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Abstract. The main aim of this survey article is to present recent develop-
ments of matrix versions of the arithmetic–geometric mean inequality. Among
others, we show improvements and generalizations of the arithmetic–geometric
mean inequality for unitarily invariant norms via the Hadamard product, and
for singular values via the operator monotone functions.

1. Introduction

A capital letter means an n × n matrix in the matrix algebra Mn. For two
Hermitian matrices A, B, the order relation A ≥ B means, by definition, that
A − B is positive semidefinite. Incidentally, A ≥ 0 means that A is positive
semidefinite. Let us denote A > 0 if A is positive definite, that is, A is positive
semidefinite and invertible.

Matrix inequalities in this paper are of two kinds. One is based on the singular
values. For a matrix A ∈ Mn, the eigenvalues of |A| := (A∗A)1/2 are called the
singular values of A and are denoted by s(A) := (s1(A), s2(A), . . . , sn(A)), which
is arranged in decreasing order. For two matrices A,B ∈ Mn, the order relation
s(A) ≥ s(B) means that sj(A) ≥ sj(B) for j = 1, . . . , n. Notice the known fact
that

|A| ≥ |B| =⇒ s(A) ≥ s(B)
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and that the converse is true up to a unitarily equivalence; that is,

s(A) ≥ s(B) =⇒ U∗|A|U ≥ |B| for some unitary U .

Similarly, we arrange the eigenvalues of a Hermitian matrix A in decreasing order
and denote it by λ(A) = (λ1(A), λ2(A), . . . , λn(A)).

The other kind are unitarily invariant norm inequalities; that is, a norm |||·|||
is unitarily invariant if |||UAV ||| = |||A||| for all unitary U , V and all A ∈ Mn.
Let x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Rn be given vectors that are arranged
in decreasing order. We say that x weakly majorizes y, denoted by x �w y, if∑k

j=1 xj ≥
∑k

j=1 yj for all 1 ≤ k ≤ n. Then, by Fan’s dominance theorem, we
have

s(A) �w s(B) =⇒ |||A||| ≥ |||B|||
for all unitarily invariant norms. Hence it follows that the implication

|A| ≥ |B| =⇒ s(A) ≥ s(B) =⇒ |||A||| ≥ |||B|||

holds for all A,B ∈ Mn.
The main aim of this survey article is to present recent developments of the

arithmetic–geometric mean inequality based on the singular values and unitarily
invariant norms.

For positive real numbers a and b, the arithmetic–geometric mean inequality
says that

√
ab ≤ a+ b

2
.

It is also extended to complex numbers:

|ab| ≤ |a|2 + |b|2

2
. (1.1)

We would expect the following matrix inequality of (1.1):

|A∗B| ≤ AA∗ +BB∗

2
for A,B ∈ Mn. (1.2)

Unfortunately, we have a counterexample of (1.2). For example, put

A =

(
1 1
1 1

)
and B =

(
1 0
0 0

)
.

In [5], Bhatia and Kittaneh showed the arithmetic–geometric mean inequality for
the singular values corresponding to (1.1):

s(A∗B) ≤ s
(AA∗ +BB∗

2

)
holds for all matrices A,B ∈ Mn. Moreover, Bhatia and Davis [4] showed the
arithmetic–geometric mean inequality for matrices: for arbitrary matrices
A,B,X ∈ Mn,

2|||A∗XB||| ≤ |||AA∗X +XBB∗||| (1.3)

for every unitarily invariant norm. Mathias [13] gave a simple proof of (1.3) using
the Hadamard product.
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On the other hand, for two positive real numbers a and b, the Heinz mean in
the parameter r ∈ [0, 1] is defined as

Hr(a, b) :=
arb1−r + a1−rbr

2
.

The path of a Heinz mean interpolates between the geometric mean and the
arithmetic mean:

√
ab ≤ Hr(a, b) ≤

a+ b

2
for r ∈ [0, 1].

Bhatia and Davis [4, Theorem 2] extended this to the Heinz inequality for ma-
trices.

Theorem BD. For positive semidefinite A, B and arbitrary X ∈ Mn,

2|||A1/2XB1/2||| ≤ |||ArXB1−r + A1−rXBr||| ≤ |||AX +XB||| (1.4)

for all r ∈ [0, 1].

