

Ann. Funct. Anal. 7 (2016), no. 3, 462–469 http://dx.doi.org/10.1215/20088752-3605699 ISSN: 2008-8752 (electronic) http://projecteuclid.org/afa

ABOUT LOCALLY *m*-CONVEX ALGEBRAS WITH DENSE FINITELY GENERATED IDEALS

HUGO ARIZMENDI PEIMBERT¹ and REYNA MARÍA PÉREZ-TISCAREÑO^{2*}

Communicated by Z. Lykova

ABSTRACT. It is well known, as a consequence of a theorem of Richard Arens, that a commutative Fréchet locally *m*-convex algebra E with unit does not have dense finitely generated ideals. We shall see that this result can no longer be true if E is not complete and metrizable. We observe that the same is true for the theorem of Arens; that is, this theorem can no longer be true if E is not complete and metrizable. Moreover, several conditions for a unital commutative (not necessarily complete) locally *m*-convex algebra are given, for which all maximal ideals have codimension one.

1. Preliminaries

Let E be a unital topological algebra over \mathbb{C} (the field of complex numbers) with separately continuous multiplication (in short, a topological algebra).

Let *B* be a complex commutative unital algebra. We denote by $\mathfrak{M}^{\#}(B)$ the set of all nonzero multiplicative linear functionals on *B* provided with the weakstar topology w^* . When *B* is a topological algebra, $\mathfrak{M}(B)$ denotes the topological subspace of $\mathfrak{M}^{\#}(B)$ consisting of all nonzero multiplicative continuous linear functionals on *B* provided with the weak-star topology w^* .

A locally pseudoconvex algebra is a topological algebra with a base of neighborhoods of zero consisting of balanced and pseudoconvex sets, that is, of sets U for which $\mu U \subset U$, whenever $|\mu| \leq 1$ and $U + U \subset \lambda U$ for some $\lambda \geq 2$. The topology of a locally pseudoconvex algebra can be defined by a family

Copyright 2016 by the Tusi Mathematical Research Group.

Received Nov. 3, 2015; Accepted Jan. 26, 2016.

^{*}Corresponding author.

²⁰¹⁰ Mathematics Subject Classification. Primary 46H05; Secondary 46H20.

Keywords. topological algebra, locally *m*-convex algebra, dense finitely generated ideals, theorem of Arens.

 $\{p_{\lambda} : \lambda \in \Lambda\}$ of k_{λ} -homogeneous seminorms with $k_{\lambda} \in (0,1]$ (a seminorm p is called k-homogeneous ($k \in (0,1]$) if $p(\mu a) = |\mu|^k p(a)$ for any $a \in E$ and any scalar μ). A locally pseudoconvex algebra E is called *locally m-pseudoconvex* if every seminorm in the family $\{p_{\lambda} : \lambda \in \Lambda\}$ is submultiplicative, and it is called *locally convex* if $k_{\lambda} = 1$ for each $\lambda \in \Lambda$. A locally convex algebra is called *m-convex* if every seminorm in the family $\{p_{\lambda} : \lambda \in \Lambda\}$ is submultiplicative; that is, $p_{\lambda}(xy) \leq p_{\lambda}(x)p_{\lambda}(y)$ for each $\lambda \in \Lambda$. A metrizable and complete algebra is called a *Fréchet algebra*.

Let I be a (nonempty) upward-directed set with the partial order " \prec ." So, for any $\alpha, \beta \in I$ there is a $\gamma \in I$ such that $\alpha \prec \gamma$ and $\beta \prec \gamma$. Let $(E_{\alpha})_{\alpha \in I}$ be a family of algebras, and for every $\alpha, \beta \in I$ with $\alpha \prec \beta$ let

$$f_{\alpha\beta}: E_\beta \to E_\alpha$$

be a homomorphism such that

(1) $f_{\alpha\alpha} = \mathrm{id}_{E_{\alpha}}$ for every $\alpha \in I$ and

and

(2) $f_{\alpha\gamma} = f_{\alpha\beta} \circ f_{\beta\gamma}$ for any $\alpha, \beta, \gamma \in I$ such that $\alpha \prec \beta \prec \gamma$.

