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Abstract. In this article we show some density properties of smooth and
compactly supported functions in fractional Sobolev spaces with variable expo-
nents. The additional difficulty in this nonlocal setting is caused by the fact
that the variable exponent Lebesgue spaces are not translation-invariant.

1. Introduction

Function spaces with variable exponents have been the subject of intensive
investigation in recent years. Examples of such spaces include Lebesgue and
Sobolev spaces with variable exponents. Introduced by Orlicz [20] in 1931, their
properties were further developed by Nakano [19] as special cases of the theory of
modular spaces. In the ensuing decades they were primarily considered as impor-
tant examples of modular spaces or the class of Musielak–Orlicz spaces. Initially
of theoretical interest, by the end of the twentieth century these function spaces
moved beyond theory and into the area of variational problems and studies of
the p(x)-Laplacian operator, which in turn further fueled the development of
this theory. Also stimulating the wide-ranging investigation of these spaces were
their application to various problems in applied mathematics, for example, in the
areas of nonlinear elasticity theory, fluid mechanics, and mathematical modeling
of physical phenomena. (For more details on these spaces, see the monographs
[6], [17], [18]; see also [22].)
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Let Ω be a bounded domain of Rn. We fix s ∈ (0, 1), and we consider two
variable exponents—that is, q : Ω → [1,+∞) and p : Ω × Ω → [1,+∞)—to be
two continuous functions. In the following, we use the symbol := to make the
left-hand side equal by definition to the right-hand side.

The variable exponent Lebesgue space Lq(·)(Ω) is defined by

Lq(·)(Ω) :=
{
u : Ω → R measurable,

∫
Ω

|u(x)|q(x) dx < ∞
}
.

We define a norm, the so-called Luxembourg norm, in this space by

‖u‖Lq(·)(Ω) := inf
{
λ > 0 :

∫
Ω

∣∣∣u(x)
λ

∣∣∣q(x) dx ≤ 1
}
.

We define the fractional Sobolev space with variable exponents via the Gagliardo
approach as follows:

W s,q(·),p(·,·)(Ω)

:=
{
u ∈ Lq(·)(Ω),

∫
Ω

∫
Ω

|u(x)− u(y)|p(x,y)

λp(x,y)|x− y|n+sp(x,y)
dx dy < ∞, for some λ > 0

}
.

Let

[u]s,p(·,·)(Ω) := inf
{
λ > 0 :

∫
Ω

∫
Ω

|u(x)− u(y)|p(x,y)

λp(x,y)|x− y|n+sp(x,y)
dx dy ≤ 1

}
be the corresponding variable exponent Gagliardo seminorm. It is easy to see that
W s,q(·),p(·,·)(Ω) is a Banach space with the norm

‖u‖W s,q(·),p(·,·)(Ω) := ‖u‖Lq(·)(Ω) + [u]s,p(·,·)(Ω).

The definition of the spaces Lq(·)(Rn) and W s,q(·),p(·,·)(Rn) is analogous to that of
Lq(·)(Ω) and W s,q(·),p(·,·)(Ω); one just changes every occurrence of Ω by Rn (for
more detail, see [1], [2], [4], and [16]).

Fractional Sobolev spaces with variable exponents have major applications in
variational problems related to a well-known fractional version of the p(x)-Laplace
operator, given by div(|∇u|p(x)−2∇u), that is associated with the variable expo-
nent Sobolev space W 1,p(·)(Ω). We refer, for instance, to [6] and [13].

The denseness of regular functions such as C∞(Ω), functions which are contin-
uously differentiable arbitrarily many times (smooth functions), or C∞

0 (Ω), the
subset of C∞(Ω) of functions which have compact support, was one of the central
tools in the function spaces setting—it might have some additional ramifications
in the variable exponent Sobolev spaces. Moreover, the density of regular func-
tions was one of the questions considered early (from 1986) in the context of
minimizers of variational integrals. It is well known that the regularity of the
Dirichlet energy integral minimizer is related to the density of smooth functions
in the corresponding function space (see [14], [23]–[26]).

