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Abstract. Controlled frames and g-frames were considered recently as gen-
eralizations of frames in Hilbert spaces. In this paper we generalize some of
the known results in frame theory to controlled g-frames. We obtain some new
properties of controlled g-frames and obtain new controlled g-frames by con-
sidering controlled g-frames for its components. And we also find some new
resolutions of the identity. Furthermore, we study the stabilities of controlled
g-frames under small perturbations.

1. Introduction

Frames were first introduced in 1952 by Duffin and Schaeffer [9] in order to
study problems in nonharmonic Fourier series, and they were widely studied after
the great 1986 work by Daubechies, Grossmann, and Meyer [8]. Today, frame the-
ory has broad applications in pure mathematics, such as for the Kadison–Singer
problem and statistics (see, e.g., [5], [10]), as well as in applied mathematics (see,
e.g., [3]), computer science (see, e.g., [11], [14]), and emerging applications (see,
e.g., [16], [20]). We refer the reader to [7] for an introduction to frame theory and
its applications.

In 2006, Sun [21] introduced the concept of g-frames, generalized frames which
include ordinary frames, bounded invertible linear operators, fusion frames, as
well as many recent generalizations of frames (for more details see [12], [15],
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[17]). G-frames and g-Riesz bases in Hilbert spaces have some properties sim-
ilar to those of frames, but not all the properties are similar (see [21]). Con-
trolled frames for spherical wavelets were introduced in [4] and have been used
recently to improve the numerical efficiency of iterative algorithms (see [2]). The
role of controller operators is like the role played by precondition matrices or
operators in linear algebra. So we give some new properties of controlled g-
frames.

Controlled g-frames were introduced in [19]. In the present article, we give some
new properties of controlled g-frames and construct new controlled g-frames from
a given controlled g-frame, and we generalize some known results of g-frames to
controlled g-frames in Section 2. In Section 3 we obtain some new resolutions of
the identity with controlled g-frames, and in Section 4 we study the stability of
controlled g-frames under small perturbations.

Throughout this paper, H and K are two separable Hilbert spaces and {H i :
i ∈ I} is a sequence of subspaces of K , where I is a subset of Z . We denote
by L(H ,H i) the collection of all bounded linear operators from H into H i,
and GL(H ) denotes the set of all bounded linear operators which have bounded
inverse. It is easy to see that if T, U ∈ GL(H ), then T ∗, T , and TU are also
in GL(H ). Let GL+(H ) be the set of all positive operators in GL(H ). Also IH
denotes the identity operator on H .

Note that for any sequence {H i : i ∈ I} of Hilbert spaces, we can always find
a large Hilbert space K such that for all i ∈ I, H i ⊂ K (e.g., K =

⊕
i∈I H i).

Definition 1. A sequence Λ = {Λi ∈ L(H ,H i) : i ∈ I} is called a generalized
frame, or simply g-frame, for H with respect to {H i : i ∈ I} if there exist
constants 0 < A ≤ B < ∞ such that

A‖f‖2 ≤
∑
i∈I

‖Λif‖2 ≤ B‖f‖2, ∀f ∈ H . (1.1)

The numbers A and B are called g-frame bounds.

We call Λ a tight g-frame if A = B and a Parseval g-frame if A = B = 1. If
the second inequality in (1.1) holds, the sequence is called a g-Bessel sequence.

Λ = {Λi ∈ L(H ,H i) : i ∈ I} is called a g-frame sequence if it is a g-frame for
span{Λ∗

i (H i)}i∈I . For each sequence {H i}i∈I , we define the space (
∑

i∈I ⊕H i)`2
by (∑

i∈I

⊕H i

)
`2
=

{
{fi}i∈I : fi ∈ H i, i ∈ I and

∑
i∈I

‖fi‖2 < +∞
}

with the inner product defined by〈
{fi}, {gi}

〉
=

∑
i∈I

〈fi, gi〉.

Definition 2. Let Λ = {Λi ∈ L(H ,H i) : i ∈ I} be a g-frame for H . Then the
synthesis operator for Λ = {Λi ∈ L(H ,H i) : i ∈ I} is the operator

ΘΛ :
(∑

i∈I

⊕H i

)
`2
−→ H
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defined by

ΘΛ

(
{fi}i∈I

)
=

∑
i∈I

Λ∗
i (fi).

The adjoint Θ∗
Λ of the synthesis operator is called the analysis operator which

is given by

Θ∗
Λ : H −→

(∑
i∈I

⊕H i

)
`2
, Θ∗(f) = {Λif}i∈I .

By composing ΘΛ and Θ∗
Λ, we obtain the g-frame operator

SΛ : H −→ H , SΛf = ΘΛΘ
∗
Λf =

∑
i∈I

Λ∗
iΛif.

It is easy to see that the g-frame operator is a bounded, positive, and invertible
operator.

2. Controlled g-frames and constructing new controlled g-frames

Controlled g-frames with two controller operators were studied in [18], [19].
Next, we give the definition of controlled g-frames.

Definition 3. Let T, U ∈ GL+(H ). The family Λ = {Λi ∈ L(H ,H i) : i ∈ I} will
be called a (T, U)-controlled g-frame for H , if Λ is a g-Bessel sequence and there
exist constants 0 < A ≤ B < ∞ such that

A‖f‖2 ≤
∑
i∈I

〈ΛiTf,ΛiUf〉 ≤ B‖f‖2, ∀f ∈ H .

