

Ann. Funct. Anal. 10 (2019), no. 3, 325–336

https://doi.org/10.1215/20088752-2018-0032

ISSN: 2008-8752 (electronic) http://projecteuclid.org/afa

NONLINEAR MAPS PRESERVING MIXED LIE TRIPLE PRODUCTS ON FACTOR VON NEUMANN ALGEBRAS

ZHUJUN YANG and JIANHUA ZHANG*

Communicated by J.-C. Bourin

ABSTRACT. We prove that every bijective map that preserves mixed Lie triple products from a factor von Neumann algebra \mathcal{M} with dim $\mathcal{M}>4$ into another factor von Neumann algebra \mathcal{N} is of the form $A\to \epsilon\Psi(A)$, where $\epsilon\in\{1,-1\}$ and $\Psi:\mathcal{M}\to\mathcal{N}$ is a linear *-isomorphism or a conjugate linear *-isomorphism. Also, we give the structure of this map when dim $\mathcal{M}=4$.

1. Introduction

Let \mathcal{A} and \mathcal{B} be two *-algebras over the complex number field \mathbb{C} , and let $\varphi: \mathcal{A} \to \mathcal{B}$ be a map. We consider that φ preserves mixed Lie triple products if $\varphi([[A,B]_*,C])=[[\varphi(A),\varphi(B)]_*,\varphi(C)]$ for all $A,B,C\in\mathcal{A}$, where [A,B]=AB-BA is the Lie product and $[A,B]_*=AB-BA^*$ is the skew Lie product of A and B. This kind of map is related to Lie product-preserving maps, skew Lie product-preserving maps, and (skew) commutativity-preserving maps, which have been studied by many authors (see, e.g., [1]-[6], [10], [12]-[15], and the references therein).

Recently, maps preserving the products of the mixture of Lie products and skew Lie products have received a fair amount of attention. For example, Li, Chen, and Wang in [9] proved that a bijective map preserving the Jordan *-product ($[[A, B]_*, C]_*$) between two factor von Neumann algebras is either a linear *-isomorphism (resp., a conjugate linear *-isomorphism) or the negative of

Copyright 2019 by the Tusi Mathematical Research Group.

Received Jul. 17, 2018; Accepted Nov. 6, 2018.

First published online Jul. 2, 2019.

^{*}Corresponding author.

²⁰¹⁰ Mathematics Subject Classification. Primary 47B49; Secondary 46B10.

Keywords. preserver, mixed Lie triple product, von Neumann algebra.

a linear *-isomorphism (resp., the negative of a conjugate linear *-isomorphism). In the present article, we will establish the structure of the nonlinear maps preserving mixed Lie triple products ($[[A,B]_*,C]$) between two factor von Neumann algebras.

Let \mathcal{H} be a complex separable Hilbert space. We denote by $\mathcal{B}(\mathcal{H})$ the algebra of all bounded linear operators on \mathcal{H} . Let $\mathcal{M} \subseteq \mathcal{B}(\mathcal{H})$ be a von Neumann algebra. Recall that \mathcal{M} is a factor if its center is $\mathbb{C}I$, where I is the identity of \mathcal{M} . Let \mathcal{M} be a factor von Neumann algebra. It follows from [7] and [11] that every operator $A \in \mathcal{M}$ can be written as a finite linear combination of projections in \mathcal{M} . If dim $\mathcal{M} < \infty$, then \mathcal{M} is isomorphic to $M_n(\mathbb{C})$, the algebra of all $n \times n$ matrices over \mathbb{C} . We assume that the dimensions of the algebras \mathcal{M} and \mathcal{N} are greater than 1 in the following sections.

2. Additivity

In this section, we will prove the following theorem.

Theorem 2.1. Let \mathcal{M} and \mathcal{N} be two factor von Neumann algebras, and let $\Phi: \mathcal{M} \to \mathcal{N}$ be a bijective map satisfying $\Phi([[A, B]_*, C]) = [[\Phi(A), \Phi(B)]_*, \Phi(C)]$ for all $A, B, C \in \mathcal{M}$. Then Φ is additive.

Let $P_1 \in \mathcal{M}$ be a nontrivial projection, and let $P_2 = I - P_1$. Write $\mathcal{M}_{ij} = P_i \mathcal{M} P_j$ for i, j = 1, 2. Now we will prove Theorem 2.1 using several lemmas.

Lemma 2.2. We have $\Phi(0) = 0$ and $\Phi(\mathbb{C}I) = \mathbb{C}I$.

Proof. The surjectivity of Φ implies that there exists $A \in \mathcal{M}$ such that $\Phi(A) = 0$. Thus,

$$\Phi(0) = \Phi([[0,0]_*,A]) = [[\Phi(0),\Phi(0)]_*,\Phi(A)] = 0.$$

Let $B \in \mathcal{M}$ such that $\Phi(B) = iI$. Then

$$0 = \Phi(\lceil [B, X]_*, \lambda I \rceil) = \lceil [\Phi(B), \Phi(X)]_*, \Phi(\lambda I) \rceil = 2i [\Phi(X), \Phi(\lambda I)]$$

for all $X \in \mathcal{M}$ and $\lambda \in \mathbb{C}$. It follows that $\Phi(\mathbb{C}I) \subseteq \mathbb{C}I$. By considering Φ^{-1} , we can obtain that $\Phi(\mathbb{C}I) = \mathbb{C}I$.

Lemma 2.3. For any $A, B \in \mathcal{M}$, $[\Phi(A), \Phi(B)] = 0$ if and only if [A, B] = 0.

