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ABSTRACT. We prove that every bijective map that preserves mixed Lie triple
products from a factor von Neumann algebra M with dim M > 4 into another
factor von Neumann algebra N is of the form A — e¥(A), where € € {1,—-1}
and ¥ : M — N is a linear *-isomorphism or a conjugate linear *-isomorphism.
Also, we give the structure of this map when dim M = 4.

1. Introduction

Let A and B be two x-algebras over the complex number field C, and let
¢ : A — B be a map. We consider that ¢ preserves mixed Lie triple products
it (A, BL.,C]) = [[p(A),¢(B)].,¢(C)] for all A,B,C € A, where [A,B] =
AB — BA is the Lie product and [A, B], = AB — BA* is the skew Lie product of
A and B. This kind of map is related to Lie product-preserving maps, skew Lie
product-preserving maps, and (skew) commutativity-preserving maps, which have
been studied by many authors (see, e.g., [1]-[6], [10], [12]-][15], and the references
therein).

Recently, maps preserving the products of the mixture of Lie products and
skew Lie products have received a fair amount of attention. For example, Li,
Chen, and Wang in [9] proved that a bijective map preserving the Jordan
s-product ([[4, Bl.,C].) between two factor von Neumann algebras is either a
linear *-isomorphism (resp., a conjugate linear s-isomorphism) or the negative of
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a linear x-isomorphism (resp., the negative of a conjugate linear #-isomorphism).
In the present article, we will establish the structure of the nonlinear maps pre-
serving mixed Lie triple products ([[A, B]., C]) between two factor von Neumann
algebras.

Let ‘H be a complex separable Hilbert space. We denote by B(H) the algebra
of all bounded linear operators on ‘H. Let M C B(H) be a von Neumann algebra.
Recall that M is a factor if its center is CI, where [ is the identity of M. Let M
be a factor von Neumann algebra. It follows from [7] and [11] that every operator
A € M can be written as a finite linear combination of projections in M. If
dim M < oo, then M is isomorphic to M, (C), the algebra of all n x n matrices
over C. We assume that the dimensions of the algebras M and N are greater
than 1 in the following sections.

2. Additivity
In this section, we will prove the following theorem.

Theorem 2.1. Let M and N be two factor von Neumann algebras, and let
P : M — N be a bijective map satisfying ®([[A, Bl., C]) = [[P(A), ®(B)]., ®(C)]
for all A,B,C € M. Then ® is additive.

Let P, € M be a nontrivial projection, and let P, = I — P;. Write M,;; =
P,MP; for i,j = 1,2. Now we will prove Theorem 2.1 using several lemmas.

Lemma 2.2. We have ®(0) =0 and ®(CI) = CI.

Proof. The surjectivity of ® implies that there exists A € M such that ®(A) = 0.
Thus,

®(0) = @([[0,0]., A]) = [[®(0),®(0)],, P(A)] = 0.
Let B € M such that ®(B) =il. Then
0=®([[B,X].,M]) = [[®(B),®(X)],, ®(\])] = 2i[®(X), P(\])]

)

for all X € M and X € C. It follows that ®(CI) C CI. By considering &', we
can obtain that ®(CI) = CI. O

Lemma 2.3. For any A, B € M, [®(A),®(B)] =0 if and only if [A, B] = 0.
Proof. 1t follows from ®(il) € CI that
B(2il4, B) = a( (i1, Al.. ) = [[a(i1). 9(4)] . a(B)]
= (@(i1) - ®(i1)")[2(4). 9(B) (21)

for all A,B € M. If ®(il) — ®(il)* = 0, then ®(2i[A, B]) = 0 = ®(0), and so
[A, Bl =0 for all A, B € M. This contradiction implies that ®(il) — ®(i)* # 0.
Hence, by (2.1) and Lemma 2.2, we have that [®(A), ®(B)] = 0 if and only if
[A, B] = 0. O

Lemma 2.4. We have (I)(Alg + Agl) = (I)(Alg) -+ (I)(Agl) fOT' all A12 € Mlg and
Ay € My;.
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Proof. Write T = Ajg+ Ay — & H(P(A12) +P(Az1)). For every By € M,; (i # j),
it follows from [[B;;, A1a)., P»] [[Bij, Aa1]s, P;] = 0 that
[[@(Bi)), (A2 + Az)]s, ®(F)] = CD([[BZ']" Apg + Agls, z})
= [[®(By)), ®(A12) + ®(An)],, D(P)].

