
Ann. Funct. Anal. 10 (2019), no. 3, 325–336

https://doi.org/10.1215/20088752-2018-0032

ISSN: 2008-8752 (electronic)

http://projecteuclid.org/afa

NONLINEAR MAPS PRESERVING MIXED LIE TRIPLE
PRODUCTS ON FACTOR VON NEUMANN ALGEBRAS

ZHUJUN YANG and JIANHUA ZHANG*

Communicated by J.-C. Bourin

Abstract. We prove that every bijective map that preserves mixed Lie triple
products from a factor von Neumann algebra M with dimM > 4 into another
factor von Neumann algebra N is of the form A → εΨ(A), where ε ∈ {1,−1}
and Ψ : M → N is a linear ∗-isomorphism or a conjugate linear ∗-isomorphism.
Also, we give the structure of this map when dimM = 4.

1. Introduction

Let A and B be two ∗-algebras over the complex number field C, and let
ϕ : A → B be a map. We consider that ϕ preserves mixed Lie triple products
if ϕ([[A,B]∗, C]) = [[ϕ(A), ϕ(B)]∗, ϕ(C)] for all A,B,C ∈ A, where [A,B] =
AB−BA is the Lie product and [A,B]∗ = AB−BA∗ is the skew Lie product of
A and B. This kind of map is related to Lie product-preserving maps, skew Lie
product-preserving maps, and (skew) commutativity-preserving maps, which have
been studied by many authors (see, e.g., [1]–[6], [10], [12]–[15], and the references
therein).

Recently, maps preserving the products of the mixture of Lie products and
skew Lie products have received a fair amount of attention. For example, Li,
Chen, and Wang in [9] proved that a bijective map preserving the Jordan
∗-product ([[A,B]∗, C]∗) between two factor von Neumann algebras is either a
linear ∗-isomorphism (resp., a conjugate linear ∗-isomorphism) or the negative of
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a linear ∗-isomorphism (resp., the negative of a conjugate linear ∗-isomorphism).
In the present article, we will establish the structure of the nonlinear maps pre-
serving mixed Lie triple products ([[A,B]∗, C]) between two factor von Neumann
algebras.

Let H be a complex separable Hilbert space. We denote by B(H) the algebra
of all bounded linear operators on H. Let M ⊆ B(H) be a von Neumann algebra.
Recall that M is a factor if its center is CI, where I is the identity of M. Let M
be a factor von Neumann algebra. It follows from [7] and [11] that every operator
A ∈ M can be written as a finite linear combination of projections in M. If
dimM < ∞, then M is isomorphic to Mn(C), the algebra of all n× n matrices
over C. We assume that the dimensions of the algebras M and N are greater
than 1 in the following sections.

2. Additivity

In this section, we will prove the following theorem.

Theorem 2.1. Let M and N be two factor von Neumann algebras, and let
Φ : M → N be a bijective map satisfying Φ([[A,B]∗, C]) = [[Φ(A),Φ(B)]∗,Φ(C)]
for all A,B,C ∈ M. Then Φ is additive.

Let P1 ∈ M be a nontrivial projection, and let P2 = I − P1. Write Mij =
PiMPj for i, j = 1, 2. Now we will prove Theorem 2.1 using several lemmas.

Lemma 2.2. We have Φ(0) = 0 and Φ(CI) = CI.

Proof. The surjectivity of Φ implies that there exists A ∈ M such that Φ(A) = 0.
Thus,

Φ(0) = Φ
([
[0, 0]∗, A

])
=

[[
Φ(0),Φ(0)

]
∗,Φ(A)

]
= 0.

Let B ∈ M such that Φ(B) = iI. Then

0 = Φ
([
[B,X]∗, λI

])
=

[[
Φ(B),Φ(X)

]
∗,Φ(λI)

]
= 2i

[
Φ(X),Φ(λI)

]
for all X ∈ M and λ ∈ C. It follows that Φ(CI) ⊆ CI. By considering Φ−1, we
can obtain that Φ(CI) = CI. �

Lemma 2.3. For any A,B ∈ M, [Φ(A),Φ(B)] = 0 if and only if [A,B] = 0.