Proof. It follows from $\Phi(iI) \in \mathbb{C}I$ that

$$\Phi(2i[A,B]) = \Phi([[iI,A]_*,B]) = [[\Phi(iI),\Phi(A)]_*,\Phi(B)]
= (\Phi(iI) - \Phi(iI)^*)[\Phi(A),\Phi(B)]$$
(2.1)

for all $A, B \in \mathcal{M}$. If $\Phi(iI) - \Phi(iI)^* = 0$, then $\Phi(2i[A, B]) = 0 = \Phi(0)$, and so [A, B] = 0 for all $A, B \in \mathcal{M}$. This contradiction implies that $\Phi(iI) - \Phi(iI)^* \neq 0$. Hence, by (2.1) and Lemma 2.2, we have that $[\Phi(A), \Phi(B)] = 0$ if and only if [A, B] = 0.

Lemma 2.4. We have $\Phi(A_{12} + A_{21}) = \Phi(A_{12}) + \Phi(A_{21})$ for all $A_{12} \in \mathcal{M}_{12}$ and $A_{21} \in \mathcal{M}_{21}$.

Proof. Write $T = A_{12} + A_{21} - \Phi^{-1}(\Phi(A_{12}) + \Phi(A_{21}))$. For every $B_{ij} \in \mathcal{M}_{ij}$ $(i \neq j)$, it follows from $[[B_{ij}, A_{12}]_*, P_i] = [[B_{ij}, A_{21}]_*, P_i] = 0$ that

$$[[\Phi(B_{ij}), \Phi(A_{12} + A_{21})]_*, \Phi(P_i)] = \Phi([[B_{ij}, A_{12} + A_{21}]_*, P_i])$$

$$= \Phi([[B_{ij}, A_{12}]_*, P_i]) + \Phi([[B_{ij}, A_{21}]_*, P_i])$$

$$= [[\Phi(B_{ij}), \Phi(A_{12}) + \Phi(A_{21})]_*, \Phi(P_i)].$$

Since Φ^{-1} preserves mixed Lie triple products, we have from the above equation that $[[B_{ij}, T]_*, P_i] = 0$. This implies that $P_j T P_j = 0$ for j = 1, 2. It follows from $[[A_{12}, P_1]_*, P_1] = [[A_{21}, P_2]_*, P_2] = 0$ that

$$\begin{split} [[\Phi(A_{12}+A_{21}),\Phi(P_1)]_*,\Phi(P_1)] &= \Phi\left(\left[[A_{12}+A_{21},P_1]_*,P_1\right]\right) \\ &= \Phi\left(\left[[A_{21},P_1]_*,P_1\right]\right) \\ &= \Phi\left(\left[[A_{21},P_1]_*,P_1\right]\right) + \Phi\left(\left[[A_{12},P_1]_*,P_1\right]\right) \\ &= \left[\left[\Phi(A_{12})+\Phi(A_{21}),\Phi(P_1)\right]_*,\Phi(P_1)\right] \end{split}$$

and

$$\begin{split} [[\Phi(A_{12}+A_{21}),\Phi(P_2)]_*,\Phi(P_2)] &= \Phi\big(\big[[A_{12}+A_{21},P_2]_*,P_2\big]\big) \\ &= \Phi\big(\big[[A_{12},P_2]_*,P_2\big]\big) \\ &= \Phi\big(\big[[A_{12},P_2]_*,P_2\big]\big) + \Phi\big(\big[[A_{21},P_2]_*,P_2\big]\big) \\ &= \big[\big[\Phi(A_{12})+\Phi(A_{21}),\Phi(P_2)\big]_*,\Phi(P_2)\big]. \end{split}$$

Then $[[T, P_1]_*, P_1] = [[T, P_2]_*, P_2] = 0$, and so $P_2TP_1 = P_1TP_2 = 0$. Hence T = 0. It follows that $\Phi(A_{12} + A_{21}) = \Phi(A_{12}) + \Phi(A_{21})$.

Lemma 2.5. We have $\Phi(\sum_{i,j=1}^{2} A_{ij}) = \sum_{i,j=1}^{2} \Phi(A_{ij})$ for all $A_{ij} \in \mathcal{M}_{ij}$.

Proof. Write $T = \sum_{i,j=1}^2 A_{ij} - \Phi^{-1}(\sum_{i,j=1}^2 \Phi(A_{ij}))$. It follows from Lemma 2.4 that

$$\begin{aligned} [[\Phi(P_1), \Phi(\sum_{i,j=1}^{2} A_{ij})]_*, \Phi(P_2)] &= \Phi\Big(\Big[\Big[P_1, \sum_{i,j=1}^{2} A_{ij}\Big]_*, P_2\Big]\Big) \\ &= \Phi\Big(\Big[[P_1, A_{12} + A_{21}]_*, P_2\Big]\Big) \\ &= \Phi\Big(\Big[[P_1, A_{12} + A_{21}]_*, P_2\Big]\Big) + \Phi\Big(\Big[[P_1, A_{11}]_*, P_2\Big]\Big) \\ &+ \Phi\Big(\Big[[P_1, A_{22}]_*, P_2\Big]\Big) \\ &= \Big[\Big[\Phi(P_1), \sum_{i,j=1}^{2} \Phi(A_{ij})\Big]_*, \Phi(P_2)\Big]. \end{aligned}$$

This implies that $[[P_1, T]_*, P_2] = 0$. Thus, $P_1TP_2 = P_2TP_1 = 0$. For every $B_{ij} \in \mathcal{M}_{ij}$ $(i \neq j)$, we have

$$[[\Phi(B_{ij}), \Phi(\sum_{k,l=1}^{2} A_{kl})]_{*}, \Phi(P_{i})] = \Phi([[B_{ij}, \sum_{k,l=1}^{2} A_{kl}]_{*}, P_{i}])$$
$$= \Phi([[B_{ij}, A_{jj}]_{*}, P_{i}])$$

$$= \Phi([[B_{ij}, A_{jj}]_*, P_i]) + \Phi([[B_{ij}, A_{ji}]_*, P_i]) + \Phi([[B_{ij}, A_{ij}]_*, P_i]) + \Phi([[B_{ij}, A_{ii}]_*, P_i]) = [[\Phi(B_{ij}), \sum_{k,l=1}^{2} \Phi(A_{kl})]_*, \Phi(P_i)].$$

Then $[[B_{ij}, T]_*, P_i] = 0$, and so $P_j T P_j = 0$ for j = 1, 2. Hence T = 0. It follows that $\Phi(\sum_{i,j=1}^2 A_{ij}) = \sum_{i,j=1}^2 \Phi(A_{ij})$.

