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A VON NEUMANN ALGEBRA RELATED TO

OPERATOR-MONOTONE AND OPERATOR-CONVEX
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Communicated by Y. Seo

Abstract. We extend inequalities for operator monotone and operator con-
vex functions onto elements of the extended positive part of a von Neumann
algebra. In particular, this provides an opportunity to extend the inequalities
onto unbounded positive self-adjoint operators.

1. Introduction

Starting with the basic articles by Löwner [9] and Kraus [7], the theory of
matrix- and operator-monotone (operator-convex) functions has been intensively
developed. More recently, it has led to effective applications in operator theory,
quantum information theory, and other areas.

A real-valued function f defined on K ⊂ R is said to be matrix-monotone of
order n (see [9]) if, for any pair of Hermitian matrices A,B ∈ Mn with spectra in
K,

A ≤ B =⇒ f(A) ≤ f(B).

A function f defined on an interval I ⊂ R is said to be matrix-convex of order n
(see [7]) if, for any pair of Hermitian matrices A,B ∈ Mn with spectra in I, and
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for all 0 ≤ λ ≤ 1,

f
(
λA+ (1− λ)B

)
≤ λf(A) + (1− λ)f(B).

The function f is called operator-monotone/operator-convex if it is matrix-
monotone/matrix-convex of any order n. The function f(t) = ts (t ∈ [0,∞))
is operator-monotone for s ∈ [0, 1] and operator-convex for s ∈ [−1, 0] ∪ [1, 2].
Another important example of operator-monotone and operator-convex func-
tions are log t and t log t, respectively. They appear in the definition of quantum
entropy.

In 1980, Kubo and Ando [8] developed a systematic theory of operator means
in which each operator mean corresponds to a unique operator-monotone func-
tion on (0,∞). In 1996, Petz [12] studied the theory of monotone metrics and
classified them in terms of operator-monotone functions; subsequently, such func-
tions became extremely useful in quantum information theory. In 2005, Osaka and
coauthors in [10] studied classes of operator-monotone functions with respect to
C∗-algebras. In 2010, using another approach, the first and the second authors
in [1] obtained similar results for operator-convex functions with respect to von
Neumann algebras and (for C∗-algebras) deduced an appropriate exhaustive ana-
log of the results of [10]. An extension of monotonicity inequalities for certain
operator-monotone functions onto unbounded positive self-adjoint operators was
fruitfully applied by Pedersen and Takesaki [11] in their study of normal weights
on von Neumann algebras. In [1], it was proved that if a continuous nonnegative
function f on [0,∞) is operator-monotone with respect to a von Neumann alge-
bra, then f preserves the natural order on the set of positive self-adjoint operators
affiliated with the algebra. In 2016, Bikchentaev in [2] presented monotonocity
and convexity criteria for a continuous function f : R+ → R with respect to any
C∗-algebra.

The notion of the extended positive part of a von Neumann algebra was intro-
duced by Haagerup [3] in his first work on operator-valued weights in von Neu-
mann algebras. Elements of the extended positive part of a von Neumann algebra
can be considered as a dual analog of normal weights on the algebra. The extended
positive part of a von Neumann algebra can be identified with a set of operators
affiliated with the algebra, which are not necessarily densely defined. Therefore,
the authors believe that it is natural to study monotone or convex functions
of elements of the extended positive part of a von Neumann algebra, with the
expectation that the obtained inequalities could be interesting and useful.

2. Notation and preliminaries

In what follows, M stands for a von Neumann algebra, M+ denotes its positive
part, and M+

∗ denotes the cone of positive normal functionals on M [13].

2.1. M-Monotone and M-convex functions.

Definition 2.1. Let f : R+ → R+ be a Borel function bounded on bounded
subsets of R+. We say that f is operator-monotone with respect to M (or briefly,
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M-monotone; see [10]) if

A,B ∈ M+, A ≤ B =⇒ f(A) ≤ f(B). (2.1)

Similarly, f is said to be M-convex (see [1]) if for any A,B ∈ M+ and for any
α ∈ [0, 1],

f
(
αA+ (1− α)B

)
≤ αf(A) + (1− α)f(B). (2.2)

Clearly, for any von Neumann algebra M, each M-monotone function non-
decreases on R+ and each M-convex function is convex on R+.