Proof. It follows from Φ(iI) ∈ CI that

Φ
(
2i[A,B]

)
= Φ

([
[iI, A]∗, B

])
=

[[
Φ(iI),Φ(A)

]
∗,Φ(B)

]
=

(
Φ(iI)− Φ(iI)∗

)[
Φ(A),Φ(B)

]
(2.1)

for all A,B ∈ M. If Φ(iI) − Φ(iI)∗ = 0, then Φ(2i[A,B]) = 0 = Φ(0), and so
[A,B] = 0 for all A,B ∈ M. This contradiction implies that Φ(iI)−Φ(iI)∗ 6= 0.
Hence, by (2.1) and Lemma 2.2, we have that [Φ(A),Φ(B)] = 0 if and only if
[A,B] = 0. �

Lemma 2.4. We have Φ(A12 + A21) = Φ(A12) + Φ(A21) for all A12 ∈ M12 and
A21 ∈ M21.
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Proof. Write T = A12+A21−Φ−1(Φ(A12)+Φ(A21)). For every Bij ∈ Mij (i 6= j),
it follows from [[Bij, A12]∗, Pi] = [[Bij, A21]∗, Pi] = 0 that

[[Φ(Bij),Φ(A12 + A21)]∗,Φ(Pi)] = Φ
([
[Bij, A12 + A21]∗, Pi

])
= Φ

([
[Bij, A12]∗, Pi

])
+ Φ

([
[Bij, A21]∗, Pi

])
=

[[
Φ(Bij),Φ(A12) + Φ(A21)

]
∗,Φ(Pi)

]
.

Since Φ−1 preserves mixed Lie triple products, we have from the above equation
that [[Bij, T ]∗, Pi] = 0. This implies that PjTPj = 0 for j = 1, 2. It follows from
[[A12, P1]∗, P1] = [[A21, P2]∗, P2] = 0 that

[[Φ(A12 + A21),Φ(P1)]∗,Φ(P1)] = Φ
([
[A12 + A21, P1]∗, P1

])
= Φ

([
[A21, P1]∗, P1

])
= Φ

([
[A21, P1]∗, P1

])
+ Φ

([
[A12, P1]∗, P1

])
=

[[
Φ(A12) + Φ(A21),Φ(P1)

]
∗,Φ(P1)

]
and

[[Φ(A12 + A21),Φ(P2)]∗,Φ(P2)] = Φ
([
[A12 + A21, P2]∗, P2

])
= Φ

([
[A12, P2]∗, P2

])
= Φ

([
[A12, P2]∗, P2

])
+ Φ

([
[A21, P2]∗, P2

])
=

[[
Φ(A12) + Φ(A21),Φ(P2)

]
∗,Φ(P2)

]
.

Then [[T, P1]∗, P1] = [[T, P2]∗, P2] = 0, and so P2TP1 = P1TP2 = 0. Hence T = 0.
It follows that Φ(A12 + A21) = Φ(A12) + Φ(A21). �

Lemma 2.5. We have Φ(
∑2

i,j=1Aij) =
∑2

i,j=1Φ(Aij) for all Aij ∈ Mij.

Proof. Write T =
∑2

i,j=1Aij − Φ−1(
∑2

i,j=1Φ(Aij)). It follows from Lemma 2.4
that

[[Φ(P1),Φ(
2∑

i,j=1

Aij)]∗,Φ(P2)] = Φ
([[

P1,
2∑

i,j=1

Aij

]
∗
, P2

])
= Φ

([
[P1, A12 + A21]∗, P2

])
= Φ

([
[P1, A12 + A21]∗, P2

])
+ Φ

([
[P1, A11]∗, P2

])
+ Φ

([
[P1, A22]∗, P2

])
=

[[
Φ(P1),

2∑
i,j=1

Φ(Aij)
]
∗
,Φ(P2)

]
.