The denseness of smooth functions in the variable exponent Sobolev spaces
W k,p(·)(Ω) has proved to be a more difficult problem. Nowadays, denseness is
a topic of intense focus and study by many researchers (we refer the reader to
[6], [8]–[10], [15], [21], [27] and the references therein).
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We recall that the continuity of the shift operator Th : Lq(·) → Lq(·), Thf(x) :=
f(x + h) may fail (see [5]). In connection with the density problem for smooth
function, we introduce the most important condition on the exponent in the study
of variable exponent spaces, the well-known log-Hölder continuity condition: a
function q : Ω → R is called log-Hölder continuous on Ω if there exists C > 0
such that ∣∣q(x)− q(y)

∣∣ ≤ C

− log |x− y|
, |x− y| ≤ 1

2
. (1.1)

We say that a function p : Ω×Ω → R satisfies condition (B-B) on Ω×Ω if there
exists C > 0 such that∣∣p(x, y)− p(x

′
, y

′
)
∣∣ ≤ C

− log(|x− x′|+ |y − y′|)
, (1.2)

for all (x, y) and (x
′
, y

′
) ∈ Ω× Ω such that |x− x

′ |+ |y − y
′| ≤ 1

2
.

Notice that conditions (1.1) and (1.2) ensure that the typical mollifier function
approximate function in Lebesgue Spaces with variable exponents (we refer the
reader to [5], [21], [2] and [7]).

We define the following class of variable exponents

P log(Ω) := {q : Ω → R : q is measurable and log-Hölder continuous}

and

P log(Ω× Ω)

:=
{
p : Ω× Ω → R : p is measurable and satisfies condition (B–B)

}
.

We set p− := essinf(x,y)∈Ω×Ω p(x, y), p+ := esssup(x,y)∈Ω×Ω p(x, y), q− :=

essinfx∈Ω q(x), and q+ := esssupx∈Ω q(x).
We assume that

1 < p− ≤ p(x, y) ≤ p+ < ∞, (1.3)

1 < q− ≤ q(x) ≤ q+ < ∞, (1.4)

p
(
(x, y)− (z, z)

)
= p(x, y), ∀(x, y), (z, z) ∈ Ω× Ω. (1.5)

The aim of this paper is to prove a number of density properties of smooth
and compactly supported functions in fractional Sobolev spaces with variable
exponent. The first result is an approximation with a continuous and compactly
supported function.

Theorem 1.1. Let u ∈ W s,q(·),p(·,·)(Rn). Then for any fixed δ > 0, there exists a
continuous and compactly supported function uδ such that

‖u− uδ‖W s,q(·),p(·,·)(Rn) −→ 0 as δ −→ 0.

The second result is an approximation with smooth and compactly supported
functions. More precisely, we have the following.

Theorem 1.2. Let q ∈ P log(Ω) and p ∈ P log(Ω×Ω). Then the space C∞
0 (Rn) is

dense in W s,q(·),p(·,·)(Rn).
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We consider Ω ⊂ Rn to be a W s,q(·),p(·,·)-extension domain if there exists a
continuous linear extension operator

E : W s,q(·),p(·,·)(Ω) −→ W s,q(·),p(·,·)(Rn)

such that Eu|Ω = u for each u ∈ W s,q(·),p(·,·)(Ω). From Theorem 1.2, we derive
the density of C∞(Ω) also in W s,q(·),p(·,·)-extension domains, which include in
particular domains with Lipschitz boundary (see [1]).

Theorem 1.3. Let q ∈ P log(Ω), p ∈ P log(Ω × Ω) and suppose that Ω is a
W s,q(·),p(·,·)-extension domain. Then the space C∞(Ω) is dense in W s,q(·),p(·,·)(Ω).

This paper is organized as follows. In Section 2, we describe some properties
of fractional Sobolev spaces with variable exponents that will be useful in our
exposition. In Section 3, we prove the density results for fractional Sobolev spaces
with variable exponents.

2. Notation and preliminary results

In this section we give some notation and prove several useful properties of
fractional Sobolev spaces with variable exponents.

We use the following notation throughout this article. Rn is the n-dimensional
Euclidean space, and n ∈ N always stands for the dimension of the space.
A domain Ω ⊂ Rn is a connected open set equipped with the n-dimensional
Lebesgue measure. For constants, we use the letter C whose value may change
even within a string of estimates. A ball with radius R and center 0 will be
denoted by BR. The closure of a set A is denoted by A. We use the usual con-
vention of identifying two µ-measurable functions on A (almost everywhere (a.e.)
in A, for short) if they agree almost everywhere—that is, if they agree up to a
set of µ-measure zero. The Lebesgue integral of a Lebesgue measurable function
f : Ω −→ R is defined in the standard way and denoted by