The following is known as the Hermite–Hadamard integral inequality for convex
functions: for a real-valued convex function f on [a, b],

f
(a+ b

2

)
≤ 1

b− a

∫ b

a

f(t) dt ≤ f(a) + f(b)

2
. (1.5)

In [11, Theorem 1], Kittaneh showed a refinement of the first inequality in (1.4) by
applying (1.5) to the convex function f(t) = |||AtXB1−t + A1−tXBt|||: for positive
semidefinite A, B, arbitrary X ∈ Mn, and r ∈ [0, 1],

2|||A1/2XB1/2||| ≤ 1

|1− 2r|

∣∣∣∫ 1−r

r

|||AνXB1−ν + A1−νXBν ||| dν
∣∣∣

(1.6)
≤ |||ArXB1−r + A1−rXBr|||

for every unitarily invariant norm. By virtue of the Hadamard product, Kaur,
Moslehian, Singh, and Conde [10, Theorem 4.1] showed a further refinement of
(1.6): let A,B,X ∈ Mn with A, B positive semidefinite. Then, for any real num-
bers α, β,

|||A
α+β
2 XB1−α+β

2 + A1−α+β
2 XB

α+β
2 |||

≤ 1

|α− β|

∣∣∣∣∣∣∣∣∣∫ β

α

(AvXB1−v + A1−vXBv) dv
∣∣∣∣∣∣∣∣∣ (1.7)

≤ 1

2
|||AαXB1−α + A1−αXBα + AβXB1−β + A1−βXBβ|||.

In fact, if α + β = 1 in (1.7), then we have a refinement of (1.6).
Next, in [11, Theorem 4], Kittaneh showed another refinement of the second

inequality in (1.4): for positive semidefinite A, B, arbitrary X, and r ∈ [0, 1],

|||ArXB1−r + A1−rXBr||| ≤ 4r0|||A1/2XB1/2|||+ (1− 2r0)|||AX +XB||| (1.8)
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for every unitarily invariant norm, where r0 = min{r, 1 − r}. Also, Kaur et al.
[10, Theorem 4.4] showed a further refinement of (1.8): let A,B,X ∈ Mn with A,
B positive semidefinite and X ∈ Mn. Then, for r ∈ [0, 1],

|||ArXB1−r + A1−rXBr||| ≤
∣∣∣∣∣∣4r0A 1

2XB
1
2 + (1− 2r0)(AX +XB)

∣∣∣∣∣∣
holds for every unitarily invariant norm, where r0 = min{r, |1

2
− r|, 1− r}.

Now, the arithmetic–geometric mean inequality (1.4) for matrices due to Bhatia
and Davis leads to

2|||AXB||| ≤ |||ArXB2−r + A2−rXBr||| ≤ |||A2X +XB2||| for 0 ≤ r ≤ 2. (1.9)

The right-hand side of (1.9) was generalized by Zhan [18, Theorem 6] as follows.

Theorem ZH. Let A,B,X ∈ Mn with A, B positive semidefinite. Then

|||ArXB2−r + A2−rXBr||| ≤ 2

t+ 2
|||A2X + tAXB +XB2||| (1.10)

for any real numbers r, t satisfying 1 ≤ 2r ≤ 3 and −2 < t ≤ 2.

In [15], Singh and Vasudeva showed an operator monotone function version of
Theorem ZH: if A,B,X ∈ Mn with A, B positive definite, and f is any operator
monotone function on (0,∞), then, for −2 < t ≤ 2,∣∣∣∣∣∣A 1

2f(A)Xf(B)−1B
3
2 + A

3
2f(A)−1Xf(B)B

1
2

∣∣∣∣∣∣
(1.11)

≤ 2

t+ 2
|||A2X + tAXB +XB2|||.

In fact, if f(x) = xr−1/2, then f is operator monotone for 1 ≤ 2r ≤ 3, and
(1.11) implies Theorem ZH. Afterward, Wang, Zou, and Jiang [17] improved The-
orem ZH as follows:

|||ArXB2−r + A2−rXBr|||
(1.12)

≤ 2(2r0 − 1)|||AXB|||+ 4− 4r0
t+ 2

|||A2X + tAXB +XB2|||

for 1 ≤ 2r ≤ 3 and −2 < t ≤ 2, where r0 = min{r, 2− r}.
Following [12], a continuous real-valued function f defined on an interval (a, b)

with a ≥ 0 is called a Kwong function if the matrix

Kf =
(f(λi) + f(λj)

λi + λj

)
i,j=1,2,...,n

is positive semidefinite for any (distinct) λ1, . . . , λn in (a, b). By the use of the
Kwong function, Najafi [14] proposed a more general norm inequality of the Heinz
inequality (1.4) as follows:∣∣∣∣∣∣f(A)Xg(B) + g(A)Xf(B)

∣∣∣∣∣∣ ≤ |||AX +XB||| (1.13)

for any continuous functions f and g with f(x)
g(x)

Kwong and f(x)g(x) ≤ x.