Since @1 preserves mixed Lie triple products, we have from the above equation
that [[B;;, 1., P;] = 0. This implies that P,;/TP; = 0 for j = 1,2. It follows from
[[A12, Prls, Pr] = [[A21, Po]«, P2] = 0 that

[®(A12 + A1), O(P1)]s, P(P1)] = ‘P([[Au + Ag, P, Pl])
= ‘I)(“Azl, Pl]*,Pl})
- CI)(“Aﬂa P, Pl]) CI)([[AH, Pl]*,P1D
= [[@(Ar2) + @(An), (P1)],, ®(P1)]
and
[(D(A1z + Agy), (P2, ®(Po)] = ®([[Ar2 + Az, Po)s, Po))
= <I>([[A12, Pz]*, Pz])
= & ([[A1a, Pols, Po]) + ©([[A21, P2, P2])

= [[®(A12) + ®(Az1), P(P)] . ®(P2)].
Then ([T, Prl«, Pi] = [[T, P3]«, P5] =0, and so P,T P, = P,TP, = 0. Hence T' = 0.

It follows that (I)(Alz + A21) = (D(A12) + (b(AZI) O
Lemma 2.5. We have QD(Z” LAij) = Z?,j:l O(A;5) for all Ajj € My;.
Proof. Write T = Z” 1A — Q_l(ZfJ:l(I)(AZ-j)). It follows from Lemma 2.4
that
2 2
[@(P). 03 Al @(B)] = @ (|| P Y Ay L P2])
i,j=1 4,j=1

=®([[P1, Az + Ay, P2])
CI)([[Pl,A12+A21]*,P2D (I)([[PlvAll]*’PQD
+ ([[P1,A22]*,P2D

= [ o(P), 22: ‘P(Az’j)}

This implies that [P, T]., ] = 0. Thus, P,/TP, = P,TP, = 0. For every B;; €

M;j (i # j), we have
o ([0 3= 4] 7))

B(P)].

*

CI)(Z A, (P,

k=1 k=1

= (“BzmA i D
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= ([[By: Ajsl- ) + ([[By: Al Bi])
+<1>([[Bzg>A Lo Bi]) + @ ([[Big: Aul-, Bi])

- [0 3 w00 o)

Then [[B;j, T+, Pi] = 0, and so P;TP; = 0 for j = 1,2. Hence 7' = 0. It follows

zya

that ®(327;_, Ay) = Yo7 o, P(Ay)- |
Lemma 2.6. We have ®(A;; + B;;) = ®(Ai;) + ©(By;) for all A;j, Bij € M,j,
i

Proof. Tt follows from Lemma 2.5 that

(A + By) = ‘D<H%]’ Fi— iAijL’ Fi= iBijD
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ro([[3r -] B]) - o([[57 -is] . -ima])
= O(A;) + ©(Byj). O
Lemma 2.7. We have (I)(A“ + Bm) = (I)(A“) + (D(Bu) for all A”,Bu € Mii;
i=1,2.
Proof. Write T' = A;; + By — @7 Y(®(Ay) + ®(By;)). Let j # 4. It follows from
Lemmas 2.5 and 2.6 that, for any C}j; € M;,
[[@(Cji), @(Asi + Bi)ls, ®(F;)] = @([[Cjis Aii + Bills, Pi])
+ @(BiC)
([C]ZJAZZ *7-Pz])+ (I:CJZ?B’L’L *7-Pz])
= [[®(Cy), ®(Ai)],. 2(P)]
+ H‘I)( i), @(Bii)],, ©(F;)]
[[®(Ci), ®(An) + ®(Bii)],, ®(P)]