The family of algebras $(E_{\alpha})_{\alpha \in I}$ with the maps $f_{\alpha\beta}$ defined above is called a *projective system of algebras*, and it is denoted by $(E_{\alpha}, f_{\alpha\beta})$.

Now, consider the Cartesian product algebra $F = \prod_{\alpha \in I} E_{\alpha}$ and the subset of F:

$$E = \left\{ x = (x_{\alpha}) \in F : x_{\alpha} = f_{\alpha\beta}(x_{\beta}) \text{ if } \alpha \prec \beta \text{ in } I \right\}.$$

By definition of the algebra operations in F and the hypothesis for the maps $f_{\alpha\beta}$, E is a subalgebra of F. The algebra E is called the *projective limit algebra* of the given projective system, and it is denoted by

$$E = \lim E_{\alpha}.$$

Given a projective system of algebras, we have a family of homomorphisms $\{\pi_{\alpha} : \alpha \in \Lambda\}$, such that

$$\pi_{\alpha}: E \to E_{\alpha}$$

for every $\alpha \in I$, where π_{α} is the restriction to E of the canonical projection map of F to E_{α} .

A projective system of topological algebras is a projective system of algebras $(E_{\alpha}, f_{\alpha\beta})$, where the E_{α} are topological algebras and the maps $f_{\alpha\beta}$ are continuous homomorphisms.

We endow $E = \lim_{\leftarrow} E_{\alpha}$ with the initial topology τ , defined by the maps π_{α} , and we call (E, τ) the *projective limit topological algebra* (see [3, p. 84]).

The following very important theorem is known as the *Arens–Michael theorem*, (see [3, pp. 88–90]).

Theorem 1.1. Every Fréchet locally *m*-convex algebra *E* is (within a topological algebraic isomorphism) the projective limit of a sequence of Banach algebras $\widehat{E_n}$, where $\widehat{E_n}$ denotes the completion of $E/\ker(\|\cdot\|_n)$.

Now, if we consider a Fréchet locally *m*-convex algebra E and for each $n \in \mathbb{N}$ the completion \widehat{E}_n of $E/\ker(\|\cdot\|_{\alpha})$, then

$$E = \lim_{\longleftarrow} \widehat{E_n}.$$

This expression is called the Arens-Michael decomposition of E.

2. About a theorem of Arens

Let E be a commutative topological algebra with unit e. In what follows, we will give some definitions which are necessary to understand the well-known theorem of Arens (see [5]):

(i) $(x_1, x_2, \ldots, x_n) \in E^n$ is regular if the ideal

$$x_1E + x_2E + \dots + x_nE$$

is equal to E.

(ii) $(x_1, x_2, \ldots, x_n) \in E^n$ is topologically regular if the closure of the ideal

$$x_1E + x_2E + \dots + x_nE$$

is equal to E.

It is easy to see that if $(x_1, x_2, \ldots, x_n) \in E^n$ is regular, then (x_1, x_2, \ldots, x_n) is topologically regular. The opposite implication is not true, in general.

In this section, E_{α} denotes the completion of $E/\ker(\|\cdot\|_{\alpha})$, and e_{α} denotes the unital element in E_{α} .

Theorem 2.1 (Arens). Let E be a commutative, Fréchet m-convex algebra with unit e, and let $x_1, x_2, \ldots, x_N \in E$ such that $(\pi_n(x_1), \ldots, \pi_n(x_N))$ is regular in E_n for each $n \in \mathbb{N}$. Then, (x_1, x_2, \ldots, x_N) is regular in E.

Corollary 2.2. Let E be a commutative, Fréchet m-convex algebra with unit e. Then, there are no dense finitely generated ideals in E.

