Ann. Funct. Anal. 7 (2016), no. 1, 24-32
http://dx.doi.org/10.1215/20088752-3163391
ISSN: 2008-8752 (electronic)
http://projecteuclid.org/afa

ON A NOTION OF CLOSENESS OF GROUPS

CHI-WAI LEUNG, ${ }^{1}$ CHI-KEUNG NG,,$^{2^{*}}$ and NGAI-CHING WONG ${ }^{3}$
Dedicated to Professor Anthony To-Ming Lau
Communicated by K. F. Taylor

Abstract

Enlightened by the notion of perturbation of C^{*}-algebras, we introduce, and study briefly in this article, a notion of closeness of groups. We show that if two groups are "close enough" to each other, and one of them has the property that the orders of its elements have a uniform finite upper bound, then these two groups are isomorphic (but in general they are not). We also study groups that are close to abelian groups, as well as an equivalence relation induced by closeness.

1. Introduction

In 1972, Kadison and Kastler introduced in [2] the notion of "perturbation of C^{*}-algebras," and they asked what kinds of properties will be preserved if A is close enough to B in this sense. Many people followed this question and produced interesting results in C^{*}-algebras (see [1] and the references therein).

Using this idea, one can define a notion of closeness among (discrete) groups. We will give a brief study of this notion in this article. More precisely, we say that a group G is δ-contained in another group H if there are injective unitary representations of them on the same Hilbert space such that the image of G is contained in the image of H up to a distance of δ.

We obtained several results in this direction. In particular, let H be a " k-bounded" group for some $k \geq 2$ (i.e., the orders of all elements in H are

[^0]The following result gives a connection between closeness of groups and the notion of perturbation of Banach algebras in the sense of Kadison and Kastler [2].

Proposition 2.4. If $(\mathfrak{H}, \phi) \in \mathrm{R}_{\mathrm{inj}}(G)$ and $(\mathfrak{H}, \psi) \in \mathrm{R}_{\text {inj }}(H)$ satisfying $\phi(G) \subseteq$ $\psi(H)+\delta \mathbf{B}_{\mathcal{L}(\mathfrak{H})}$, then $\tilde{\phi}\left(\mathbf{B}_{\ell^{1}(G)}\right) \subseteq \tilde{\psi}\left(\mathbf{B}_{\ell^{1}(H)}\right)+2 \delta \mathbf{B}_{\mathcal{L}(\mathfrak{H})}$ (where $\tilde{\phi}$ and $\tilde{\psi}$ are the induced representations).
Proof. For every $r \in G$, we take $\theta(r) \in H$ with $\|\phi(r)-\psi(\theta(r))\|<\delta$. If $f \in \mathbf{B}_{\ell^{1}(G)}$, for each $u \in H$, then we set $g(u):=0$ if $\theta^{-1}(u)=\emptyset$ and $g(u):=\sum_{r \in \theta^{-1}(u)} f(r)$ otherwise. Then $\sum_{u \in H}|g(u)| \leq \sum_{r \in G}|f(r)| \leq 1$. As $g \in \mathbf{B}_{\ell^{1}(H)}$ and

$$
\|\tilde{\phi}(f)-\tilde{\psi}(g)\|=\left\|\sum_{t \in G} f(t)(\phi(t)-\psi(\theta(t)))\right\| \leq \delta
$$

we obtain the required inclusion.

3. The main Results

We say that a group H is k-bounded for some integer $k \geq 2$, if $o(t) \leq k$ for each $t \in H$, where $o(t)$ is the order of t. The following observations are useful in our study.

Lemma 3.1.

(a) Let u be a unitary in a C^{*}-algebra, and let G_{u} be the subgroup of \mathbb{T} generated by its spectrum $\sigma(u)$. Then the order, o $\left(G_{u}\right)$, of G_{u} equals o (u).
(b) For each pair of positive integers (N, m), there is a strictly positive constant $\kappa_{N, m}$ such that for any Hilbert space \mathfrak{H} and $u \in U(\mathfrak{H})$ with o $(u)=m$, if $v \in U(\mathfrak{H})$ satisfying $o(v) \leq N$ and $\|u-v\|<\kappa_{N, m}$, then $o(v)$ divides m.
(c) Suppose that H is a k-bounded group. For any $(\psi, \mathfrak{H}) \in \mathrm{R}_{\mathrm{inj}}(H)$ and any two distinct elements $r, s \in H$, one has $\|\psi(r)-\psi(s)\| \geq 2 \sin \frac{\pi}{k}$.

