an application concerning a characterization of the
amenability of G. The main result of Brown in [2] is one of our essential tools.

2. The main results

Throughout this article, G is a discrete group acting on a unital C∗-algebra A
through an action α (by automorphisms).
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Let T (A) be the set of all traical states on A. For any τ ∈ T (A), we denote by
πτ : A → B(Hτ ) the GNS representation corresponding to τ , and we denote by
ξτ a norm 1 cyclic vector in Hτ with

τ(a) =
〈
πτ (a)ξτ , ξτ

〉
, a ∈ A.

Recall that A is said to be finite when T (A) separates points of A+ (see [4,
Theorem 3.4]), and that if T (A) = ∅, then A has property T (see [1, Remark 2]).
We use Tα(A) and Aoα,rG to denote the set of all α-invariant traical states on A
and the reduced crossed product of α, respectively. We will regard A ⊆ Aoα,r G
as well as G ⊆ Aoα,r G through their canonical embeddings.

Let us first give the following well-known facts. Since we cannot find the precise
references for them, we present their simple arguments here.

Lemma 2.1. We have the following:

(a) Tα(A) 6= ∅ if and only if T (Aoα,r G) 6= ∅;
(b) if Tα(A) separates points of A+, then Aoα,r G is finite;
(c) if G is amenable and if T (A) 6= ∅, then Tα(A) 6= ∅.

Proof. Let us denote B := A oα,r G, and let us consider E : B → A to be
the canonical conditional expectation (see e.g., [3, Proposition 4.1.9]). Then the
following hold.

(a) If σ ∈ T (B), then σ(αt(a)) = σ(tat−1) = σ(a) (a ∈ A; t ∈ G), which means
that σ|A ∈ Tα(A). Conversely, consider any τ ∈ Tα(A) and any x =

∑
s∈G ass ∈ B

such that as = 0 except for a finite number of s. Then

τ
(
E(x∗x)

)
= τ

(∑
r∈G

αr−1(a∗rar)
)
= τ

(∑
r∈G

ara
∗
r

)
= τ

(
E(xx∗)

)
.

Hence, τ ◦ E belongs to T (B), because it is continuous.
(b) Since E is faithful, we know thatB is a HilbertA-module under theA-valued

inner product

〈x, y〉A := E(x∗y), x, y ∈ B.

For any τ ∈ Tα(A), we consider B ⊗πτ Hτ to be the Hilbert space as in [8,
Proposition 4.5] (we regard a Hilbert C-module as a Hilbert space by considering
the conjugation of the inner product). If πB

τ is the canoincal representation of B
on B ⊗πτ Hτ , then (B ⊗πτ Hτ , π

B
τ ) coincides with (Hτ◦E , πτ◦E), because 1⊗ ξτ is

a cyclic vector for πB
τ such that the state defined by 1⊗ ξτ is τ ◦ E .

Let (H0, π0) :=
⊕

τ∈Tα(A)(Hτ , πτ ). As Tα(A) separates points of A+, one knows

that π0 is faithful. It is easy to verify that the representation πB
0 of B on B⊗π0H0

induced by π0 is also faithful, and that πB
0 coincides with

⊕
τ∈Tα(A) π

B
τ . Conse-

quently,
⊕

τ∈Tα(A)(Hτ◦E , πτ◦E) is faithful. This means that the subset {τ ◦ E : τ ∈
Tα(A)} of T (B) (see the argument of part (a)) separates points of B+.

(c) Notice that T (A) is a nonempty weak∗-compact convex subset of A∗ and
α induces an action of G on T (A) by continuous affine maps. Hence, Day’s fixed
point theorem (see [5, Theorem 1]) produces a fixed point τ0 ∈ T (A) for this
action. Obviously, τ0 ∈ Tα(A). �
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Wewarn the readers that part (c) above does not hold for nonunitalC∗-algebras.
Our main theorem concerns a relation between nuclearity and property T of

A oα,r G. We recall from [2, Theorem 5.1] that if A oα,r G is nuclear and has
property T , then

Aoα,r G = Bnt ⊕Bfd, (2.1)

where Bnt is a nuclear C∗-algebra with no tracial state and Bfd is a finite-
dimensional C∗-algebra (note that although all C∗-algebras in [2] are assumed
to be separable, [2, Theorem 5.1] is true in the nonseparable case because one
can use [3, Theorem 6.2.7] to replace [2, Theorem 4.2] in the proof of this result).
The following theorem implies that if G is infinite, then we arrive at one of the
extreme case of (2.1); namely, the algebra Bfd is zero. This proposition and its
proof are essential ingredients in the argument of our main theorem.

Proposition 2.2. Let G be an infinite discrete group acting on a unital C∗-algebra
A through an action α. If Aoα,r G is nuclear and has property T , then T (Aoα,r

G) = ∅.

Proof. Let Iα :=
⋂

τ∈Tα(A) kerπτ and Aα := A/Iα. Suppose on contrary that

T (Aoα,r G) 6= ∅. Then Iα 6= A because of Lemma 2.1(a). Moreover, as

kerπτ =
{
x ∈ A : τ(x∗x) = 0

}
, τ ∈ T (A),

we know that Iα is α-invariant, and hence α produces an action β of G on Aα.
Furthermore, every state in Tα(A) induces a state in Tβ(Aα). This tells us that
Tβ(Aα) will separate points of (Aα)+.