∫
Ω
f(x) dx. By ωn−1,

we denote the (n − 1)-dimensional measure of the unit sphere Sn−1. By supp f ,
we denote the support of f , which is the complement of the biggest open set on
which it vanishes; in other words, supp f is the closure of the set {x; f(x) 6= 0}.
We denote by C(Ω) the space of uniformly continuous functions equipped with
the supremum norm ‖f‖∞ = supx∈Ω |f(x)|. By Ck(Ω), k ∈ N, we denote the

space of all functions f such that ∂αf := ∂|α|f
∂α1x1···∂αnxn

∈ C(Ω) for all multi-indices

α = (α1, α2, . . . , αn), |α| := α1 + α2 + · · · + αn ≤ k. The space is equipped with
the norm sup|α|≤k ‖∂αf‖∞, C∞(Ω) =

⋂
k C

k(Ω). The set of smooth functions in
Ω is denoted by C∞(Ω)—it consists of functions in Ω which are continuously
differentiable arbitrarily many times. The set C∞

0 (Ω) is the subset of C∞(Ω) of
functions which have compact support.

The important role of manipulating Lebesgue–Sobolev spaces with variable
exponents is played by the modular of the Lq(·)(Ω) space, which is the mapping
ρ : Lq(·)(Ω) −→ R+ defined by

ρ(u) =

∫
Ω

|u(x)|q(x) dx.
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From [10, Theorems 1.4, 1.8], we obtain the following proposition.

Proposition 2.1. Let Ω be an open subset of Rn, and let un, u ∈ Lq(·)(Ω) be such
that n ∈ N. Then

(1) C∞
0 (Ω) is dense in the space (Lq(·)(Ω), ‖·‖Lq(·)(Ω)),

(2) limn−→+∞ ρ(un − u) −→ 0 ⇐⇒ limn−→+∞‖un − u‖Lq(·)(Ω) = 0.

Next, we prove several properties of W s,q(·),p(·,·)(Rn) that are needed to obtain
our main results.

Lemma 2.2. Let ϕ ∈ C∞
0 (Rn). Then there exists a positive constant C such that∫

Rn

∫
Rn

|ϕ(x)− ϕ(y)|p(x,y)

|x− y|n+sp(x,y)
dx dy ≤ C.

Proof. Let ϕ ∈ C∞
0 (Rn) with suppϕ ⊆ BR. Therefore, if x, y ∈ Rn \ BR, then

ϕ(x) = ϕ(y) = 0. Thus

I =

∫
Rn

∫
Rn

|ϕ(x)− ϕ(y)|p(x,y)

|x− y|n+sp(x,y)
dx dy

=

∫
BR

∫
Rn

|ϕ(x)− ϕ(y)|p(x,y)

|x− y|n+sp(x,y)
dx dy

= I1 + I2,

where

I1 :=

∫
BR

∫
B2R

|ϕ(x)− ϕ(y)|p(x,y)

|x− y|n+sp(x,y)
dx dy

and

I2 :=

∫
BR

∫
Rn\B2R

|ϕ(x)− ϕ(y)|p(x,y)

|x− y|n+sp(x,y)
dx dy.

We first estimate I1. We have

I1 =

∫
BR

∫
B2R

|ϕ(x)− ϕ(y)|p(x,y)

|x− y|n+sp(x,y)
dx dy

=

∫
BR

∫
B2R

|ϕ(x)− ϕ(y)|p(x,y)

|x− y|p(x,y)
× |x− y|p(x,y)

|x− y|n+sp(x,y)
dx dy.

Hence

I1 ≤ C

∫
B2R

∫
B2R

|x− y|−n+(1−s)p(x,y) dx dy,

where C depends on the C1-norm of ϕ, p+, and p−.
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We set

d := sup
{
|x− y| : (x, y) ∈ B2R ×B2R

}
.

Observe that

|x− y|−n+(1−s)p(x,y) ≤ max{−n+(1−s)p+ , d−n+(1−s)p−}.

Therefore,

I1 ≤ C

∫
B2R

∫
B2R

dx dy ≤ C.

Now we estimate I2. For this, we observe that if x ∈ BR and y ∈ Rn \B2R, then

|x− y| ≥ |y| − |x| ≥ |y|
2
.

Thus

I2 ≤ C
(
n, s, p+, p−, ‖ϕ‖L∞(Rn)

) ∫
BR

(∫
Rn\B2R

dy

|y|n+sp(x,y)

)
dx.

Now, if |y| > 1, then∫
Rn\B2R

dy

|y|n+sp(x,y)
≤

∫
Rn\B2R

dy

|y|n+sp−
= ωn−1C(R, s, p−) ≤ C,

where ωn−1 denotes the (n− 1)-dimensional measure of the unit sphere Sn−1.
Now, we assume that |y| < 1. We claim that∫

Rn\B2R

dy

|y|n+sp(x,y)
≤

∫
Rn\B2R

dy

|y|n+sp+
= ωn−1C(R, s, p+) ≤ C.