Proof. (a) This statement can be obtained easily by considering the C^{*}-subalgebra, $C^{*}(u)$, generated by u as well as the fact that $C^{*}(u) \cong C(\sigma(u))$.
(b) Let \mathcal{G}_{k} be the collection of all generating subsets of $\mathbb{T}_{k}:=\left\{z \in \mathbb{T}: z^{k}=1\right\}$ $(k \in \mathbb{N})$, and let $Q_{N, m}:=\{n \in \mathbb{N}: n \leq N ; n \nmid m\}$. If $Q_{N, m}=\emptyset$, then we can set $\kappa_{N, m}:=1$. Otherwise, for any $n \in Q_{N, m}$ and $S \in \mathcal{G}_{n}$, we set

$$
\kappa^{S}:=\max _{s \in S} \min \left\{\left|e^{\frac{2 l \pi \mathrm{i}}{m}}-s\right|: l=1, \ldots, m\right\} .
$$

Note that $\kappa^{S}>0$ as $S \nsubseteq \mathbb{T}_{m}$. Define

$$
\kappa_{N, m}:=\min \left\{\kappa^{S}: S \in \mathcal{G}_{n} ; n \in Q_{N, m}\right\}>0
$$

Suppose on the contrary that $\|u-v\|<\delta<\kappa_{N, m}$ but $o(v) \in Q_{N, m}$. Then $\delta<\kappa^{\sigma(v)}$ because $\sigma(v) \in \mathcal{G}_{o(v)}$ by part (a). This implies that

$$
\begin{equation*}
\sigma(v) \nsubseteq \mathbb{T}_{m}+\delta \mathbf{B}_{\mathbb{C}} \tag{3.1}
\end{equation*}
$$

On the other hand, observe that if $\lambda \notin \sigma(u)+\delta \mathbf{B}_{\mathbb{C}}$, then

$$
\left\|(\lambda-u)^{-1}\right\|=\sup \left\{|\lambda-\mu|^{-1}: \mu \in \sigma(u)\right\} \leq \delta^{-1}
$$

This implies that $\|(\lambda-v)-(\lambda-u)\|<\delta<\left\|(\lambda-u)^{-1}\right\|^{-1}$ and $\lambda \notin \sigma(v)$. Therefore, we have $\sigma(v) \subseteq \sigma(u)+\delta \mathbf{B}_{\mathbb{C}}$. This contradicts (3.1) because $\sigma(u) \subseteq \mathbb{T}_{m}$ (by part (a)).
(c) The assertion follows from the following inequalities:

$$
\begin{equation*}
\|\psi(r)-\psi(s)\|=r_{\sigma}\left(1-\psi\left(r^{-1} s\right)\right) \geq\left|1-e^{2 \pi \mathrm{i} / o\left(r^{-1} s\right)}\right| \geq 2 \sin (\pi / k) \tag{3.2}
\end{equation*}
$$

where $r_{\sigma}(\cdot)$ stands for the spectral radius.

Remark 3.2.

(a) Let $n \neq m$ and $u, v \in U(\mathfrak{H})$ with $o(u)=m$ and $o(v)=n$. It follows from Lemma 3.1(b) that $\|u-v\| \geq \min \left\{\kappa_{n, m}, \kappa_{m, n}\right\}>0$. This generalizes the situation in Example 2.3(a).
(b) By Example 2.3(d), one has $\inf _{N \in \mathbb{N}} \kappa_{N, 3}=0$. Similarly, for any $m \in \mathbb{N}$, by considering $\xrightarrow{\lim } \mathbb{Z}_{m^{k}}$ and $\underset{\longrightarrow}{\lim } \mathbb{Z}_{p^{k}}$ with p being a prime number not dividing m, one can show that $\underset{N \in \mathbb{N}}{\operatorname{if}_{N, m}} \kappa_{N, m}=0$.