Since Aα oβ,r G is a quotient C∗-algebra of A oα,r G (see, e.g., [7]), the hy-
pothesis implies that Aα oβ,r G is nuclear and has property T . Therefore, [2,
Theorem 5.1] tells us that Aαoβ,rG = Dnt⊕Dfd, where Dfd is finite-dimensional
and T (Dnt) = ∅. However, the finiteness of Aα oβ,r G (which follows from
Lemma 2.1(b)) tells us that Dnt = (0). Consequently, Aα oβ,r G is a nonzero
finite-dimensional C∗-algebra, which contradicts the fact that G is infinite. �

Our main result concerns the other extreme case of (2.1)—that is, the algebra
Bnt is zero. In order words, it gives a situation (that extends the one in [6])
ensuring that the reduced crossed product is finite-dimensional.

Notice that the finiteness assumption of A in this theorem is indispensable.
In fact, if D is the direct sum of C with an infinite-dimensional nuclear unital
C∗-algebra having no tracial state, then D is not finite (although it has a tracial
state), the crossed product D oH of the trivial action of a finite group H on D
is nuclear and has property T , but D oH is infinite-dimensional. We will see at
the end of this article that the amenability of G is also indispensable (even if we
assume that Aoα,r G is nuclear).

Theorem 2.3. Let G be an amenable discrete group and let A be a finite nuclear
unital C∗-algebra. If there is an action α of G on A such that A oα,r G has
property T , then G is finite and A is finite-dimensional.

Proof. Let us set Iα :=
⋂

τ∈Tα(A) kerπτ and Aα := A/Iα. Denote B := A oα,r G.

The finiteness assumption of A as well as parts (a) and (c) of Lemma 2.1 imply
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that T (B) 6= ∅ and Iα 6= A. By Proposition 2.2, we know that the group G has to
be finite. Moreover, the argument of Proposition 2.2 tells us that Iα is α-invariant
and Bα := Aα oβ,r G is finite-dimensional. It suffices to show that Iα = {0}.

Suppose on the contrary that Iα 6= {0}. As in (2.1), we have

B = Bnt ⊕Bfd.

Thus, Iα oα,r G = Jnt ⊕ Jfd, with Jnt (respectively, Jfd) being a closed ideal of
Bnt (respectively, Bfd). The short exact sequence

0 → Iα → A → Aα → 0,

induces a short exact sequence of the corresponding reduced crossed products,
because G is amenable. From this, we obtain

Bα = B/(Iα oα,r G) = Bnt/Jnt ⊕Bfd/Jfd.

Hence, Bnt/Jnt is a quotient C∗-algebra of the finite-dimensional C∗-algebra Bα.
This forces Jnt = Bnt (otherwise, Bnt will have a tracial state). Therefore, Bα

∼=
Bfd/Jfd, or equivalently, Bfd

∼= Bα⊕Jfd (as Bfd is finite-dimensional). This gives

B ∼= Bα ⊕ Jfd ⊕Bnt = Bα ⊕ Jfd ⊕ Jnt = Bα ⊕ (Iα oα,r G).

Consequently, Iα oα,r G is a unital C∗-algebra and so is Iα.
Now, by the finiteness assumption of A, one knows that T (Iα) 6= ∅, and

Lemma 2.1(c) will produce an element τ ∈ Tα(Iα). Let Φ : A → M(Iα) = Iα
be the canonical G-equivariant ∗-epimorphism. If we define

τ ′(a) :=
〈
πτ

(
Φ(a)

)
ξτ , ξτ

〉
(a ∈ A),

then τ ′ ∈ Tα(A) and τ ′|Iα = τ . However, the existence of such a τ ′ contradicts
the definition of Iα. �

Corollary 2.4. Let G be an infinite discrete group and αG be the left translation
action of G on `∞(G). The following statements are equivalent:

(1) G is nonamenable,
(2) `∞(G)oαG,r G does not have a tracial state,
(3) `∞(G)oαG,r G has strong property T (see [9]),
(4) `∞(G)oαG,r G has property T ,
(5) there is a finite nuclear unital C∗-algebra A and an action α of G on A

such that Aoα,r G has property T .

Proof. If G is nonamenable, then TαG
(`∞(G)) = ∅ and Lemma 2.1(a) tells us

that statement (2) holds. On the other hand, if `∞(G) oαG,r G does not have a
tracial state, then [9, Proposition 5.2] gives statement (3). Moreover, a strong
property T C∗-algebra clearly has property T . Finally, suppose that statement
(5) holds but G is amenable. Then Theorem 2.3 produces the contradiction that
G is finite. �

The following comparison of Corollary 2.4 with the main result of Ozawa in [10]
(see also Theorem 5.1.6 and Proposition 5.1.3 of [3]) may be worth mentioning:

a discrete group G is exact if and only if `∞(G)oαG,r G is nuclear (or equivalently,
the action αG is amenable).
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This result tells us that one cannot weaken the assumption of G being amenable
in Theorem 2.3 to the assumptions that the action α is amenable and the crossed
product A oα,r G is nuclear. Indeed, if G is an exact nonamenable group, then
αG is amenable, the reduced crossed product `∞(G)oαG,r G has property T and
is nuclear, while `∞(G)oαG,r G is infinite-dimensional.
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