ANNALS of **FUNCTIONAL ANALYSIS**

Ann. Funct. Anal. 10 (2019), no. 3, 325–336 <https://doi.org/10.1215/20088752-2018-0032> ISSN: 2008-8752 (electronic) <http://projecteuclid.org/afa>

NONLINEAR MAPS PRESERVING MIXED LIE TRIPLE PRODUCTS ON FACTOR VON NEUMANN ALGEBRAS

ZHUJUN YAN[G](#page-11-0) and JIANHUA ZHAN[G](#page-11-0)[*](#page-0-0)

Communicated by J.-C. Bourin

Abstract. We prove that every bijective map that preserves mixed Lie triple products from a factor von Neumann algebra $\mathcal M$ with dim $\mathcal M > 4$ into another factor von Neumann algebra N is of the form $A \to \epsilon \Psi(A)$, where $\epsilon \in \{1, -1\}$ and $\Psi : \mathcal{M} \to \mathcal{N}$ is a linear $*$ -isomorphism or a conjugate linear $*$ -isomorphism. Also, we give the structure of this map when dim $\mathcal{M} = 4$.

1. Introduction

Let A and B be two \ast -algebras over the complex number field \mathbb{C} , and let $\varphi : \mathcal{A} \to \mathcal{B}$ be a map. We consider that φ preserves mixed Lie triple products if $\varphi([A, B]_*, C] = [[\varphi(A), \varphi(B)]_*, \varphi(C)]$ for all $A, B, C \in \mathcal{A}$, where $[A, B] =$ $AB - BA$ is the Lie product and $[A, B]_* = AB - BA^*$ is the skew Lie product of A and B. This kind of map is related to Lie product-preserving maps, skew Lie product-preserving maps, and (skew) commutativity-preserving maps, which have been studied by many authors (see, e.g., $[1]$ –[\[6\]](#page-10-1), $[10]$, $[12]$ –[\[15\]](#page-11-1), and the references therein).

Recently, maps preserving the products of the mixture of Lie products and skew Lie products have received a fair amount of attention. For example, Li, Chen, and Wang in [\[9\]](#page-10-4) proved that a bijective map preserving the Jordan $*$ -product ([[A, B]_∗, C]_∗) between two factor von Neumann algebras is either a linear ∗-isomorphism (resp., a conjugate linear ∗-isomorphism) or the negative of

Copyright 2019 by the Tusi Mathematical Research Group.

Received Jul. 17, 2018; Accepted Nov. 6, 2018.

First published online Jul. 2, 2019.

^{*}Corresponding author.

²⁰¹⁰ Mathematics Subject Classification. Primary 47B49; Secondary 46B10.

Keywords. preserver, mixed Lie triple product, von Neumann algebra.

a linear ∗-isomorphism (resp., the negative of a conjugate linear ∗-isomorphism). In the present article, we will establish the structure of the nonlinear maps preserving mixed Lie triple products ($[[A, B]_*, C]$) between two factor von Neumann algebras.

Let H be a complex separable Hilbert space. We denote by $\mathcal{B}(\mathcal{H})$ the algebra of all bounded linear operators on H. Let $\mathcal{M} \subseteq \mathcal{B}(\mathcal{H})$ be a von Neumann algebra. Recall that M is a factor if its center is $\mathbb{C}I$, where I is the identity of M. Let M be a factor von Neumann algebra. It follows from [\[7\]](#page-10-5) and [\[11\]](#page-10-6) that every operator $A \in \mathcal{M}$ can be written as a finite linear combination of projections in M. If $\dim M < \infty$, then M is isomorphic to $M_n(\mathbb{C})$, the algebra of all $n \times n$ matrices over \mathbb{C} . We assume that the dimensions of the algebras $\mathcal M$ and $\mathcal N$ are greater than 1 in the following sections.

2. Additivity

In this section, we will prove the following theorem.

Theorem 2.1. Let M and N be two factor von Neumann algebras, and let $\Phi : \mathcal{M} \to \mathcal{N}$ be a bijective map satisfying $\Phi([[A, B]_*, C]) = [[\Phi(A), \Phi(B)]_*, \Phi(C)]$ for all $A, B, C \in \mathcal{M}$. Then Φ is additive.

Let $P_1 \in \mathcal{M}$ be a nontrivial projection, and let $P_2 = I - P_1$. Write $\mathcal{M}_{ij} =$ $P_i \mathcal{M} P_j$ for $i, j = 1, 2$. Now we will prove Theorem [2.1](#page-1-0) using several lemmas.

Lemma 2.2. We have $\Phi(0) = 0$ and $\Phi(\mathbb{C}) = \mathbb{C}I$.

Proof. The surjectivity of Φ implies that there exists $A \in \mathcal{M}$ such that $\Phi(A) = 0$. Thus,

$$
\Phi(0) = \Phi([[0,0]_*, A]) = [[\Phi(0), \Phi(0)]_*, \Phi(A)] = 0.
$$

Let $B \in \mathcal{M}$ such that $\Phi(B) = iI$. Then

$$
0 = \Phi\big(\big[[B,X]_*,\lambda I\big]\big) = \big[\big[\Phi(B),\Phi(X)\big]_*,\Phi(\lambda I)\big] = 2i\big[\Phi(X),\Phi(\lambda I)\big]
$$

for all $X \in \mathcal{M}$ and $\lambda \in \mathbb{C}$. It follows that $\Phi(\mathbb{C}) \subseteq \mathbb{C}I$. By considering Φ^{-1} , we can obtain that $\Phi(\mathbb{C}I) = \mathbb{C}I$.

Lemma 2.3. For any $A, B \in \mathcal{M}$, $[\Phi(A), \Phi(B)] = 0$ if and only if $[A, B] = 0$.

Proof. It follows from $\Phi(iI) \in \mathbb{C}I$ that

$$
\Phi(2i[A, B]) = \Phi([[iI, A], B]) = [[\Phi(iI), \Phi(A)]_*, \Phi(B)]
$$

= $(\Phi(iI) - \Phi(iI)^*) [\Phi(A), \Phi(B)]$ (2.1)

for all $A, B \in \mathcal{M}$. If $\Phi(iI) - \Phi(iI)^* = 0$, then $\Phi(2i[A, B]) = 0 = \Phi(0)$, and so $[A, B] = 0$ for all $A, B \in \mathcal{M}$. This contradiction implies that $\Phi(iI) - \Phi(iI)^* \neq 0$. Hence, by [\(2.1\)](#page-1-1) and Lemma [2.2,](#page-1-2) we have that $[\Phi(A), \Phi(B)] = 0$ if and only if $[A, B] = 0.$

Lemma 2.4. We have $\Phi(A_{12} + A_{21}) = \Phi(A_{12}) + \Phi(A_{21})$ for all $A_{12} \in \mathcal{M}_{12}$ and $A_{21} \in M_{21}$.