For n ∈ N ∪ {∞}, let B(Hn) stand for the algebra of all bounded operators
in the n-dimensional Hilbert space Hn. For n ∈ N, B(Hn)-monotone (-convex
functions are matrix-monotone (convex) of order n; B(H∞)-monotone (-convex)
functions are operator-monotone (-convex).

It is worth noting that, for each von Neumann algebra M, there exists n ∈
N ∪ {∞} such that the class of M-monotone (-convex) functions coincides with
the class of B(Hn)-monotone (-convex) functions (see [1], [10]).

2.2. The extended positive part of a von Neumann algebra. In the

remainder of this article, let R +
stand for [0,+∞].

Definition 2.2 ([3, Definition 1.1]). The extended positive part M̂+ of a von Neu-

mann algebra M is the set of maps m : M+
∗ → R +

that satisfy:

(i) m(λϕ) = λm(ϕ), ϕ ∈ M+
∗ , λ ≥ 0 (here 0 · (+∞) = 0);

(ii) m(ϕ+ ψ) = m(ϕ) +m(ψ), ϕ, ψ ∈ M+
∗ ;

(iii) m is lower semicontinuous.

The cone M+ can be regarded as a subset of M̂+. Moreover, the set of positive

self-adjoint operators affiliated with M can be identified as a subset of M̂+ (see

[14, Example IX.4.5]). The extended positive part M̂+ is closed under addition,
multiplication by nonnegative scalars and increasing limits (see [3], [14, p. 215]).

For m ∈ M̂+ and C ∈ M, the element C∗mC is defined by (C∗mC)(ϕ) =
m(CϕC∗), where CϕC∗ = ϕ(C∗ · C).

By [14, Theorem IX.4.8], each m ∈ M̂+ has a unique spectral decomposition
of the form

m(ϕ) =

∫ +∞

0

λ dϕ
(
em(λ)

)
+∞ · ϕ(pm), ϕ ∈ M+

∗ , (2.3)

where {em(λ) : λ ∈ R+} is an increasing family of projections in M strongly
continuous from the right, and pm = 1− limλ→+∞ em(λ).

For a bounded Borel function f : R + → R, the self-adjoint operator f(m) in
M is defined as

ϕ
(
f(m)

)
=

∫ +∞

0

f(λ) dϕ
(
em(λ)

)
+ f(+∞)ϕ(pm) (ϕ ∈ M+

∗ ).
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Similarly, for a Borel function f : R + → R+
, we determine f(m) by

ϕ
(
f(m)

)
=

∫ +∞

0

f(λ) dϕ
(
em(λ)

)
+ f(+∞)ϕ(pm) (ϕ ∈ M+

∗ ).

It is easy to see that f(m) is an element of M̂+.
The aim of the present article is to show how inequalities of monotonicity (2.1)

and convexity (2.2) can be extended from M+ to M̂+ (see Theorem 3.1 and The-
orem 4.3). Note that such extensions of certain operator-monotone functions were
used in [14] to study properties of the extended positive parts of von Neumann
algebras. Note that even formulating of convexity inequalities for unbounded posi-
tive self-adjoint operators leads to necessity of the notion of extended positive part
since the convex combination of unbounded positive self-adjoint operators can-
not be correctly defined as a densely defined operator. Also, we extend Hansen’s
inequality in [4] for operator-monotone functions (Theorem 3.1 and Corollary 3.2
below).

3. Inequalities related to operator-monotone functions

For ε, a > 0, and Ω ⊂ R +
, we define the following functions on R +

:

νε(λ) =

{
λ(1 + ελ)−1, λ ∈ R+,

ε−1, λ = +∞;

ηa(λ) =

{
λ, λ ∈ [0, a],

a, λ ∈ [a,+∞];

and

χΩ(λ) =

{
1, λ ∈ Ω,

0, λ ∈ R + \ Ω.

The following theorem is a generalization of [1, Theorem 5].

Theorem 3.1. Let M be a von Neumann algebra. Let f : R+ → R +
be such

that f(R+) ⊂ R+ and f |R+ is M-monotone, and f(+∞) ≥ limλ→+∞ f(λ). Then

for any m′,m′′ ∈ M̂+,

m′ ≤ m′′ =⇒ f(m′) ≤ f(m′′).

Proof. Clearly, the case of commutative algebras is trivial. Suppose further that
M is noncommutative. Then it follows from studies in [10] and [1] that f is
matrix-monotone of order 2. By [5, Theorem 2.1], this implies that f is continuous
on (0,+∞).