For a comprehensive inspection of the results concerning the above norm in-
equalities, we refer the reader to [9], [11], [12], and [15].
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We return to the arithmetic–geometric mean inequality for the singular values:
for positive semidefinite A,B ∈ Mn,

2s(A1/2B1/2) ≤ s(A+B). (1.14)

In [16, Theorem 3], Tao showed that

s(A
1
4B

3
4 + A

3
4B

1
4 ) ≤ s(A+B)

for any positive semidefinite A,B ∈ Mn.
In [3, Theorem 2], Audenaert showed a singular value inequality for Heinz

means (1.4), which is the affirmative answer to Zhan’s conjecture (see [19, Con-
jecture 4]).

Theorem AZ. Let A,B ∈ Mn be positive semidefinite. Then, for 0 ≤ r ≤ 1,

s(ArB1−r + A1−rBr) ≤ s(A+B). (1.15)

However, the singular value version of the left-hand sides of (1.4) is false. For
example, put

A =

2 4 2
4 8 4
2 4 4

 and B =

5 0 4
0 0 0
4 0 4


and 2s2(A

1/2B1/2) > s2(A
0.1B0.9 + A0.9B0.1) for r = 0.1 (see [3, Remark]).

Afterward, Bhatia and Kittaneh [6] proved that, for positive semidefinite
A,B ∈ Mn,

s(A
1
2B

3
2 + A

3
2B

1
2 ) ≤ 1

2
s
(
(A+B)2

)
. (1.16)

Moreover, Zhan posed the following conjecture (see [19, Conjecture 3]), that if
A,B ∈ Mn are positive semidefinite, then, for each 1 ≤ 2r ≤ 3 and −2 < t ≤ 2,

s(ArB2−r + A2−rBr) ≤ 2

t+ 2
s(A2 + tAB +B2). (1.17)

The inequality (1.17) was proved to hold for r = 1
2
, 1, 3

2
, and all −2 < t ≤ 2

by Dumitru, Levanger, and Visinescu [7]. Furthermore, it was shown that the
function f(t) = 2

t+2
λj(A

2 +B2 + t
2
AB + t

2
BA) is nonincreasing on (−2,∞).

The purpose of this survey article is to show some improvements and gener-
alizations of the unitarily invariant norm inequalities (1.9)–(1.13) via Hadamard
products, as well as the general singular value inequality for Theorem AZ, and
refine the Heinz mean inequality for the singular values.

2. Refinement of the Heinz mean inequality

First of all, we recall the norm of the Hadamard product multiplication. We
define the Hadamard product of A = (aij) and B = (bij) ∈ Mn to be A ◦ B =
(aijbij) ∈ Mn. Given A ∈ Mn, we define the linear map SA : Mn 7→ Mn by
SA(B) = A ◦B. Let us denote the spectral norm on Mn by ‖ · ‖, and define ‖SA‖
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the induced norm of SA to be ‖SA‖ := max{‖A ◦ B‖ : ‖B‖ ≤ 1}. Then, for any
unitarily invariant norm |||·|||,

|||A ◦B||| ≤ ‖SA‖|||B||| for all A,B ∈ Mn.

It follows from [13, Lemma 1.2] that

‖SA‖ = max
{ n∑

i=1

si(A ◦B) :
n∑

i=1

si(B) ≤ 1
}

for all A ∈ Mn. It is not easy to compute ‖SA‖ for a general matrix A, but, in
the special case that A is positive semidefinite, it is known that

‖SA‖ = max{aii : i = 1, . . . , n}.

This fact has been observed in [1, p. 363]; it also follows very easily from the
second part of Theorem 5.5.19 in [9]. So we pick it as a key lemma.

Lemma 2.1. If X = (xij) is positive semidefinite, then, for any matrix Y ,

|||X ◦ Y ||| ≤ max
1≤i≤n

xii|||Y |||.

We next cite the following lemma due to Zhan [18].

Lemma 2.2 ([18, Lemma 5]). Let σ1, σ2, . . . , σn > 0, and let r ∈ [−1, 1], −2 <
t ≤ 2. Then the n× n matrix ( σr

i + σr
j

tσiσj + σ2
i + σ2

j

)
is positive semidefinite.

By using Lemmas 2.1 and 2.2, we have the following result related to (1.12)
due to Wang, Zou, and Jiang [17], which removes the restrictions of t in Zhan’s
inequality (1.10).

Theorem 2.3 ([8, Theorem 2.1]). Let A,B,X ∈ Mn with A, B positive semidef-
inite, and let 1 ≤ 2r ≤ 3. Then, for β > 0,

|||ArXB2−r + A2−rXBr|||

≤
∣∣∣∣∣∣∣∣∣2(1− 2β + 2βr0)AXB +

4β(1− r0)

t+ 2
(A2X + tAXB +XB2)

∣∣∣∣∣∣∣∣∣
holds for −2 < t ≤ 2β − 2, where r0 = min{1

2
+ |1− r|, 1− |1− r|}.