Hence, I is bounded. �

As an obvious consequence of Lemma 2.2 and Proposition 2.1, we have
C∞

0 (Rn) ⊆ W s,q(·),p(·,·)(Rn). Now we give two approximation results.

Lemma 2.3. Let u ∈ Lq(·)(Rn). Then there exists a sequence of functions um ∈
Lq(·)(Rn) ∩ L∞(Rn) such that

‖u− um‖Lq(·)(Rn) −→ 0 as m −→ +∞.

Proof. We set

um(x) :=


m if u(x) ≥ m,

u(x) if u(x) ∈ (−m,m),

−m if u(x) ≤ −m.

We have

um −→ u a.e. in Rn

and

|um(x)|q(x) ≤ |u(x)|q(x) ∈ L1(Rn).

By the dominated convergence theorem and Proposition 2.1, the claim follows.
�
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Lemma 2.4. Let u ∈ Lp(·,·)(Rn × Rn). Then there exists a sequence of functions
uM ∈ Lp(·,·)(Rn × Rn) ∩ L∞(Rn × Rn) such that

‖u− uM‖Lp(·,·)(Rn×Rn) −→ 0 as M −→ +∞.

Proof. We set

uM(x, y) :=


M if u(x, y) ≥ M,

u(x, y) if u(x, y) ∈ (−M,M),

−M if u(x, y) ≤ −M.

We have

uM −→ u a.e. in Rn × Rn

and

|uM(x, y)|p(x,y) ≤ |u(x, y)|p(x,y) ∈ L1(Rn × Rn).

The claim follows from the dominated convergence theorem and Proposition 2.1.
�

The proofs of density properties of smooth and compactly supported functions
are mainly based on a basic technique of convolution (which makes functions C∞),
joined with a cutoff (which makes their support compact). In the remainder of
this article, we describe properties of these operations with respect to the norm
in fractional Sobolev spaces with variable exponents.

Let η ∈ C∞
0 (Rn) be such that η ≥ 0 in Rn and supp η ⊆ B1. We also assume

that ∫
B1

η(x) dx = 1.

Let ε > 0, and let ηε be the mollifier defined as

ηε(x) =
1

εn
η
(x
ε

)
, x ∈ Rn.

For any u ∈ W s,q(·),p(·,·)(Rn), we will denote by uε the function defined as the
convolution between u and ηε; that is,

uε(x) = (u ∗ ηε)(x) =
∫
Rn

u(x− z)ηε(z) dz, x ∈ Rn.

Note that, by construction, uε ∈ C∞(Rn). For small ε, the convolution does
not change the norm too much, according to the following result (see, e.g., [2,
Lemma 3.2]), which will be useful in the rest of this article.

Lemma 2.5. Let u ∈ W s,q(·),p(·,·)(Rn), q ∈ P log(Ω) and p ∈ P log(Ω × Ω). We
assume that (1.3), (1.4) and (1.5) hold. Then ‖u − uε‖W s,q(·),p(·,·)(Rn) → 0 as
ε → 0.

Proof. Let u ∈ W s,q(·),p(·,·)(Rn). Since u ∈ Lq(.)(Ω) and q ∈ P log(Ω), by [21,
Corollary], we know that

‖u− uε‖Lq(·)(Rn) → 0 as ε → 0.

Hence, from Proposition 2.1, it suffices to prove that
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Ω×Ω

∣∣uε(x)− u(x)− uε(y) + u(y)
∣∣p(x,y)K(x, y) dx dy → 0 as ε → 0,

where K(x, y) = |x − y|−n−sp(x,y). By the same way in [2, Lemma 3.2], we can
prove that∫

Ω×Ω

∣∣uε(x)− u(x)− uε(y) + u(y)
∣∣p(x,y)K(x, y) dx dy

≤ |B1|p
−+p+−1

∫
Ω×Ω×B1

∣∣u(x− εz)− u(y − εz)− u(x) + u(y)
∣∣p(x,y)

×K(x, y)
(
η(z)p

+

+ η(z)p
−)

dx dy dz.

Fix z ∈ B1 and put w = (z, z) ∈ Ω× Ω. We define the function v : Ω× Ω −→ R
by

v(x, y) :=
(
u(x)− u(y)

)(
K(x, y)

) 1
p(x,y) , ∀(x, y) ∈ Ω× Ω.