Consider the case limλ→+∞ f(λ) = f(+∞). By [14, Lemma IX.4.10(i)], m′ ≤
m′′ implies νε(m

′) ≤ νε(m
′′) for each ε > 0. Since for each λ ∈ R +

the sequence
(ν 1

n
(λ)) increasingly converges to λ and f is monotone and continuous on (0,+∞],
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we have, for each ϕ ∈ M+
∗ :

ϕ
(
f(m′)

)
= lim

n→∞
ϕ
(
f
(
ν 1

n
(m′)

))
≤ lim

n→∞
ϕ
(
f
(
ν 1

n
(m′′)

))
= ϕ

(
f(m′′)

)
;

that is, f(m′) ≤ f(m′′).
It remains to study the case limλ→+∞ f(λ) > f(+∞). Clearly, it suffices to

consider the function χ{+∞}. Since χ{+∞}(m) = pm for m ∈ M̂+ (see (2.3)) and
m′ ≤ m′′ implies that pm′ ≤ pm′′ by construction (see [14, Theorem IX.4.8]), we
get the desired inequality for the function χ{+∞}. �

Corollary 3.2. Let f : R + → R +
be such that f(R+) ⊂ R+ and f |R+ is

an operator-monotone function with respect to M ⊗ B(H2), and let f(+∞) ≥
limλ→+∞ f(λ). Then for any m ∈ M̂+ and C ∈ M with ‖C‖ ≤ 1,

C∗f(m)C ≤ f(C∗mC). (3.1)

Proof. Note, first, that f is continuous on (0,+∞) since the restriction of f is
supposed to be M⊗B(H2)-monotone.

Analyzing the proof of Hansen’s theorem [4] we see that the inequality

C∗h(X)C ≤ h(C∗XC) (3.2)

was proved, in fact, under supposition that X ∈ M+, C ∈ M, ‖C‖ ≤ 1, and a
function h : R+ → R+ is continuous and M⊗B(H2)-monotone.

In addition to the hypothesis of the lemma, let f be continuous on R +
. Then

for each ε > 0 it follows from (3.2) that

C∗f
(
νε(m)

)
C ≤ f

(
C∗νε(m)C

)
. (3.3)

Since f(ν 1
n
(m)) ↗ f(m) as n→ ∞, we have

C∗f
(
ν 1

n
(m)

)
C ↗ C∗f(m)C (n→ ∞). (3.4)

Using the fact that νε(m) ≤ m implies that C∗νε(m)C ≤ C∗mC, from Theorem
3.1 we get

f
(
C∗νε(m)C

)
≤ f(C∗mC) (ε > 0). (3.5)

From (3.3), (3.4), and (3.5), we conclude that

C∗f(m)C ≤ f(C∗mC).

It remains to exclude the continuity supposition. For this purpose, it suffices to
observe that (3.1) holds for the functions χ(0,∞] and χ{+∞} since ενε ↗ χ(0,∞] as

ε↗ +∞ and ενε ↘ χ{+∞} as ε↘ 0, pointwise on R +
. �

4. Convexity inequalities

Let C[0,+∞] stand for the space of R-valued continuous functions on R +
and

let C+[0,+∞] denote the cone of positive functions. We will use the symbol
s→

to denote convergence in the strong operator topology in M.

Proposition 4.1. For a net {mα} ⊂ M̂+ and m ∈ M̂+, the following statements
are equivalent:
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(i) ν1(mα)
s→ ν1(m),

(ii) f(mα)
s→ f(m) for each f ∈ C[0,+∞].

Proof. Clearly, it suffices to prove (i) =⇒ (ii). Let f ∈ C[0,+∞]. Since f =
(f ◦ ν−1

1 ) ◦ ν1 and the function f ◦ ν−1
1 : [0, 1] → R is continuous, the implication

follows from Kaplansky’s results on s-continuity of operator functions (see [6]; see
also [13, Section II.4]). �

Lemma 4.2. Let fn ∈ C+[0,+∞] (n ∈ N) such that for any λ ∈ R +
, fn(λ) ↗

f(λ) (n → ∞). Let {mα} ⊂ M̂+, m ∈ M̂+ satisfying mα ↗ m. Then for any
ϕ ∈ M+

∗ ,

ϕ
(
f(m)

)
≤ lim

α
ϕ
(
f(mα)

)
. (4.1)

Proof. We apply lower semi-continuity arguments as follows. Note, first, that
ϕ(fn(m)) ↗ ϕ(f(m)) (n → ∞) and ϕ(fn(mα)) ↗ ϕ(f(mα)) (n → ∞) for each
α. By [14, Lemma IX.4.10(ii)], mα ↗ m implies that ν1(mα) ↗ ν1(m). Hence

fn(mα)
s→ fn(m) each n ∈ N, by Proposition 4.1. Since the net {fn(mα)} is

uniformly bounded for each n ∈ N, it follows that limα ϕ(fn(mα)) = ϕ(fn(m))
for each n ∈ N.