A and B are called the lower and upper controlled frame bounds, respectively.

If U = IH , then we call Λ = {Λi} a T -controlled g-frame for H with bounds
A and B. If the second part of the above inequality holds, then it is called a
(T, U)-controlled g-Bessel sequence with bound B. Let Λ = {Λi ∈ L(H ,H i) :
i ∈ I} be a (T, U)-controlled g-frame for H . Then the (T, U)-controlled g-frame
operator is defined by

STΛU : H −→ H , STΛUf =
∑
i∈I

U∗Λ∗
iΛiTf, ∀f ∈ H .

It follows from the definition that for a g-frame, this operator is positive and
invertible and

AIH ≤ STΛU ≤ BIH .

Also STΛU = U∗SΛT . For the reader’s convenience, we state the following lemma.

Lemma 1 ([2, Proposition 2.4]). Let T : H −→ H be a linear operator. Then
the following conditions are equivalent.

(i) There exist m > 0 and M < ∞ such that mIH ≤ T ≤ MIH .
(ii) T is positive and there exist m > 0 and M < ∞ such that

m‖f‖2 ≤ ‖T 1/2f‖2 ≤ M‖f‖2.
(iii) T ∈ GL+(H ).



540 D. LI and J. LENG

Proposition 1. Let T, U ∈ GL+(H ), and let Λ = {Λi ∈ L(H ,H i) : i ∈ I} be a
family of operators. Then the following statements hold.

(i) If {Λi : i ∈ I} is a (T, U)-controlled g-frame for H , then {Λi : i ∈ I} is a
g-frame for H .

(ii) If {Λi : i ∈ I} is a frame for H and T, U ∈ GL+(H ), which commute with
each other and commute with SΛ, then {Λi : i ∈ I} is a (T, U)-controlled
g-frame for H .

Proof. The proof consists of two parts.
(i). For f ∈ H , since the operator

SΛ(f) = (U∗)−1STΛUT
−1(f) =

∑
i∈I

Λ∗
iΛif

is well defined, we can show that it is a bounded and invertible operator and also
that it is a positive linear operator on H because

〈SΛf, f〉 =
∑
i∈I

‖Λif‖2.

Also, we have

‖S−1
Λ ‖ = ‖TS−1

TΛUU
∗‖ ≤ ‖T‖‖S−1

TΛU‖‖U
∗‖ ≤ 1

A
‖T‖‖U∗‖.

So S ∈ GL+(H ). Therefore, by Lemma 1, we have CIH ≤ SΛ ≤ DIH for some
0 < C ≤ D < ∞. So the result follows.

(ii). Let {Λi : i ∈ I} be a g-frame with bounds C, D, and let m,m′ > 0,
M,M ′ < ∞ be such that

mIH ≤ T ≤ MIH , m′IH ≤ U∗ ≤ M ′IH .

By Lemma 1, we then have

mAIH ≤ SΛT ≤ MBIH

because T commutes with SΛ. Again U∗ commutes with SΛT and then

mm′AIH ≤ STΛU ≤ MM ′BIH .

So we have the result. �

Theorem 2.8 in [1] leads us to the following result.

Proposition 2. Let T, U ∈ GL(H ), and let {Λi : i ∈ I} be a (T, U)-controlled
g-frame for H with lower and upper bounds A and B, respectively. Let {Γi : i ∈ I}
be a g-complete family of bounded operators. If there exists a number 0 < R < A
such that

0 ≤
∑
i∈I

〈
U∗(Λ∗

iΛi − Γ∗
iΓi)Tf, f

〉
≤ R‖f‖2, ∀f ∈ H ,

then {Γi : i ∈ I} is also a (T, U)-controlled g-frame for H .
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Proof. Let f be an arbitrary element ofH . Since {Λi : i ∈ I} is a (T, U)-controlled
g-frame for H , we have

C‖f‖2 ≤
∑
i∈I

〈U∗Λ∗
iΛiTf, f〉 ≤ B‖f‖2.

Hence,∑
i∈I

〈U∗Γ∗
iΓiTf, f〉 =

∑
i∈I

〈
U∗(Γ∗

iΓi − Λ∗
iΛi)Tf, f

〉
+
∑
i∈I

〈U∗Λ∗
iΛiTf, f〉

≤ R‖f‖2 +B‖f‖2 = (R +B)‖f‖2.

On the other hand,∑
i∈I

〈U∗Γ∗
iΓiTf, f〉 =

∑
i∈I

〈U∗Λ∗
iΛiTf, f〉+

∑
i∈I

〈
U∗(Γ∗

iΓi − Λ∗
iΛi)Tf, f

〉
≥

∑
i∈I

〈U∗Λ∗
iΛiTf, f〉 −

∑
i∈I

〈
U∗(Γ∗

iΓi − Λ∗
iΛi)Tf, f

〉
≥ A‖f‖ −R‖f‖2 = (A−R)‖f‖2 > 0.