Proof. We suppose that there exists a dense finitely generated ideal I; then $\overline{I} = E$, and hence there exists $(y_i) \subset I$ such that $y_i \to e$. If u_1, u_2, \ldots, u_n are the generators of I, then $y_i = x_1^i u_1 + \cdots + x_n^i u_n$ for each i, so $x_1^i u_1 + \cdots + x_n^i u_n \to e$ and by continuity of π_k we have that $\pi_k(x_1^i)\pi_k(u_1) + \cdots + \pi_k(x_n^i)\pi_k(u_n) \to e_k$. Now, as E_k is a Banach algebra, the set of invertible elements $\operatorname{Inv}(E_k)$ of E_k is open. Therefore, there is a neighborhood $O(e_k)$ of e_k such that $O(e_k) \subset \operatorname{Inv}(E_k)$ and by continuity of π_k there exists $m \in E$ such that $\pi_k(y_i) \in O(e_k) \subset \operatorname{Inv}(E_k)$ for every i > m. Hence, there exists $v \in E_k$ such that

$$v\big(\pi_k(x_1^i)\pi_k(u_1)+\cdots+\pi_k(x_n^i)\pi_k(u_n)\big)=e_k.$$

Hence, we conclude that $(\pi_k(u_1), \ldots, \pi_k(u_n))$ is regular for each k, and then by Theorem 2.1 (u_1, \ldots, u_n) is regular in E. Therefore, $e \in I$ and I = E, which is a contradiction.

For an algebra E, let rad E denote the topological radical, and let comm E denote the commutator ideal of E, that is, the closure of the two-sided ideal of E generated by the set $\{ab - ba : a, b \in E\}$. When $E/\operatorname{rad} E$ is commutative, E is called *topologically almost commutative*. In [1, Theorem 2], M. Abel and K. Jarosz generalized the previous result. They showed that if E is a complex unital locally m-pseudoconvex Fréchet algebra such that comm $E \neq E$ or E is almost topologically commutative, then every proper finitely generated two-sided ideal in E is contained in a closed maximal two-sided ideal of E and hence there are no dense finitely generated two-sided ideals in E. We shall see that we cannot remove completeness or metrizability from the hypothesis of the theorem of Arens (or from [1, Theorem 2]).

Example 2.3. Let \mathcal{E} be the entire function algebra on the complex plane endowed with the topology induced by the norm $||f||_N = \max_{|z| \leq N} |f(z)|$, where $f \in \mathcal{E}$ and N is a positive integer.

Let $f \in \mathcal{E}$ be nonconstant; then there exists $z_1 \in \mathbb{C}, |z_1| > N$ such that $|f(z_1)| > ||f||_N$. We consider $c \in \mathbb{C}$ such that $||f||_N < c < |f(z_1)|$ and $F : \mathcal{E} \to \mathbb{C}$ defined by $F(f) = f(z_1)$; F is a linear multiplicative functional on \mathcal{E} ; and

$$Z(F) = \left\{ f \in \mathcal{E} : f(z_1) = 0 \right\}$$

is a maximal ideal of \mathcal{E} . We have that F is not continuous since if we define $f_n = (\frac{f}{c})^n, n = 1, 2, \ldots$, we obtain that $||f_n||_N \to 0$ and $F(f_n) \to \infty$. Hence, Z(F) is not closed, and it is a dense maximal ideal. Moreover,

$$Z(f) = \left\{ f \in \mathcal{E} \colon f(z) = (z - z_1)h(z) \text{ with } h \in \mathcal{E} \right\};$$

hence, we have that $Z(f) = (z - z_1)\mathcal{E}$ and $\overline{(z - z_1)\mathcal{E}} = \mathcal{E}$ and so \mathcal{E} with this topology has dense finitely generated ideals. From Corollary 2.2 it follows that $(\mathcal{E}, \|\cdot\|_N)$ is not complete; therefore, we observe that we cannot remove the condition of completeness in the theorem of Arens.