Let ϕ(f(m)) < +∞. For ε > 0, there exists n0 ∈ N such that ϕ(fn0(m)) >
ϕ(f(m)) − ε. Then there exists α0 such that ϕ(fn0(mα)) > ϕ(f(m)) − ε when
α ≥ α0. All the more, ϕ(f(mα)) > ϕ(f(m)) − ε when α ≥ α0. Therefore, (4.1)
holds true. Similar arguments can be applied for the case ϕ(f(m)) = +∞. �

Theorem 4.3. Let f : R + → R +
be such that f(R+) ⊂ R+, f |R+ is M-convex,

and f(+∞) = limλ→+∞ f(λ). Then, for m′,m′′ ∈ M̂+ and α ∈ [0, 1],

f
(
αm′ + (1− α)m′′) ≤ αf(m′) + (1− α)f(m′′). (4.2)

Proof. For each n ∈ N, since f |R+ is M-convex, we have

f
(
αηn(m

′) + (1− α)ηn(m
′′)
)
≤ αf

(
ηn(m

′)
)
+ (1− α)f

(
ηn(m

′′)
)
. (4.3)

Also,

αηn(m
′) + (1− α)ηn(m

′′) ↗ αm′ + (1− α)m′′ (n→ ∞). (4.4)

Therefore, by [14, Lemma IX.4.10(ii)],

ν1
(
αηn(m

′) + (1− α)ηn(m
′′)
)
↗ ν1

(
αm′ + (1− α)m′′) (n→ ∞). (4.5)

Now let us consider the case f(0) = limλ→+0 f(λ) (i.e., f is continuous on R +
).

Let f(+∞) ∈ R+ (i.e., f ∈ C[0,+∞]). Then, by Proposition 4.1, from (4.5) this
implies that

f
(
αηn(m

′) + (1− α)ηn(m
′′)
) s→ f

(
αm′ + (1− α)m′′). (4.6)

Clearly,

αf
(
ηn(m

′)
)
+ (1− α)f

(
ηn(m

′′)
) s→ αf(m′) + (1− α)f(m′′). (4.7)

Combining (4.6), (4.7) and (4.3) we obtain (4.2).
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Now, let f(+∞) = +∞. Then there exists n0 ∈ N such that f(λ) monotonically
increases on [n0,+∞]. Consequently, f ◦ ηn+1 ≥ f ◦ ηn for n ≥ n0. Clearly,
f ◦ ηn ∈ C+[0,+∞] for each n ∈ N and (f ◦ ηn)(λ) → f(λ) (n → ∞) for each

λ ∈ R +
. Then, for ϕ ∈ M+

∗ , applying (4.4) and Lemma 4.2, we obtain

ϕ
(
f
(
αm′ + (1− α)m′′)) ≤ lim

n→∞
ϕ
(
f
(
αηn(m

′) + (1− α)ηn(m
′′)
))

≤ lim
n→∞

ϕ(αf
(
ηn(m

′)
)
+ (1− α)f

(
ηn(m

′′)
)

= ϕ
(
αf(m′) + (1− α)f(m′′)

)
.

Therefore, (4.2) holds true. To complete the proof, it suffices to note that (4.2)
holds true for the function χ{0}, as is easy to check. �

Remark 4.4. Certainly, the presented results do not exhaust all inequalities for
the extended positive part of a von Neumann algebra, which involve operator-
monotone and operator-convex functions. For example, we can consider the func-
tion h(λ) = λ log λ (0 < λ < +∞), h(0) = 0, h(+∞) = +∞, correctly define

h(m) for m ∈ M̂+, and prove the inequality

h
(
αm′ + (1− α)m′′) ≤ αh(m′) + (1− α)h(m′′) (m′,m′′ ∈ M̂+, 0 ≤ α ≤ 1).
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