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Abstract. An operator T ∈ B(H) is complex-symmetric if there exists a
conjugate-linear, isometric involution C : H −→ H so that CTC = T ∗. In
this note, we prove that on finite-dimensional Hilbert space Cn with n ≥ 3,
noncomplex symmetric operators are dense in B(Cn).

1. Introduction

Throughout this article, C and N denote the set of complex numbers and the
set of positive integers, respectively. H will always denote a complex separable
Hilbert space. We let B(H) denote the algebra of all bounded linear operators
on H.

Generalizing the notion of complex symmetric matrices, Garćıa and Putinar [3]
initiated a study for complex symmetric operators on Hilbert space which draws
many inspirations from function theory, matrix analysis, and other areas.

Definition 1.1. A conjugation is a conjugate-linear map C : H −→ H which is
both involutive (i.e., C2 = I) and isometric (i.e., (Cx,Cy) = (y, x), ∀x, y ∈ H).

Definition 1.2. We say that an operator T ∈ B(H) is complex-symmetric if there
exists a conjugation C on H so that CTC = T ∗.

It is well known that each complex symmetric operator admits a complex
symmetric matrix representation with respect to some orthonormal basis of H.
Through a series of papers, Garćıa, Putinar, and Wogen (see, e.g., [3]–[5]), have
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obtained a better understanding of the structure of complex symmetric operators.
An effective method of studying complex symmetric operators is to characterize
the complex symmetry of special operator classes (see, e.g., [2], [8], [9]). In fact,
many operator classes have been proved to be complex-symmetric, such as Hankel
operators, truncated Toeplitz operators, normal operators, and binormal opera-
tors.

In this paper, we let CSO denote the set of complex symmetric operators on
complex separable infinite-dimensional Hilbert space. In [5], Garćıa and Wogen
proved that CSO is not closed in the strong operator topology. Moreover, they
raised the so-called norm closure problem for complex symmetric operators. Later,
Zhu, Li, and Ji [10] solved the norm closure problem by proving that CSO is
not closed in the norm topology. Shortly thereafter, Garćıa and Poole [1] also
solved the problem by giving another construction. Furthermore, authors began
to consider other approximation problems about complex symmetric operators
(see [6], [7]). In particular, Zhu and Li [8] got the following result.

Theorem A ([8, Theorem 1.5]). Let H be a complex separable infinite-
dimensional Hilbert space. For any T ∈ B(H) and ε > 0, there exists a compact
operator K ∈ B(H) with ‖K‖ < ε such that T +K is not complex-symmetric.

To prove this result, the authors used the fact that the Wolf spectrum of each
operator on infinite-dimensional space is not empty. For any T and ε > 0, by
arbitrarily choosing a λ0 in the Wolf spectrum of T , we can find a compact
operator K with ‖K‖ < ε such that dim(T + K − λ0) 6= dim(T + K − λ0)

∗. It
follows from [3, Proposition 1] that T +K is not complex-symmetric.

In the finite-dimensional space, as we all know, each operator on C2 is complex-
symmetric (see [3, Example 6]). When n ≥ 3, although every operator on Cn is
similar to a complex symmetric matrix, not all operators on Cn are complex-
symmetric. And it is easy to prove that the set of complex symmetric operators
on the finite-dimensional space is closed in the norm topology. Naturally, one
may wonder whether a result similar to that of Theorem A holds for the finite-
dimensional case.

As was mentioned, every 2 × 2 matrix is a complex symmetric operator, so
we consider the finite-dimensional Hilbert space with dimension greater than 3.
Comparing with Theorem A, we get the following main result.

Theorem 1.3. Assume that n ∈ N and n ≥ 3. For any T ∈ B(Cn) and ε > 0
there exists A ∈ B(Cn) with ‖A‖ < ε such that T +A is not complex-symmetric.

2. Proof of the main result

For each T ∈ B(Cn), we have dimker(T ) = dimker(T ∗). So the original method
for proving Theorem A is useless for proving Theorem 1.3, making it necessary for
us to develop other methods. First we offer some preliminaries. For e, f ∈ (Cn),
we define e⊗ f ∈ B(Cn) as follows:

(e⊗ f)(x) = 〈x, f〉e for each x ∈ Cn.
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Hence e ⊗ f is a rank 1 operator when e 6= 0 and f 6= 0. The following lemma
confirms that each n× n matrix can be approximated by another matrix with n
many different singular values.

Lemma 2.1 ([8, Proposition 4.3]). Given T ∈ B(Cn) and ε > 0, there exists
A ∈ B(Cn) with ‖A‖ < ε such that

T + A =
n∑

i=1

aifi ⊗ ei,

where ai > 0 and ai 6= aj for all 1 ≤ i, j ≤ n with i 6= j, and {ei}ni=1, {fi}ni=1 are
two orthonormal bases of Cn.