This implies that [[P1, T ]∗, P2] = 0. Thus, P1TP2 = P2TP1 = 0. For every Bij ∈
Mij (i 6= j), we have

[[Φ(Bij),Φ(
2∑

k,l=1

Akl)]∗,Φ(Pi)] = Φ
([[

Bij,
2∑

k,l=1

Akl

]
∗
, Pi

])
= Φ

([
[Bij, Ajj]∗, Pi

])
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= Φ
([
[Bij, Ajj]∗, Pi

])
+ Φ

([
[Bij, Aji]∗, Pi

])
+ Φ

([
[Bij, Aij]∗, Pi

])
+ Φ

([
[Bij, Aii]∗, Pi

])
=

[[
Φ(Bij),

2∑
k,l=1

Φ(Akl)
]
∗
,Φ(Pi)

]
.

Then [[Bij, T ]∗, Pi] = 0, and so PjTPj = 0 for j = 1, 2. Hence T = 0. It follows

that Φ(
∑2

i,j=1Aij) =
∑2

i,j=1 Φ(Aij). �

Lemma 2.6. We have Φ(Aij + Bij) = Φ(Aij) + Φ(Bij) for all Aij, Bij ∈ Mij,
i 6= j.

Proof. It follows from Lemma 2.5 that

Φ(Aij +Bij) = Φ
([[ i

2
I, Pi − iAij

]
∗
, Pj − iBij

])
=

[[
Φ
( i

2
I
)
,Φ(Pi − iAij)

]
∗
,Φ(Pj − iBij)

]
=

[[
Φ
( i

2
I
)
,Φ(Pi) + Φ(−iAij)

]
∗
,Φ(Pj) + Φ(−iBij)

]
= Φ

([[ i
2
I, Pi

]
∗
, Pj

])
+ Φ

([[ i
2
I, Pi

]
∗
,−iBij

])
+ Φ

([[ i
2
I,−iAij

]
∗
, Pj

])
+ Φ

([[ i
2
I,−iAij

]
∗
,−iBij

])
= Φ(Aij) + Φ(Bij). �

Lemma 2.7. We have Φ(Aii + Bii) = Φ(Aii) + Φ(Bii) for all Aii, Bii ∈ Mii,
i = 1, 2.

Proof. Write T = Aii + Bii − Φ−1(Φ(Aii) + Φ(Bii)). Let j 6= i. It follows from
Lemmas 2.5 and 2.6 that, for any Cji ∈ Mji,

[[Φ(Cji),Φ(Aii +Bii)]∗,Φ(Pi)] = Φ
([
[Cji, Aii +Bii]∗, Pi

])
= Φ(CjiAii) + Φ(CjiBii) + Φ(AiiC

∗
ji)

+ Φ(BiiC
∗
ji)

= Φ
([
[Cji, Aii]∗, Pi

])
+ Φ

([
[Cji, Bii]∗, Pi

])
=

[[
Φ(Cji),Φ(Aii)

]
∗,Φ(Pi)

]
+
[[
Φ(Cji),Φ(Bii)

]
∗,Φ(Pi)

]
=

[[
Φ(Cji),Φ(Aii) + Φ(Bii)

]
∗,Φ(Pi)

]
and

[[Φ(Cij),Φ(Aii +Bii)]∗,Φ(Pj)] = Φ
([
[Cij, Aii +Bii]∗, Pj

])
= Φ

([
[Cij, Aii]∗, Pj

])
+ Φ

([
[Cij, Bii]∗, Pj

])
=

[[
Φ(Cji),Φ(Aii) + Φ(Bii)

]
∗,Φ(Pi)

]
.

Then [[Cji, T ]∗, Pi] = [[Cij, T ]∗, Pj] = 0, and so PiTPi = PjTPj = 0. It is clear
that
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[[Φ(Pj),Φ(Aii +Bii)]∗,Φ(Pi)] = Φ
([
[Pj, Aii +Bii]∗, Pi

])
= Φ

([
[Pj, Aii]∗, Pi

])
+ Φ

([
[Pj, Bii]∗, Pi

])
=

[[
Φ(Pj),Φ(Aii) + Φ(Bii)

]
∗,Φ(Pi)

]
.