%

7

and

[@(Cij), @(Aii + Bio)ls, ®(P))] = ([[Ciy, Aii + Biils, Pi])

@([[CwAm]*7 i]) + @([[Cyj, Bil-, Pi])
[(Ci), ®(Ai) + ©(Bu)],, ®(P)]-

Then [[Cji, T«, P;] = [[Cij, s, P;] = 0, and so BTP, = P;,TP; = 0. It is clear

that
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[[(I)(-P])J O(A;i + Bii)l, ®(P)] = ®(|:[‘Pj7 Aji + Biils, PzD
= ®([[P}, Auls, P]) + ©([[P}, Biils, P])
= [[®(P)), ®(Ai) + ®(By)],, ®(P)].
Thus [[P}, T, P;] = 0, which implies that P,TP; = P;/TP, = 0. Then T' = 0, and

Proof of Theorem 2.1. Let A = Z?,j:l A, B= Z?,j:l B;j, where A;;, B;; € M,;.
It follows from Lemmas 2.5, 2.6, and 2.7 that

B(A+ B) = (j Z J)=a (iANB”)

Hence @ is additive. O

3. Structures

In this section, we will prove the following theorem.

Theorem 3.1. Let M and N be two factor von Neumann algebras with dim M >
4, and let ® : M — N be a bijective map satisfying

®([[A, Bl.,C]) = [[®(A),®(B)],, (C)]

for all A, B,C € M. Then there ezists € € {1, —1} such that ®(A) = eV (A) for
all A € M, where ¥ : M — N is a linear x-isomorphism or a conjugate linear
x-1s0morphism.

It follows from Theorem 2.1 and Lemma 2.3 that & is an additive bijection
that preserves commutativity in both directions. Hence by [2, Theorem 3.1],

®(A) = ab(A) +£(A)

for all A € M, where a € C is a nonzero scalar, § : M — N is an additive
Jordan isomorphism, and ¢ : M — CI is an additive map. It is easy to check
that 6(il) = +il. Next we will prove Theorem 3.1 by the following lemmas.

Lemma 3.2. For every A, B € M, we have

(1) ®(zA) — 0(il)®(A) € CI,
(2) ®([A, B]) = ¢[®(A), ®(B)], where e € {1,—1}.
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Proof. (1) Let A € A. Then
Q(iA) — 0(i)P(A) = ab(iA) + £(1A) — 0(iL)D(A)
=ab(il)0(A) + {(1A) — (il )D(A)
= 0(il)(aB(A) + £(A)) + £(@A) — O(T)E(A) — O(iT)D(A)
=¢(A) —0(I)E(A) € CI.
(2) It follows from Lemma 2.2 that $(®(il)* — P(iI))0(il) = eI for some € € C.
By (2.1) and assertion (1), we get

®([4, B)) = ~@(iiA, B)) = 5 (B(1)" — B(D)) [2(i4), &(5)

= %(CID(Z[)* — @(z’[))&(z’[) [@(A), (ID(B)] = e[@(A), @(B)}
forall A, B € M. If A= A* then

[2(A), ®(B))., 2(C)] = ([[4, Bl., C]) = ©([[A, B],C])

for all B,C' € M. Thus,
(1—-e)P(A)®(B) + ®(B) (eQCID(A) — @(A)*) e CI (3.1)

for all B € M and A € M with A = A*. Let Q; € N be a nontrivial projection.
Then there exists D € M such that ®(D) = Q1 by the surjectivity of ®. Taking
B =D in (3.1), we have