Lemma 2.6. We have $\Phi(A_{ij} + B_{ij}) = \Phi(A_{ij}) + \Phi(B_{ij})$ for all $A_{ij}, B_{ij} \in \mathcal{M}_{ij}$, $i \neq j$.

Proof. It follows from Lemma 2.5 that

$$\Phi(A_{ij} + B_{ij}) = \Phi\left(\left[\left[\frac{i}{2}I, P_i - iA_{ij}\right]_*, P_j - iB_{ij}\right]\right)$$

$$= \left[\left[\Phi\left(\frac{i}{2}I\right), \Phi(P_i - iA_{ij})\right]_*, \Phi(P_j - iB_{ij})\right]$$

$$= \left[\left[\Phi\left(\frac{i}{2}I\right), \Phi(P_i) + \Phi(-iA_{ij})\right]_*, \Phi(P_j) + \Phi(-iB_{ij})\right]$$

$$= \Phi\left(\left[\left[\frac{i}{2}I, P_i\right]_*, P_j\right]\right) + \Phi\left(\left[\left[\frac{i}{2}I, P_i\right]_*, -iB_{ij}\right]\right)$$

$$+ \Phi\left(\left[\left[\frac{i}{2}I, -iA_{ij}\right]_*, P_j\right]\right) + \Phi\left(\left[\left[\frac{i}{2}I, -iA_{ij}\right]_*, -iB_{ij}\right]\right)$$

$$= \Phi(A_{ij}) + \Phi(B_{ij}).$$

Lemma 2.7. We have $\Phi(A_{ii} + B_{ii}) = \Phi(A_{ii}) + \Phi(B_{ii})$ for all $A_{ii}, B_{ii} \in \mathcal{M}_{ii}$, i = 1, 2.

Proof. Write $T = A_{ii} + B_{ii} - \Phi^{-1}(\Phi(A_{ii}) + \Phi(B_{ii}))$. Let $j \neq i$. It follows from Lemmas 2.5 and 2.6 that, for any $C_{ji} \in \mathcal{M}_{ji}$,

$$\begin{aligned} [[\Phi(C_{ji}), \Phi(A_{ii} + B_{ii})]_*, \Phi(P_i)] &= \Phi([[C_{ji}, A_{ii} + B_{ii}]_*, P_i]) \\ &= \Phi(C_{ji}A_{ii}) + \Phi(C_{ji}B_{ii}) + \Phi(A_{ii}C_{ji}^*) \\ &+ \Phi(B_{ii}C_{ji}^*) \\ &= \Phi([[C_{ji}, A_{ii}]_*, P_i]) + \Phi([[C_{ji}, B_{ii}]_*, P_i]) \\ &= [[\Phi(C_{ji}), \Phi(A_{ii})]_*, \Phi(P_i)] \\ &+ [[\Phi(C_{ji}), \Phi(B_{ii})]_*, \Phi(P_i)] \\ &= [[\Phi(C_{ji}), \Phi(A_{ii}) + \Phi(B_{ii})]_*, \Phi(P_i)] \end{aligned}$$

and

$$\begin{aligned} [[\Phi(C_{ij}), \Phi(A_{ii} + B_{ii})]_*, \Phi(P_j)] &= \Phi([[C_{ij}, A_{ii} + B_{ii}]_*, P_j]) \\ &= \Phi([[C_{ij}, A_{ii}]_*, P_j]) + \Phi([[C_{ij}, B_{ii}]_*, P_j]) \\ &= [[\Phi(C_{ji}), \Phi(A_{ii}) + \Phi(B_{ii})]_*, \Phi(P_i)]. \end{aligned}$$

Then $[[C_{ji}, T]_*, P_i] = [[C_{ij}, T]_*, P_j] = 0$, and so $P_i T P_i = P_j T P_j = 0$. It is clear that

$$[[\Phi(P_j), \Phi(A_{ii} + B_{ii})]_*, \Phi(P_i)] = \Phi([[P_j, A_{ii} + B_{ii}]_*, P_i])$$

$$= \Phi([[P_j, A_{ii}]_*, P_i]) + \Phi([[P_j, B_{ii}]_*, P_i])$$

$$= [[\Phi(P_j), \Phi(A_{ii}) + \Phi(B_{ii})]_*, \Phi(P_i)].$$

Thus $[[P_j, T]_*, P_i] = 0$, which implies that $P_i T P_j = P_j T P_i = 0$. Then T = 0, and so $\Phi(A_{ii} + B_{ii}) = \Phi(A_{ii}) + \Phi(B_{ii})$.

Proof of Theorem 2.1. Let $A = \sum_{i,j=1}^{2} A_{ij}$, $B = \sum_{i,j=1}^{2} B_{ij}$, where A_{ij} , $B_{ij} \in \mathcal{M}_{ij}$. It follows from Lemmas 2.5, 2.6, and 2.7 that

$$\Phi(A+B) = \Phi\left(\sum_{i,j=1}^{2} A_{ij} + \sum_{i,j=1}^{2} B_{ij}\right) = \Phi\left(\sum_{i,j=1}^{2} (A_{ij} + B_{ij})\right)$$

$$= \sum_{i,j=1}^{2} \Phi(A_{ij} + B_{ij}) = \sum_{i,j=1}^{2} (\Phi(A_{ij}) + \Phi(B_{ij}))$$

$$= \Phi\left(\sum_{i,j=1}^{2} A_{ij}\right) + \Phi\left(\sum_{i,j=1}^{2} B_{ij}\right) = \Phi(A) + \Phi(B).$$

Hence Φ is additive.

3. Structures

In this section, we will prove the following theorem.