Thus [[Pj, T ]∗, Pi] = 0, which implies that PiTPj = PjTPi = 0. Then T = 0, and
so Φ(Aii +Bii) = Φ(Aii) + Φ(Bii). �

Proof of Theorem 2.1. Let A =
∑2

i,j=1Aij, B =
∑2

i,j=1Bij, where Aij, Bij ∈ Mij.
It follows from Lemmas 2.5, 2.6, and 2.7 that

Φ(A+B) = Φ
( 2∑
i,j=1

Aij +
2∑

i,j=1

Bij

)
= Φ

( 2∑
i,j=1

(Aij +Bij)
)

=
2∑

i,j=1

Φ(Aij +Bij) =
2∑

i,j=1

(
Φ(Aij) + Φ(Bij)

)
= Φ

( 2∑
i,j=1

Aij

)
+ Φ

( 2∑
i,j=1

Bij

)
= Φ(A) + Φ(B).

Hence Φ is additive. �

3. Structures

In this section, we will prove the following theorem.

Theorem 3.1. Let M and N be two factor von Neumann algebras with dimM >
4, and let Φ : M → N be a bijective map satisfying

Φ
([
[A,B]∗, C

])
=

[[
Φ(A),Φ(B)

]
∗,Φ(C)

]
for all A,B,C ∈ M. Then there exists ε ∈ {1,−1} such that Φ(A) = εΨ(A) for
all A ∈ M, where Ψ : M → N is a linear ∗-isomorphism or a conjugate linear
∗-isomorphism.

It follows from Theorem 2.1 and Lemma 2.3 that Φ is an additive bijection
that preserves commutativity in both directions. Hence by [2, Theorem 3.1],

Φ(A) = aθ(A) + ξ(A)

for all A ∈ M, where a ∈ C is a nonzero scalar, θ : M → N is an additive
Jordan isomorphism, and ξ : M → CI is an additive map. It is easy to check
that θ(iI) = ±iI. Next we will prove Theorem 3.1 by the following lemmas.

Lemma 3.2. For every A,B ∈ M, we have

(1) Φ(iA)− θ(iI)Φ(A) ∈ CI,
(2) Φ([A,B]) = ε[Φ(A),Φ(B)], where ε ∈ {1,−1}.
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Proof. (1) Let A ∈ A. Then

Φ(iA)− θ(iI)Φ(A) = aθ(iA) + ξ(iA)− θ(iI)Φ(A)

= aθ(iI)θ(A) + ξ(iA)− θ(iI)Φ(A)

= θ(iI)
(
aθ(A) + ξ(A)

)
+ ξ(iA)− θ(iI)ξ(A)− θ(iI)Φ(A)

= ξ(iA)− θ(iI)ξ(A) ∈ CI.

(2) It follows from Lemma 2.2 that 1
2
(Φ(iI)∗−Φ(iI))θ(iI) = εI for some ε ∈ C.

By (2.1) and assertion (1), we get

Φ
(
[A,B]

)
= −Φ

(
i[iA,B]

)
=

1

2

(
Φ(iI)∗ − Φ(iI)

)[
Φ(iA),Φ(B)

]
=

1

2

(
Φ(iI)∗ − Φ(iI)

)
θ(iI)

[
Φ(A),Φ(B)

]
= ε

[
Φ(A),Φ(B)

]
for all A,B ∈ M. If A = A∗, then

[[Φ(A),Φ(B)]∗,Φ(C)] = Φ
([
[A,B]∗, C

])
= Φ

([
[A,B], C

])
= ε2

[[
Φ(A),Φ(B)

]
,Φ(C)

]
for all B,C ∈ M. Thus,

(1− ε2)Φ(A)Φ(B) + Φ(B)
(
ε2Φ(A)− Φ(A)∗

)
∈ CI (3.1)

for all B ∈ M and A ∈ M with A = A∗. Let Q1 ∈ N be a nontrivial projection.
Then there exists D ∈ M such that Φ(D) = Q1 by the surjectivity of Φ. Taking
B = D in (3.1), we have

(1− ε2)Φ(A)Q1 +Q1

(
ε2Φ(A)− Φ(A)∗

)
∈ CI.