Example 3.3. For each integer $k \geq 2$, pick any $\delta \in \mathbb{R}_{+} \backslash\{0\}$ with

$$
\delta<\min \left\{\kappa_{N, m}: N, m=1,2, \ldots, k\right\} \quad \text { and } \quad \delta<\sin (\pi / k)
$$

If G and H are two abelian groups with order less than k, which are δ-close to each other, then G and H are isomorphic.

In fact, let $(\phi, \mathfrak{H}) \in \mathrm{R}_{\text {inj }}(G)$ and $(\psi, \mathfrak{H}) \in \mathrm{R}_{\text {inj }}(H)$ be as in Definition 2.2. Then Lemma 3.1(c) gives a bijection θ from G onto H such that $\|\phi(r)-\psi(\theta(r))\|<\delta$ $(r \in G)$. Furthermore, Lemma 3.1(b) shows that θ preserves orders of elements. Now suppose that the common order of G and H is $n=p_{1}^{r_{1}} \cdots p_{k}^{r_{k}}$, where p_{1}, \ldots, p_{k} are distinct prime numbers and $r_{1}, \ldots, r_{k} \in \mathbb{N}$. Then we can write G and H as direct sums of their Sylow subgroups

$$
G=G\left(p_{1}\right) \oplus \cdots \oplus G\left(p_{k}\right) \quad \text { and } \quad H=H\left(p_{1}\right) \oplus \cdots \oplus H\left(p_{k}\right)
$$

Since θ preserves the order of every element, we see that θ maps bijectively from the Sylow p_{i}-subgroup $G\left(p_{i}\right)$ onto the Sylow p_{i}-subgroup $H\left(p_{i}\right)(i=1, \ldots, k)$. Thus, one can assume that $n=p^{r}$.

In this case, $G=\bigoplus_{k=1}^{i} \mathbb{Z}_{p^{m_{k}}}$ and $H=\bigoplus_{l=1}^{j} \mathbb{Z}_{p^{n_{l}}}$, where $m_{1} \leq \cdots \leq m_{i}$ and $n_{1} \leq \cdots \leq n_{j}$. It is clear that $m_{i}=n_{j}$. Let $G_{0}:=\bigoplus_{k=1}^{i-1} \mathbb{Z}_{p^{m_{k}}}$ and $H_{0}:=$ $\bigoplus_{l=1}^{j-1} \mathbb{Z}_{p^{n} l}$. Suppose that $O_{\Gamma}(m)$ is the number of order m elements in a group Γ $(m \in \mathbb{N})$. If $(x, y) \in G_{0} \oplus \mathbb{Z}_{p^{m_{i}}}$ and $l \in \mathbb{N}$, then $o(x, y)=p^{l}$ if and only if either $o(x)=p^{l}$ and $o(y) \leq p^{l}$, or $o(x)<p^{l}$ and $o(y)=p^{l}$. This shows that

$$
O_{G}(p)=O_{G_{0}}(p) p+(p-1)
$$

as well as

$$
O_{G}\left(p^{l}\right)=O_{G_{0}}\left(p^{l}\right) p^{l}+\left(1+\cdots+O_{G_{0}}\left(p^{l-1}\right)\right)\left(p^{l}-p^{l-1}\right) \quad\left(l=2,3, \ldots, m_{i}\right)
$$

and similar equations hold for O_{H} and $O_{H_{0}}$. Since $O_{G}=O_{H}$, we know that $O_{G_{0}}=O_{H_{0}}$, which gives $m_{i-1}=n_{j-1}$. Inductively, one has $i=j$ and $m_{k}=n_{k}$ $(k=1, \ldots, i)$.

Recall that the spectrum of a finite group G is the set $\omega(G):=\{o(g): g \in G\}$, where $o(g)$ is the order of g. The problem of determining finite simple groups by their spectra was initiated in [3] and studied by some people. One may regard the function O_{G} in the above example as the extended spectrum of G (notice that $n \in \omega(G)$ if and only if $\left.O_{G}(n) \neq 0\right)$. The argument of Example 3.3 tells us that two asymptotically close finite groups will have the same extended spectrums. Moreover, the argument in this example also shows that the extended spectrum of a finite abelian group determines the group completely (which is likely a known fact). We do not know if the extended spectrum is a complete invariant for all finite groups. However, we will see in Theorem 3.4 below that if two finite groups are asymptotically close to each other, then they are indeed isomorphic.
3.1. Asymptotic containment in groups of bounded order. Motivated by Example 3.3, our first task is to consider in what situation closeness of groups will give rise to isomorphisms. The best situation we can think of is the following result (note that Example 2.3(d) tells us that the conclusion of this result can be false if one only assumes that every element in H has a finite order).