So we have the result. �

Proposition 3. Let T, U ∈ GL(H ), and let {Λi : i ∈ I} be a (T, U)-controlled
g-frame for H . Let {Γi : i ∈ I} be a g-complete family of bounded operators.
Suppose that Φ : H −→ H defined by

Φ(f) =
∑
i∈I

U∗(Γ∗
iΓi − Λ∗

iΛi)Tf, ∀f ∈ H ,

is a positive and compact operator. Then {Γi : i ∈ I} is a (T, U)-controlled
g-frame for H .

Proof. Let {Λi : i ∈ I} be a (T, U)-controlled g-frame for H . Then by Proposi-
tion 1 it is a g-frame for H . On the other hand, since Φ is a positive compact
operator, U−1ΦT−1 is also a positive compact operator. Hence,

(U∗)−1ΦT−1f =
∑
i∈I

Γ∗
iΓ

∗
i f − Λ∗

iΛif, ∀f ∈ H .

Let Ψ = (U∗)−1ΦT−1, and let P : H −→ H be an operator defined by

P = SΛ +Ψ.

A simple computation shows that Ψ is bounded and self-adjoint and that P is
bounded, linear, and self-adjoint. Let f be an arbitrary element of H . We have

‖Pf‖ = ‖SΛf +Ψf‖ ≤ ‖SΛf‖+ ‖Ψf‖ ≤
(
B + ‖Ψ‖

)
‖f‖.

Therefore, ∑
i∈I

‖Γif‖2〈Pf, f〉 ≤
(
B + ‖Ψ‖

)
‖f‖2.

Since Ψ is a compact operator, ΨS−1
Λ is also a compact operator on H . By The-

orem 2.8 in [1], P has closed range. Now we show that P is injective. Let g be an
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element of H such that Pf = 0. Then∑
i∈I

‖Γig‖2 = 〈Pg, g〉 = 0.

Hence, Γig = 0 for each i ∈ I. Since {Γi ∈ L(H ,H i) : i ∈ I} is g-complete, we
have g = 0. Furthermore, we have

Range(P ) =
(
N(P ∗)

)⊥
= N(P )⊥ = H .

Hence P is onto and therefore invertible on H . Similar to the proof of Theorem
2.8 of [1], we have ∑

i∈I

‖Γig‖2 ≥
(
B + ‖Ψ‖

)−1‖P−1‖−2‖f‖2.

Then {Γi : i ∈ I} is a g-frame for H . Since Φ = U∗SΓT − U∗SΛT , U
∗SΓT =

Φ + U∗SΛT . It is easy to see that U∗SΓT is a bounded positive operator. By
Lemma 1, we have that {Γi : i ∈ I} is a (T, U)-controlled g-frame for H . �

The next result is a generalization of Theorem 3.3 of [6].

Theorem 1. Let T, U ∈ GL(H ), and let {Λi ∈ L(H ,H i) : i ∈ I} be a family of
bounded operators. Let {Γij ∈ L(H i,H ij) : j ∈ Ji} be a (Ci, Di)-(T, U)-controlled
g-frame for each H i, and suppose that they are (C,D)-bounded. Then the follow-
ing conditions are equivalent.

(i) {Λi ∈ L(H ,H i) : i ∈ I} is a (T, U)-controlled g-frame for H .
(ii) {ΓijΛi ∈ L(H i,H ij) : i ∈ I, j ∈ Ji} is a (T, U)-controlled g-frame for H .

Proof. The proofs consists of two parts.
(i) ⇒ (ii). Let {Λi ∈ L(H ,H i) : i ∈ I} be a (T, U)-controlled g-frame with

bounds (A, B) for H . Then for all f ∈ H we have∑
i∈I

∑
j∈Ji

〈ΓijΛiTf,ΓijΛiUf〉

=
∑
i∈I

∑
j∈Ji

〈Γ∗
ijΓijΛiTf,ΛiUf〉

≤
∑
i∈I

Di〈ΛiTf,ΛiUf〉

≤ DB‖f‖2.
Also, we have ∑

i∈I

∑
j∈Ji

〈ΓijΛiTf,ΓijΛiUf〉

=
∑
i∈I

∑
j∈Ji

〈Γ∗
ijΓijΛiTf,ΛiUf〉

≥
∑
i∈I

Ci〈ΛiTf,ΛiUf〉

≥ CA‖f‖2.
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(ii) ⇒ (i). Let {ΓijΛi ∈ L(H i,H ij) : i ∈ I, j ∈ Ji} be a (T, U)-controlled
g-frame with bounds A, B for H . Since Λif ∈ H i, we have∑

i∈I

〈ΛiTf,ΛiUf〉 ≤
∑
i∈I

1

Ci

∑
j∈Ji

〈ΓijΛiTf,ΓijΛiUf〉 ≤ B

C
‖f‖2.

Also, ∑
i∈I

〈ΛiTf,ΛiUf〉 ≥
∑
i∈I

1

Di

∑
j∈Ji

〈ΓijΛiTf,ΓijΛiUf〉 ≥ A

D
‖f‖2.

�

Our next result is a characterization theorem for (T, U)-controlled g-frames.

Theorem 2. Let T, U ∈ GL(H ), and let {Λi ∈ L(H ,H i) : i ∈ I} be a family of
bounded operators. Suppose that {eij : j ∈ Ji} is an orthonormal basis for H i for
each i ∈ I. Then {Λi : i ∈ I} is a (T, U)-controlled g-frame for H if and only if
{T ∗uij : i ∈ I, j ∈ Ji} is a U∗(T ∗)−1-controlled frame for H , where uij = Λ∗

i eij.