This yields

(1− ε2)Q2Φ(A)Q1 = 0 (3.2)

for all A ∈ M with A = A∗, where Q2 = I−Q1. Then by assertion (1) and (3.2),

(1− ε2)Q2Φ(iX)Q1 = 0 (3.3)

for all X ∈ M with X = X∗. It follows from (3.2) and (3.3) that

(1− ε2)Q2Φ(B)Q1 = 0

for all B ∈ M. Hence ε ∈ {1,−1}. �

Remark 3.3. Let ε be as above, and let Ψ = εΦ. It follows from Theorem 2.1 and
Lemma 3.2 that Ψ : M → N is an additive bijection preserving mixed Lie triple
products and satisfies

Ψ
(
[A,B]

)
=

[
Ψ(A),Ψ(B)

]
for all A,B ∈ M. Hence by [15, Theorem 2.1], there exists an additive map
f : M → CI with f([A,B]) = 0 for all A,B ∈ M such that one of the following
statements holds:

(1) Ψ(A) = ϕ(A) + f(A) for all A ∈ M, where ϕ : M → N is an additive
isomorphism;
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(2) Ψ(A) = −ϕ(A) + f(A) for all A ∈ M, where ϕ : M → N is an additive
anti-isomorphism.

Lemma 3.4. Statement (2) does not occur; that is, there are no additive anti-
isomorphism ϕ : M → N and additive map f : M → CI with f([A,B]) = 0 for
all A,B ∈ M such that Ψ = −ϕ+ f .

Proof. If Ψ = −ϕ + f , where ϕ : M → N is an additive anti-isomorphism and
f : M → CI is an additive map with f([A,B]) = 0 for all A,B ∈ M, then

Ψ
([
[A,B]∗, C

])
= −ϕ

([
[A,B]∗, C

])
=

[
ϕ(B)ϕ(A)− ϕ(A∗)ϕ(B), ϕ(C)

]
for all A,B,C ∈ M. On the other hand, we have

Ψ
([
[A,B]∗, C

])
=

[[
Ψ(A),Ψ(B)

]
∗,Ψ(C)

]
=

[[
−ϕ(A) + f(A),−ϕ(B) + f(B)

]
∗,−ϕ(C) + f(C)

]
=

[[
ϕ(A)− f(A),−ϕ(B) + f(B)

]
∗, ϕ(C)

]
=

[[
ϕ(A),−ϕ(B)

]
∗ +

[
ϕ(A), f(B)

]
∗ +

[
f(A), ϕ(B)

]
∗, ϕ(C)

]
.

It follows from the surjectivity of ϕ that(
ϕ(A∗)− ϕ(A)

)
ϕ(B) +

(
ϕ(B)− f(B)

)(
ϕ(A)∗ − ϕ(A)

)
+
(
f(A)− f(A)∗

)
ϕ(B) ∈ CI (3.4)

for all A,B ∈ M. Let P ∈ M be a nontrivial projection. Then ϕ(P ) is a nontrivial
idempotent in N . Taking B = P in (3.4), we have(

ϕ(A∗)− ϕ(A)
)
ϕ(P ) +

(
ϕ(P )− f(P )

)(
ϕ(A)∗ − ϕ(A)

)
+
(
f(A)− f(A)∗

)
ϕ(P ) ∈ CI. (3.5)

Multiplying (3.5) on the right-hand side by ϕ(P⊥) and on the left-hand side by
ϕ(P ), we get (

I − f(P )
)
ϕ(P )

(
ϕ(A)∗ − ϕ(A)

)
ϕ(P⊥) = 0 (3.6)

for all A ∈ M. Replacing ϕ(A) by iϕ(A) in (3.6), we have(
I − f(P )

)
ϕ(P )

(
ϕ(A)∗ + ϕ(A)

)
ϕ(P⊥) = 0. (3.7)

It follows from (3.6) and (3.7) that(
I − f(P )