Proof. Write $T = A_{12} + A_{21} - \Phi^{-1}(\Phi(A_{12}) + \Phi(A_{21}))$. For every $B_{ij} \in \mathcal{M}_{ij}$ $(i \neq j)$, it follows from $[[B_{ij}, A_{12}]_*, P_i] = [[B_{ij}, A_{21}]_*, P_i] = 0$ that

$$
[[\Phi(B_{ij}), \Phi(A_{12} + A_{21})]_*, \Phi(P_i)] = \Phi([B_{ij}, A_{12} + A_{21}]_*, P_i])
$$

=
$$
\Phi([B_{ij}, A_{12}]_*, P_i]) + \Phi([B_{ij}, A_{21}]_*, P_i])
$$

=
$$
[[\Phi(B_{ij}), \Phi(A_{12}) + \Phi(A_{21})]_*, \Phi(P_i)].
$$

Since Φ^{-1} preserves mixed Lie triple products, we have from the above equation that $[[B_{ij}, T]_*, P_i] = 0$. This implies that $P_j T P_j = 0$ for $j = 1, 2$. It follows from $[[A_{12}, P_1]_*, P_1] = [[A_{21}, P_2]_*, P_2] = 0$ that

$$
[[\Phi(A_{12} + A_{21}), \Phi(P_1)]_*, \Phi(P_1)] = \Phi([[A_{12} + A_{21}, P_1], P_1])
$$

= $\Phi([[A_{21}, P_1], P_1])$
= $\Phi([[A_{21}, P_1], P_1]) + \Phi([[A_{12}, P_1], P_1])$
= $[[\Phi(A_{12}) + \Phi(A_{21}), \Phi(P_1)]_*, \Phi(P_1)]$

and

$$
[[\Phi(A_{12} + A_{21}), \Phi(P_2)]_*, \Phi(P_2)] = \Phi([[A_{12} + A_{21}, P_2]_*, P_2])
$$

= $\Phi([[A_{12}, P_2]_*, P_2])$
= $\Phi([[A_{12}, P_2]_*, P_2]) + \Phi([[A_{21}, P_2]_*, P_2])$
= $[[\Phi(A_{12}) + \Phi(A_{21}), \Phi(P_2)]_*, \Phi(P_2)].$

Then $[[T, P_1]_*, P_1] = [[T, P_2]_*, P_2] = 0$, and so $P_2TP_1 = P_1TP_2 = 0$. Hence $T = 0$. It follows that $\Phi(A_{12} + A_{21}) = \Phi(A_{12}) + \Phi(A_{21})$.

Lemma 2.5. We have $\Phi(\sum_{i,j=1}^{2} A_{ij}) = \sum_{i,j=1}^{2} \Phi(A_{ij})$ for all $A_{ij} \in \mathcal{M}_{ij}$.

Proof. Write $T = \sum_{i,j=1}^{2} A_{ij} - \Phi^{-1}(\sum_{i,j=1}^{2} \Phi(A_{ij}))$. It follows from Lemma [2.4](#page-1-3) that

$$
[[\Phi(P_1), \Phi(\sum_{i,j=1}^2 A_{ij})]_*, \Phi(P_2)] = \Phi\left(\left[\left[P_1, \sum_{i,j=1}^2 A_{ij}\right]_*, P_2\right]\right)
$$

\n
$$
= \Phi\left(\left[\left[P_1, A_{12} + A_{21}\right]_*, P_2\right]\right)
$$

\n
$$
= \Phi\left(\left[\left[P_1, A_{12} + A_{21}\right]_*, P_2\right]\right) + \Phi\left(\left[\left[P_1, A_{11}\right]_*, P_2\right]\right)
$$

\n
$$
+ \Phi\left(\left[\left[P_1, A_{22}\right]_*, P_2\right]\right)
$$

\n
$$
= \left[\left[\Phi(P_1), \sum_{i,j=1}^2 \Phi(A_{ij})\right], \Phi(P_2)\right].
$$

This implies that $[[P_1, T]_*, P_2] = 0$. Thus, $P_1TP_2 = P_2TP_1 = 0$. For every $B_{ij} \in$ \mathcal{M}_{ij} $(i \neq j)$, we have

$$
[[\Phi(B_{ij}), \Phi(\sum_{k,l=1}^{2} A_{kl})]_{*}, \Phi(P_{i})] = \Phi\left(\left[\left[B_{ij}, \sum_{k,l=1}^{2} A_{kl}\right]_{*}, P_{i}\right]\right)
$$

$$
= \Phi\left(\left[\left[B_{ij}, A_{jj}\right]_{*}, P_{i}\right]\right)
$$

$$
= \Phi\big(\big[[B_{ij}, A_{jj}]_*, P_i]\big) + \Phi\big(\big[[B_{ij}, A_{ji}]_*, P_i]\big) + \Phi\big(\big[[B_{ij}, A_{ij}]_*, P_i]\big) + \Phi\big(\big[[B_{ij}, A_{ii}]_*, P_i]\big) = \Big[\Big[\Phi(B_{ij}), \sum_{k,l=1}^2 \Phi(A_{kl})\Big]_*, \Phi(P_i)\Big].
$$

Then $[[B_{ij},T]_*,P_i]=0$, and so $P_jTP_j=0$ for $j=1,2$. Hence $T=0$. It follows that $\Phi(\sum_{i,j=1}^{2} A_{ij}) = \sum_{i,j=1}^{2} \Phi(A_{ij}).$

Lemma 2.6. We have $\Phi(A_{ij} + B_{ij}) = \Phi(A_{ij}) + \Phi(B_{ij})$ for all $A_{ij}, B_{ij} \in \mathcal{M}_{ij}$, $i \neq j$.