Proposition 2.4. Let E be a commutative m-convex algebra with unit e and $\mathfrak{M}(E)$ compact. Then, the following sentences are equivalent:

- (1) E does not have proper dense finitely generated ideals.
- (1) If $x_1, \ldots, x_n \in E$ and $\sum_{i=1}^n |f(x_i)| > 0$ for each $f \in \mathfrak{M}(E)$, then there exist elements $y_1, \ldots, y_n \in E$ such that $\sum_{i=1}^n x_i y_i = e$.
- (3) Every maximal ideal of E is closed.

W. Zelazko [4, p. 297, Proposition 2] has the same result assuming completeness of E; we shall give the proof that (1) implies (2). The proofs of the other implications are the same as in the paper mentioned.

(1) implies (2). If we consider x_1, \ldots, x_n such that $\sum_{i=1}^n |f(x_i)| > 0$ for each $f \in \mathfrak{M}(E)$, then x_1, \ldots, x_n are not contained in any closed maximal ideal. We affirm that the ideal, I, generated by x_1, \ldots, x_n is dense since if we assume that I is not dense, then $\overline{I} \neq E$ and then E/\overline{I} is a commutative *m*-convex algebra such that $\mathfrak{M}(E/\overline{I}) \neq \emptyset$ (see [5, p. 95]). We can consider the quotient map $\pi : E \to E/\overline{I}$ which is continuous and $F \in \mathfrak{M}(E/\overline{I})$. We define $f = F \circ \pi$; f is by definition an element of $\mathfrak{M}(E)$ such that $|f(x_i)| = 0$ for every $i \in \{1, \ldots, n\}$, which is a

contradiction. So, since I is a dense finitely generated ideal, we have that I = E, and we conclude that there exist elements $y_1, \ldots, y_n \in E$ such that $\sum_{i=1}^n x_i y_i = e$.

Corollary 2.5. Let E be a commutative, locally m-convex algebra with unit e; $\mathfrak{M}(E)$ is compact and without proper dense finitely generated ideals. If $x_1, \ldots, x_N \in E$ is such that $(\pi_{\alpha}(x_1), \ldots, \pi_{\alpha}(x_N))$ is regular in E_{α} for each $\alpha \in \Lambda$, then (x_1, \ldots, x_N) is regular in E.

Proof. Let $y_1, \ldots, y_N \in E_\alpha$ be such that $\pi_\alpha(x_1)y_1 + \cdots + \pi_\alpha(x_N)y_N = e_\alpha$. Then by Proposition 2.4, it is enough to prove that $f(x_i) \neq 0$ for some $i \in \{1, \ldots, N\}$, for each $f \in \mathfrak{M}(E)$. If we assume that there exists $F \in \mathfrak{M}(E)$ such that $F(x_i) = 0$ for each $i \in \{1, \ldots, N\}$, then we define $F_1 : E/\ker(\|\cdot\|_\alpha) \to \mathbb{C}$, $F_1(\pi_\alpha(x)) =$ F(x). Clearly, F_1 is a continuous, linear multiplicative function, and hence it can be extended continuously to E_α ; that is, there exists a function $\widehat{F_1} \in \mathfrak{M}(E_\alpha)$ such that $\widehat{F_1}(\pi_\alpha(x_1)y_1 + \cdots + \pi_\alpha(x_N)y_N) = 0$ (by definition of $\widehat{F_1}$), but since $\pi_\alpha(x_1)y_1 + \cdots + \pi_\alpha(x_N)y_N = e_\alpha$, we have that

$$\widehat{F_1}\big(\pi_\alpha(x_1)y_1 + \dots + \pi_\alpha(x_N)y_N\big) = 1,$$

which is a contradiction. So we conclude that $f(x_i) \neq 0$ for some $i \in \{1, \ldots, N\}$ and for every $f \in \mathfrak{M}(E)$.