)
ϕ(P )ϕ(A)ϕ(P⊥) = 0

for all A ∈ M. Hence f(P ) = I for any nontrivial projection P ∈ M, and so by
(3.5)

ϕ(P⊥)
(
ϕ(A)∗ − ϕ(A)

)
ϕ(P⊥) ∈ Cϕ(P⊥) (3.8)

for all A ∈ M and any nontrivial projection P ∈ M. Replacing ϕ(A) by iϕ(A)
in (3.8), we can obtain that

ϕ(P⊥AP⊥) = ϕ(P⊥)ϕ(A)ϕ(P⊥) ∈ Cϕ(P⊥) = ϕ(CP⊥)

for all A ∈ M and any nontrivial projection P ∈ M. This implies that
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P⊥MP⊥ = CP⊥ and PMP = CP

for any nontrivial projection P ∈ M. It follows that M is isomorphic to M2(C),
the algebra of all 2 × 2 matrices over C, which contradicts the assumption that
dimM > 4. �

Lemma 3.5. We have that Ψ is an additive ∗-isomorphism.

Proof. It follows from Remark 3.3 and Lemma 3.4 that Ψ = ϕ + f , where ϕ :
M → N is an additive isomorphism and f : M → CI is an additive map with
f([A,B]) = 0 for all A,B ∈ M. Thus,

Ψ
([
[A,B]∗, C

])
= ϕ

([
[A,B]∗, C

])
=

[
ϕ(A)ϕ(B)− ϕ(B)ϕ(A∗), ϕ(C)

]
for all A,B,C ∈ M. On the other hand, we have

Ψ
([
[A,B]∗, C

])
=

[[
Ψ(A),Ψ(B)

]
∗,Ψ(C)

]
=

[[
ϕ(A) + f(A), ϕ(B) + f(B)

]
∗, ϕ(C) + f(C)

]
=

[[
ϕ(A) + f(A), ϕ(B) + f(B)

]
∗, ϕ(C)

]
=

[[
ϕ(A), ϕ(B)

]
∗ +

[
f(A), ϕ(B)

]
∗ +

[
ϕ(A), f(B)

]
∗, ϕ(C)

]
.

It follows from the surjectivity of ϕ that

ϕ(B)
(
ϕ(A)∗ − ϕ(A∗)

)
+ ϕ(B)

(
f(A)∗ − f(A)

)
+ f(B)

(
ϕ(A)∗ − ϕ(A)

)
∈ CI

(3.9)

for all A,B ∈ M. Let λ ∈ C, and let P ∈ M be a nontrivial projection. Multi-
plying (3.9) on the left-hand side by ϕ(P⊥) and on the right-hand side by ϕ(P ),
and then taking B = λP , we have

f(λP )ϕ(P⊥)
(
ϕ(A)∗ − ϕ(A)

)
ϕ(P ) = 0 (3.10)

for all A ∈ M. Similarly, we can obtain from (3.10) that

f(λP )ϕ(P⊥)ϕ(A)ϕ(P ) = 0

for all A ∈ M. Then f(λP ) = 0 for all λ ∈ C and any nontrivial projection
P ∈ M. This yields that

f(λI) = f(λP ) + f(λP⊥) = 0

for all λ ∈ C. Since every A ∈ M can be written as a finite linear combination of
projections in M, it follows that f(A) = 0 for all A ∈ M. Now (3.9) becomes

ϕ(B)
(
ϕ(A)∗ − ϕ(A∗)

)
∈ CI (3.11)

for all A,B ∈ M. In particular, ϕ(A)∗ − ϕ(A∗) ∈ CI for all A ∈ M. If ϕ(A)∗ −
ϕ(A∗) 6= 0 for some A ∈ M, then by (3.11), ϕ(B) ∈ CI for all B ∈ M. This
contradiction implies that ϕ(A∗) = ϕ(A)∗ for all A ∈ M. Hence Ψ = ϕ is an
additive ∗-isomorphism. �
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Proof of Theorem 3.1. It follows from Remark 3.3 and Lemma 3.5 that Φ = εΨ
and Ψ : M → N is an additive ∗-isomorphism. Thus Ψ(iI) = ±iI, Ψ(bI) = bI for
any rational number b, and Ψ is an order-preserving map on the collection of all
positive elements. Let r ∈ R be any real number. Then there exist two sequences
of rational numbers {an} and {bn} such that an ≤ r ≤ bn and lim an = lim bn = r.
Hence

anI = Ψ(anI) ≤ Ψ(rI) ≤ Ψ(bnI) = bnI.