Proof. It follows from Lemma [2.5](#page-2-0) that

$$
\Phi(A_{ij} + B_{ij}) = \Phi\left(\left[\left(\frac{i}{2}I, P_i - iA_{ij}\right)_*, P_j - iB_{ij}\right]\right)
$$

\n
$$
= \left[\left[\Phi\left(\frac{i}{2}I\right), \Phi(P_i - iA_{ij})\right], \Phi(P_j - iB_{ij})\right]
$$

\n
$$
= \left[\left[\Phi\left(\frac{i}{2}I\right), \Phi(P_i) + \Phi(-iA_{ij})\right], \Phi(P_j) + \Phi(-iB_{ij})\right]
$$

\n
$$
= \Phi\left(\left[\left(\frac{i}{2}I, P_i\right], P_j\right]\right) + \Phi\left(\left[\left(\frac{i}{2}I, P_i\right], -iB_{ij}\right]\right)
$$

\n
$$
+ \Phi\left(\left[\left(\frac{i}{2}I, -iA_{ij}\right], P_j\right]\right) + \Phi\left(\left[\left(\frac{i}{2}I, -iA_{ij}\right], -iB_{ij}\right]\right)
$$

\n
$$
= \Phi(A_{ij}) + \Phi(B_{ij}).
$$

Lemma 2.7. We have $\Phi(A_{ii} + B_{ii}) = \Phi(A_{ii}) + \Phi(B_{ii})$ for all $A_{ii}, B_{ii} \in \mathcal{M}_{ii}$, $i = 1, 2.$

Proof. Write $T = A_{ii} + B_{ii} - \Phi^{-1}(\Phi(A_{ii}) + \Phi(B_{ii}))$. Let $j \neq i$. It follows from Lemmas [2.5](#page-2-0) and [2.6](#page-3-0) that, for any $C_{ji} \in \mathcal{M}_{ji}$,

$$
[[\Phi(C_{ji}), \Phi(A_{ii} + B_{ii})]_*, \Phi(P_i)] = \Phi([[C_{ji}, A_{ii} + B_{ii}]_*, P_i])
$$

\n
$$
= \Phi(C_{ji}A_{ii}) + \Phi(C_{ji}B_{ii}) + \Phi(A_{ii}C_{ji}^*)
$$

\n
$$
+ \Phi(B_{ii}C_{ji}^*)
$$

\n
$$
= \Phi([[C_{ji}, A_{ii}]_*, P_i]) + \Phi([[C_{ji}, B_{ii}]_*, P_i])
$$

\n
$$
= [[\Phi(C_{ji}), \Phi(A_{ii})]_*, \Phi(P_i)]
$$

\n
$$
+ [[\Phi(C_{ji}), \Phi(B_{ii})]_*, \Phi(P_i)]
$$

\n
$$
= [[\Phi(C_{ji}), \Phi(A_{ii}) + \Phi(B_{ii})]_*, \Phi(P_i)]
$$

and

$$
[[\Phi(C_{ij}), \Phi(A_{ii} + B_{ii})]_*, \Phi(P_j)] = \Phi([[C_{ij}, A_{ii} + B_{ii}]_*, P_j])
$$

=
$$
\Phi([[C_{ij}, A_{ii}]_*, P_j]) + \Phi([[C_{ij}, B_{ii}]_*, P_j])
$$

=
$$
[[\Phi(C_{ji}), \Phi(A_{ii}) + \Phi(B_{ii})]_*, \Phi(P_i)].
$$

Then $[[C_{ji}, T]_{*}, P_i] = [[C_{ij}, T]_{*}, P_j] = 0$, and so $P_i T P_i = P_j T P_j = 0$. It is clear that

$$
[[\Phi(P_j), \Phi(A_{ii} + B_{ii})]_*, \Phi(P_i)] = \Phi([P_j, A_{ii} + B_{ii}]_*, P_i])
$$

=
$$
\Phi([P_j, A_{ii}]_*, P_i]) + \Phi([P_j, B_{ii}]_*, P_i])
$$

=
$$
[[\Phi(P_j), \Phi(A_{ii}) + \Phi(B_{ii})]_*, \Phi(P_i)].
$$

Thus $[[P_j, T]_*, P_i] = 0$, which implies that $P_i T P_j = P_j T P_i = 0$. Then $T = 0$, and so $\Phi(A_{ii} + B_{ii}) = \Phi(A_{ii}) + \Phi(B_{ii}).$

Proof of Theorem [2.1.](#page-1-0) Let $A = \sum_{i,j=1}^{2} A_{ij}$, $B = \sum_{i,j=1}^{2} B_{ij}$, where A_{ij} , $B_{ij} \in \mathcal{M}_{ij}$. It follows from Lemmas [2.5,](#page-2-0) [2.6,](#page-3-0) and [2.7](#page-3-1) that

$$
\Phi(A + B) = \Phi\left(\sum_{i,j=1}^{2} A_{ij} + \sum_{i,j=1}^{2} B_{ij}\right) = \Phi\left(\sum_{i,j=1}^{2} (A_{ij} + B_{ij})\right)
$$

$$
= \sum_{i,j=1}^{2} \Phi(A_{ij} + B_{ij}) = \sum_{i,j=1}^{2} (\Phi(A_{ij}) + \Phi(B_{ij}))
$$

$$
= \Phi\left(\sum_{i,j=1}^{2} A_{ij}\right) + \Phi\left(\sum_{i,j=1}^{2} B_{ij}\right) = \Phi(A) + \Phi(B).
$$

Hence Φ is additive.

3. Structures

In this section, we will prove the following theorem.

Theorem 3.1. Let M and N be two factor von Neumann algebras with dim $M >$ 4, and let $\Phi : \mathcal{M} \to \mathcal{N}$ be a bijective map satisfying

$$
\Phi\big(\big[[A,B]_*,C\big]\big) = \big[\big[\Phi(A),\Phi(B)\big]_*,\Phi(C)\big]
$$

for all $A, B, C \in \mathcal{M}$. Then there exists $\epsilon \in \{1, -1\}$ such that $\Phi(A) = \epsilon \Psi(A)$ for all $A \in \mathcal{M}$, where $\Psi : \mathcal{M} \to \mathcal{N}$ is a linear \ast -isomorphism or a conjugate linear ∗-isomorphism.

It follows from Theorem [2.1](#page-1-0) and Lemma [2.3](#page-1-4) that Φ is an additive bijection that preserves commutativity in both directions. Hence by $[2,$ Theorem 3.1],

$$
\Phi(A) = a\theta(A) + \xi(A)
$$

for all $A \in \mathcal{M}$, where $a \in \mathbb{C}$ is a nonzero scalar, $\theta : \mathcal{M} \to \mathcal{N}$ is an additive Jordan isomorphism, and $\xi : \mathcal{M} \to \mathbb{C}I$ is an additive map. It is easy to check that $\theta(iI) = \pm iI$. Next we will prove Theorem [3.1](#page-4-0) by the following lemmas.