By using (1.7), we have the following refinement of the Heinz inequality (1.9).

Theorem 2.4. Let A,B,X ∈ Mn such that A and B are positive semidefinite,
and let r ∈ [1

2
, 3
2
]. Then

2|||AXB||| ≤ 1

|2− 2r|

∣∣∣∣∣∣∣∣∣∫ 2−r

r

(AξXB2−ξ + A2−ξXBξ) dξ
∣∣∣∣∣∣∣∣∣

≤ 1

2

∣∣∣∣∣∣2AXB + (A2−rXBr + ArXB2−r)
∣∣∣∣∣∣ ≤ |||A2−rXBr + ArXB2−r|||.
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3. Generalized Zhan’s inequality

In this section, we show some generalized versions of Singh and Vasudeva’s
results (1.11). The following lemma is a Kwong function version of Lemma 2.2.

Lemma 3.1. Let σ1, σ2, . . . , σn be any positive real numbers, and let −2 < t ≤ 2.

If f and g are two continuous functions on (0,∞) such that f(x)
g(x)

is Kwong, then

the n× n matrix

W =
(f(σi)g

−1(σi) + f(σj)g
−1(σj)

σ2
i + tσiσj + σ2

j

)
i,j=1,2,...,n

is positive semidefinite.

Theorem 3.2. Let A,B,X ∈ Mn such that A, B are positive definite matrices. If

f and g are two continuous functions on (0,∞) such that h(x) = f(x)
g(x)

is Kwong,

then

(t+ 2)
∣∣∣∣∣∣A 1

2

[
f(A)Xg(B) + g(A)Xf(B)

]
B

1
2

∣∣∣∣∣∣ ≤ 2k|||A2X + tAXB +XB2|||
holds for any −2 < t ≤ 2, where

k = k(f, g;A,B) = max
{f(λ)g(λ)

λ

∣∣∣ λ ∈ σ(A) ∪ σ(B)
}
.

Remark 3.3. Theorem 3.2 is a stronger version of Singh and Vasudeva’s inequality
(1.11), which will be refined more in the next section.

We have shown the generalized Zhan’s inequality as Theorem 3.2 and the im-
proved Wang’s inequality as Theorem 2.3 when t ∈ (−2, 2β − 2] for β > 0.
Combining Theorems 2.3 and 3.2, we have the following theorem.

Theorem 3.4. Let A,B,X ∈ Mn such that A, B are positive definite, and let f ,

g be two continuous functions on (0,∞) such that h(x) = f(x)
g(x)

is Kwong. Then,

for β > 0,∣∣∣∣∣∣A 1
2

(
f(A)Xg(B) + g(A)Xf(B)

)
B

1
2

∣∣∣∣∣∣
≤ k

∣∣∣∣∣∣∣∣∣2(1− 2β + 2βr0)AXB +
4β(1− r0)

t+ 2
(A2X + tAXB +XB2)

∣∣∣∣∣∣∣∣∣
holds for 1 ≤ 2r ≤ 3, −2 < t ≤ 2β − 2, where r0 = min{1

2
+ |1− r|, 1− |1− r|},

k = k(f, g;A,B).

Take β = 1 in Theorem 3.4; then the following corollary is immediately ob-
tained.

Corollary 3.5. Let A,B,X ∈ Mn with A, B positive definite, and let f , g be

two continuous functions on (0,∞) such that h(x) = f(x)
g(x)

is Kwong. Then∣∣∣∣∣∣A 1
2

(
f(A)Xg(B) + g(A)Xf(B)

)
B

1
2

∣∣∣∣∣∣
≤ k

∣∣∣∣∣∣∣∣∣2(2r0 − 1)AXB +
4− 4r0
t+ 2

(A2X + tAXB +XB2)
∣∣∣∣∣∣∣∣∣

holds for 1 ≤ 2r ≤ 3, −2 < t ≤ 0, where r0 = min{1
2
+ |1 − r|, 1 − |1 − r|},

k = k(f, g;A,B).



MATRIX VERSIONS OF ARITHMETIC–GEOMETRIC MEAN INEQUALITIES 109

Let f be a positive operator monotone function on (0,∞), and let g(x) :=
x/f(x). Then f 2(x)/x is a Kwong function, so that f and g satisfy the conditions
of Theorem 3.4, and hence we have the following corollary.

Corollary 3.6. Let A,B,X ∈ Mn such that A, B are positive definite. If f is
an operator monotone function on (0,∞) such that f(t) > 0, then, for β > 0,∣∣∣∣∣∣A 1

2f(A)Xf(B)−1B
3
2 + A

3
2f(A)−1Xf(B)B

1
2

∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣∣∣2(1− 2β + 2βr0)AXB +
4β(1− r0)

t+ 2
(A2X + tAXB +XB2)

∣∣∣∣∣∣∣∣∣
holds for each 1 ≤ 2r ≤ 3 and −2 < t ≤ 2β − 2, where r0 = min{1

2
+ |1− r|, 1−

|1− r|}.