Theorem 3.4. Suppose that $k \in\{2,3,4, \ldots\}$ and that G and H are two groups such that H is k-bounded. Take any $\delta \in\left(0, \frac{1}{2} \sin \frac{\pi}{k}\right)$.
(a) If G is δ-contained in H, then G is isomorphic to a subgroup of H.
(b) If G is δ-close to H, then they are isomorphic.

Proof. (a) Let $(\mathfrak{H}, \phi, \psi)$ be as in Definition 2.2. If $u, v \in \psi(H)$ are distinct elements, then we have $\|u-v\| \geq 2 \sin \frac{\pi}{k}$ (by Lemma 3.1(c)). Thus, if $r \in G$, then there exists exactly one $\theta(r) \in H$ with $\|\phi(r)-\psi(\theta(r))\|<\delta$. Since

$$
\left\|\phi\left(r^{-1}\right)-\psi\left(\theta(r)^{-1}\right)\right\|=\|\psi(\theta(r))-\phi(r)\|<\delta<\sin (\pi / k)
$$

we see that $\theta\left(r^{-1}\right)=\theta(r)^{-1}$. Moreover, if $r_{1}, r_{2} \in G$, we have

$$
\begin{aligned}
& \left\|\phi\left(r_{1} r_{2}\right)-\psi\left(\theta\left(r_{1}\right) \theta\left(r_{2}\right)\right)\right\| \\
& \quad \leq\left\|\phi\left(r_{1}\right) \phi\left(r_{2}\right)-\phi\left(r_{1}\right) \psi\left(\theta\left(r_{2}\right)\right)\right\|+\left\|\phi\left(r_{1}\right) \psi\left(\theta\left(r_{2}\right)\right)-\psi\left(\theta\left(r_{1}\right)\right) \psi\left(\theta\left(r_{2}\right)\right)\right\| \\
& \quad<\sin (\pi / k)
\end{aligned}
$$

This implies that $\theta\left(r_{1} r_{2}\right)=\theta\left(r_{1}\right) \theta\left(r_{2}\right)$. Therefore, θ is a group homomorphism. Finally, suppose on the contrary that θ is not injective. By the construction of θ, we have

$$
\phi(\operatorname{ker} \theta) \subseteq 1+\delta \mathbf{B}_{\mathcal{L}(\mathfrak{H})}
$$

Therefore, $\sigma(\phi(s)) \subseteq 1+1 / 2 \mathbf{B}_{\mathbb{C}}$ for every $s \in \operatorname{ker} \theta$. Now, if we take any $s_{0} \in$ $\operatorname{ker} \theta \backslash\{e\}$, then there always exists $n \in \mathbb{N}$ with $\sigma\left(\phi\left(s_{0}\right)^{n}\right) \nsubseteq 1+1 / 2 \mathbf{B}_{\mathbb{C}}$ (by considering the C^{*}-subalgebra generated by the nontrivial unitary $\phi\left(s_{0}\right)$), which is a contradiction (because $s_{0}^{n} \in \operatorname{ker} \theta$).
(b) Let $(\mathfrak{H}, \phi, \psi)$ be as in Definition 2.2. As in the above, one can construct an injective homomorphism $\theta: G \rightarrow H$. To see that θ is also surjective, let $v \in H$. By assumption, there exists $t \in G$ with $\|\psi(v)-\phi(t)\|<\delta$. Thus, $\|\psi(v)-\psi(\theta(t))\|<$ $\sin \frac{\pi}{k}$, and the inequality (3.2) ensures that $v=\theta(t)$.

One may also reformulate Theorem 3.4 as follows.