Lemma 3.2. For every $A, B \in \mathcal{M}$, we have

(1) $\Phi(iA) - \theta(iI)\Phi(A) \in \mathbb{C}I$, (2) $\Phi([A, B]) = \epsilon[\Phi(A), \Phi(B)],$ where $\epsilon \in \{1, -1\}.$

Proof. (1) Let $A \in \mathcal{A}$. Then

$$
\Phi(iA) - \theta(iI)\Phi(A) = a\theta(iA) + \xi(iA) - \theta(iI)\Phi(A)
$$

= $a\theta(iI)\theta(A) + \xi(iA) - \theta(iI)\Phi(A)$
= $\theta(iI)(a\theta(A) + \xi(A)) + \xi(iA) - \theta(iI)\xi(A) - \theta(iI)\Phi(A)$
= $\xi(iA) - \theta(iI)\xi(A) \in \mathbb{C}I$.

(2) It follows from Lemma [2.2](#page-1-2) that $\frac{1}{2}(\Phi(iI)^* - \Phi(iI))\theta(iI) = \epsilon I$ for some $\epsilon \in \mathbb{C}$. By (2.1) and assertion (1) , we get

$$
\Phi([A, B]) = -\Phi(i[iA, B]) = \frac{1}{2} (\Phi(iI)^* - \Phi(iI)) [\Phi(iA), \Phi(B)]
$$

$$
= \frac{1}{2} (\Phi(iI)^* - \Phi(iI)) \theta(iI) [\Phi(A), \Phi(B)] = \epsilon [\Phi(A), \Phi(B)]
$$

for all $A, B \in \mathcal{M}$. If $A = A^*$, then

$$
[[\Phi(A), \Phi(B)]_*, \Phi(C)] = \Phi([[A, B]_*, C]) = \Phi([[A, B], C])
$$

$$
= \epsilon^2 [[\Phi(A), \Phi(B)], \Phi(C)]
$$

for all $B, C \in \mathcal{M}$. Thus,

$$
(1 - \epsilon^2)\Phi(A)\Phi(B) + \Phi(B)(\epsilon^2\Phi(A) - \Phi(A)^*) \in \mathbb{C}I
$$
\n(3.1)

for all $B \in \mathcal{M}$ and $A \in \mathcal{M}$ with $A = A^*$. Let $Q_1 \in \mathcal{N}$ be a nontrivial projection. Then there exists $D \in \mathcal{M}$ such that $\Phi(D) = Q_1$ by the surjectivity of Φ . Taking $B = D$ in [\(3.1\)](#page-5-0), we have

$$
(1 - \epsilon^2)\Phi(A)Q_1 + Q_1(\epsilon^2 \Phi(A) - \Phi(A)^*) \in \mathbb{C}I.
$$

This yields

$$
(1 - \epsilon^2)Q_2\Phi(A)Q_1 = 0 \tag{3.2}
$$

for all $A \in \mathcal{M}$ with $A = A^*$, where $Q_2 = I - Q_1$. Then by assertion (1) and [\(3.2\)](#page-5-1),

$$
(1 - \epsilon^2)Q_2\Phi(iX)Q_1 = 0 \tag{3.3}
$$

for all $X \in \mathcal{M}$ with $X = X^*$. It follows from [\(3.2\)](#page-5-1) and [\(3.3\)](#page-5-2) that

$$
(1 - \epsilon^2)Q_2\Phi(B)Q_1 = 0
$$

for all $B \in \mathcal{M}$. Hence $\epsilon \in \{1, -1\}$. \Box

Remark 3.3. Let ϵ be as above, and let $\Psi = \epsilon \Phi$. It follows from Theorem [2.1](#page-1-0) and Lemma [3.2](#page-4-1) that $\Psi : \mathcal{M} \to \mathcal{N}$ is an additive bijection preserving mixed Lie triple products and satisfies

$$
\Psi([A, B]) = [\Psi(A), \Psi(B)]
$$

for all $A, B \in \mathcal{M}$. Hence by [\[15,](#page-11-1) Theorem 2.1], there exists an additive map $f: \mathcal{M} \to \mathbb{C}I$ with $f([A, B]) = 0$ for all $A, B \in \mathcal{M}$ such that one of the following statements holds:

(1) $\Psi(A) = \varphi(A) + f(A)$ for all $A \in \mathcal{M}$, where $\varphi : \mathcal{M} \to \mathcal{N}$ is an additive isomorphism;

(2) $\Psi(A) = -\varphi(A) + f(A)$ for all $A \in \mathcal{M}$, where $\varphi : \mathcal{M} \to \mathcal{N}$ is an additive anti-isomorphism.

Lemma 3.4. Statement (2) does not occur; that is, there are no additive antiisomorphism $\varphi : \mathcal{M} \to \mathcal{N}$ and additive map $f : \mathcal{M} \to \mathbb{C}I$ with $f([A, B]) = 0$ for all $A, B \in \mathcal{M}$ such that $\Psi = -\varphi + f$.

Proof. If $\Psi = -\varphi + f$, where $\varphi : \mathcal{M} \to \mathcal{N}$ is an additive anti-isomorphism and $f: \mathcal{M} \to \mathbb{C}I$ is an additive map with $f([A, B]) = 0$ for all $A, B \in \mathcal{M}$, then

$$
\Psi([[A, B]_*, C]) = -\varphi([[A, B]_*, C]) = [\varphi(B)\varphi(A) - \varphi(A^*)\varphi(B), \varphi(C)]
$$

for all $A, B, C \in \mathcal{M}$. On the other hand, we have

$$
\Psi([[A, B]_*, C]) = [[\Psi(A), \Psi(B)]_*, \Psi(C)]
$$

\n
$$
= [[-\varphi(A) + f(A), -\varphi(B) + f(B)]_*, -\varphi(C) + f(C)]
$$

\n
$$
= [[\varphi(A) - f(A), -\varphi(B) + f(B)]_*, \varphi(C)]
$$

\n
$$
= [[\varphi(A), -\varphi(B)]_* + [\varphi(A), f(B)]_* + [f(A), \varphi(B)]_*, \varphi(C)].
$$

It follows from the surjectivity of φ that

$$
(\varphi(A^*) - \varphi(A))\varphi(B) + (\varphi(B) - f(B))(\varphi(A)^* - \varphi(A))
$$

+
$$
(f(A) - f(A)^*)\varphi(B) \in \mathbb{C}I
$$
 (3.4)

for all $A, B \in \mathcal{M}$. Let $P \in \mathcal{M}$ be a nontrivial projection. Then $\varphi(P)$ is a nontrivial idempotent in N. Taking $B = P$ in [\(3.4\)](#page-6-0), we have

$$
(\varphi(A^*) - \varphi(A))\varphi(P) + (\varphi(P) - f(P))(\varphi(A)^* - \varphi(A))
$$