Take f(x) = log(1 + x) on (0,∞) and g(x) = 1 in Theorem 3.4. Then
f(x)g(x)−1 = f(x) is operator monotone, and hence, by Kwong [12], we have
the following corollary.

Corollary 3.7. Let A,B,X ∈ Mn with A, B positive semidefinite. Then, for
β > 0,∣∣∣∣∣∣A 1

2

(
log(I + A)X +X log(I +B)

)
B

1
2

∣∣∣∣∣∣
≤ k

∣∣∣∣∣∣∣∣∣2(1− 2β + 2βr0)AXB +
4β(1− r0)

t+ 2
(A2X + tAXB +XB2)

∣∣∣∣∣∣∣∣∣
holds for 1 ≤ 2r ≤ 3, −2 < t ≤ 2β − 2, where r0 = min{1

2
+ |1− r|, 1− |1− r|},

k = max { log(1+λ)
λ

| λ ∈ σ(A) ∪ σ(B)}.

Remark 3.8. In the infinite-dimensional case, the unitarily invariant norm |||·||| is
characterized by the invariance property |||UTV ||| = |||T ||| for all compact oper-
ators T in the norm ideal associated with |||·||| and unitary operators U , V on
a complex Hilbert space. The Heinz mean inequality for Hilbert space operators
has been shown in [10].

4. Refined Zhan’s inequality

In this section, we show a refined version of Zhan’s inequality (1.10). First of
all, we study the function at the right-hand side of the inequality (1.10).

Theorem 4.1. Let A,B,X ∈ Mn with A, B positive semidefinite. Suppose that

Ψ(t) =
2

t+ 2
|||A2X + tAXB +XB2|||, t ∈ (−2, 2].

Then Ψ(t) is monotone decreasing on (−2, 2]. In particular,

|||ArXB2−r + A2−rXBr||| ≤ 1

2
|||A2X + 2AXB +XB2|||

(4.1)
≤ 2

t+ 2
|||A2X + tAXB +XB2|||

holds for 1 ≤ 2r ≤ 3 and t ∈ (−2, 2].



110 J. I. FUJII ET AL.

Proof. It suffices to prove the monotonicity of Ψ(t). For any −2 < s < t ≤ 2,
there exists α ∈ (0, 1) such that 2

t+2
= 2α

s+2
. Then we have

Ψ(t) =
2

t+ 2
|||A2X + tAXB +XB2|||

=
∣∣∣∣∣∣∣∣∣ 2

t+ 2
(A2X +XB2) +

(
1− 2

t+ 2

)
2AXB

∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣ 2α

s+ 2
(A2X +XB2) +

(
1− 2α

s+ 2

)
2AXB

∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣ 2α

s+ 2
(A2X + sAXB +XB2) +

(
1− 2α

s+ 2
− αs

s+ 2

)
2AXB

∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣ 2α

s+ 2
(A2X + sAXB +XB2) + (1− α)2AXB

∣∣∣∣∣∣∣∣∣
≤ 2α

s+ 2
|||A2X + sAXB +XB2|||+ (1− α)2|||AXB|||

≤ 2

s+ 2
|||A2X + sAXB +XB2||| = Ψ(s),

where the last inequality follows from (1.9) and Theorem ZH. Therefore, Ψ(t) is
monotone decreasing on (−2, 2].

Besides, Zhan’s inequality and the monotonicity of Ψ(t) yield the inequality
(4.1). �

By Theorem 4.1, we have a refinement of Theorem 3.2.

Theorem 4.2. Suppose that A,B,X ∈ Mn such that A, B are positive definite,

and f , g are two continuous functions on (0,∞) such that h(x) = f(x)
g(x)

is Kwong.

Then∣∣∣∣∣∣A 1
2

(
f(A)Xg(B) + g(A)Xf(B)

)
B

1
2

∣∣∣∣∣∣ ≤ k(f, g;A,B)

2
|||A2X + 2AXB +XB2|||.

Remark 4.3. Theorem 4.2 can be seen as a refinement of (1.11). Let f be an
operator monotone function on (0,∞) and g(x) = x/f(x). Since f is operator
monotone, we have

√
x(f/g)(

√
x) = f 2(

√
x) is operator monotone. Hence it fol-

lows from Audenaert [3, Theorem 2.1] that f(x)/g(x) = f 2(x)/x is Kwong and
k(f, g;A,B) = 1, and this implies that, for −2 < t ≤ 2,∣∣∣∣∣∣A 1

2f(A)Xf(B)−1B
3
2 + A

3
2f(A)−1Xf(B)B

1
2

∣∣∣∣∣∣ ≤ 1

2
|||A2X + 2AXB +XB2|||

≤ 2

t+ 2
|||A2X + tAXB +XB2|||

holds for A,B,X ∈ Mn with A, B positive definite.