Theorem 3.1. Let \mathcal{M} and \mathcal{N} be two factor von Neumann algebras with dim $\mathcal{M} > 4$, and let $\Phi : \mathcal{M} \to \mathcal{N}$ be a bijective map satisfying

$$\Phi(\lceil [A,B]_*,C\rceil) = \lceil \lceil \Phi(A),\Phi(B)\rceil_*,\Phi(C)\rceil$$

for all $A, B, C \in \mathcal{M}$. Then there exists $\epsilon \in \{1, -1\}$ such that $\Phi(A) = \epsilon \Psi(A)$ for all $A \in \mathcal{M}$, where $\Psi : \mathcal{M} \to \mathcal{N}$ is a linear *-isomorphism or a conjugate linear *-isomorphism.

It follows from Theorem 2.1 and Lemma 2.3 that Φ is an additive bijection that preserves commutativity in both directions. Hence by [2, Theorem 3.1],

$$\Phi(A) = a\theta(A) + \xi(A)$$

for all $A \in \mathcal{M}$, where $a \in \mathbb{C}$ is a nonzero scalar, $\theta : \mathcal{M} \to \mathcal{N}$ is an additive Jordan isomorphism, and $\xi : \mathcal{M} \to \mathbb{C}I$ is an additive map. It is easy to check that $\theta(iI) = \pm iI$. Next we will prove Theorem 3.1 by the following lemmas.

Lemma 3.2. For every $A, B \in \mathcal{M}$, we have

- (1) $\Phi(iA) \theta(iI)\Phi(A) \in \mathbb{C}I$,
- (2) $\Phi([A, B]) = \epsilon[\Phi(A), \Phi(B)], \text{ where } \epsilon \in \{1, -1\}.$

Proof. (1) Let $A \in \mathcal{A}$. Then

$$\begin{split} \Phi(iA) - \theta(iI)\Phi(A) &= a\theta(iA) + \xi(iA) - \theta(iI)\Phi(A) \\ &= a\theta(iI)\theta(A) + \xi(iA) - \theta(iI)\Phi(A) \\ &= \theta(iI)\left(a\theta(A) + \xi(A)\right) + \xi(iA) - \theta(iI)\xi(A) - \theta(iI)\Phi(A) \\ &= \xi(iA) - \theta(iI)\xi(A) \in \mathbb{C}I. \end{split}$$

(2) It follows from Lemma 2.2 that $\frac{1}{2}(\Phi(iI)^* - \Phi(iI))\theta(iI) = \epsilon I$ for some $\epsilon \in \mathbb{C}$. By (2.1) and assertion (1), we get

$$\Phi([A, B]) = -\Phi(i[iA, B]) = \frac{1}{2} (\Phi(iI)^* - \Phi(iI)) [\Phi(iA), \Phi(B)]$$
$$= \frac{1}{2} (\Phi(iI)^* - \Phi(iI)) \theta(iI) [\Phi(A), \Phi(B)] = \epsilon [\Phi(A), \Phi(B)]$$

for all $A, B \in \mathcal{M}$. If $A = A^*$, then

$$[[\Phi(A), \Phi(B)]_*, \Phi(C)] = \Phi([[A, B]_*, C]) = \Phi([[A, B], C])$$
$$= \epsilon^2[[\Phi(A), \Phi(B)], \Phi(C)]$$

for all $B, C \in \mathcal{M}$. Thus,

$$(1 - \epsilon^2)\Phi(A)\Phi(B) + \Phi(B)(\epsilon^2\Phi(A) - \Phi(A)^*) \in \mathbb{C}I$$
(3.1)

for all $B \in \mathcal{M}$ and $A \in \mathcal{M}$ with $A = A^*$. Let $Q_1 \in \mathcal{N}$ be a nontrivial projection. Then there exists $D \in \mathcal{M}$ such that $\Phi(D) = Q_1$ by the surjectivity of Φ . Taking B = D in (3.1), we have

$$(1 - \epsilon^2)\Phi(A)Q_1 + Q_1(\epsilon^2\Phi(A) - \Phi(A)^*) \in \mathbb{C}I.$$

This yields

$$(1 - \epsilon^2)Q_2\Phi(A)Q_1 = 0 (3.2)$$

for all $A \in \mathcal{M}$ with $A = A^*$, where $Q_2 = I - Q_1$. Then by assertion (1) and (3.2),

$$(1 - \epsilon^2)Q_2\Phi(iX)Q_1 = 0 (3.3)$$

for all $X \in \mathcal{M}$ with $X = X^*$. It follows from (3.2) and (3.3) that

$$(1 - \epsilon^2)Q_2\Phi(B)Q_1 = 0$$

for all $B \in \mathcal{M}$. Hence $\epsilon \in \{1, -1\}$.

Remark 3.3. Let ϵ be as above, and let $\Psi = \epsilon \Phi$. It follows from Theorem 2.1 and Lemma 3.2 that $\Psi : \mathcal{M} \to \mathcal{N}$ is an additive bijection preserving mixed Lie triple products and satisfies

$$\Psi\big([A,B]\big) = \big[\Psi(A),\Psi(B)\big]$$

for all $A, B \in \mathcal{M}$. Hence by [15, Theorem 2.1], there exists an additive map $f: \mathcal{M} \to \mathbb{C}I$ with f([A, B]) = 0 for all $A, B \in \mathcal{M}$ such that one of the following statements holds:

(1) $\Psi(A) = \varphi(A) + f(A)$ for all $A \in \mathcal{M}$, where $\varphi : \mathcal{M} \to \mathcal{N}$ is an additive isomorphism;

(2) $\Psi(A) = -\varphi(A) + f(A)$ for all $A \in \mathcal{M}$, where $\varphi : \mathcal{M} \to \mathcal{N}$ is an additive anti-isomorphism.