Proof. Let {eij : j ∈ Ji} be an orthonormal basis for H i for each i ∈ I. For any
f ∈ H , since Λif ∈ H i, we have

Λi(Tf) =
∑
j∈Ji

〈
Λi(Tf), eij

〉
eij =

∑
j∈Ji

〈f, T ∗Λ∗
i eij〉eij.

Also,

Λi(Uf) =
∑
j∈Ji

〈
Λi(Uf), eij

〉
eij =

∑
j∈Ji

〈f, U∗Λ∗
i eij〉eij.

Hence,

〈ΛiTf,ΛiUf〉 =
∑
j∈Ji

〈f, T ∗Λ∗
i eij〉〈U∗Λ∗eij, f〉.

Now, if we take uij = Λ∗
i eij, fij = T ∗uij, and Ω = U∗(T ∗)−1, then

A‖f‖2 ≤
∑
i∈I

〈ΛiTf,ΛiUf〉 ≤ B‖f‖2

is equivalent to

A‖f‖ ≤
∑
i∈I

∑
j∈Ji

〈f, fij〉〈Ωfij, f〉 ≤ B‖f‖2.

So we have the result. �

Note that {uij : i ∈ I, j ∈ Ji} is the sequence induced by {Λi : i ∈ I} with
respect to {eij : j ∈ Ji}.

By the above result, finding suitable operators T and U such that {Λi : i ∈ I}
forms a (T, U)-controlled fusion frame for H with optimal bounds, is equivalent
to finding suitable operators T and U such that {T ∗uij : i ∈ I, j ∈ Ji} is a
U∗(T ∗)−1-controlled frame for H with optimal frame bounds.

Let H and K be two Hilbert spaces. We recall that H ⊕ K = {(f, g) : f ∈
H , g ∈ K} is a Hilbert space with pointwise operations and inner product〈

(f, g), (f ′, g′)
〉
:= 〈f, f ′〉H + 〈g, g′〉K , ∀f, f ′ ∈ H , g, g′ ∈ K .
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Also, if Λ ∈ L(H , V ) and Γ ∈ L(K ,W ), then for all f ∈ H , g ∈ K we define

Λ⊕ Γ ∈ L(H ⊕K , V ⊕W ) by (Λ⊕ Γ)(Tf, Ug) := (ΛTf,ΓUg),

where V , W are Hilbert spaces and T ∈ GL(H ), U ∈ GL(K ).

Theorem 3. Let T ∈ GL(H ), U ∈ GL(K ). Let {Λi ∈ L(H , Vi) : i ∈ I}
and {Γi ∈ L(K ,Wi) : i ∈ I} be a (T, T )-controlled g-frame with bounds (A,B)
and a (U,U)-controlled g-frame with bounds (C,D), respectively. Then {Λi ⊕
Γi ∈ L(H ⊕ K , Vi ⊕ Wi) : i ∈ I} is a (T, U)-controlled g-frame with bounds
(min{A,C},max{B,D}).

Proof. Let (f, g) be an arbitrary element of H ⊕K . Then we have∑
i∈I

∥∥(Λi ⊕ Γi)(Tf, Ug)
∥∥2

=
∑
i∈I

〈
(Λi ⊕ Γi)(Tf, Ug), (Λi ⊕ Γi)(Tf, Ug)

〉
=

∑
i∈I

〈
(ΛiTf,ΓiUg), (ΛiTf,ΓiUg)

〉
=

∑
i∈I

〈ΛiTf,Λif〉+ 〈ΓiUg,ΓiUg〉

=
∑
i∈I

‖ΛiTf‖2 +
∑
i∈I

‖ΓiUf‖2

≤ B‖f‖2 +D‖g‖2

≤ max{B,D}
(
‖f‖2 + ‖g‖2

)
= max{B,D}

∥∥(f, g)∥∥2
.

Similarly, we have

min{A,C}
(
‖f‖2 + ‖g‖2

)
≤

∑
i∈I

∥∥(Λi ⊕ Γi)(Tf, Ug)
∥∥2
.

So we have the result. �

Our next result is a generalization of Proposition 3.9 in [18].

Proposition 4. Let {Λi ∈ L(H ,H i) : i ∈ I} be a g-frame for H with frame
operator SΛ and bounds A, B, and let ε > 0 be a real number. Let T ∈ GL(H )
be an operator such that ‖T − S−1

Λ ‖ ≤ ε‖T‖. If ‖T‖ < 1
B
√
ε2+2ε

, then {Λi ∈
L(H ,H i) : i ∈ I} is a (T, T )-controlled g-frame for H with bounds

1

B
−B(ε2 + 2ε)‖T‖2 and B

(
ε‖T‖+ 1

A

)2

.