+
$$
(f(A) - f(A)^*)\varphi(P) \in \mathbb{C}I.
$$
 (3.5)

Multiplying [\(3.5\)](#page-6-1) on the right-hand side by $\varphi(P^{\perp})$ and on the left-hand side by $\varphi(P)$, we get

$$
(I - f(P))\varphi(P)(\varphi(A)^* - \varphi(A))\varphi(P^{\perp}) = 0
$$
\n(3.6)

for all $A \in \mathcal{M}$. Replacing $\varphi(A)$ by $i\varphi(A)$ in [\(3.6\)](#page-6-2), we have

$$
(I - f(P))\varphi(P)(\varphi(A)^* + \varphi(A))\varphi(P^{\perp}) = 0.
$$
 (3.7)

It follows from (3.6) and (3.7) that

$$
(I - f(P))\varphi(P)\varphi(A)\varphi(P^{\perp}) = 0
$$

for all $A \in \mathcal{M}$. Hence $f(P) = I$ for any nontrivial projection $P \in \mathcal{M}$, and so by [\(3.5\)](#page-6-1)

$$
\varphi(P^{\perp})\big(\varphi(A)^{*} - \varphi(A)\big)\varphi(P^{\perp}) \in \mathbb{C}\varphi(P^{\perp})
$$
\n(3.8)

for all $A \in \mathcal{M}$ and any nontrivial projection $P \in \mathcal{M}$. Replacing $\varphi(A)$ by $i\varphi(A)$ in [\(3.8\)](#page-6-4), we can obtain that

$$
\varphi(P^{\perp}AP^{\perp}) = \varphi(P^{\perp})\varphi(A)\varphi(P^{\perp}) \in \mathbb{C}\varphi(P^{\perp}) = \varphi(\mathbb{C}P^{\perp})
$$

for all $A \in \mathcal{M}$ and any nontrivial projection $P \in \mathcal{M}$. This implies that

332 Z. YANG and J. ZHANG

$$
P^{\perp}MP^{\perp} = \mathbb{C}P^{\perp}
$$
 and $PMP = \mathbb{C}P$

for any nontrivial projection $P \in \mathcal{M}$. It follows that M is isomorphic to $M_2(\mathbb{C})$, the algebra of all 2×2 matrices over \mathbb{C} , which contradicts the assumption that $\dim \mathcal{M} > 4.$

Lemma 3.5. We have that Ψ is an additive \ast -isomorphism.

Proof. It follows from Remark [3.3](#page-5-3) and Lemma [3.4](#page-6-5) that $\Psi = \varphi + f$, where φ : $\mathcal{M} \to \mathcal{N}$ is an additive isomorphism and $f : \mathcal{M} \to \mathbb{C}I$ is an additive map with $f([A, B]) = 0$ for all $A, B \in \mathcal{M}$. Thus,

$$
\Psi([[A, B]_*, C]) = \varphi([[A, B]_*, C]) = [\varphi(A)\varphi(B) - \varphi(B)\varphi(A^*), \varphi(C)]
$$

for all $A, B, C \in \mathcal{M}$. On the other hand, we have

$$
\Psi([[A, B]_*, C]) = [[\Psi(A), \Psi(B)]_*, \Psi(C)]
$$

\n
$$
= [[\varphi(A) + f(A), \varphi(B) + f(B)]_*, \varphi(C) + f(C)]
$$

\n
$$
= [[\varphi(A) + f(A), \varphi(B) + f(B)]_*, \varphi(C)]
$$

\n
$$
= [[\varphi(A), \varphi(B)]_* + [f(A), \varphi(B)]_*, [\varphi(A), f(B)]_*, \varphi(C)].
$$

It follows from the surjectivity of φ that

$$
\varphi(B)\big(\varphi(A)^* - \varphi(A^*)\big) + \varphi(B)\big(f(A)^* - f(A)\big) + f(B)\big(\varphi(A)^* - \varphi(A)\big) \in \mathbb{C}I
$$
\n(3.9)

for all $A, B \in \mathcal{M}$. Let $\lambda \in \mathbb{C}$, and let $P \in \mathcal{M}$ be a nontrivial projection. Multi-plying [\(3.9\)](#page-7-0) on the left-hand side by $\varphi(P^{\perp})$ and on the right-hand side by $\varphi(P)$, and then taking $B = \lambda P$, we have

$$
f(\lambda P)\varphi(P^{\perp})\big(\varphi(A)^{*} - \varphi(A)\big)\varphi(P) = 0
$$
\n(3.10)

for all $A \in \mathcal{M}$. Similarly, we can obtain from (3.10) that

$$
f(\lambda P)\varphi(P^{\perp})\varphi(A)\varphi(P) = 0
$$

for all $A \in \mathcal{M}$. Then $f(\lambda P) = 0$ for all $\lambda \in \mathbb{C}$ and any nontrivial projection $P \in \mathcal{M}$. This yields that

$$
f(\lambda I) = f(\lambda P) + f(\lambda P^{\perp}) = 0
$$

for all $\lambda \in \mathbb{C}$. Since every $A \in \mathcal{M}$ can be written as a finite linear combination of projections in M, it follows that $f(A) = 0$ for all $A \in \mathcal{M}$. Now [\(3.9\)](#page-7-0) becomes

$$
\varphi(B)\big(\varphi(A)^* - \varphi(A^*)\big) \in \mathbb{C}I \tag{3.11}
$$

for all $A, B \in \mathcal{M}$. In particular, $\varphi(A)^* - \varphi(A^*) \in \mathbb{C}I$ for all $A \in \mathcal{M}$. If $\varphi(A)^* \varphi(A^*) \neq 0$ for some $A \in \mathcal{M}$, then by [\(3.11\)](#page-7-2), $\varphi(B) \in \mathbb{C}I$ for all $B \in \mathcal{M}$. This contradiction implies that $\varphi(A^*) = \varphi(A)^*$ for all $A \in \mathcal{M}$. Hence $\Psi = \varphi$ is an additive ∗-isomorphism.