Corollary 2.6. Let E be a commutative m-convex algebra with unit and $\mathfrak{M}(E)$ compact. Suppose that one of the following holds:

- (1) E has maximal ideals which are not closed.
- (2) $\mathfrak{M}(E) \neq \mathfrak{M}^{\#}(E).$

Then, the theorem of Arens for E does not follow.

Proof. We suppose that E satisfies (1). Then, by Proposition 2.4, we have that E has proper dense finitely generated ideals. Now, if (2) is true, then there are in E maximal ideals which are not closed. From there, the assumption of Corollary 2.2 does not follow, and hence the theorem of Arens does not follow.

Corollary 2.7. Let *E* be a commutative, Fréchet, *m*-convex algebra with unit *e*. If $\mathfrak{M}(E)$ is compact, then $\mathfrak{M}(E) = \mathfrak{M}^{\#}(E)$.

Proof. Since the theorem of Arens is satisfied, by Corollary 2.6 we have that every maximal ideal of E is closed and that $\mathfrak{M}(E) = \mathfrak{M}^{\#}(E)$.

A unital topological algebra (E, τ) is called a *Q*-algebra if the set of invertible elements is open. If (E, τ) is a *Q*-algebra, then *E* does not have proper dense finitely generated ideals.

We remember that if E is a unital topological algebra, then the spectrum of $x \in E$ is defined by

 $\sigma(x) = \{\lambda \in \mathbb{C} : x - \lambda e \text{ is not invertible}\}.$

Proposition 2.8. Let (E, τ) be a commutative, m-convex algebra with unit e and $\mathfrak{M}^{\#}(E)$ compact. Then the following sentences are equivalent:

(1) There exists any topology τ^* stronger than τ such that (E, τ^*) is a Q-algebra.

- (2) If $x_1, \ldots, x_n \in E$ and $\sum_{i=1}^n |f(x_i)| > 0$ for each $f \in \mathfrak{M}^{\#}(E)$, then there exist elements $y_1, \ldots, y_n \in E$ such that $\sum_{i=1}^n x_i y_i = e$.
- (3) Every maximal ideal of E is of codimension one.

Proof. (1) implies (2). Let $x_1, \ldots, x_n \in E$ be such that $\sum_{i=1}^n |f(x_i)| > 0$ for every $f \in \mathfrak{M}^{\#}(E)$. Then, x_1, \ldots, x_n is not contained in a maximal ideal. Thus, the ideal I generated by x_1, \ldots, x_n is not proper; that is, I = E.

(2) implies (3). Since we have that if $x \in E$ such that |f(x)| > 0 for every $f \in \mathfrak{M}^{\#}(E)$, then there exists $y \in E$ such that xy = e. We consider $\lambda \in \sigma(x)$. Then $x - \lambda e$ is not invertible, and there exists $f \in \mathfrak{M}^{\#}(E)$ such that $f(x - \lambda e) = 0$; it is $f(x) = \lambda$. So, $\sigma(x) = \hat{x}(\mathfrak{M}^{\#}(E))$, where $\hat{x}(\mathfrak{M}^{\#}(E)) = \{f(x) : f \in \mathfrak{M}^{\#}(E)\}$, and, as $\mathfrak{M}^{\#}(E)$ is compact, we have by [2, p. 54, Theorem 2] that every maximal ideal is of codimension one.

(3) implies (1). If $\lambda \in \sigma(x)$, then $x - \lambda e$ is not invertible and $x - \lambda e \in M$, where M is a maximal ideal of codimension one.

Then there exists $f \in \mathfrak{M}^{\#}(E)$ such that $f(x) = \lambda$. So, $\sigma(x) = \hat{x}(\mathfrak{M}^{\#}(E))$ for each element $x \in E$, and hence by [2, p. 54, Theorem 2], there exists τ^* stronger than τ under which E is a Q-algebra.

We note by [2, p. 54, Theorem 2] that the condition $\mathfrak{M}^{\#}(E)$ compact in the hypothesis in the previous proposition can be changed by the condition $\widehat{x}(\mathfrak{M}^{\#}(E))$ bounded for every $x \in E$ or by $\widehat{x}(\mathfrak{M}^{\#}(E))$ compact for every $x \in E$.