Proof. Let f ∈ H be an arbitrary element, and let ΘΛ be the synthesis operator
of {Λi ∈ L(H ,H i) : i ∈ I}. Then we have

‖Θ∗
ΛTf‖2 = ‖Θ∗

Λ(T−S−1
Λ )

f‖2 + 〈Θ∗
Λ(T−S−1

Λ )
f,Θ∗

ΛS−1
Λ
f〉

+ 〈Θ∗
ΛS−1

Λ
f,Θ∗

Λ(T−S−1
Λ )

f〉+ ‖Θ∗
ΛS−1

Λ
f‖2.
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Now by the hypothesis and the Cauchy–Schwarz inequality, we have

‖Θ∗
ΛTf‖2 ≤ B

(
‖T − S−1

Λ ‖2 + 2‖T − S−1
Λ ‖‖S−1

Λ ‖+ ‖S−1
Λ ‖2

)
‖f‖2

≤ B
(
ε2‖T‖2 + 2ε‖t‖ 1

A
+

1

A2

)
‖f‖2

= B
(
ε‖T‖+ 1

A

)2

‖f‖2.

On the other hand, since {ΛiS
−1
Λ }i∈I is also a g-frame with lower frame bound 1

B
,

we have
1

B
‖f‖2 ≤ ‖Θ∗

ΛS−1
Λ
f‖2

= ‖Θ∗
Λ(S−1

Λ −T )
f‖2 + 〈Θ∗

Λ(S−1
Λ −T )

f,Θ∗
ΛTf〉

+ 〈Θ∗
ΛTf,Θ

∗
Λ(S−1

Λ −T )
f〉+ ‖Θ∗

ΛTf‖2

= B
(
‖S−1

Λ − T‖2 + 2‖S−1
Λ − T‖‖T‖

)
‖f‖2 + ‖Θ∗

ΛTf‖2.
Therefore, we have ( 1

B
−B(ε2 + 2ε)‖T‖2

)
‖f‖2 ≤ ‖Θ∗

ΛTf‖2.

Now the result holds. �

We end this section by giving the following results concerning the constructions
of new controlled g-frames.

Theorem 4. Let T ∈ GL(H ), and let {Λi ∈ L(H ,H i) : i ∈ I} be a
(T, T )-controlled g-frame with bounds (A,B). Let {Γi}i∈I be a g-sequence with
synthesis operator ΘΓ. For any two positively confined sequences {ai}i∈I and

{bi}i∈I , if ‖ΘΓ‖2 <
A infi∈I a2i

2‖T‖2 supi∈I b2i
, then {aiΛi + biΓi}i∈I is a (T, T )-controlled

g-frame for H .

Proof. For any f ∈ H , we have∑
i∈I

∥∥(aiΛi + biΓi)Tf
∥∥2

=
∑
i∈I

‖aiΛiTf‖2 +
∑
i∈I

‖biΓiTf‖2

+ 2Re
∑
i∈I

〈aiΛiTf, biΓiTf〉

≤ 2
(∑

i∈I

‖aiΛiTf‖2 +
∑
i∈I

‖biΓiTf‖2
)

≤ 2
((

sup
i∈I

a2i
)∑

i∈I

‖ΛiTf‖2 +
(
sup
i∈I

b2i
)∑

i∈I

‖ΓiTf‖2
)

≤ 2
((
sup
i∈I

a2i
)
B‖f‖2 +

(
sup
i∈I

b2i
)
‖Θ∗

ΓTf‖2
)

≤ 2
((
sup
i∈I

a2i
)
B +

(
sup
i∈I

b2i
)
‖T‖2‖ΘΓ‖2

)
‖f‖2.
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Since ∑
i∈I

‖aiΛiTf‖2 =
∑
i∈I

∥∥(aiΛi + biΓi)Tf − biΓiTf
∥∥2

≤ 2
(∑

i∈I

∥∥(aiΛi + biΓi)Tf
∥∥2

+
∑
i∈I

‖biΓiTf‖2
)
,

we have

2
∑
i∈I

∥∥(aiΛi + biΓi)Tf
∥∥2 ≥

∑
i∈I

‖aiΛiTf‖2 − 2
∑
i∈I

‖biΓiTf‖2

≥
(
inf
i∈I

a2i
)∑

i∈I

‖ΛiTf‖2 − 2
(
sup
i∈I

b2i
)
‖Θ∗

ΓTf‖2

≥
((
inf
i∈I

a2i
)
A− 2

(
sup
i∈I

b2i
)
‖T‖2‖ΘΓ‖2

)
‖f‖2.

From ‖ΘΓ‖2 < A infi∈I a2i
2‖T‖2 supi∈I b2i

, we obtain that {aiΛi+ biΓi}i∈I is a (T, T )-controlled

g-frame for H . �

3. Resolutions of the identity

In this section, we will find new resolutions of the identity. In fact, let T, U ∈
GL(H ), and let {Λi ∈ L(H ,H i) : i ∈ I} be a (T, U)-controlled g-frame. Then
we have

f =
∑
i∈I

S−1
TΛUU

∗Λ∗
iΛiTf =

∑
i∈I

U∗Λ∗
iΛiTS

−1
TΛUf, ∀f ∈ H .

By choosing suitable control operators we may obtain more suitable approxima-
tions. Now we will give a new resolution of the identity by using two controlled
operators.