Proof of Theorem [3.1.](#page-4-0) It follows from Remark [3.3](#page-5-3) and Lemma [3.5](#page-7-3) that $\Phi = \epsilon \Psi$ and $\Psi : \mathcal{M} \to \mathcal{N}$ is an additive \ast -isomorphism. Thus $\Psi(iI) = \pm iI, \Psi(bI) = bI$ for any rational number b, and Ψ is an order-preserving map on the collection of all positive elements. Let $r \in \mathbb{R}$ be any real number. Then there exist two sequences of rational numbers $\{a_n\}$ and $\{b_n\}$ such that $a_n \leq r \leq b_n$ and $\lim a_n = \lim b_n = r$. Hence

$$
a_nI = \Psi(a_nI) \le \Psi(rI) \le \Psi(b_nI) = b_nI.
$$

Letting $n \to \infty$, we have $\Psi(rI) = rI$ for all $r \in \mathbb{R}$. This yields that, for any $\lambda = a + ib \in \mathbb{C},$

$$
\Psi(\lambda I) = \Psi(aI) + \Psi(ibl) = (a \pm ib)I = \lambda I \text{ or } \overline{\lambda}I.
$$

It follows that $\Psi(\lambda A) = \lambda \Psi(A)$ or $\Psi(\lambda A) = \overline{\lambda} \Psi(A)$ for all $A \in \mathcal{M}$ and all $\lambda \in \mathbb{C}$. Hence Ψ is a linear \ast -isomorphism or a conjugate linear \ast -isomorphism.

Corollary 3.6 ([\[8,](#page-10-8) Theorem 10.5.1]). Let H be a complex Hilbert space with $\dim \mathcal{H} > 2$, and let $\Phi : B(\mathcal{H}) \to B(\mathcal{H})$ be a bijective map satisfying $\Phi([[A, B]_*, C]) =$ $[[\Phi(A), \Phi(B)]_*, \Phi(C)]$ for all $A, B, C \in B(H)$. Then there exists $\epsilon \in \{1, -1\}$ such that $\Phi(A) = \epsilon U A U^*$ for all $A \in B(H)$, where U is a unitary or conjugate unitary operator.

4. The case for dim $\mathcal{M} = 4$

Let M and N be two factor von Neumann algebras, and let $\Phi : \mathcal{M} \to \mathcal{N}$ be a bijection preserving mixed Lie triple products. If dim $\mathcal{M} = 4$, then we can assume that $\dim \mathcal{N} = 4$ by Theorem [3.1.](#page-4-0) Therefore, without loss of generality, we can assume that $\mathcal{M} = \mathcal{N} = M_2(\mathbb{C})$. Let $E_{ij} \in M_2(\mathbb{C})$ be the matrix unit whose (i, j) position is 1 and all other positions are 0. For any $A = (a_{ij}) \in M_2(\mathbb{C}), \overline{A} = (\overline{a}_{ij}),$ $A^t = (a_{ii})$, and $A[*] = (\overline{a}_{ii})$. In this section, we will prove the following theorem.

Theorem 4.1. Let $\Phi : M_2(\mathbb{C}) \to M_2(\mathbb{C})$ be a bijection satisfying

$$
\Phi\bigl(\bigl[[A,B]_*,C\bigr]\bigr)=\bigl[\bigl[\Phi(A),\Phi(B)\bigr]_*,\Phi(C)\bigr]
$$

for all $A, B, C \in M_2(\mathbb{C})$. Then there exist $\epsilon \in \{1, -1\}$ and a unitary matrix $U \in M_2(\mathbb{C})$ such that one of the following statements holds:

- (1) $\Phi(A) = \epsilon U A U^*$ for all $A \in M_2(\mathbb{C})$;
- (2) $\Phi(A) = \epsilon U \overline{A} U^*$ for all $A \in M_2(\mathbb{C})$;
- (3) $\Phi(A) = -\epsilon U A^t U^* + \epsilon \operatorname{tr}(A) I$ for all $A \in M_2(\mathbb{C})$;
- (4) $\Phi(A) = -\epsilon U A^* U^* + \epsilon \overline{\text{tr}(A)} I$ for all $A \in M_2(\mathbb{C})$.

Proof. We see that the condition dim $\mathcal{M} > 4$ appears only in the proof of Lemma [3.4.](#page-6-5) Hence there exist $\epsilon \in \{1, -1\}$ such that $\Phi = \epsilon \Psi$ and Ψ satisfies one of the following statements:

- (a) $\Psi(A) = \varphi(A) + f(A)$ for all $A \in M_2(\mathbb{C})$, where $\varphi : M_2(\mathbb{C}) \to M_2(\mathbb{C})$ is an additive isomorphism and $f : M_2(\mathbb{C}) \to \mathbb{C}I$ is an additive map with $f([A, B]) = 0$ for all $A, B \in M_2(\mathbb{C});$
- (b) $\Psi(A) = -\varphi(A) + f(A)$ for all $A \in M_2(\mathbb{C})$, where $\varphi : M_2(\mathbb{C}) \to M_2(\mathbb{C})$ is an additive anti-isomorphism and $f : M_2(\mathbb{C}) \to \mathbb{C}I$ is an additive map with $f([A, B]) = 0$ for all $A, B \in M_2(\mathbb{C})$.

334 Z. YANG and J. ZHANG

If statement (a) holds, with the same argument as in the proof of Theo-rem [3.1,](#page-4-0) then $\Psi : M_2(\mathbb{C}) \to M_2(\mathbb{C})$ is a linear *-isomorphism or a conjugate linear \ast -isomorphism. Hence there exists a unitary matrix $U \in M_2(\mathbb{C})$ such that $\Psi(A) = UAU^*$ for all $A \in M_2(\mathbb{C})$, or $\Psi(A) = U\overline{A}U^*$ for all $A \in M_2(\mathbb{C})$.

If statement (b) holds, by the same argument as in the proof of Lemma [3.4,](#page-6-5) then

$$
(\varphi(A^*) - \varphi(A))\varphi(B) + (\varphi(B) - f(B))(\varphi(A)^* - \varphi(A))
$$

+
$$
(f(A) - f(A)^*)\varphi(B) \in \mathbb{C}I
$$
 (4.1)

for all $A, B \in M_2(\mathbb{C})$, and $f(E) = I$ for any nontrivial idempotent $E \in M_2(\mathbb{C})$. Thus,

$$
f(I) = f(E) + f(E^{\perp}) = 2I.
$$

Taking $B = I$ in [\(4.1\)](#page-9-0), we have $\varphi(A^*) - \varphi(A)^* \in \mathbb{C}I$ for all $A \in M_2(\mathbb{C})$. This implies that

$$
\varphi(E_{11}) = \varphi(E_{11})^*, \qquad \varphi(E_{22}) = \varphi(E_{22})^*, \qquad \varphi(E_{12}) = \varphi(E_{21})^*.
$$