Using the method in the proof of Theorem 4.2 we again get the following
improvement of Najafi’s result (1.13).

Theorem 4.4. Suppose that A,B,X ∈ Mn such that A, B are positive definite.

If f and g are two continuous functions on (0,∞) such that h(x) = f(x)
g(x)

is Kwong,
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then ∣∣∣∣∣∣f(A)Xg(B) + g(A)Xf(B)
∣∣∣∣∣∣ ≤ k1

2
|||A2X + 2AXB +XB2|||

holds for k1 = max {f(λ)g(λ)
λ2 | λ ∈ σ(A) ∪ σ(B)}.

Example 4.5. Take f(x) = log(1 + x) and g(x) = x defined on (0,∞). Then
f(x)/g(x) is not operator monotone but Kwong. Theorem 4.2 leads to the fol-
lowing inequality: ∣∣∣∣∣∣A 1

2

(
log(I + A)XB + AX log(I +B)

)
B

1
2

∣∣∣∣∣∣
≤ log(1 + λ0)

2
|||A2X + 2AXB +XB2|||

for all matrices A,B,X ∈ Mn with A, B positive semidefinite, in which λ0 =
max {λ | λ ∈ σ(A) ∪ σ(B)}.

Example 4.6. Let s, r ∈ R. Since F (x) = xs−r defined on (0,∞) is Kwong if and
only if −1 ≤ s − r ≤ 1, it follows from Theorem 4.2 that, if A,B,X ∈ Mn with
A, B positive semidefinite and |s− r| ≤ 1, then∣∣∣∣∣∣A 1

2 (AsXBr + ArXBs)B
1
2

∣∣∣∣∣∣ ≤ k

2
|||A2X + 2AXB +XB2|||

for k = max{λs+r−1 | λ ∈ σ(A) ∪ σ(B)}. In particular, if we put r 7→ r − 1
2
and

s 7→ 3
2
− r in the above inequality for 1 ≤ 2r ≤ 3, then we have |r − s| ≤ 1 and

k = 1. Hence we have Zhan’s inequality (1.10) by Theorem 4.1.

5. Refined integral Heinz mean inequality

In this section, we improve the integral Heinz mean inequality (1.7) by Kaur
et al. [10]. By Lemmas 2.1 and 3.1, we have a stronger matrix version of (1.7).

Theorem 5.1. Let A,B,X ∈ Mn with A, B positive semidefinite. Then, for any
real positive numbers α and β,

1

|α− β|

∣∣∣∣∣∣∣∣∣∫ β

α

(AvXB1−v + A1−vXBv) dv
∣∣∣∣∣∣∣∣∣

≤ 1

4
|||2A

α+β
2 XB1−α+β

2 + 2A1−α+β
2 XB

α+β
2 + AαXB1−α + A1−αXBα

+ AβXB1−β + A1−βXBβ|||.

As a corollary of Theorem 5.1, we have a refinement of the left-hand sides of
the Heinz mean inequality (1.9).

Corollary 5.2. Let A,B,X ∈ Mn with A, B positive semidefinite and r ∈ [1
2
, 3
2
].

Then

2|||AXB||| ≤ 1

|2− 2r|

∣∣∣∣∣∣∣∣∣∫ 2−r

r

(AvXB2−v + A2−vXBv) dv
∣∣∣∣∣∣∣∣∣

≤ 1

2
|||2AXB + ArXB2−r + A2−rXBr||| ≤ |||ArXB2−r + A2−rXBr|||.
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Further,

lim
r→1

1

|2− 2r|

∣∣∣∣∣∣∣∣∣∫ 2−r

r

(AvXB2−v + A2−vXBv) dv
∣∣∣∣∣∣∣∣∣ = 2|||AXB|||.

By Theorem 5.1, we have the following integral inequalities as an improvement
of (1.4).

Corollary 5.3. Let A,B,X ∈ Mn with A, B positive semidefinite and r ∈ [0, 1].
Then

2|||A
1
2XB

1
2 ||| ≤ 1

|1− 2r|

∣∣∣∣∣∣∣∣∣∫ 1−r

r

(AvXB1−v + A1−vXBv) dv
∣∣∣∣∣∣∣∣∣

≤ 1

2
|||2A

1
2XB

1
2 + ArXB1−r + A1−rXBr|||

≤
∣∣∣∣∣∣α(ArXB1−r + A1−rXBr) + 2(1− α)A

1
2XB

1
2

∣∣∣∣∣∣ (1
2
≤ α ≤ 1

)
≤ |||ArXB1−r + A1−rXBr|||.