Definition 4. Let T, U ∈ GL(H ), and let {Λi ∈ L(H ,H i) : i ∈ I} and {Γi ∈
L(H ,H i) : i ∈ I} be (T, T )-controlled and (U,U)-controlled g-Bessel sequences,
respectively. We define a (T, U)-controlled g-frame operator for this pair of con-
trolled g-Bessel sequences as follows:

STΓΛU(f) =
∑
i∈I

U∗Γ∗
iΛiT (f), ∀f ∈ H .

As mentioned before, {Λi ∈ L(H ,H i) : i ∈ I} and {Γi ∈ L(H ,H i) : i ∈
I} are also two Bessel g-sequences. So by [13], the g-frame operator SΓΛ(f) =∑

i∈I Γ
∗
iΛi(f) for this pair of g-Bessel sequences is well defined and bounded.

Since STΓΛU = U∗SΓΛT , STΓΛU is a well-defined and bounded operator.

Lemma 2. Let T, U ∈ GL(H ), and let {Λi : i ∈ I} and {Γi : i ∈ I} be
(T, T )-controlled and (U,U)-controlled g-Bessel sequences, respectively. If STΓΛU

is bounded below, then {Λi : i ∈ I} and {Γi : i ∈ I} are (T, T )-controlled and
(U,U)-controlled g-frames, respectively.
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Proof. Suppose that there exists a number λ > 0 such that for all f ∈ H ,

λ‖f‖ ≤ ‖STΓΛU‖.

Then we have

λ‖f‖ ≤ ‖STΓΛU‖ = sup
g∈H ,‖g‖=1

∣∣∣〈∑
i∈I

U∗Γ∗
iΛiTf, g

〉∣∣∣
= sup

‖g‖=1

∣∣∣〈∑
i∈I

ΛiTf,ΓiUg
〉∣∣∣

≤ sup
‖g‖=1

(∑
i∈I

‖ΛiTf‖2
)1/2(∑

i∈I

‖ΓiUg‖2
)1/2

≤
√
B
(∑

i∈I

‖ΛiTf‖2
)1/2

.

Hence,
λ2

D
‖f‖2 ≤

∑
i∈I

‖ΛiTf‖2.

On the other hand, since

S∗
TΓΛU = (U∗SΓΛT )

∗ = T ∗S∗
ΓΛU = T ∗SΛΓU = SUΛΓT ,

we can say that SUΛΓT is also bounded below. So by the above result, {Γi : i ∈ I}
is a (U,U)-controlled g-frame. �

Theorem 5. Let T ∈ GL(H ), and let Λ = {Λi ∈ L(H ,H i) : i ∈ I} be a
(T, T )-controlled g-Bessel sequence. Then the following conditions are equivalent.

(i) Λ is a (T, T )-controlled g-frame for H .
(ii) There exists an operator U ∈ GL(H ) and a (U,U)-controlled g-Bessel

sequence Γ = {Γi ∈ L(H ,H i) : i ∈ I} such that SUΓΛT ≥ mIH on H , for
some m > 0.

Proof. The proofs consists of two parts.
(i) ⇒ (ii). Let Λ be a (T, T )-controlled g-frame with lower and upper g-frame

bounds AT and BT , respectively. Then we take U = T , Γi = Λi, for all i ∈ I.
Hence, we have

〈STΛΛTf, f〉 =
〈∑

i∈I

T ∗Λ∗
iΛiTf, f

〉
=

∑
i∈I

〈ΛiTf,ΛiTf〉 ≥ AT‖f‖2

for all f ∈ H . Moreover,

CT‖f‖2 ≤ ‖S1/2
TΛΛT‖

2 ≤ DT‖f‖2.

By Lemma 1, STΛΛT ∈ GL+(H ).
(ii) ⇒ (i). Suppose that there exist an operator U ∈ GL(H ) and a (U,U)-

controlled g-Bessel sequence Γ = {Γi ∈ L(H ,H i) : i ∈ I} with Bessel bound BU .
Also, let m > 0 be a constant such that

〈SUΓΛTf, f〉 ≥ m‖f‖2
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for all f ∈ H . Then we have

m‖f‖2 ≤ 〈SUΓΛTf, f〉

=
∑
i∈I

〈ΛiTf,ΓiUf〉

≤
(∑

i∈I

‖ΛiTf‖2
)1/2(∑

i∈I

‖ΓiUf‖2
)1/2

≤
√

BU‖f‖
(∑

i∈I

‖ΛiTf‖2
)1/2

,

by the Cauchy–Schwarz inequality. Hence,

m2

BU

‖f‖2 ≤
∑
i∈I

‖ΛiTf‖2 ≤ BT‖f‖2.

So Λ is a (T, T )-controlled g-frame for H . �

Theorem 6. Let T, U ∈ GL(H ), and let {Λi ∈ L(H ,H i) : i ∈ I} be a
(T, T )-controlled g-frame with bounds (A,B) for H . Let the family {Γi ∈
L(H ,H i) : i ∈ I} be a (U,U)-controlled g-Bessel sequence. Suppose that there
exists a number 0 < λ ≤ A such that∥∥(STΓΛU − STΛT )f

∥∥ ≤ λ‖f‖, ∀f ∈ H .

Then STΓΛU is invertible and also {Γi ∈ L(H ,H i) : i ∈ I} is a (U,U)-controlled
g-frame for H .