Lemma 3.4. Statement (2) does not occur; that is, there are no additive antiisomorphism $\varphi : \mathcal{M} \to \mathcal{N}$ and additive map $f : \mathcal{M} \to \mathbb{C}I$ with f([A, B]) = 0 for all $A, B \in \mathcal{M}$ such that $\Psi = -\varphi + f$.

Proof. If $\Psi = -\varphi + f$, where $\varphi : \mathcal{M} \to \mathcal{N}$ is an additive anti-isomorphism and $f : \mathcal{M} \to \mathbb{C}I$ is an additive map with f([A, B]) = 0 for all $A, B \in \mathcal{M}$, then

$$\Psi(\lceil [A,B]_*,C\rceil) = -\varphi(\lceil [A,B]_*,C\rceil) = \lceil \varphi(B)\varphi(A) - \varphi(A^*)\varphi(B),\varphi(C)\rceil$$

for all $A, B, C \in \mathcal{M}$. On the other hand, we have

$$\begin{split} \Psi \big(\big[[A,B]_*,C \big] \big) &= \big[\big[\Psi(A), \Psi(B) \big]_*, \Psi(C) \big] \\ &= \big[\big[-\varphi(A) + f(A), -\varphi(B) + f(B) \big]_*, -\varphi(C) + f(C) \big] \\ &= \big[\big[\varphi(A) - f(A), -\varphi(B) + f(B) \big]_*, \varphi(C) \big] \\ &= \big[\big[\varphi(A), -\varphi(B) \big]_* + \big[\varphi(A), f(B) \big]_* + \big[f(A), \varphi(B) \big]_*, \varphi(C) \big]. \end{split}$$

It follows from the surjectivity of φ that

$$(\varphi(A^*) - \varphi(A))\varphi(B) + (\varphi(B) - f(B))(\varphi(A)^* - \varphi(A)) + (f(A) - f(A)^*)\varphi(B) \in \mathbb{C}I$$
(3.4)

for all $A, B \in \mathcal{M}$. Let $P \in \mathcal{M}$ be a nontrivial projection. Then $\varphi(P)$ is a nontrivial idempotent in \mathcal{N} . Taking B = P in (3.4), we have

$$(\varphi(A^*) - \varphi(A))\varphi(P) + (\varphi(P) - f(P))(\varphi(A)^* - \varphi(A)) + (f(A) - f(A)^*)\varphi(P) \in \mathbb{C}I.$$
(3.5)

Multiplying (3.5) on the right-hand side by $\varphi(P^{\perp})$ and on the left-hand side by $\varphi(P)$, we get

$$(I - f(P))\varphi(P)(\varphi(A)^* - \varphi(A))\varphi(P^{\perp}) = 0$$
(3.6)

for all $A \in \mathcal{M}$. Replacing $\varphi(A)$ by $i\varphi(A)$ in (3.6), we have

$$(I - f(P))\varphi(P)(\varphi(A)^* + \varphi(A))\varphi(P^{\perp}) = 0.$$
(3.7)

It follows from (3.6) and (3.7) that

$$(I - f(P))\varphi(P)\varphi(A)\varphi(P^{\perp}) = 0$$

for all $A \in \mathcal{M}$. Hence f(P) = I for any nontrivial projection $P \in \mathcal{M}$, and so by (3.5)

$$\varphi(P^{\perp})\big(\varphi(A)^* - \varphi(A)\big)\varphi(P^{\perp}) \in \mathbb{C}\varphi(P^{\perp}) \tag{3.8}$$

for all $A \in \mathcal{M}$ and any nontrivial projection $P \in \mathcal{M}$. Replacing $\varphi(A)$ by $i\varphi(A)$ in (3.8), we can obtain that

$$\varphi(P^\perp A P^\perp) = \varphi(P^\perp) \varphi(A) \varphi(P^\perp) \in \mathbb{C} \varphi(P^\perp) = \varphi(\mathbb{C} P^\perp)$$

for all $A \in \mathcal{M}$ and any nontrivial projection $P \in \mathcal{M}$. This implies that

$$P^{\perp} \mathcal{M} P^{\perp} = \mathbb{C} P^{\perp}$$
 and $P \mathcal{M} P = \mathbb{C} P$

for any nontrivial projection $P \in \mathcal{M}$. It follows that \mathcal{M} is isomorphic to $M_2(\mathbb{C})$, the algebra of all 2×2 matrices over \mathbb{C} , which contradicts the assumption that $\dim \mathcal{M} > 4$.

Lemma 3.5. We have that Ψ is an additive *-isomorphism.

Proof. It follows from Remark 3.3 and Lemma 3.4 that $\Psi = \varphi + f$, where $\varphi : \mathcal{M} \to \mathcal{N}$ is an additive isomorphism and $f : \mathcal{M} \to \mathbb{C}I$ is an additive map with f([A, B]) = 0 for all $A, B \in \mathcal{M}$. Thus,

$$\Psi(\lceil [A,B]_*,C\rceil) = \varphi(\lceil [A,B]_*,C\rceil) = \lceil \varphi(A)\varphi(B) - \varphi(B)\varphi(A^*),\varphi(C)\rceil$$

for all $A, B, C \in \mathcal{M}$. On the other hand, we have

$$\begin{split} \Psi \big(\big[[A,B]_*,C \big] \big) &= \big[\big[\Psi(A), \Psi(B) \big]_*, \Psi(C) \big] \\ &= \big[\big[\varphi(A) + f(A), \varphi(B) + f(B) \big]_*, \varphi(C) + f(C) \big] \\ &= \big[\big[\varphi(A) + f(A), \varphi(B) + f(B) \big]_*, \varphi(C) \big] \\ &= \big[\big[\varphi(A), \varphi(B) \big]_* + \big[f(A), \varphi(B) \big]_* + \big[\varphi(A), f(B) \big]_*, \varphi(C) \big]. \end{split}$$