Corollary 3.5. For any integer $k \geq 2$, there exists $r>0$ such that if \mathfrak{H} is a Hilbert space and H is a k-bounded subgroup of $U(\mathfrak{H})$, then any subgroup $G \subseteq U(\mathfrak{H})$ satisfying $G \subseteq H+r \mathbf{B}_{\mathcal{L}(\mathfrak{H})}$ is a subgroup of H.
3.2. Asymptotic containment in abelian groups. Next, we would like to consider when a group is asymptotically contained in an abelian group. A natural question is whether such a group should be abelian. For the moment, we only know that it is the case when every element in G is of finite order (or when H is k-bounded for some $k \in \mathbb{N}$). Nevertheless, we find some properties of such groups which are interesting by themselves. Notice that the trivial group $\{e\}$ is 2-bounded.

Definition 3.6.

(a) A subset $E \subseteq G$ is said to be asymptotically included in another subset $F \subseteq G$ if, for any $\delta>0$, there is $(\mathfrak{H}, \phi) \in \mathrm{R}_{\text {inj }}(G)$ with $\phi(E) \subseteq \phi(F)+$ $\delta \mathbf{B}_{\mathcal{L}(\mathfrak{H})}$.
(b) G is said to be asymptotically abelian if the set $C_{G}:=\left\{s^{-1} r^{-1} s r: r, s \in G\right\}$ of commutators is asymptotically included in $\{e\}$.
(c) G is said to be pairwise asymptotically abelian if the subset $\left\{s^{-1} r^{-1} s r\right\}$ is asymptotically included in the subset $\{e\}$ for every $r, s \in G$.

Clearly, G is asymptotically abelian if and only if, for each $\epsilon>0$, there is $(\mathfrak{H}, \phi) \in \mathrm{R}_{\text {inj }}(G)$ such that $\|\phi(r s)-\phi(s r)\|<\epsilon(r, s \in G)$. Moreover, if we set

$$
N_{G}:=\{s \in G:\{s\} \text { is asymptotically included in }\{e\}\},
$$

then G being pairwise asymptotically abelian is equivalent to $C_{G} \subseteq N_{G}$.
Lemma 3.7. If $r, s \in G$ both have finite orders and $\{r\}$ is asymptotically included in $\{s\}$, then $o(r)=o(s)$. Consequently, any nontrivial element in N_{G} is of infinite order.

Proof. This follows from Remark 3.2(a).
It follows from Proposition 3.8(b) below that the above can fail if only one of the elements is assumed to have finite order. This proposition also tells us that N_{G} can be very big even when G is abelian.

Proposition 3.8.

(a) If every element in G has a finite order and G is pairwise asymptotically abelian, then G is abelian.
(b) If G is a finitely generated infinite abelian group, then N_{G} contains all the elements of G with infinite orders. Consequently, $G=\left\{s+t: s, t \in N_{G}\right\}$.
Proof. (a) By Lemma 3.7 and the hypothesis, we have $N_{G}=\{e\}$, and hence $C_{G}=\{e\}$ (as G is pairwise asymptotically abelian).
(b) We may write $G=\mathbb{Z}^{i} \oplus \mathbb{Z}_{m_{1}} \oplus \cdots \oplus \mathbb{Z}_{m_{j}}$ (notice that this includes the case of $G=\mathbb{Z}^{i}$ if we take $j=1$ and $m_{1}=1$). Let $\left(n_{1}^{0}, \ldots, n_{i}^{0}, \bar{l}_{1}^{0}, \ldots, \bar{l}_{j}^{0}\right) \in G$ be an element of infinite order. Without loss of generality, we can assume $n_{1}^{0} \neq 0$. For any $k \in\{1, \ldots, j\}$ and $\epsilon>0$, there exists an irrational number $t_{k} \in(0,1)$ such that $\left|1-e^{2 \pi \mathrm{i}\left(n_{1}^{0} t_{k}+l_{k}^{0} / m_{k}\right)}\right|<\epsilon$. On the other hand, we choose any irrational
numbers $s_{2}, \ldots, s_{i} \in(0,1)$ with $\left|1-e^{2 \pi \mathrm{in} n_{k}^{0} s_{k}}\right|<\epsilon(k=2, \ldots, i)$. Then $\phi: G \rightarrow$ $\mathbb{T}^{i+j-1} \subseteq U\left(\mathbb{C}^{i+j-1}\right)$ given by
$\phi\left(n_{1}, \ldots, n_{i}, \bar{l}_{1}, \ldots, \bar{l}_{j}\right):=\left(e^{2 \pi \mathrm{i} n_{2} s_{2}}, \ldots, e^{2 \pi \mathrm{i} n_{i} s_{i}}, e^{2 \pi \mathrm{i}\left(n_{1} t_{1}+l_{1} / m_{1}\right)}, \ldots, e^{2 \pi \mathrm{i}\left(n_{1} t_{j}+l_{j} / m_{j}\right)}\right)$
is an injective representation of G satisfying $\left\|1-\phi\left(n_{1}^{0}, \ldots, n_{i}^{0}, \bar{l}_{1}^{0}, \ldots, \bar{l}_{j}^{0}\right)\right\|<\epsilon$. This shows that $\left(n_{1}^{0}, \ldots, n_{i}^{0}, \bar{l}_{1}^{0}, \ldots, \overline{l_{j}^{0}}\right) \in N_{G}$. Finally, for each $\left(\bar{l}_{1}^{0}, \ldots, \bar{l}_{j}^{0}\right) \in \mathbb{Z}_{m_{1}} \oplus$ $\cdots \oplus \mathbb{Z}_{m_{j}}$, we have $(-1,0, \ldots, 0, \overline{0}, \ldots, \overline{0}),\left(1,0, \ldots, 0, \bar{l}_{1}^{0}, \ldots, \bar{l}_{j}^{0}\right) \in N_{G}$. Thus, any element in G is a sum of two elements in N_{G}.