Lemma 2.2 ([8, Theorem 1.4]). Assume that {ei}i∈Λ, {fi}i∈Λ are two orthonor-
mal subsets of H and that T ∈ B(H) can be written as

T =
∑
i∈Λ

aifi ⊗ ei,

where ai > 0 and ai 6= aj for all i, j ∈ Λ with i 6= j. Then the following are
equivalent:

(1) T is complex-symmetric;
(2) |〈em, fn〉| = |〈en, fm〉| for all m,n ∈ Λ and 〈ei, fj〉〈ej, fk〉〈ek, fi〉 =

〈ei, fk〉〈ek, fj〉〈ej, fi〉 for all i, j, k ∈ Λ and i ≤ j ≤ k.

In fact, what deserves to be mentioned is that Garćıa, Poore, and Wyse [2] got
this result for the finite-dimensional case in 2011. By Lemma 2.2, one can show
that each n × n matrix can be perturbed to obtain distinct singular values and
satisfy some further conditions.

Lemma 2.3. Given T ∈ B(Cn), n ≥ 3, and ε > 0, there exists B ∈ B(Cn) with
‖B‖ < ε such that

T +B =
n∑

i=1

aifi ⊗ ei,

where ai > 0 and ai 6= aj for all 1 ≤ i, j ≤ n with i 6= j, where {ei}ni=1, {fi}ni=1

are two orthonormal bases of Cn, and where one of the two following cases holds:

(1) T +B is not complex-symmetric,
(2) |〈ei, fi〉| 6= |〈ej, fj〉| for some 1 ≤ i, j ≤ n with i 6= j.

Proof. Given ε > 0, by Lemma 2.1 there exists B1 ∈ B(Cn) with ‖B1‖ < ε
2
such

that

T +B1 =
n∑

i=1

aif
′
i ⊗ ei,

where ai > 0 and ai 6= aj for all 1 ≤ i, j ≤ n with i 6= j, and {ei}ni=1, {f ′
i}ni=1 are

two orthonormal bases of Cn.
Without loss of generality, we can directly assume that T + B1 is complex-

symmetric and that 〈ei, f ′
i〉 = 〈ej, f ′

j〉 for all 1 ≤ i, j ≤ n. By Lemma 2.2, we
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have |〈ei, f ′
j〉| = |〈ej, f ′

i〉| for each 1 ≤ i, j ≤ n. For 1 ≤ i, j ≤ n, we denote
aij = 〈ei, f ′

j〉. It follows that

|aii| = |ajj| for all 1 ≤ i, j ≤ n, (2.1)

and

|aij| = |aji| for all 1 ≤ i, j ≤ n. (2.2)

To finish the proof, we just need to consider the following two cases.
Case 1. There exist some 1 ≤ i1, j1 ≤ n such that |ai1j1| 6= 1√

n
. Since {f ′

j}nj=1 is

an orthonormal basis of Cn, we have

n∑
j=1

|aij|2 =
n∑

j=1

∣∣〈ei, f ′
j〉
∣∣2 = ‖ei‖2 = 1, for each 1 ≤ i ≤ n. (2.3)

It follows that not all {aij}ni,j=1 have the same absolute value. Notice that n ≥ 3
and (2.1) hold for {aii}ni=1, and there exist 1 ≤ i0, j0, p ≤ n with i0 6= j0, i0 6= p,
and j0 6= p such that |app| = |ai0i0| 6= |ai0j0|. We define

fi0 = cos(t)f ′
i0
+ sin(t)f ′

j0
and fj0 = − sin(t)f ′

i0
+ cos(t)f ′

j0
,

where t > 0 and t is small enough, and will be fixed later. Moreover, we denote
fk = f ′

k for 1 ≤ k ≤ n with k 6= i0 and k 6= j0. It is easy to see that {fk}nk=1 is an
orthonormal basis of Cn.

We define T1 =
∑n

i=1 aifi⊗ei. We will show that |〈ei0 , fi0〉| 6= |〈ep, fp〉| for some
sufficiently small t > 0. Otherwise, there exists δ > 0 such that∣∣〈ei0 , fi0〉∣∣ = ∣∣〈ep, fp〉∣∣ for all 0 < t < δ. (2.4)

It is easy to see that |〈ei0 , fi0〉|2 − |〈ep, fp〉|2 is a real analytic function of t. If it
vanishes on (0, δ), then it is identically zero. In particular, it vanishes at t = π

2
.

In fact, when t = π
2
, we have fi0 = f ′

j0
and fp = f ′

p. It leads to

|ai0j0|2 − |app|2 =
∣∣〈ei0 , f ′

j0
〉
∣∣2 − ∣∣〈ep, f ′

p〉
∣∣2 = ∣∣〈ei0 , fi0〉∣∣2 − ∣∣〈ep, fp〉∣∣2 = 0.

This is contradicted by the fact that |ai0j0| 6= |app|.
So we can choose a sufficiently small t such that∣∣〈ei0 , fi0〉∣∣ 6= ∣∣〈ep, fp〉∣∣ and

∥∥T1 − (T +B1)
∥∥ <

ε

2
.

Set B = T1 − T . Then ‖B‖ < ε and T + B = T1. This completes the proof of
Case 1.