For any nontrivial idempotent $E \in M_2(\mathbb{C})$ and $\lambda \in \mathbb{C}$, taking $B = \lambda E$ in [\(4.1\)](#page-9-0) and then multiplying on the left-hand side by $\varphi(E)$ and on the right-hand side by $\varphi(E^{\perp}),$ we have

$$
(\varphi(\lambda E) - f(\lambda E))\varphi(E)(\varphi(A)^* - \varphi(A))\varphi(E^{\perp}) = 0
$$

for all $A \in M_2(\mathbb{C})$. It follows that

$$
\varphi(\lambda E) = f(\lambda E)\varphi(E). \tag{4.2}
$$

Since φ is an additive anti-isomorphism and $\varphi(\mathbb{C}I) \subseteq \mathbb{C}I$, there exists an additive isomorphism $\tau : \mathbb{C} \to \mathbb{C}$ such that $\varphi(\lambda I) = \tau(\lambda)I$ for all $\lambda \in \mathbb{C}$. Thus,

$$
\varphi(\lambda E) = \varphi(\lambda I)\varphi(E) = \tau(\lambda)\varphi(E). \tag{4.3}
$$

This together with [\(4.2\)](#page-9-1) gives us that $f(\lambda E) = \tau(\lambda)I$ for any nontrivial idempotent $E \in M_2(\mathbb{C})$ and $\lambda \in \mathbb{C}$. It follows from $f(\lambda E_{12}) = f(\lambda E_{21}) = 0$ that

$$
f(A) = \tau \left(\text{tr}(A) \right) I \tag{4.4}
$$

for all $A \in M_2(\mathbb{C})$. Since $\varphi(E_{11}), \varphi(E_{22})$ are nontrivial projections in $M_2(\mathbb{C})$ and $\varphi(E_{11}) + \varphi(E_{22}) = I$, there exists a unitary matrix $V \in M_2(\mathbb{C})$ such that

$$
V^*\varphi(E_{11})V = E_{11} \quad \text{and} \quad V^*\varphi(E_{22})V = E_{22}. \tag{4.5}
$$

This and the fact that $\varphi(E_{12}) = \varphi(E_{22})\varphi(E_{12})\varphi(E_{11})$ and $\varphi(E_{21}) = \varphi(E_{12})^*$ yield

$$
V^*\varphi(E_{12})V = aE_{21} \quad \text{and} \quad V^*\varphi(E_{21})V = \bar{a}E_{12} \quad (4.6)
$$

for some $a \in \mathbb{C}$ with $|a| = 1$. From [\(4.3\)](#page-9-2), [\(4.5\)](#page-9-3), and [\(4.6\)](#page-9-4), we have for any $\lambda \in \mathbb{C}$,

$$
\varphi(\lambda E_{11}) = \tau(\lambda)VE_{11}V^*, \qquad \varphi(\lambda E_{22}) = \tau(\lambda)VE_{22}V^*,
$$

$$
\varphi(\lambda E_{12}) = a\tau(\lambda)VE_{21}V^*, \qquad \varphi(\lambda E_{21}) = \bar{a}\tau(\lambda)VE_{12}V^*.
$$

It follows that

$$
\varphi\left(\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}\right) = V \begin{bmatrix} \tau(a_{11}) & \bar{a}\tau(a_{21}) \\ a\tau(a_{12}) & \tau(a_{22}) \end{bmatrix} V^* = U \begin{bmatrix} \tau(a_{11}) & \tau(a_{21}) \\ \tau(a_{12}) & \tau(a_{22}) \end{bmatrix} U^* \qquad (4.7)
$$

for all $\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \in M_2(\mathbb{C}),$ where $U = V \begin{bmatrix} 1 & 0 \\ 0 & a \end{bmatrix}$ is a unitary matrix in $M_2(\mathbb{C}).$

Taking $A = \begin{bmatrix} 0 & \lambda \\ \lambda & \lambda \end{bmatrix}$ and $B = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$ in [\(4.1\)](#page-9-0), we obtain the following from [\(4.4\)](#page-9-5) and (4.7) that:

$$
\begin{bmatrix}\n0 & \tau(\bar{\lambda}) - \tau(\lambda) \\
\tau(\bar{\lambda}) - \tau(\lambda) & \tau(\bar{\lambda}) - \tau(\lambda)\n\end{bmatrix}\n\begin{bmatrix}\n0 & 0 \\
0 & 1\n\end{bmatrix}\n-\n\begin{bmatrix}\n1 & 0 \\
0 & 0\n\end{bmatrix}\n\begin{bmatrix}\n0 & \tau(\lambda) - \tau(\lambda) \\
\tau(\lambda) - \tau(\lambda) & \tau(\lambda) - \tau(\lambda)\n\end{bmatrix}\n+\n\begin{bmatrix}\n0 & 0 \\
0 & \tau(\lambda) - \tau(\lambda)\n\end{bmatrix}\n\in \mathbb{C}I.
$$

It follows that $\tau(\bar{\lambda}) = \overline{\tau(\lambda)}$ for all $\lambda \in \mathbb{C}$. Hence $\tau(\lambda) = \lambda$ for all $\lambda \in \mathbb{C}$, or $\tau(\lambda) = \overline{\lambda}$ for all $\lambda \in \mathbb{C}$. By [\(4.4\)](#page-9-5) and [\(4.7\)](#page-10-9), we have $\Psi(A) = -UA^tU^* + \text{tr}(A)I$ for all $A \in M_2(\mathbb{C})$, or $\Psi(A) = -UA^*U^* + \overline{\text{tr}(A)}I$ for all $A \in M_2(\mathbb{C})$.