(1 —e)P(A)Q:1 + Q1 (P(A) — ®(A)*) € CI.
This yields

(1 - )Qud(A)Q) = 0 (32)
for all A € M with A = A* where Q3 = I — (1. Then by assertion (1) and (3.2),
(1 - )Q0(iX)Q; = 0 (3.3)

for all X € M with X = X*. Tt follows from (3.2) and (3.3) that

(1-e)Q®(B)Q1 =0
for all B € M. Hence € € {1, —1}. O

Remark 3.3. Let € be as above, and let W = e®. It follows from Theorem 2.1 and
Lemma 3.2 that ¥ : M — N is an additive bijection preserving mixed Lie triple
products and satisfies
W (A, B) = [¥(4), ¥(B)

for all A,B € M. Hence by [15, Theorem 2.1|, there exists an additive map
f: M — CI with f([A, B]) =0 for all A, B € M such that one of the following
statements holds:

(1) U(A) = ¢(A) + f(A) for all A € M, where ¢ : M — N is an additive

isomorphism;
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(2) U(A) = —p(A) + f(A) for all A € M, where p : M — N is an additive

anti-isomorphism.

Lemma 3.4. Statement (2) does not occur; that is, there are no additive anti-
isomorphism ¢ : M — N and additive map f: M — CI with f([A, B]) =0 for
all A, B € M such that ¥V = —p + f.

Proof. If ¥ = —p + f, where ¢ : M — N is an additive anti-isomorphism and
f: M — CI is an additive map with f([A, B]) =0 for all A, B € M, then

U ([[A4, Bl..C]) = —¢([[A Bl C]) = [o(B)o(A) = o(A7)p(B), »(C)]
for all A, B,C' € M. On the other hand, we have

v ([[4,B].,C]) = [[¥(4 Lﬂlf(C)}

[[~¢ A), —¢(B) + f(B)],, —¢(C) + f(C)]
(A —p(B) + f(B)],, #(C)]
HSO(A>7 —SO(B)]* + [p(A), f(B)], + [£(A), o(B)],, 0(O)].
It follows from the surjectivity of ¢ that
(0(A7) = 9(A))p(B) + (¢(B) = f(B)) (¢(A)" = ¢(4))
+ (f(A) = f(A)")p(B) € CI (3.4)

for all A, B € M. Let P € M be a nontrivial projection. Then ¢(P) is a nontrivial
idempotent in N. Taking B = P in (3.4), we have

((A") = 0(A))o(P) + (2(P) = f(P)) (p(A)" — ©(A))
+ (f(A) = f(A)")p(P) € CI. (3.5)

Multiplying (3.5) on the right-hand side by ¢(P+) and on the left-hand side by
@(P), we get

(1= F(P)e(P)(p(A)" = p(A)p(P) =0 (3.6)
for all A € M. Replacing ¢(A) by ip(A) in (3.6), we have
(I— f(P))o(P)(p(A)* + p(A))p(PT) = 0. (3.7)

It follows from (3.6) and (3.7) that

(I = f(P))p(P)p(A)p(PH) =0
for all A € M. Hence f(P) = I for any nontrivial projection P € M, and so by
(3.5)
p(P)(p(A) = p(A)p(PT) € Cp(PY) (3.8)

for all A € M and any nontrivial projection P € M. Replacing ¢(A) by ip(A)
n (3.8), we can obtain that

p(PHAPY) = o(P)p(A)p(PT) € Cp(Ph) = ¢(CP)
for all A € M and any nontrivial projection P € M. This implies that
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Ptmpt=cCcpt and PMP =CP

for any nontrivial projection P € M. It follows that M is isomorphic to Ms(C),
the algebra of all 2 x 2 matrices over C, which contradicts the assumption that
dim M > 4. O

Lemma 3.5. We have that V is an additive *-isomorphism.

Proof. 1t follows from Remark 3.3 and Lemma 3.4 that ¥ = ¢ + f, where ¢ :
M — N is an additive isomorphism and f : M — CI is an additive map with
f([A,B]) =0 for all A, B € M. Thus,

U([[A, Bl..C]) = ¢([[A, Bl.,C]) = [¢(A)p(B) — ¢(B)p(A*), p(O)]
for all A, B,C' € M. On the other hand, we have
U([[4,B].,C]) = [[¥(4),¥(B)],, ¥(C)]

= [[o(4) + f(A), ¢(B) + f(B)],, #(C) + f(C)]
= [[o(4) + £(A),¢(B) + f(B)],. £(C)]
= [[e(4), (B)], + [f(A), o(B)], + [2(A), f(B)],,(C)].