Letting n → ∞, we have Ψ(rI) = rI for all r ∈ R. This yields that, for any
λ = a+ ib ∈ C,

Ψ(λI) = Ψ(aI) + Ψ(ibI) = (a± ib)I = λI or λ̄I.

It follows that Ψ(λA) = λΨ(A) or Ψ(λA) = λ̄Ψ(A) for all A ∈ M and all λ ∈ C.
Hence Ψ is a linear ∗-isomorphism or a conjugate linear ∗-isomorphism. �

Corollary 3.6 ([8, Theorem 10.5.1]). Let H be a complex Hilbert space with
dimH > 2, and let Φ : B(H) → B(H) be a bijective map satisfying Φ([[A,B]∗, C]) =
[[Φ(A),Φ(B)]∗,Φ(C)] for all A,B,C ∈ B(H). Then there exists ε ∈ {1,−1} such
that Φ(A) = εUAU∗ for all A ∈ B(H), where U is a unitary or conjugate unitary
operator.

4. The case for dimM = 4

Let M and N be two factor von Neumann algebras, and let Φ : M → N be a
bijection preserving mixed Lie triple products. If dimM = 4, then we can assume
that dimN = 4 by Theorem 3.1. Therefore, without loss of generality, we can
assume that M = N = M2(C). Let Eij ∈ M2(C) be the matrix unit whose (i, j)
position is 1 and all other positions are 0. For any A = (aij) ∈ M2(C), A = (aij),
At = (aji), and A∗ = (aji). In this section, we will prove the following theorem.

Theorem 4.1. Let Φ : M2(C) → M2(C) be a bijection satisfying

Φ
([
[A,B]∗, C

])
=

[[
Φ(A),Φ(B)

]
∗,Φ(C)

]
for all A,B,C ∈ M2(C). Then there exist ε ∈ {1,−1} and a unitary matrix
U ∈ M2(C) such that one of the following statements holds:

(1) Φ(A) = εUAU∗ for all A ∈ M2(C);
(2) Φ(A) = εUĀU∗ for all A ∈ M2(C);
(3) Φ(A) = −εUAtU∗ + ε tr(A)I for all A ∈ M2(C);
(4) Φ(A) = −εUA∗U∗ + εtr(A)I for all A ∈ M2(C).

Proof. We see that the condition dimM > 4 appears only in the proof of
Lemma 3.4. Hence there exist ε ∈ {1,−1} such that Φ = εΨ and Ψ satisfies
one of the following statements:

(a) Ψ(A) = ϕ(A) + f(A) for all A ∈ M2(C), where ϕ : M2(C) → M2(C) is
an additive isomorphism and f : M2(C) → CI is an additive map with
f([A,B]) = 0 for all A,B ∈ M2(C);

(b) Ψ(A) = −ϕ(A) + f(A) for all A ∈ M2(C), where ϕ : M2(C) → M2(C)
is an additive anti-isomorphism and f : M2(C) → CI is an additive map
with f([A,B]) = 0 for all A,B ∈ M2(C).
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If statement (a) holds, with the same argument as in the proof of Theo-
rem 3.1, then Ψ : M2(C) → M2(C) is a linear ∗-isomorphism or a conjugate
linear ∗-isomorphism. Hence there exists a unitary matrix U ∈ M2(C) such that
Ψ(A) = UAU∗ for all A ∈ M2(C), or Ψ(A) = UĀU∗ for all A ∈ M2(C).