In the following, let $C_{G}^{n}:=\left\{t_{1} \cdots t_{n}: t_{1}, \ldots, t_{n} \in C_{G}\right\}(n \in \mathbb{N})$.

Proposition 3.9.

(a) If G is asymptotically contained in an abelian group H, then G is asymptotically abelian.
(b) If G is asymptotically abelian, then C_{G}^{n} contains no nontrivial subgroup of G for all $n \in \mathbb{N}$.
(c) If G contains a finite nonabelian subgroup H, then G is not asymptotically contained in an abelian group.

Proof. (a) For any $\delta>0$, let $(\mathfrak{H}, \phi, \psi)$ be as in Definition 2.2. For any $r, r^{\prime} \in G$, there are $u, u^{\prime} \in H$ with $\|\phi(r)-\psi(u)\|<\delta$ and $\left\|\phi\left(r^{\prime}\right)-\psi\left(u^{\prime}\right)\right\|<\delta$, which implies that $\left\|\phi(r) \phi\left(r^{\prime}\right)-\phi\left(r^{\prime}\right) \phi(r)\right\|<4 \delta$.
(b) Let $H \subseteq C_{G}^{n}$ be a subgroup of G. As G is asymptotically abelian, it is easy to see that C_{G}^{n} is asymptotically included in $\{e\}$. Hence, H is asymptotically contained in $\{e\}$ (which is a 2-bounded group). Now, Theorem 3.4(a) ensures that $H=\{e\}$.
(c) By Proposition 3.8(a), G is not pairwise asymptotically abelian (otherwise, H will be abelian). Thus, G is not asymptotically contained in any abelian group, because of part (a).

We end this subsection with the following example, which tells us that a pairwise asymptotically abelian group need not be asymptotically abelian.
Example 3.10. (a) Let γ be the action of $\mathbb{Z}_{2}:=\{1,-1\}$ (with the usual multiplication) on \mathbb{Z} given by $\gamma_{\alpha}(k)=\alpha k\left(\alpha \in \mathbb{Z}_{2}\right.$ and $\left.k \in \mathbb{N}\right)$, and let G be the semidirect product $\mathbb{Z} \rtimes_{\gamma} \mathbb{Z}_{2}$. For any $(k, \alpha),(l, \beta) \in G$, we have

$$
(k, \alpha)^{-1}(l, \beta)^{-1}(k, \alpha)(l, \beta)=(\alpha \beta k+\beta l-\alpha \beta l-\alpha k, 1)
$$

which equals either $(0,1),(-2 k, 1),(2 l, 1)$, or $(2 k-2 l, 1)$. This shows that $C_{G}=$ $2 \mathbb{Z} \times\{1\}$. Thus, Proposition 3.9(b) tells us that G is not asymptotically abelian and hence is not asymptotically contained in any abelian group. Next, we show that G is pairwise asymptotically abelian. Let

$$
V:=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \quad \text { and } \quad W_{\theta}:=\left(\begin{array}{cc}
e^{-\pi i \theta} & 0 \\
0 & e^{\pi i \theta}
\end{array}\right) \quad(\theta \in(0,1 / 2) \backslash \mathbb{Q}) .
$$