It follows from the surjectivity of ¢ that

PBIAA) = ) + e BAY = JA) + SBA) —gta) el

for all A,B € M. Let A € C, and let P € M be a nontrivial projection. Multi-
plying (3.9) on the left-hand side by ¢(P1) and on the right-hand side by ¢(P),
and then taking B = AP, we have

FOP)o(PH)(p(A) = ¢(A))p(P) =0 (3.10)
for all A € M. Similarly, we can obtain from (3.10) that
FOP)p(PH)p(A)p(P) =0
for all A € M. Then f(AP) = 0 for all A € C and any nontrivial projection
P € M. This yields that
) = FOP) + FAPY) =0

for all A € C. Since every A € M can be written as a finite linear combination of
projections in M, it follows that f(A) =0 for all A € M. Now (3.9) becomes

p(B)(p(A)" — (A7) € CI (3.11)

for all A, B € M. In particular, ¢(A)* — p(A*) € CI for all A € M. If p(A)* —
w(A*) # 0 for some A € M, then by (3.11), p(B) € CI for all B € M. This
contradiction implies that p(A*) = p(A)* for all A € M. Hence ¥ = ¢ is an
additive *-isomorphism. O
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Proof of Theorem 5.1. 1t follows from Remark 3.3 and Lemma 3.5 that & = eV
and ¥ : M — N is an additive *-isomorphism. Thus W (il) = +iI, ¥(bI) = bI for
any rational number b, and V¥ is an order-preserving map on the collection of all
positive elements. Let » € R be any real number. Then there exist two sequences
of rational numbers {a, } and {b,} such that a, <r < b, and lima,, = limb,, = r.
Hence
anl = V(a,I) < V(rl) < W(b,I)=b,I.

Letting n — oo, we have W(rl) = rl for all » € R. This yields that, for any
A=a+1beC,

W(A) = U(al) + W(ibl) = (a £ ib)I = X or AI.
It follows that W(AA) = AU (A) or U(AA) = A\U(A) for all A € M and all X € C.

Hence V¥ is a linear *-isomorphism or a conjugate linear x-isomorphism. O

Corollary 3.6 ([8, Theorem 10.5.1]). Let ‘H be a complex Hilbert space with
dimH > 2, and let ® : B(H) — B(H) be a bijective map satisfying ®([[A, Bl., C]) =
[®(A), P(B)]«, ®(C)] for all A, B,C € B(H). Then there exists € € {1, —1} such
that ®(A) = eUAU* for all A € B(H), where U is a unitary or conjugate unitary
operator.

4. The case for dim M =14

Let M and N be two factor von Neumann algebras, and let ® : M — A be a
bijection preserving mixed Lie triple products. If dim M = 4, then we can assume
that dim N = 4 by Theorem 3.1. Therefore, without loss of generality, we can
assume that M = N = M,(C). Let E;; € M>(C) be the matrix unit whose (4, j)
position is 1 and all other positions are 0. For any A = (a;;) € Ms(C), A = (ay;),
A" = (aj;), and A* = (@;;). In this section, we will prove the following theorem.

Theorem 4.1. Let ® : My(C) — My(C) be a bijection satisfying
®([[4, Bl., C]) = [[2(4), ®(B)]_, &(C)]

for all A, B,C € My(C). Then there exist ¢ € {1,—1} and a unitary matriz
U € My(C) such that one of the following statements holds:

(1) ®(A) = eUAU* for all A € My(C);

(2) ®(A) = eUAU* for all A € My(C);

(3) ®(A) = —eUA'U* + etr(A)I for all A € My(C);

(4) ®(A) = —eUA*U* + etr(A)I for all A € My(C).