It follows from the surjectivity of φ that

$$\varphi(B)\big(\varphi(A)^* - \varphi(A^*)\big) + \varphi(B)\big(f(A)^* - f(A)\big) + f(B)\big(\varphi(A)^* - \varphi(A)\big) \in \mathbb{C}I$$
(3.9)

for all $A, B \in \mathcal{M}$. Let $\lambda \in \mathbb{C}$, and let $P \in \mathcal{M}$ be a nontrivial projection. Multiplying (3.9) on the left-hand side by $\varphi(P^{\perp})$ and on the right-hand side by $\varphi(P)$, and then taking $B = \lambda P$, we have

$$f(\lambda P)\varphi(P^{\perp})\big(\varphi(A)^* - \varphi(A)\big)\varphi(P) = 0 \tag{3.10}$$

for all $A \in \mathcal{M}$. Similarly, we can obtain from (3.10) that

$$f(\lambda P)\varphi(P^{\perp})\varphi(A)\varphi(P)=0$$

for all $A \in \mathcal{M}$. Then $f(\lambda P) = 0$ for all $\lambda \in \mathbb{C}$ and any nontrivial projection $P \in \mathcal{M}$. This yields that

$$f(\lambda I) = f(\lambda P) + f(\lambda P^{\perp}) = 0$$

for all $\lambda \in \mathbb{C}$. Since every $A \in \mathcal{M}$ can be written as a finite linear combination of projections in \mathcal{M} , it follows that f(A) = 0 for all $A \in \mathcal{M}$. Now (3.9) becomes

$$\varphi(B)(\varphi(A)^* - \varphi(A^*)) \in \mathbb{C}I \tag{3.11}$$

for all $A, B \in \mathcal{M}$. In particular, $\varphi(A)^* - \varphi(A^*) \in \mathbb{C}I$ for all $A \in \mathcal{M}$. If $\varphi(A)^* - \varphi(A^*) \neq 0$ for some $A \in \mathcal{M}$, then by (3.11), $\varphi(B) \in \mathbb{C}I$ for all $B \in \mathcal{M}$. This contradiction implies that $\varphi(A^*) = \varphi(A)^*$ for all $A \in \mathcal{M}$. Hence $\Psi = \varphi$ is an additive *-isomorphism.

Proof of Theorem 3.1. It follows from Remark 3.3 and Lemma 3.5 that $\Phi = \epsilon \Psi$ and $\Psi : \mathcal{M} \to \mathcal{N}$ is an additive *-isomorphism. Thus $\Psi(iI) = \pm iI$, $\Psi(bI) = bI$ for any rational number b, and Ψ is an order-preserving map on the collection of all positive elements. Let $r \in \mathbb{R}$ be any real number. Then there exist two sequences of rational numbers $\{a_n\}$ and $\{b_n\}$ such that $a_n \leq r \leq b_n$ and $\lim a_n = \lim b_n = r$. Hence

$$a_n I = \Psi(a_n I) \le \Psi(rI) \le \Psi(b_n I) = b_n I.$$

Letting $n \to \infty$, we have $\Psi(rI) = rI$ for all $r \in \mathbb{R}$. This yields that, for any $\lambda = a + ib \in \mathbb{C}$,

$$\Psi(\lambda I) = \Psi(aI) + \Psi(ibI) = (a \pm ib)I = \lambda I \text{ or } \bar{\lambda}I.$$

It follows that $\Psi(\lambda A) = \lambda \Psi(A)$ or $\Psi(\lambda A) = \bar{\lambda} \Psi(A)$ for all $A \in \mathcal{M}$ and all $\lambda \in \mathbb{C}$. Hence Ψ is a linear *-isomorphism or a conjugate linear *-isomorphism.

Corollary 3.6 ([8, Theorem 10.5.1]). Let \mathcal{H} be a complex Hilbert space with $\dim \mathcal{H} > 2$, and let $\Phi : B(\mathcal{H}) \to B(\mathcal{H})$ be a bijective map satisfying $\Phi([[A, B]_*, C]) = [[\Phi(A), \Phi(B)]_*, \Phi(C)]$ for all $A, B, C \in B(\mathcal{H})$. Then there exists $\epsilon \in \{1, -1\}$ such that $\Phi(A) = \epsilon UAU^*$ for all $A \in B(\mathcal{H})$, where U is a unitary or conjugate unitary operator.

4. The case for dim $\mathcal{M}=4$

Let \mathcal{M} and \mathcal{N} be two factor von Neumann algebras, and let $\Phi: \mathcal{M} \to \mathcal{N}$ be a bijection preserving mixed Lie triple products. If dim $\mathcal{M} = 4$, then we can assume that dim $\mathcal{N} = 4$ by Theorem 3.1. Therefore, without loss of generality, we can assume that $\mathcal{M} = \mathcal{N} = M_2(\mathbb{C})$. Let $E_{ij} \in M_2(\mathbb{C})$ be the matrix unit whose (i, j) position is 1 and all other positions are 0. For any $A = (a_{ij}) \in M_2(\mathbb{C})$, $\overline{A} = (\overline{a}_{ij})$, $A^t = (a_{ii})$, and $A^* = (\overline{a}_{ii})$. In this section, we will prove the following theorem.