As $V W_{\theta} V=W_{\theta}^{*}$, the map $\phi_{\theta}: G \rightarrow U\left(\mathbb{C}^{2}\right)$ given by $\phi_{\theta}(k, 1):=W_{\theta}^{k}$ and $\phi_{\theta}(k,-1):=W_{\theta}^{k} V(k \in \mathbb{Z})$ is an injective group homomorphism. Moreover, for any $k \in \mathbb{Z}$,

$$
\left\|1-W_{\theta}^{2 k}\right\|=\left\|1-W_{2 k \theta}\right\|=2 \sin k \theta
$$

can be made arbitrarily small if θ is small enough. This shows that any singleton subset of C_{G} is asymptotically included in $\{e\}$ as required.
(b) Let γ be the action of \mathbb{Z} on $\mathbb{Z} \oplus \mathbb{Z}$ given by $\gamma_{k}(m, n)=(m+k n, n)$, and $G:=(\mathbb{Z} \oplus \mathbb{Z}) \rtimes_{\gamma} \mathbb{Z}$. It is not hard to see that $C_{G}=(\mathbb{Z} \oplus\{0\}) \times\{0\}$, and G is not asymptotically abelian by Proposition 3.9(b). Suppose that $\theta \in(0,2)$ is irrational and $u, v \in U(\mathfrak{H})$ are such that $u v=e^{\theta \pi \mathrm{i}} v u$. Then $\phi(((m, n), k)):=e^{m \theta \pi \mathrm{i}} v^{n} u^{k}$ is an injective representation of G. In fact, if $e^{m \theta \pi \mathrm{i}} v^{n} u^{k}=1_{\mathfrak{H}}$, then $e^{(m-n k) \theta \pi \mathrm{i}} u^{k} v^{n}=1_{\mathfrak{H}}$, which implies that $k=0=n$ and hence $m=0$ as well. Therefore, any singleton subset of C_{G} is asymptotically included in $\{e\}$, and G is pairwise asymptotically abelian.

In Example 3.10(b), the C^{*}-subalgebra generated by u and v is the irrational rotation algebra (yet this C^{*}-algebra is far from being the group C^{*}-algebra of $\left.(\mathbb{Z} \oplus \mathbb{Z}) \rtimes_{\gamma} \mathbb{Z}\right)$.
3.3. Asymptotic equivalence. One can define an equivalence relation in a collection of groups using asymptotic closeness.

Definition 3.11. If G_{1}, \ldots, G_{n} are groups in a class \mathcal{G} such that G_{i} is asymptotically close to G_{i+1} for every $i=1, \ldots, n-1$, then we say that G_{1} and G_{n} are asymptotically equivalent inside \mathcal{G}. When \mathcal{G} is the class of all groups, we simply say that G_{1} and G_{n} are asymptotically equivalent.

It is natural to ask how this equivalence relation behaves in some well-known classes of groups. Note, first of all, that by Propositions 3.8(a) and 3.9(a), we have the following result.

Corollary 3.12. Let \mathcal{G}_{f} be the class of groups whose elements are all of finite orders. If G and H are asymptotically equivalent inside \mathcal{G}_{f}, then G is abelian if and only if H is abelian.

Note that the groups in Corollary 3.12 need not be isomorphic (see Example $2.3(\mathrm{~d})$). Yet, they will be isomorphic if we impose a stronger assumption on them, as stated in the following corollary, which is a direct consequence of Theorem 3.4(b).

Corollary $\mathbf{3 . 1 3}$.

(a) If G is k-bounded for some integer $k \geq 2$ and is asymptotically equivalent to H, then G is isomorphic to H.
(b) If two groups are asymptotically equivalent, then either they are both finite and isomorphic or they are both infinite.