Then v ∈ Lp(·,·)(Ω × Ω). Let ε
′
> 0. Since p ∈ P log(Ω × Ω), by [21, Corollary],

there exists g ∈ C∞
0 (Ω× Ω) with ‖v − g‖Lp(·,·)(Ω×Ω) 6

ε
′

3
, hence∥∥v(· − εw)− v

∥∥
Lp(·,·)(Ω×Ω)

6
∥∥v(· − εw)− g(· − εw)

∥∥
Lp(·,·)(Ω×Ω)

+
∥∥g(· − εw)− g

∥∥
Lp(·,·)(Ω×Ω)

+ ‖v − g‖Lp(·,·)(Ω×Ω)

6
ε
′

3
+

ε
′

3
+

ε
′

3
= ε

′
,

with ε is sufficiently small. Hence

lim
ε→0

∫
Ω×Ω

∣∣u(x− εz)− u(y − εz)− u(x) + u(y)
∣∣p(x,y) ×K(x, y) dx dy = 0.

Moreover, for a.e. z ∈ B1, there exists a positive constant C such that(
η(z)p

+

+ η(z)p
−) ∫

Ω×Ω

∣∣u(x− εz)− u(y − εz)− u(x) + u(y)
∣∣p(x,y)

×K(x, y) dx dy

6 2C
(
η(z)p

+

+ η(z)p
−) ∫

Ω×Ω

∣∣u(x)− u(y)
∣∣p(x,y) ×K(x, y) dx dy ∈ L∞(B1),

for any ε > 0. Hence, using the dominated convergence theorem, we deduce that

lim
ε→0

∫
B1

η(z)p
(x,y)

∫
Ω×Ω

∣∣u(x− εz)− u(y − εz)− u(x) + u(y)
∣∣p(x,y)

×K(x, y) dx dy dz = 0.

Consequently∫
Ω×Ω

∣∣uε(x)− u(x)− uε(y) + u(y)
∣∣p(x,y)K(x, y) dx dy → 0 as ε → 0,

which concludes the proof. �
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Now, we will discuss the cutoff technique needed for the density argument. For
any j ∈ N, let τj ∈ C∞(Rn) be such that

0 ≤ τj(x) ≤ 1, ∀x ∈ Rn,

τj(x) =

{
1 if x ∈ Bj,

0 if x ∈ Rn \Bj+1,

(2.1)

where Bj denotes the ball centered at zero with radius j. We have the following
result.

Lemma 2.6. Let u ∈ W s,q(·),p(·,·)(Rn). Then τju ∈ W s,q(·),p(·,·)(Rn).

Proof. Let u ∈ W s,q(·),p(·,·)(Rn). It is clear that τju ∈ Lq(·)(Rn) since |τj| ≤ 1.
Furthermore,

I =

∫
Rn

∫
Rn

|τj(x)u(x)− τj(y)u(y)|p(x,y)

λp(x,y)|x− y|n+sp(x,y)
dx dy

≤ 2p
+−1

∫
Rn

∫
Rn

|τj(x)(u(x)− u(y))|p(x,y)

λp(x,y)|x− y|n+sp(x,y)
dx dy

+ 2p
+−1

∫
Rn

∫
Rn

|u(y)(τj(x)− τj(y))|p(x,y)

λp(x,y)|x− y|n+sp(x,y)
dx dy

≤ 2p
+−1

∫
Rn

∫
Rn

|u(x)− u(y)|p(x,y)

λp(x,y)|x− y|n+sp(x,y)
dx dy

+ 2p
+−1

∫
Rn

∫
Rn

|u(y)(τj(x)− τj(y))|p(x,y)

λp(x,y)|x− y|n+sp(x,y)
dx dy,

where the integral ∫
Rn

∫
Rn

|u(x)− u(y)|p(x,y)

λp(x,y)|x− y|n+sp(x,y)
dx dy

is finite since u ∈ W s,q(·),p(·,·)(Rn).
According to Lemma 2.3, we can assume that u ∈ L∞(Rn). Hence,

|u(y)|p(x,y) ≤ ‖u‖p
+

L∞(Rn) + ‖u‖p
−

L∞(Rn).

Therefore,∫
Rn

∫
Rn

|u(y)(τj(x)− τj(y))|p(x,y)

λp(x,y)|x− y|n+sp(x,y)
dx dy ≤ C

α

∫
Rn

∫
Rn

|(τj(x)− τj(y))|p(x,y)

|x− y|n+sp(x,y)
dx dy,

where α = min{λp+ , λp−} and the constant C depends on p+, p−, and ‖u‖L∞(Rn).
Finally, using Lemma 2.2, we get∫

Rn

∫
Rn

|u(y)(τj(x)− τj(y))|p(x,y)

λp(x,y)|x− y|n+sp(x,y)
dx dy < ∞.