Proof. We see that the condition dim M > 4 appears only in the proof of
Lemma 3.4. Hence there exist ¢ € {1,—1} such that ® = e¥ and ¥ satisfies
one of the following statements:
(a) U(A) = p(A) + f(A) for all A € My(C), where ¢ : My(C) — My(C) is
an additive isomorphism and f : My(C) — CI is an additive map with
f([A, B]) =0 for all A, B € M,(C);
(b) U(A) = —p(A) + f(A) for all A € My(C), where ¢ : My(C) — M,(C)
is an additive anti-isomorphism and f : My(C) — CI is an additive map
with f([A, B]) =0 for all A, B € M,(C).
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If statement (a) holds, with the same argument as in the proof of Theo-
rem 3.1, then ¥ : My(C) — M,(C) is a linear x-isomorphism or a conjugate
linear *-isomorphism. Hence there exists a unitary matrix U € M;(C) such that
W(A) = UAU* for all A € My(C), or U(A) = UAU* for all A € My(C).

If statement (b) holds, by the same argument as in the proof of Lemma 3.4,
then

(0(A") = (A)@(B) + (9(B) — f(B)) (2(A)" — ¢(A))
+ (f(4) = f(A))e(B) e CI (4.1)

for all A, B € M(C), and f(F) = I for any nontrivial idempotent E € My(C).
Thus,

f)=f(E) + f(BY) =21
Taking B = [ in (4.1), we have p(A*) — p(A)* € CI for all A € M,(C). This
implies that
P(En) = o(En)", (L) = ¢(Ex)”, P(Er2) = p(Ea1)”.

For any nontrivial idempotent E € M;(C) and A € C, taking B = AE in (4.1)
and then multiplying on the left-hand side by ¢(FE) and on the right-hand side
by o(E*), we have

((AE) = J(AE))p(E) (o(A)" — o(A))p(ET) =0
for all A € M5(C). It follows that
p(AE) = f(AE)@(E). (4.2)

Since ¢ is an additive anti-isomorphism and ¢(CI) C CI, there exists an additive
isomorphism 7 : C — C such that ¢(A) = 7(A\)1 for all A € C. Thus,

P(AE) = p(M)p(E) = T(N)p(E). (4.3)

This together with (4.2) gives us that f(AE) = 7(A)I for any nontrivial idempo-
tent E € M,(C) and A € C. It follows from f(AE12) = f(AEy) = 0 that

F(A) = 7(1x(A)) 1 (4.4)

for all A € M5(C). Since ¢(FE11), ¢(E92) are nontrivial projections in M,(C) and
©(E11) + @(FE2g) = I, there exists a unitary matrix V' € My(C) such that

V*QO(EM)V = E11 and V*¢<E22)V = EQQ. (45)
This and the fact that p(E12) = @(E)e(Er2)e(En) and ¢(Ea1) = o(E12)" yield
V*QO(Elg)V = CLEQl and V*QO(Egl)V = C_LE12 (46)

for some a € C with |a| = 1. From (4.3), (4.5), and (4.6), we have for any \ € C,
gO()\EH) = T(/\)VEHV*, gD()\EQQ) = T()\)VEQQV*,
P(AEwR) =at(MVELV",  @(AEy) =ar(A\)VERV".

It follows that
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aix a2 T(ar) ar(az)| |« T(a11) 7(az21)| ;.
=V V¥=U U 4.7
7 ([am a22:|> LLT((IH) 7(as2) T(a12) 7(az) (4.7)

for all [gi} @32 ] € Ms(C), where U = V[O 0] is a unitary matrix in M(C).
Taking A = [{3] and B = [ 9] in (4.1), we obtain the following from (4.1)
and (4.7) that:

L<x>37< ) E? o) 0 3= o [ e 70
o eer

(A) (A)

It follows that 7(\) = 7()\) for all A € C. Hence 7(\) = A for all A € C, or
7(A) = A for all A € C. By (4.4) and (4.7), we have W(A) = —UA'U* + tr(A)I
for all A € My(C), or UV(A) = —UA*U* + tr(A)I for all A € M,(C). O
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