References

- 1. Z. F. Bai and S. P. Du, Maps preserving products XY −Y X[∗] on von Neumann algebras, J. Math. Anal. Appl. 386 (2012), no. 1, 103–109. [Zbl 1232.47032.](http://www.emis.de/cgi-bin/MATH-item?1232.47032) [MR2834869.](http://www.ams.org/mathscinet-getitem?mr=2834869) [DOI 10.1016/](https://doi.org/10.1016/j.jmaa.2011.07.052) [j.jmaa.2011.07.052.](https://doi.org/10.1016/j.jmaa.2011.07.052) [325](#page-0-1)
- 2. R. Banning and M. Mathieu, Commutativity preserving mappings on semiprime rings, Comm. Algebra 25 (1997), no. 1, 247–265. [Zbl 0865.16015.](http://www.emis.de/cgi-bin/MATH-item?0865.16015) [MR1429760.](http://www.ams.org/mathscinet-getitem?mr=1429760) [DOI 10.1080/](https://doi.org/10.1080/00927879708825851) [00927879708825851.](https://doi.org/10.1080/00927879708825851) [325,](#page-0-1) [329](#page-4-2)
- 3. M. Brešar and C. R. Miers, *Commutativity preserving mappings of von Neumann algebras*, Canad. J. Math. 45 (1993), no. 4, 695–708. [Zbl 0794.46045.](http://www.emis.de/cgi-bin/MATH-item?0794.46045) [MR1227654.](http://www.ams.org/mathscinet-getitem?mr=1227654) [DOI 10.4153/](https://doi.org/10.4153/CJM-1993-039-x) [CJM-1993-039-x.](https://doi.org/10.4153/CJM-1993-039-x) [325](#page-0-1)
- 4. M. D. Choi., A. A. Jafarian, and H. Radjavi, Linear maps preserving commutativity, Linear Algebra Appl. 87 (1987), 227–241. [Zbl 0615.15004.](http://www.emis.de/cgi-bin/MATH-item?0615.15004) [MR0878680.](http://www.ams.org/mathscinet-getitem?mr=0878680) [DOI 10.1016/](https://doi.org/10.1016/0024-3795(87)90169-8) [0024-3795\(87\)90169-8.](https://doi.org/10.1016/0024-3795(87)90169-8) [325](#page-0-1)
- 5. J. Cui and C.-K. Li, Maps preserving product $XY YX^*$ on factor von Neumann algebras, Linear Algebra Appl. 431 (2009), nos. 5–7, 833–842. [Zbl 1183.47031.](http://www.emis.de/cgi-bin/MATH-item?1183.47031) [MR2535555.](http://www.ams.org/mathscinet-getitem?mr=2535555) [DOI](https://doi.org/10.1016/j.laa.2009.03.036) [10.1016/j.laa.2009.03.036.](https://doi.org/10.1016/j.laa.2009.03.036) [325](#page-0-1)
- 6. J. Cui and C. Park, Maps preserving strong skew Lie product on factor von Neumann algebras, Acta Math. Sci. Ser. B (Engl. Ed.) 32 (2012), 531–538. [Zbl 1255.47043.](http://www.emis.de/cgi-bin/MATH-item?1255.47043) [MR2921895.](http://www.ams.org/mathscinet-getitem?mr=2921895) [DOI 10.1016/S0252-9602\(12\)60035-6.](https://doi.org/10.1016/S0252-9602(12)60035-6) [325](#page-0-1)
- 7. P. A. Fillmore and D. M. Topping, Operator algebras generated by projections, Duke Math. J. 34 (1967), 333–336. [Zbl 0149.34203.](http://www.emis.de/cgi-bin/MATH-item?0149.34203) [MR0209855.](http://www.ams.org/mathscinet-getitem?mr=0209855) [326](#page-1-5)
- 8. J. Hou and J. Cui, Linear Mapping on Operator Algebras [M], Science Press, Beijing, 2002. [333](#page-8-0)
- 9. C. Li, Q. Chen, and T. Wang, Nonlinear maps preserving the Jordan triple ∗-products on factor von Neumann algebras, Chin. Ann. Math. Ser. B 39 (2018), no. 4, 633–642. [Zbl 06979840.](http://www.emis.de/cgi-bin/MATH-item?06979840) [MR3864751.](http://www.ams.org/mathscinet-getitem?mr=3864751) [DOI 10.1007/s11401-018-0086-4.](https://doi.org/10.1007/s11401-018-0086-4) [325](#page-0-1)
- 10. J. Marovt, A note on Lie product preserving maps on $M_n(\mathbb{R})$, Math. Slovaca 66 (2016), no. 3, 715–720. [Zbl 1389.15051.](http://www.emis.de/cgi-bin/MATH-item?1389.15051) [MR3543734.](http://www.ams.org/mathscinet-getitem?mr=3543734) [DOI 10.1515/ms-2015-0173.](https://doi.org/10.1515/ms-2015-0173) [325](#page-0-1)
- 11. A. Paszkiewicz, Any self-adjoint operator is a finite linear combination of projectors, Bull. Acad. Polon. Sci. 28 (1980), nos. 7–8, 337–345. [Zbl 0495.47003.](http://www.emis.de/cgi-bin/MATH-item?0495.47003) [MR0628049.](http://www.ams.org/mathscinet-getitem?mr=0628049) [326](#page-1-5)
- 12. X. Qi and J. Hou, Strong skew commutativity preserving maps on von Neumann algebras, J. Math. Anal. Appl. 397 (2013), no. 1, 362–370. [Zbl 1270.47033.](http://www.emis.de/cgi-bin/MATH-item?1270.47033) [MR2968997.](http://www.ams.org/mathscinet-getitem?mr=2968997) [DOI 10.1016/](https://doi.org/10.1016/j.jmaa.2012.07.036) [j.jmaa.2012.07.036.](https://doi.org/10.1016/j.jmaa.2012.07.036) [325](#page-0-1)
- 13. P. Semrl, *Commutativity preserving maps*, Linear Algebra Appl. 429 (2008), nos. 5–6, 1051–1070. [Zbl 1195.15027.](http://www.emis.de/cgi-bin/MATH-item?1195.15027) [MR2433163.](http://www.ams.org/mathscinet-getitem?mr=2433163) [DOI 10.1016/j.laa.2007.05.006.](https://doi.org/10.1016/j.laa.2007.05.006) [325](#page-0-1)

- 14. X. Yu and F. Lu, Maps preserving Lie product on $B(X)$, Taiwanese J. Math. 12 (2008), no. 3, 793–806. [Zbl 1159.47020.](http://www.emis.de/cgi-bin/MATH-item?1159.47020) [MR2417148.](http://www.ams.org/mathscinet-getitem?mr=2417148) [DOI 10.11650/twjm/1500602436.](https://doi.org/10.11650/twjm/1500602436) [325](#page-0-1)
- 15. J.-H. Zhang and F.-J. Zhang, Nonlinear maps preserving Lie products on factor von Neu-mann algebras, Linear Algebra Appl. 429 (2008), no. 1, 18–30. [Zbl 1178.47024.](http://www.emis.de/cgi-bin/MATH-item?1178.47024) [MR2419135.](http://www.ams.org/mathscinet-getitem?mr=2419135) [DOI 10.1016/j.laa.2008.01.031.](https://doi.org/10.1016/j.laa.2008.01.031) [325,](#page-0-1) [330](#page-5-4)

School of Mathematics and Information Science, Shaanxi Normal University, Xi'an, 710062, People's Republic of China.

E-mail address: zjyang2100@163.com; jhzhang@snnu.edu.cn