This concludes the proof. �
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Now, we will prove that we can approximate a function in W s,q(·),p(·,·)(Rn)
with another function with compact support, by keeping the error small. More
precisely, we have the following result.

Lemma 2.7. Let u ∈ W s,q(·),p(·,·)(Rn). Then supp(τju) ⊆ Bj+1 ∩ suppu, and

‖τju− u‖W s,q(·),p(·,·)(Rn) −→ 0 as j −→ +∞.

Proof. By (2.1) and [11, Lemma 9], we get

supp(τju) ⊆ Bj+1 ∩ suppu.

Now, let us show that

‖τju− u‖W s,q(·),p(·,·)(Rn) −→ 0 as j −→ +∞.

From Proposition 2.1, it suffices to prove that∫
Rn

∣∣τj(x)u(x)− u(x)
∣∣q(x) dx −→ 0 as j −→ +∞

and∫
Rn

∫
Rn

|τj(x)u(x)− u(x)− τj(y)u(y) + u(y)|p(x,y)

|x− y|n+sp(x,y)
dx dy −→ 0 as j −→ +∞.

We observe that∣∣τj(x)u(x)− u(x)
∣∣q(x) = ∣∣τj(x)− 1

∣∣q(x)∣∣u(x)∣∣q(x)
≤ 2q

+−1
(∣∣τj(x)∣∣q(x) + 1

)∣∣u(x)∣∣q(x)
≤ 2q

+∣∣u(x)∣∣q(x) ∈ L1(Rn).

Moreover, by (2.1)∣∣τj(x)u(x)− u(x)
∣∣q(x) −→ 0 as j −→ +∞ a.e. in Rn.

Then, by the dominated convergence theorem, we get∫
Rn

∣∣τj(x)u(x)− u(x)
∣∣q(x) −→ 0 as j −→ +∞.

Now, let us show that∫
Rn

∫
Rn

|τj(x)u(x)− u(x)− τj(y)u(y) + u(y)|p(x,y)

|x− y|n+sp(x,y)
dx dy −→ 0 as j −→ +∞.

We set ηj = 1− τj. Then ηju = u− τju. Moreover,∣∣τj(x)u(x)− u(x)− τj(y)u(y) + u(y)
∣∣

=
∣∣ηj(x)(u(x)− u(y)

)
−

(
τj(y)− τj(x)

)
u(y)

∣∣.
Therefore,
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Rn

∫
Rn

|τj(x)u(x)− u(x)− τj(y)u(y) + u(y)|p(x,y)

|x− y|n+sp(x,y)
dx dy

≤ 2p
+−1

∫
Rn

∫
Rn

|τj(x)− τj(y)|p(x,y)

|x− y|n+sp(x,y)

∣∣u(y)∣∣p(x,y) dx dy
+ 2p

+−1

∫
Rn

∫
Rn

|u(x)− u(y)|p(x,y)

|x− y|n+sp(x,y)
η
p(x,y)
j (x) dx dy.

Note that by Lemma 2.3, we can assume that u ∈ L∞(Rn). Hence,

|τj(x)− τj(y)|p(x,y)

|x− y|n+sp(x,y)

∣∣u(y)∣∣p(x,y) ≤ C
(
‖u‖L∞(Rn), p

+, p−
) |τj(x)− τj(y)|p(x,y)

|x− y|n+sp(x,y)
.

By Lemma 2.2, we deduce that

|τj(x)− τj(y)|p(x,y)

|x− y|n+sp(x,y)
∈ L1(Rn × Rn).

Furthermore,

|τj(x)− τj(y)|p(x,y)

|x− y|n+sp(x,y)

∣∣u(y)∣∣p(x,y) −→ 0 as j −→ ∞ a.e. in Rn × Rn.

Hence, by the dominated convergence theorem,∫
Rn

∫
Rn

|τj(x)− τj(y)|p(x,y)

|x− y|n+sp(x,y)

∣∣u(y)∣∣p(x,y) dx dy −→ 0 as j −→ ∞.

Also,

|u(x)− u(y)|p(x,y)

|x− y|n+sp(x,y)

(
ηj(x)

)p(x,y) ≤ (
ηj(x)

)p+
+ ηj(x))

p−)
|u(x)− u(y)|p(x,y)

|x− y|n+sp(x,y)

and

|u(x)− u(y)|p(x,y)

|x− y|n+sp(x,y)
∈ L1(Rn × Rn).