Proposition 2.8 allows us to give the following reformulation of Theorem 2 of [2].

Corollary 2.9. The properties (i)–(vi) are equivalent for any commutative unital m-convex algebra (E, τ) .

- (i) E is an m-convex Q-algebra under some topology τ^* .
- (ii) E is an advertibly complete m-convex algebra under some topology τ^* , and the space $\mathfrak{M}^{\#}(E)$ is compact in the weak-star topology.
- (iii) The space $\mathfrak{M}^{\#}(E)$ is compact in the weak-star topology, and for each element $x \in E$ the spectrum $\sigma(x) = \widehat{x}(\mathfrak{M}^{\#}(E))$.
- (iii)' $\mathfrak{M}^{\#}(E)$ is compact in the weak-star topology and for each $(x_1, \ldots, x_n) \equiv \bar{x}$, $\sigma(\bar{x}) = \hat{x}(\mathfrak{M}^{\#}(E))$, where

$$\sigma(\bar{x}) = \{ (\lambda_1, \dots, \lambda_n : (x_1 - \lambda_1 e, \dots, x_n - \lambda_n e) \text{ is not regular} \}$$

and

$$\widehat{\bar{x}}(\mathfrak{M}^{\#}(E)) = \left\{ \left(f(x_1), \dots, f(x_n) \right) : f \in \mathfrak{M}^{\#}(E) \right\}.$$

(iv) E is spectrally bounded and $\sigma(x) = \hat{x}(\mathfrak{M}^{\#}(E)).$

(v) For each $x \in E$ the spectrum $\sigma(x)$ is compact and $\sigma(x) = \hat{x}(\mathfrak{M}^{\#}(E))$.

(vi) E is an m-convex Q-algebra under some topology τ^* stronger than τ .

Furthermore, each one of these properties implies the following:

(vii) Every maximal ideal of E is of codimension one.

Proof. It is enough to prove that (iii) and (iii)' are equivalent. Clearly, (iii)' implies (iii). We consider $(\lambda_1, \ldots, \lambda_n) \in \sigma(\bar{x})$; then the ideal generated by $(x_1 - \alpha)$

 $\lambda_1 e, \ldots, x_n - \lambda_n e$ is contained in a maximal ideal M which is closed since, by (i), E is a Q-algebra and it is of codimension one by (vii). Then the projection

$$F: E \to E/M \cong \mathbb{C}$$

is a linear multiplicative functional of E. Therefore, $F(x_i - \lambda_i) = 0$ for each $i \in \{1, \ldots, n\}$ and $F(x_i) = \lambda_i$ for each $i \in \{1, \ldots, n\}$.

Now, we consider $(\lambda_1, \ldots, \lambda_n) \in \widehat{x}(\mathfrak{M}^{\#}(E))$; then $\lambda_i = F(x_i)$ for some $F \in \mathfrak{M}^{\#}(E)$ and $i \in \{1, \ldots, n\}$. We affirm that $(x_1 - F(x_1)e, \ldots, x_n - F(x_n)e)$ is not regular, since if $(x_1 - F(x_1)e, \ldots, x_n - F(x_n)e)$ is regular, then there exist $y_1, \ldots, y_n \in E$ such that

$$\sum_{i=1}^{n} (x_i - F(x_i)e) y_i = e.$$

Hence, $0 = F(\sum_{i=1}^{n} (x_i - F(x_i)e)y_i) = 1$, which is a contradiction. So,

 $(\lambda_1, \dots, \lambda_n) \in \sigma(\bar{x}).$

Next, we show an example of a commutative, complete *m*-convex algebra with dense finitely generated ideals, which was studied by W. Żelazko [4]. This is an example that shows that metrizability is needed in the hypothesis of the theorem of Arens.