If statement (b) holds, by the same argument as in the proof of Lemma 3.4,
then (

ϕ(A∗)− ϕ(A)
)
ϕ(B) +

(
ϕ(B)− f(B)

)(
ϕ(A)∗ − ϕ(A)

)
+
(
f(A)− f(A)∗

)
ϕ(B) ∈ CI (4.1)

for all A,B ∈ M2(C), and f(E) = I for any nontrivial idempotent E ∈ M2(C).
Thus,

f(I) = f(E) + f(E⊥) = 2I.

Taking B = I in (4.1), we have ϕ(A∗) − ϕ(A)∗ ∈ CI for all A ∈ M2(C). This
implies that

ϕ(E11) = ϕ(E11)
∗, ϕ(E22) = ϕ(E22)

∗, ϕ(E12) = ϕ(E21)
∗.

For any nontrivial idempotent E ∈ M2(C) and λ ∈ C, taking B = λE in (4.1)
and then multiplying on the left-hand side by ϕ(E) and on the right-hand side
by ϕ(E⊥), we have(

ϕ(λE)− f(λE)
)
ϕ(E)

(
ϕ(A)∗ − ϕ(A)

)
ϕ(E⊥) = 0

for all A ∈ M2(C). It follows that

ϕ(λE) = f(λE)ϕ(E). (4.2)

Since ϕ is an additive anti-isomorphism and ϕ(CI) ⊆ CI, there exists an additive
isomorphism τ : C → C such that ϕ(λI) = τ(λ)I for all λ ∈ C. Thus,

ϕ(λE) = ϕ(λI)ϕ(E) = τ(λ)ϕ(E). (4.3)

This together with (4.2) gives us that f(λE) = τ(λ)I for any nontrivial idempo-
tent E ∈ M2(C) and λ ∈ C. It follows from f(λE12) = f(λE21) = 0 that

f(A) = τ
(
tr(A)

)
I (4.4)

for all A ∈ M2(C). Since ϕ(E11), ϕ(E22) are nontrivial projections in M2(C) and
ϕ(E11) + ϕ(E22) = I, there exists a unitary matrix V ∈ M2(C) such that

V ∗ϕ(E11)V = E11 and V ∗ϕ(E22)V = E22. (4.5)

This and the fact that ϕ(E12) = ϕ(E22)ϕ(E12)ϕ(E11) and ϕ(E21) = ϕ(E12)
∗ yield

V ∗ϕ(E12)V = aE21 and V ∗ϕ(E21)V = āE12 (4.6)

for some a ∈ C with |a| = 1. From (4.3), (4.5), and (4.6), we have for any λ ∈ C,

ϕ(λE11) = τ(λ)V E11V
∗, ϕ(λE22) = τ(λ)V E22V

∗,

ϕ(λE12) = aτ(λ)V E21V
∗, ϕ(λE21) = āτ(λ)V E12V

∗.

It follows that
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ϕ

([
a11 a12
a21 a22

])
= V

[
τ(a11) āτ(a21)
aτ(a12) τ(a22)

]
V ∗ = U

[
τ(a11) τ(a21)
τ(a12) τ(a22)

]
U∗ (4.7)

for all
[
a11 a12
a21 a22

]
∈ M2(C), where U = V

[
1 0
0 a

]
is a unitary matrix in M2(C).

Taking A =
[
0 λ
λ λ

]
and B =

[
0 0
0 1

]
in (4.1), we obtain the following from (4.4)

and (4.7) that:[
0 τ(λ̄)− τ(λ)

τ(λ̄)− τ(λ) τ(λ̄)− τ(λ)

] [
0 0
0 1

]
−

[
1 0
0 0

] [
0 τ(λ)− τ(λ)

τ(λ)− τ(λ) τ(λ)− τ(λ)

]
+

[
0 0

0 τ(λ)− τ(λ)

]
∈ CI.

It follows that τ(λ̄) = τ(λ) for all λ ∈ C. Hence τ(λ) = λ for all λ ∈ C, or
τ(λ) = λ̄ for all λ ∈ C. By (4.4) and (4.7), we have Ψ(A) = −UAtU∗ + tr(A)I

for all A ∈ M2(C), or Ψ(A) = −UA∗U∗ + tr(A)I for all A ∈ M2(C). �
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