Again by (2.1),

|u(x)− u(y)|p(x,y)

|x− y|n+sp(x,y)

(
ηj(x)

)p(x,y) −→ 0 as j −→ ∞ a.e. in Rn × Rn.

Hence, by the dominated convergence theorem,∫
Rn

∫
Rn

|u(x)− u(y)|p(x,y)

|x− y|n+sp(x,y)

(
ηj(x)

)p(x,y)
dx dy −→ 0 as j −→ ∞.

This concludes the proof. �
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3. Approximation by smooth and compactly supported functions

In this section we give some density properties of smooth and compactly
supported functions in fractional Sobolev spaces with variable exponents. The
additional difficulty in this nonlocal setting is caused by the fact that the
variable exponent Lebesgue spaces are not translation-invariant (see [6, Sec-
tion 3.6]). To overcome this difficulty, we exploit the techniques developed in
Section 2.

Theorem 3.1. Let u ∈ W s,q(·),p(·,·)(Rn). Then for any fixed δ > 0, there exists a
continuous and compactly supported function uδ such that

‖u− uδ‖W s,q(·),p(·,·)(Rn) −→ 0 as δ −→ 0.

Proof. Let u ∈ W s,q(·),p(·,·)(Rn). According to Lemma 2.2, we can approximate u
with a sequence of bounded functions. Consequently, we can also assume that
u ∈ L∞(Rn).

Let τj ∈ C∞(Rn) be as in Section 2, with τj(P ) = 1 if |P | ≤ j and τj(P ) = 0
if |P | ≥ j + 1. Let uj = τju. Then

uj −→ u a.e. in Rn as j −→ ∞,

and ∣∣u(x)− uj(x)
∣∣q(x) ≤ 2q

+∣∣u(x)∣∣q(x) ∈ L1(Rn).

As a consequence, by the dominated convergence theorem,∫
Rn

∣∣u(x)− uj(x)
∣∣q(x) dx −→ 0 as j −→ ∞.

Hence, for any fixed δ > 0, there exists jδ ∈ N such that∫
Rn

∣∣u(x)− ujδ(x)
∣∣q(x) dx ≤ δ. (3.1)

Note that ujδ is supported in Bj+1 and that µ(A) =
∫
A
dx is finite over compact

sets. Hence, we can use Lusin’s theorem (see [12, Theorem 7.10, p. 121] for the
definition of the uniform norm). We obtain that there exist a closed set Eδ ⊂
Rn and a continuous and compactly supported function uδ : Rn −→ R such
that

uδ = ujδ in Rn \ Eδ, µ(Eδ) ≤ δ and ‖ujδ‖L∞(Rn) ≤ ‖u‖L∞(Rn).

In particular, since 0 ≤ τjδ(x) ≤ 1, we have

‖uδ‖L∞(Rn) ≤ ‖u‖L∞(Rn) < ∞.

Therefore,∫
Rn

∣∣ujδ(x)− uδ(x)
∣∣q(x) dx =

∫
Eδ

∣∣ujδ(x) − uδ(x)
∣∣q(x) dx

≤ 2q
+−1

(∫
Eδ

| ujδ(x)

)
|q(x) dx+

∫
Eδ

∣∣uδ(x)
∣∣q(x) dx)

≤ C(q+, q−, ‖u‖L∞(Rn)µ(Eδ).
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Hence ∫
Rn

∣∣ujδ(x)− uδ(x)
∣∣q(x) dx ≤ Cδ. (3.2)

On the other hand,∣∣u(x)− uδ(x)
∣∣q(x)

≤ 2q
+−1

(∣∣u(x)− ujδ(x)
∣∣q(x) + ∣∣ujδ(x)− uδ(x)

∣∣q(x)).
Hence ∫

Rn

∣∣u(x)− uδ(x)
∣∣q(x) dx ≤ 2q

+−1

∫
Rn

∣∣u(x)− ujδ(x)
∣∣q(x) dx

+ 2q
+−1

∫
Rn

∣∣ujδ(x)− uδ(x)
∣∣q(x) dx.

Now, from (3.1) and (3.2), we deduce that∫
Rn

∣∣u(x)− uδ(x)
∣∣q(x) dx −→ 0 as δ −→ 0.

Therefore, by Proposition 2.1, we obtain

‖u− uδ‖Lq(·)(Rn) −→ 0 as δ −→ 0.

Moreover,∫
Rn

∫
Rn

|(u− uj)(x)− (u− uj)(y)|p(x,y)

|x− y|n+sp(x,y)
dx dy −→ 0 as j −→ ∞.