Example 2.10. We consider

$$D = \left\{ (z_1, z_2) \in \mathbb{C}^2 : \frac{1}{2} \le |z_1|^2 + |z_2|^2 \le 1 \right\}$$

and

$$D_0 = \left\{ (z_1, z_2) \in \mathbb{C}^2 : \frac{1}{2} \le |z_1|^2 + |z_2|^2 < 1 \right\}.$$

Let *E* be the algebra of continuous functions on *D* and holomorphic on D_0 . We define a seminorm $\|\cdot\|_{\alpha}$ for each convergent sequence

$$\alpha = \left\{ (z_1^{(n)}, z_2^{(n)}) \right\} \subset D \quad \text{such that} \quad \lim_n (z_1^{(n)}, z_2^{(n)}) = (z_1, z_2), \quad z_1 \neq z_i, i = 1, 2$$

and

$$||f||_{\alpha} = \begin{cases} \sup_{n} |f(z_{1}^{(n)}, z_{2}^{(n)})|, & (z_{1}, z_{2}) \in D \setminus D_{0}, \\ \max(\sup_{n} |f(z_{1}^{(n)}, z_{2}^{(n)})|, \sup_{n} |f\frac{f(z_{1}, z_{2}^{n}) - f(z_{1}, z_{2})}{z_{2}^{n} - z_{2}}|, \sup_{n} |\frac{f(z_{1}^{n}, z_{2}) - f(z_{1}, z_{2})}{z_{1}^{n} - z_{1}}|) \\ \text{in another case.} \end{cases}$$

Then E is a complete m-convex algebra with the topology endowed by the seminorms $\{||f||_{\alpha}\}_{\alpha}$. Since every holomorphic function in D_0 can be extended only to one holomorphic function on

$$D_1 = \{(z_1, z_2) \in \mathbb{C}^2 : |z_1|^2 + |z_2|^2 < 1\},\$$

we have that $\mathfrak{M}^{\#}(E) = \overline{D_1}$ and $\mathfrak{M}(E) = D$. Moreover, Corollary 2.6 follows since $\mathfrak{M}(E)$ is compact. Thus, E has dense finitely generated ideals.

Acknowledgment. The first author's work was partially supported by Project PAPIIT: IN109714.

References

- M. Abel and K. Jarosz, "Topological algebras in which all maximal two-sided ideals are closed," in *Topological Algebras, Their Applications, and Related Topics*, Banach Center Publ. 67, Polish Acad. Sci., Warsaw, 2005, 35–43. Zbl 1091.46027. MR2143913. DOI 10.4064/bc67-0-3. 465
- H. Arizmendi, A. Carrillo, and R. M. Pérez, On maximal ideals of codimension one in m-convex algebras, Rend. Circ. Mat. Palermo 60 (2011), no. 1–2, 51–57. Zbl 1245.46040. MR2825689. DOI 10.1007/s12215-011-0026-6. 467
- A. Mallios, Topological Algebras: Selected Topics, North-Holland, Amsterdam, 1986. Zbl 0597.46046. MR0857807. 463
- W. Zelazko, On maximal ideals in commutative m-convex algebras, Stud. Math. 58 (1976), 291–298. Zbl 0344.46103. MR0435852. 465, 468
- W. Żelazko, Selected Topics in Topological Algebras, Aarhus Univ. Lectures Notes 31, Matematisk Institut, Aarhus Univ., Aarhus, 1971. Zbl 0221.46041. MR0448080. 464, 465

¹Institute of Mathematics, Universidad Nacional Autónoma de México, Area de la investigación científica, Circuito exterior, Cd. Universitaria, 04510, México D.F.

E-mail address: hpeimbert@gmail.com

²DEPARTAMENT OF MATHEMATICS, UNIVERSIDAD AUTÓNOMA METROPOLITANA (UAM), IZTAPALAPA CAMPUS, AV. SAN RAFAEL ATLIXCO NO. 186 COL. VICENTINA, ROOM AT-242, 09340, MÉXICO D.F.

E-mail address: reynapt@xanum.uam.mx