Theorem 4.1. Let $\Phi: M_2(\mathbb{C}) \to M_2(\mathbb{C})$ be a bijection satisfying

$$\Phi(\lceil [A,B]_*,C\rceil) = \lceil \lceil \Phi(A),\Phi(B)\rceil_*,\Phi(C)\rceil$$

for all $A, B, C \in M_2(\mathbb{C})$. Then there exist $\epsilon \in \{1, -1\}$ and a unitary matrix $U \in M_2(\mathbb{C})$ such that one of the following statements holds:

- (1) $\Phi(A) = \epsilon UAU^*$ for all $A \in M_2(\mathbb{C})$;
- (2) $\Phi(A) = \epsilon U \bar{A} U^*$ for all $A \in M_2(\mathbb{C})$;
- (3) $\Phi(A) = -\epsilon U A^t U^* + \epsilon \operatorname{tr}(A) I \text{ for all } A \in M_2(\mathbb{C});$
- (4) $\Phi(A) = -\epsilon U A^* U^* + \epsilon \overline{\operatorname{tr}(A)} I \text{ for all } A \in M_2(\mathbb{C}).$

Proof. We see that the condition $\dim \mathcal{M} > 4$ appears only in the proof of Lemma 3.4. Hence there exist $\epsilon \in \{1, -1\}$ such that $\Phi = \epsilon \Psi$ and Ψ satisfies one of the following statements:

- (a) $\Psi(A) = \varphi(A) + f(A)$ for all $A \in M_2(\mathbb{C})$, where $\varphi : M_2(\mathbb{C}) \to M_2(\mathbb{C})$ is an additive isomorphism and $f : M_2(\mathbb{C}) \to \mathbb{C}I$ is an additive map with f([A, B]) = 0 for all $A, B \in M_2(\mathbb{C})$;
- (b) $\Psi(A) = -\varphi(A) + f(A)$ for all $A \in M_2(\mathbb{C})$, where $\varphi : M_2(\mathbb{C}) \to M_2(\mathbb{C})$ is an additive anti-isomorphism and $f : M_2(\mathbb{C}) \to \mathbb{C}I$ is an additive map with f([A, B]) = 0 for all $A, B \in M_2(\mathbb{C})$.

If statement (a) holds, with the same argument as in the proof of Theorem 3.1, then $\Psi: M_2(\mathbb{C}) \to M_2(\mathbb{C})$ is a linear *-isomorphism or a conjugate linear *-isomorphism. Hence there exists a unitary matrix $U \in M_2(\mathbb{C})$ such that $\Psi(A) = UAU^*$ for all $A \in M_2(\mathbb{C})$, or $\Psi(A) = U\bar{A}U^*$ for all $A \in M_2(\mathbb{C})$.

If statement (b) holds, by the same argument as in the proof of Lemma 3.4, then

$$(\varphi(A^*) - \varphi(A))\varphi(B) + (\varphi(B) - f(B))(\varphi(A)^* - \varphi(A)) + (f(A) - f(A)^*)\varphi(B) \in \mathbb{C}I$$

$$(4.1)$$

for all $A, B \in M_2(\mathbb{C})$, and f(E) = I for any nontrivial idempotent $E \in M_2(\mathbb{C})$. Thus,

$$f(I) = f(E) + f(E^{\perp}) = 2I.$$

Taking B = I in (4.1), we have $\varphi(A^*) - \varphi(A)^* \in \mathbb{C}I$ for all $A \in M_2(\mathbb{C})$. This implies that

$$\varphi(E_{11}) = \varphi(E_{11})^*, \qquad \varphi(E_{22}) = \varphi(E_{22})^*, \qquad \varphi(E_{12}) = \varphi(E_{21})^*.$$

For any nontrivial idempotent $E \in M_2(\mathbb{C})$ and $\lambda \in \mathbb{C}$, taking $B = \lambda E$ in (4.1) and then multiplying on the left-hand side by $\varphi(E)$ and on the right-hand side by $\varphi(E^{\perp})$, we have

$$(\varphi(\lambda E) - f(\lambda E))\varphi(E)(\varphi(A)^* - \varphi(A))\varphi(E^{\perp}) = 0$$

for all $A \in M_2(\mathbb{C})$. It follows that

$$\varphi(\lambda E) = f(\lambda E)\varphi(E). \tag{4.2}$$

Since φ is an additive anti-isomorphism and $\varphi(\mathbb{C}I) \subseteq \mathbb{C}I$, there exists an additive isomorphism $\tau : \mathbb{C} \to \mathbb{C}$ such that $\varphi(\lambda I) = \tau(\lambda)I$ for all $\lambda \in \mathbb{C}$. Thus,

$$\varphi(\lambda E) = \varphi(\lambda I)\varphi(E) = \tau(\lambda)\varphi(E). \tag{4.3}$$

This together with (4.2) gives us that $f(\lambda E) = \tau(\lambda)I$ for any nontrivial idempotent $E \in M_2(\mathbb{C})$ and $\lambda \in \mathbb{C}$. It follows from $f(\lambda E_{12}) = f(\lambda E_{21}) = 0$ that

$$f(A) = \tau(\operatorname{tr}(A))I \tag{4.4}$$

for all $A \in M_2(\mathbb{C})$. Since $\varphi(E_{11})$, $\varphi(E_{22})$ are nontrivial projections in $M_2(\mathbb{C})$ and $\varphi(E_{11}) + \varphi(E_{22}) = I$, there exists a unitary matrix $V \in M_2(\mathbb{C})$ such that

$$V^*\varphi(E_{11})V = E_{11}$$
 and $V^*\varphi(E_{22})V = E_{22}$. (4.5)

This and the fact that $\varphi(E_{12}) = \varphi(E_{22})\varphi(E_{12})\varphi(E_{11})$ and $\varphi(E_{21}) = \varphi(E_{12})^*$ yield

$$V^*\varphi(E_{12})V = aE_{21}$$
 and $V^*\varphi(E_{21})V = \bar{a}E_{12}$ (4.6)

for some $a \in \mathbb{C}$ with |a| = 1. From (4.3), (4.5), and (4.6), we have for any $\lambda \in \mathbb{C}$,

$$\varphi(\lambda E_{11}) = \tau(\lambda)VE_{11}V^*, \qquad \varphi(\lambda E_{22}) = \tau(\lambda)VE_{22}V^*,$$

$$\varphi(\lambda E_{12}) = a\tau(\lambda)VE_{21}V^*, \qquad \varphi(\lambda E_{21}) = \bar{a}\tau(\lambda)VE_{12}V^*.$$

It follows that

$$\varphi\left(\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}\right) = V \begin{bmatrix} \tau(a_{11}) & \bar{a}\tau(a_{21}) \\ a\tau(a_{12}) & \tau(a_{22}) \end{bmatrix} V^* = U \begin{bmatrix} \tau(a_{11}) & \tau(a_{21}) \\ \tau(a_{12}) & \tau(a_{22}) \end{bmatrix} U^* \tag{4.7}$$

for all $\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \in M_2(\mathbb{C})$, where $U = V \begin{bmatrix} 1 & 0 \\ 0 & a \end{bmatrix}$ is a unitary matrix in $M_2(\mathbb{C})$.