Hence, for any fixed δ > 0, there exists jδ ∈ N such that∫
Rn

∫
Rn

|(u− ujδ)(x)− (u− ujδ)(y)|p(x,y)

|x− y|n+sp(x,y)
dx dy ≤ δ.

Notice that

vjδ(x, y) =
|ujδ(x)− ujδ(y)|p(x,y)

|x− y|n+sp(x,y)

is supported in {P ∈ Rn×Rn; |P | ≤ jδ +1} and µ(A) =
∫
A

∫
A
dx dy is finite over

compact sets. Hence, we can again use Lusin’s theorem. We get that there exist
a closed set Eδ ⊂ Rn × Rn and a continuous and compactly supported function
uδ : Rn × Rn −→ R such that

uδ = vjδ in Rn × Rn \ Eδ, µ(Eδ) ≤ δ and

‖ujδ‖L∞(Rn×Rn) ≤ ‖vjδ‖L∞(Rn×Rn).

In particular, since 0 ≤ τjδ(x) ≤ 1, we have

‖uδ‖L∞(Rn×Rn) ≤
∥∥∥ |u(x)− u(y)|p(x,y)

|x− y|n+sp(x,y)

∥∥∥
L∞(Rn×Rn)

.

Now, by putting

v(x, y) :=
|u(x)− u(y)|p(x,y)

|x− y|
n

p(x,y)
+s
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in Lemma 2.4, we can assume that

|u(x)− u(y)|p(x,y)

|x− y|n+sp(x,y)
∈ L∞(Rn × Rn).

Therefore∫
Rn

∫
Rn

|(u− uδ)(x)− (u− uδ)(y)|p(x,y)

|x− y|n+sp(x,y)
dx dy −→ 0 as δ −→ 0,

which concludes the proof. �

Theorem 3.2. Let q ∈ P log(Ω) and p ∈ P log(Ω×Ω). Then the space C∞
0 (Rn) is

dense in W s,q(·),p(·,·)(Rn).

Proof. We show that for any u ∈ W s,q(·),p(·,·)(Rn), there exists a sequence ρε ∈
C∞

0 (Rn) such that

‖ρε − u‖W s,q(·),p(·,·)(Rn) −→ 0 as ε −→ 0.

Let u ∈ W s,q(·),p(·,·)(Rn), and let us fix δ > 0. Let τj be as in Section 2. By
Lemma 2.7, we know that

‖u− τju‖W s,q(·),p(·,·)(Rn) ≤
δ

2
,

for j large enough.
For any ε > 0, let us consider

ρε := τju ∗ ηε,
where ηε is the mollifier function defined in Section 2. By construction, ρε ∈
C∞(Rn). Furthermore, by [3, Proposition IV.18],

supp ρε ⊆ supp(τju) +Bε.

Also, by Lemma 2.7,

supp(τju) ⊆ Bj+1 ∩ suppu.

Hence,

supp ρε ⊆ (Bj+1 ∩ suppu) +Bε.

As a consequence of this,

ρε ∈ C∞
0 (Rn),

for ε small enough. Furthermore, Lemma 2.5 gives

‖ρε − τju‖W s,q(·),p(·,·)(Rn) ≤
δ

2

for ε small enough. Therefore,

‖u− ρε‖W s,q(·),p(·,·)(Rn) ≤ ‖u− τju‖W s,q(·),p(·,·)(Rn) + ‖τju− ρε‖W s,q(·),p(·,·)(Rn)

≤ δ

2
+

δ

2
≤ δ.

Since δ can be taken arbitrarily small, this concludes the proof. �
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Theorem 3.3. Let q ∈ P log(Ω), p ∈ P log(Ω × Ω) and suppose that Ω is a
W s,q(·),p(·,·)-extension domain. Then C∞(Ω) is dense in W s,q(·),p(·,·)(Ω).

Proof. Let u ∈ W s,q(·),p(·,·)(Ω). Since Ω is a W s,q(·),p(·,·)-extension domain, we find
that ũ ∈ W s,q(·),p(·,·)(Rn) with ũ(x) = u(x) for all x ∈ Ω and

‖ũ‖W s,q(·),p(·,·)(Rn) ≤ C‖u‖W s,q(·),p(·,·)(Ω).

Due to Theorem 3.2, we can choose ũε ∈ C∞
0 (Rn) with

ũε −→ u in W s,q(·),p(·,·)(Rn).

We set uε := ũε|Ω. Then

‖u− uε‖W s,q(·),p(·,·)(Ω) ≤ ‖ũ− ũε‖W s,q(·),p(·,·)(Rn) −→ 0.

Hence uε ∈ C∞(Ω) are the required approximating functions. �
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