By the symmetry of the integral function and Theorem 5.1, we have the fol-
lowing corollary.

Corollary 5.4. Let A,B,X ∈ Mn with A, B positive semidefinite and r ∈ [0, 1].
Then

2|||A
1
2XB

1
2 |||

≤ 1

|1− 2r|

∣∣∣∣∣∣∣∣∣∫ 1−r

r

(AvXB1−v + A1−vXBv) dv
∣∣∣∣∣∣∣∣∣

≤ 1

4
|||4A

1
2XB

1
2 + A1−rXBr + ArXB1−r + A

1+2r
4 XB

3−2r
4 + A

3−2r
4 XB

1+2r
4 |||

≤ |||A1−rXBr + ArXB1−r|||.

6. The singular values inequality

In this section, we show a unified form of Heinz mean inequalities for singu-
lar values. The following results due to Tao [16, Theorem 1] and Audenaert [2,
Corollary 1] play an important role in what follows.

Theorem B (Tao). Given any positive semidefinite block matrix
(

M K
K∗ N

)
, where

M,N ∈ Mn, we have

2sj(K) ≤ sj

(
M K
K∗ N

)
for j = 1, 2, . . . , n.

Theorem C (Audenaert). If A,B ∈ Mn are positive semidefinite, then

1

2
λj

(
(A+B)

(
f(A) + f(B)

))
≤ λj

(
Af(A) +Bf(B)

)
for j = 1, . . . , n,

for any operator monotone function f .

We need the following known fact.



MATRIX VERSIONS OF ARITHMETIC–GEOMETRIC MEAN INEQUALITIES 113

Lemma 6.1. For any matrices X,Y ∈ Mn, λj(XY ) = λj(Y X) for j = 1, . . . , n.

By Theorem B, Theorem C, and Lemma 6.1, we have the following extension
of Theorem AZ.

Theorem 6.2. Let A,B ∈ Mn be positive semidefinite, and let f , g be real valued
continuous functions on [0,∞). Further suppose that f and g satisfy either of the
following conditions:

(i) g is monotone on [0,∞) and h1(t) = f(g−1(
√
t))2 is operator monotone;

(ii) f is monotone on [0,∞) and h2(t) = g(f−1(
√
t))2 is operator monotone.

Then

s
(
f(A)

(
g(A)2 + g(B)2

)
f(B)

)
≤ s

(
f(A)2g(A)2 + f(B)2g(B)2

)
.

If we put f(t) = t or g(t) = t in Theorem 6.2, then we have the following
corollary.

Corollary 6.3. Let A,B ∈ Mn be positive semidefinite, and let f be a semi
operator monotone function on [0,∞); that is, f(

√
t)2 is operator monotone. Then

s
(
f(A)[A2 +B2]f(B)

)
≤ s

(
A2f(A)2 +B2f(B)2

)
, (i)

s
(
A
[
f(A)2 + f(B)2

]
B
)
≤ s

(
A2f(A)2 +B2f(B)2

)
. (ii)

By Theorem 6.2 we have the generalized Heinz mean inequality for singular
values, which is a generalization of the Audenaert–Zhan inequality (1.15).

Theorem 6.4. Let A,B ∈ Mn be positive definite, and let r, s ∈ R such that
rs ≥ 0. Then

s
(
A

r
2 (As +Bs)B

r
2

)
≤ 1

2
λ
(
(Ar +Br)(As +Bs)

)
≤ s(Ar+s +Br+s).

If we put s = 1
2
−r in Theorem 6.4, then we have the Audenaert–Zhan inequality

(1.15) for singular values.

Corollary 6.5. Let A,B ∈ Mn be positive semidefinite. Then, for 0 ≤ r ≤ 1,

s(ArB1−r + A1−rBr) ≤ 1

2
λ
(
(A2r0 +B2r0)(A1−2r0 +B1−2r0)

)
≤ s(A+B),

where r0 = min{r, 1− r}.

Remark 6.6. If we put r = 1
4
in Corollary 6.5 and replace A and B by A2 and B2,

respectively, then we have the result (1.16) due to Bhatia and Kittaneh.

Remark 6.7. In the case where r = 1
2
, we can obtain the following equality for

singular values. Note that(
A

1
2 A

1
2

B
1
2 B

1
2

)∗(
A

1
2 A

1
2

B
1
2 B

1
2

)
=

(
A+B A+B
A+B A+B

)
, and

1√
2

(
I I
−I I

)(
A+B A+B
A+B A+B

)
1√
2

(
I −I
I I

)
=

(
2(A+B) 0

0 0

)
.
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Therefore, we say that
(
A+B A+B
A+B A+B

)
and

(
2(A+B) 0

0 0

)
are unitarily similar; that is,

sj(A+B) =
1

2
s2j

(
A

1
2 A

1
2

B
1
2 B

1
2

)
for j = 1, 2, . . . , n.