Finally, we have the following result concerning finitely generated abelian groups.
Corollary 3.14. Suppose that \mathcal{H} is the class of all finitely generated infinite abelian groups. Any two elements in \mathcal{H} are asymptotically equivalent inside \mathcal{H}.

Proof. Suppose that $G=\mathbb{Z}^{k} \oplus \mathbb{Z}_{m_{1}} \oplus \cdots \oplus \mathbb{Z}_{m_{j}}$ (this includes the case of $G=\mathbb{Z}^{k}$ when $\left.j=1=m_{1}\right)$. There exist irrational numbers $t_{1}, \ldots, t_{k} \in(0,1)$ such that
$\left\{1, t_{1}, \ldots, t_{k}\right\}$ are \mathbb{Q}-linearly independent (notice that as $\mathbb{Q}+\mathbb{Q} t_{1}+\cdots+\mathbb{Q} t_{k}$ is countable, one can obtain this claim by induction). Then

$$
\left(n_{1}, \ldots, n_{k}\right) \mapsto e^{\left(n_{1} t_{1}+\cdots+n_{k} t_{k}\right) 2 \pi \mathrm{i}}
$$

is an injective representation of \mathbb{Z}^{k} in $U(\mathbb{C})$ with dense range. Thus, \mathbb{Z} is asymptotically close to \mathbb{Z}^{k} (see Example $2.3(\mathrm{~b})$). Consequently, G is asymptotically close to $G_{1}:=\mathbb{Z} \oplus \mathbb{Z}_{m_{1}} \oplus \cdots \oplus \mathbb{Z}_{m_{j}}$. If $t \in(0,1)$ is an irrational number, then $\left(n, k_{1}\right) \mapsto e^{\left(n t+\frac{k_{1}}{m_{1}}\right) 2 \pi \mathrm{i}}$ is an injective representation of $\mathbb{Z} \oplus \mathbb{Z}_{m_{1}}$ in $U(\mathbb{C})$ with dense range. Therefore, \mathbb{Z} is asymptotically close to $\mathbb{Z} \oplus \mathbb{Z}_{m_{1}}$, and so are G_{1} and $G_{2}:=\mathbb{Z} \oplus \mathbb{Z}_{m_{2}} \oplus \cdots \oplus \mathbb{Z}_{m_{j}}$. Inductively, we see that G is asymptotically equivalent to \mathbb{Z} inside \mathcal{H}, and so is H.

Acknowledgments. The authors are supported by Hong Kong RGC research grant 2160255, National Natural Science Foundation of China grants 11071126 and 11471168, and Taiwan MOST grant 102-2115-M-110-002-MY2.

References

1. E. Christensen, A. M. Sinclair, R. R. Smith, S. A. White, and W. Winter, Perturbation of nuclear C^{*}-algebras, Acta Math. 208 (2012), no. 1, 93-150. MR2910797. DOI 10.1007/s11511-012-0075-5. 24
2. R. V. Kadison and D. Kastler, Perturbations of von Neumann algebras, I: Stability of type, Amer. J. Math. 94 (1972), 38-54. Zbl 0239.46070. MR0296713. 24, 26
3. W. J. Shi, A characteristic property of $\mathrm{PSL}_{2}(7)$, J. Austral. Math. Soc. Ser. A 36 (1984), no. 3, 354-356. MR0733907. 28
${ }^{1}$ Department of Mathematics, The Chinese University of Hong Kong, Hong Kong. E-mail address: cwleung@math.cuhk.edu.hk
${ }^{2}$ Chern Institute of Mathematics and LPMC, Nankai University, Tianjin 300071, China.

E-mail address: ckng@nankai.edu.cn
${ }^{3}$ Department of Applied Mathematics, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan.

E-mail address: wong@math.nsysu.edu.tw

[^0]: Copyright 2016 by the Tusi Mathematical Research Group.
 Received Nov. 21, 2014; Accepted Jan. 2, 2015.
 *Corresponding author.
 2010 Mathematics Subject Classification. Primary 43A65; Secondary 43A20.
 Keywords. discrete groups, group representations, distance between groups.