Proof. Let f ∈ H be an arbitrary element of H . Then we have

‖STΓΛUf‖ = ‖STΓΛUf − STΛTf + STΛTf‖
≥ ‖STΛTf‖ − ‖STΓΛUf − STΛTf‖
≥ (A− λ)‖f‖.

So STΓΛU is bounded below and therefore one-to-one with closed range. On the
other hand, since

‖SUΓΛT − STΛT‖ =
∥∥(STΓΛU − STΛT )

∗∥∥ ≤ λ,

by the above result SUΓΛT is also bounded below (A−λ) and therefore one-to-one
with closed range. Hence, both STΓΛU and SUΓΛT are invertible. And

(A− λ)‖f‖ ≤ ‖SUΓΛT‖ = sup
g∈H ,‖g‖=1

∣∣∣〈∑
i∈I

T ∗Λ∗
iΓiUf, g

〉∣∣∣
= sup

‖g‖=1

∣∣∣〈∑
i∈I

ΓiUf,ΛiTg
〉∣∣∣

≤ sup
‖g‖=1

(∑
i

‖ΓiUf‖2
)1/2(∑

i

‖ΛiTg‖2
)1/2

≤
√
B
(∑

i

‖ΓiUf‖2
)1/2

.
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Hence,
(A− λ)2

B
‖f‖2 ≤

∑
i∈I

‖ΓiUf‖2. �

Another version of these cases is as follows.

Proposition 5. Let Λ and Γ be controlled g-Bessel sequences as mentioned in
Definition 3. Suppose that there exists 0 < ε < 1 such that

‖f − STΓΛUf‖ ≤ ε‖f‖, ∀f ∈ H .

Then Λ and Γ are (T, T )-controlled and (U,U)-controlled g-frames, respectively.
Furthermore, STΓΛU is invertible.

Proof. First,

‖IH − STΓΛU‖ ≤ ε < 1;

therefore, STΓΛU is invertible. Second, let f be an arbitrary element of H of H .
Then we have

‖STΓΛUf‖ ≥ ‖f‖ − ‖f − STΓΛUf‖ ≥ (1− ε)‖f‖.
Hence, STΓΛU is bounded below. By Lemma 2, we know that Λ is a (T, T )-con-
trolled g-frame.

On the other hand, we have

‖IH − SUΛΓT‖ =
∥∥(IH − STΓΛU)

∗∥∥ ≤ ε.

Hence, we can similarly say that Γ is a (U,U)-controlled g-frame. �

With the hypotheses, both STΓΛU and SUΓΛT are invertible. Then the family

{S−1
TΓΛUU

∗Γ∗
iΛiT}i∈I

is a resolution of the identity. Also, we have the new reconstruction formulas

f =
∑
i∈I

S−1
TΓΛUU

∗Γ∗
iΛiTf =

∑
i∈I

Γ∗
iΛiTS

−1
TΓΛUf

and

f =
∑
i∈I

S−1
UΛΓTT

∗Λ∗
iΓiUf =

∑
i∈I

T ∗Λ∗
iΓiUS−1

UΛΓTf.

Suppose that ‖IH − STΓΛU‖ < 1. Then as we mentioned in Proposition 5, STΓΛU

is invertible and we have

S−1
TΓΛU =

∞∑
n=0

(IH − STΓΛU)
n.

Then we have

f =
∑
i∈I

∞∑
n=0

(IH − STΓΛU)
nU∗Γ∗

iΛiTf =
∑
i∈I

∞∑
n=0

U∗Γ∗
iΛiT (IH − STΓΛU)

nf.

Furthermore,

‖S−1
TΓΛU‖ ≤

(
1− ‖IH − STΓΛU‖

)−1
.
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Therefore, {
(IH − STΓΛU)

nU∗Γ∗
iΛiT

}
i∈I,n∈Z +

is a new resolution of the identity.

4. Perturbation of controlled g-frames

The perturbation of frames is important for constructing new frames from a
given one. In this section we give new definitions of perturbations of g-frames
with respect to the operators T , U .

Definition 5. Let T, U ∈ GL(H ), and let {Λi ∈ L(H ,H i) : i ∈ I} and {Γi ∈
L(H ,H i) : i ∈ I} be two g-complete families of bounded operators. Let 0 ≤
λ1, λ2 < 1 be real numbers, and let C = {ci}i∈I be an arbitrary sequence of
positive numbers such that ‖C ‖2 < ∞. We say that the family {Γi ∈ L(H ,H i) :
i ∈ I} is a (λ1, λ2, C , T, U)-perturbation of {Λi ∈ L(H ,H i) : i ∈ I} if we have

‖ΛiTf − ΓiUf‖ ≤ λ1‖ΛiTf‖+ λ2‖ΓiUf‖+ ci‖f‖, ∀f ∈ H .

We have the following important result.

Proposition 6. Let {Λi ∈ L(H ,H i) : i ∈ I} be a g-frame for H with frame
bounds A, B. Suppose that T, U ∈ GL(H ). Let {Γi ∈ L(H ,H i) : i ∈ I} be a
(λ1, λ2, C , T, U)-perturbation of {Λi ∈ L(H ,H i) : i ∈ I}, in which

(1− λ1)
√
A‖T−1‖−1 > ‖C ‖2.