Taking $A = \begin{bmatrix} 0 & \lambda \\ \lambda & \lambda \end{bmatrix}$ and $B = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$ in (4.1), we obtain the following from (4.4) and (4.7) that:

$$\begin{bmatrix} 0 & \tau(\bar{\lambda}) - \tau(\lambda) \\ \tau(\bar{\lambda}) - \tau(\lambda) & \tau(\bar{\lambda}) - \tau(\lambda) \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} - \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & \overline{\tau(\lambda)} - \tau(\lambda) \\ \overline{\tau(\lambda)} - \tau(\lambda) & \overline{\tau(\lambda)} - \tau(\lambda) \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 0 & \tau(\lambda) - \overline{\tau(\lambda)} \end{bmatrix} \in \mathbb{C}I.$$

It follows that $\tau(\bar{\lambda}) = \overline{\tau(\lambda)}$ for all $\lambda \in \mathbb{C}$. Hence $\tau(\lambda) = \lambda$ for all $\lambda \in \mathbb{C}$, or $\tau(\lambda) = \bar{\lambda}$ for all $\lambda \in \mathbb{C}$. By (4.4) and (4.7), we have $\Psi(A) = -UA^tU^* + \operatorname{tr}(A)I$ for all $A \in M_2(\mathbb{C})$, or $\Psi(A) = -UA^*U^* + \overline{\operatorname{tr}(A)}I$ for all $A \in M_2(\mathbb{C})$.

References

- Z. F. Bai and S. P. Du, Maps preserving products XY YX* on von Neumann algebras, J. Math. Anal. Appl. 386 (2012), no. 1, 103-109. Zbl 1232.47032. MR2834869. DOI 10.1016/j.jmaa.2011.07.052. 325
- R. Banning and M. Mathieu, Commutativity preserving mappings on semiprime rings, Comm. Algebra 25 (1997), no. 1, 247–265. Zbl 0865.16015. MR1429760. DOI 10.1080/ 00927879708825851. 325, 329
- M. Brešar and C. R. Miers, Commutativity preserving mappings of von Neumann algebras, Canad. J. Math. 45 (1993), no. 4, 695–708. Zbl 0794.46045. MR1227654. DOI 10.4153/ CJM-1993-039-x. 325
- M. D. Choi., A. A. Jafarian, and H. Radjavi, Linear maps preserving commutativity, Linear Algebra Appl. 87 (1987), 227–241. Zbl 0615.15004. MR0878680. DOI 10.1016/ 0024-3795(87)90169-8. 325
- 5. J. Cui and C.-K. Li, Maps preserving product $XY YX^*$ on factor von Neumann algebras, Linear Algebra Appl. **431** (2009), nos. 5–7, 833–842. Zbl 1183.47031. MR2535555. DOI 10.1016/j.laa.2009.03.036. 325
- J. Cui and C. Park, Maps preserving strong skew Lie product on factor von Neumann algebras, Acta Math. Sci. Ser. B (Engl. Ed.) 32 (2012), 531–538. Zbl 1255.47043. MR2921895. DOI 10.1016/S0252-9602(12)60035-6. 325
- 7. P. A. Fillmore and D. M. Topping, Operator algebras generated by projections, Duke Math. J. **34** (1967), 333–336. Zbl 0149.34203. MR0209855. 326
- 8. J. Hou and J. Cui, *Linear Mapping on Operator Algebras* [M], Science Press, Beijing, 2002. 333
- C. Li, Q. Chen, and T. Wang, Nonlinear maps preserving the Jordan triple *-products on factor von Neumann algebras, Chin. Ann. Math. Ser. B 39 (2018), no. 4, 633–642.
 Zbl 06979840. MR3864751. DOI 10.1007/s11401-018-0086-4. 325
- 10. J. Marovt, A note on Lie product preserving maps on $M_n(\mathbb{R})$, Math. Slovaca **66** (2016), no. 3, 715–720. Zbl 1389.15051. MR3543734. DOI 10.1515/ms-2015-0173. 325
- 11. A. Paszkiewicz, Any self-adjoint operator is a finite linear combination of projectors, Bull. Acad. Polon. Sci. 28 (1980), nos. 7–8, 337–345. Zbl 0495.47003. MR0628049. 326
- X. Qi and J. Hou, Strong skew commutativity preserving maps on von Neumann algebras, J. Math. Anal. Appl. 397 (2013), no. 1, 362–370. Zbl 1270.47033. MR2968997. DOI 10.1016/j.jmaa.2012.07.036. 325
- 13. P. Semrl, Commutativity preserving maps, Linear Algebra Appl. **429** (2008), nos. 5–6, 1051–1070. Zbl 1195.15027. MR2433163. DOI 10.1016/j.laa.2007.05.006. 325

- 14. X. Yu and F. Lu, *Maps preserving Lie product on B(X)*, Taiwanese J. Math. **12** (2008), no. 3, 793–806. Zbl 1159.47020. MR2417148. DOI 10.11650/twjm/1500602436. 325
- 15. J.-H. Zhang and F.-J. Zhang, Nonlinear maps preserving Lie products on factor von Neumann algebras, Linear Algebra Appl. 429 (2008), no. 1, 18–30. Zbl 1178.47024. MR2419135. DOI 10.1016/j.laa.2008.01.031. 325, 330

School of Mathematics and Information Science, Shaanxi Normal University, Xi'an, 710062, People's Republic of China.

E-mail address: zjyang2100@163.com; jhzhang@snnu.edu.cn