Case 2. We have |aij| = 1√
n
for all 1 ≤ i, j ≤ n. We claim that there exists an

arbitrarily small positive number t such that one of the following three numbers
| cos(t)a11+sin(t)a12|, | cos(t)a12+sin(t)a13|, and | cos(t)a11+sin(t)a13| is not 1√

n
.

Otherwise, there exists δ > 0 such that∣∣cos(t)a11 + sin(t)a12
∣∣ = ∣∣cos(t)a12 + sin(t)a13

∣∣
=

∣∣cos(t)a11 + sin(t)a13
∣∣ = 1√

n
(2.5)
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for all 0 < t < δ. We denote a1j =
1√
n
e2πiθj for 1 ≤ j ≤ 3. By (2.5) and a direct

calculation, we have

Re(a11a12) = Re(a12a13) = Re(a11a13) = 0.

It follows that

cos(θ1 − θ2) = cos(θ2 − θ3) = cos(θ1 − θ3) = 0.

This means that

θ1 − θ2 = kπ +
π

2
, θ1 − θ3 = mπ +

π

2
, θ2 − θ3 = lπ +

π

2

for some integers k, m, l. Since this is impossible, the claim holds.
Without loss of generality, we assume that | cos(t)a11 + sin(t)a12| 6= 1√

n
. We let

h1 = cos(t)f ′
1 + sin(t)f ′

2, h2 = − sin(t)f ′
1 + cos(t)f ′

2,

and hj = f ′
j for 3 ≤ j ≤ n. Then {hj}nj=1 is an orthonormal basis of Cn.

We denote

H =
n∑

i=1

aihi ⊗ ei.

It is easy to see that ‖T +B1−H‖ < ε
2
when t > 0 is small enough. Also we have∣∣〈e1, h1〉

∣∣ = ∣∣〈e1, cos(t)f ′
1 + sin(t)f ′

2

〉∣∣ = ∣∣cos(t)a11 + sin(t)a12
∣∣ 6= 1√

n
.

This reduces the proof to Case 1. The proof of Lemma 2.3 is thus complete. �

Now we will prove Theorem 1.3.

Proof of Theorem 1.3. For any T ∈ B(Cn) and ε > 0, by Lemma 2.3 there exists
B ∈ B(Cn) with ‖B‖ < ε

2
such that either T + B is not complex-symmetric, or

T +B can be written as the following form:

T +B =
n∑

i=1

aifi ⊗ ei, (2.6)

where ai > 0 and ai 6= aj for all 1 ≤ i, j ≤ n with i 6= j, and {ei}ni=1, {fi}ni=1 are
two orthonormal bases of Cn. Furthermore, there exist 1 ≤ i0, j0 ≤ n with i0 6= j0
such that |〈ei0 , fi0〉| 6= |〈ej0 , fj0〉|.

If T+B is not complex-symmetric, then the proof is finished. So we can directly
assume that T + B is complex-symmetric with form (2.6) and that |〈ei0 , fi0〉| 6=
|〈ej0 , fj0〉|. We let

f ′
i0
= cos(t)fi0 + sin(t)fj0 , f ′

j0
= − sin(t)fi0 + cos(t)fj0 ,

and f ′
j = fj for 1 ≤ j ≤ n with j 6= i0 and j 6= j0. Then {f ′

j}nj=1 is an orthonormal
basis of Cn. We let St =

∑n
i=1 aif

′
i ⊗ ei, where t will be determined later.

Claim. There exists t > 0 where t is small enough such that St is not complex-
symmetric.



NONCOMPLEX SYMMETRIC OPERATORS ARE DENSE 355

Otherwise, there exists 0 < δ < π
2
such that St is complex-symmetric for all

0 < t < δ. By Lemma 2.2, we have |〈ei0 , f ′
j0
〉| = |〈ej0 , f ′

i0
〉| for all 0 < t < δ.

It is easy to see that |〈ei0 , f ′
j0
〉|2 − |〈ej0 , f ′

i0
〉|2 is a real analytic function of t. If

it vanishes on (0, δ), then it is identically zero. In particular, it vanishes at t = π
2
.

In fact, when t = π
2
, we have f ′

i0
= fj0 and f ′

j0
= −fi0 . It leads to∣∣〈ei0 , fi0〉∣∣2 − ∣∣〈ej0 , fj0〉∣∣2 = ∣∣〈ei0 , f ′
j0
〉
∣∣2 − ∣∣〈ej0 , f ′

i0
〉
∣∣2 = 0,

which is a contradiction. So the claim holds.
Hence one can choose a suitable t > 0 such that∣∣〈ei0 , f ′

j0
〉
∣∣ 6= ∣∣〈ej0 , f ′

i0
〉
∣∣ (2.7)

and ∣∣ai0(f ′
i0
− fi0)

∣∣+ ∣∣aj0(f ′
j0
− fj0)

∣∣ < ε

2
. (2.8)

By (2.7) and Lemma 2.2, St is not complex-symmetric.
Denote C = St− (T +B). It follows from (2.8) that ‖C‖ < ε

2
. Set A = B+C =

St − T . Then ‖A‖ < ε and T +A is not complex-symmetric. This completes the
proof. �
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