Then {Γi ∈ L(H ,H i) : i ∈ I} is a g-frame for H with g-frame bounds((1− λ1)
√
A‖T−1‖−1 − ‖C ‖2
1 + λ2

‖U‖−1
)2

,
((1 + λ1)

√
B‖T‖+ ‖C ‖2

1− λ2

‖U‖−1
)2

Proof. Since {Λi ∈ L(H ,H i) : i ∈ I} is a g-frame for H with frame bounds A,
B, for all f ∈ H , we have

√
A

‖T−1‖
‖f‖ ≤

∑
i∈I

(
‖ΛiTf‖2

) 1
2 ≤

√
B‖T‖f‖.

Then by triangular inequality we have(∑
i∈I

‖ΓiUf‖2
) 1

2 ≤
(∑

i∈I

(
‖ΛiTf‖+ ‖ΛiTf − ΓiUf‖

)2) 1
2

≤
(∑

i∈I

(
‖ΛiTf‖+ λ1‖ΛiTf‖+ λ2‖ΓiUf‖+ ci‖f‖

)2) 1
2

≤ (1 + λ1)
∑
i∈I

(
‖ΛiTf‖2

) 1
2 + λ2

∑
i∈I

(
‖ΓiUf‖2

) 1
2

+ ‖C ‖2‖f‖.
Hence,

(1− λ2)
∑
i∈I

(
‖ΓiUf‖2

) 1
2 ≤ (1 + λ1)

√
B‖T‖ ‖Uf‖

‖U‖−1
+ ‖C ‖2

‖Uf‖
‖U‖−1

.
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Since Uf ∈ H , finally we have∑
i∈I

‖Γif‖2 ≤
((1 + λ1)

√
B‖T‖+ ‖C ‖2)
1− λ2

‖U‖−1
)2

‖f‖2.

Now for the lower bound we have(∑
i∈I

‖ΓiUf‖2
) 1

2 ≥
(∑

i∈I

(
‖ΛiTf‖ − ‖ΛiTf − ΓiUf‖

)2) 1
2

≥
(∑

i∈I

(
‖ΛiTf‖ − λ1‖ΛiTf‖ − λ2‖ΓiUf‖ − ci‖f‖

)2) 1
2

≥ (1− λ1)
∑
i∈I

(
‖ΛiTf‖2

) 1
2 − λ2

∑
i∈I

(
‖ΓiUf‖2

) 1
2

− ‖C ‖2‖f‖.

Hence,

(1 + λ2)
∑
i∈I

(
‖ΓiUf‖2

) 1
2 ≥ (1− λ1)

√
A‖T−1‖−1 ‖Uf‖

‖U‖−1
− ‖C ‖2

‖Uf‖
‖U‖−1

,

which yields∑
i∈I

‖Γif‖2 ≥
((1− λ1)

√
A‖T−1‖−1 − ‖C ‖2
1 + λ2

‖U‖−1
)2

‖f‖2. �
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Cham, 2016. Zbl 1348.42033. MR3495345. DOI 10.1007/978-3-319-25613-9. 537

http://www.emis.de/cgi-bin/MATH-item?1091.46006
http://www.ams.org/mathscinet-getitem?mr=2150106
https://doi.org/10.1016/j.jmaa.2004.11.036
https://doi.org/10.1016/j.jmaa.2004.11.036
http://www.emis.de/cgi-bin/MATH-item?1192.42016
http://www.ams.org/mathscinet-getitem?mr=2654396
https://doi.org/10.1142/S0219691310003377
http://www.emis.de/cgi-bin/MATH-item?1088.46009
http://www.ams.org/mathscinet-getitem?mr=2149656
https://doi.org/10.1016/j.laa.2005.02.016
http://www.emis.de/cgi-bin/MATH-item?1082.42026
http://www.ams.org/mathscinet-getitem?mr=2163079
https://doi.org/10.1016/j.acha.2005.05.001
http://www.emis.de/cgi-bin/MATH-item?1082.46018
http://www.ams.org/mathscinet-getitem?mr=2117203
https://doi.org/10.1090/S0002-9939-04-07594-X
http://www.emis.de/cgi-bin/MATH-item?1258.42029
http://www.ams.org/mathscinet-getitem?mr=2419707
https://doi.org/10.1016/j.acha.2007.10.001
https://doi.org/10.1016/j.acha.2007.10.001
http://www.emis.de/cgi-bin/MATH-item?1348.42033
http://www.ams.org/mathscinet-getitem?mr=3495345
https://doi.org/10.1007/978-3-319-25613-9


552 D. LI and J. LENG

8. I. Daubechies, A. Grossmann, and Y. Meyer, Painless nonorthogonal expansions, J. Math.
Phys. 27 (1986), no. 5, 1271–1283. Zbl 0608.46014. MR0836025. DOI 10.1063/1.527388.
537

9. R. J. Duffin and A. C. Schaeffer, A class of nonharmonic Fourier series, Trans. Amer.
Math. Soc. 72 (1952), no. 2, 341–366. Zbl 0049.32401. MR0047179. DOI 10.2307/1990760.
537

10. M. Ehler, Random tight frames, J. Fourier Anal. Appl. 18 (2012), no. 1, 1–20.
Zbl 1247.42026. MR2885555. DOI 10.1007/s00041-011-9182-5. 537
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