If we put s = 1− r in Theorem 6.4, then we have the following complementary
inequality related to Zhan’s conjecture (1.17).

Corollary 6.8. Let A,B ∈ Mn be positive semidefinite. Then, for 0 ≤ r ≤ 2 and
−2 < t ≤ 0,

s(ArB2−r + A2−rBr) ≤ 1

2
λ
(
(A2r1 +B2r1)(A2−2r1 +B2−2r1)

)
≤ 2

2 + t
s(A2 + tAB +B2),

where r1 = min{r, 2− r}.

In [16], Tao showed the following generalization of the Bhatia–Kittaneh in-
equality (1.16): if A and B are positive semidefinite and m is a positive integer,
then

2s
(
A

1
2 (A+B)m−1B

1
2

)
≤ s

(
(A+B)m

)
. (6.1)

Based on Tao’s technique [16], we show a variant of Tao’s inequality (6.1).

Theorem 6.9. Let A,B ∈ Mn be positive definite, and let r, s ∈ R. Then, for
j = 1, 2, . . . , n,

2s
(
Ar(Ar+s +Br+s)m−1(A2s +B2s)(Ar+s +Br+s)m−1Br

)
≤ λ

(
(Ar+s +Br+s)m−1(A2s +B2s)(Ar+s +Br+s)m−1(A2r +B2r)

)
.

Remark 6.10.

(i) If we put m = 1 in Theorem 6.9 and replace A and B by A1/2 and B1/2,
respectively, then we get the first inequality in Theorem 6.4 for all r, s ∈ R.

(ii) If we put r = s = 1
2
in Theorem 6.9, then we have T ∗ = S, and this

implies Tao’s inequality (6.1) because (TT ∗)m is positive semidefinite.
(iii) Moreover, if we put r = s = 1

2
and m = 1 in Theorem 6.9, then the

Bhatia–Kittaneh inequality (1.16) holds.

7. The Heinz mean inequality for eigenvalues

In this final section, we consider the Heinz mean inequality for the eigenvalues.
We recall the following basic majorization inequalities.

Lemma 7.1 (H. Weyl). Let λ1(A), . . . , λn(A) be the eigenvalues of a matrix A

ordered by |λ1(A)| ≥ · · · ≥ |λn(A)|. Then
∏k

j=1 |λj(A)| ≤
∏k

j=1 sj(A) for all
1 ≤ k ≤ n.

Lemma 7.2 (A. Horn). For any matrices A, B,
∏k

j=1 sj(AB) ≤∏k
j=1{sj(A)sj(B)} for all 1 ≤ k ≤ n.
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Note that the eigenvalues of the product of two positive semidefinite matrices
are nonnegative, since λ(AB) = λ(A1/2BA1/2). If A, B are positive semidefinite,
then, by Lemmas 7.1 and 7.2,

k∏
j=1

λj(AB) ≤
k∏

j=1

sj(AB) ≤
k∏

j=1

{
λj(A)λj(B)

}
for all 1 ≤ k ≤ n.

Theorem 7.3. Let A,B ∈ Mn be positive semidefinite. Then, for 1
2
≤ r ≤ 3

2
,

k∏
j=1

λj(A
rB2−r + A2−rBr) ≤

k∏
i=1

1

2
λj(A+B)2 for all 1 ≤ k ≤ n.

Proof. By Lemma 7.1, Lemma 7.2, and Theorem AZ, we have

k∏
j=1

λj(A
rB2−r + A2−rBr)

=
k∏

j=1

λj

(
A

1
2 (Ar− 1

2B
3
2
−r + A

3
2
−rBr− 1

2 )B
1
2

)
:=

k∏
j=1

λj

(
A

1
2 (Ar′B1−r′ + A1−r′Br′)B

1
2

)
(put r′ = r − 1

2
and 0 ≤ r′ ≤ 1)

=
k∏

j=1

λj

(
(Ar′B1−r′ + A1−r′Br′)B

1
2A

1
2

)
(by Lemma 6.1)

≤
k∏

j=1

sj
(
(Ar′B1−r′ + A1−r′Br′)B

1
2A

1
2

)
(by Lemma 7.1)

≤
k∏

j=1

sj(A
r′B1−r′ + A1−r′Br′)

k∏
j=1

sj(B
1
2A

1
2 ) (by Lemma 7.2)

≤
k∏

j=1

λj(A+B)λj

(A+B

2

)
(by Theorem AZ and (1.14))

=
k∏

j=1

1

2
λj(A+B)2

for all 1 ≤ k ≤ n. �
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