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Abstract. We characterize orthogonally complemented submodules in Hil-
bert C∗-modules by their orthogonal closures. Applying Magajna’s charac-
terization of Hilbert C∗-modules over C∗-algebras of compact operators by
the complementing property of submodules, we give an elementary proof of
Schweizer’s characterization of Hilbert C∗-modules over C∗-algebras of com-
pact operators. Also, we prove analogous characterization theorems for C∗-
algebras of compact operators related to topological properties of submodules
of strict completions of Hilbert modules over a nonunital C∗-algebra.

Introduction

It is well known that in Hilbert spaces—as well as in Hilbert C∗-modules
over C∗-algebras of compact operators on some Hilbert space—every closed sub-
space/submodule is orthogonally complemented. There is a natural isomorphism
between the C∗-algebras of bounded operators on Hilbert C∗-modules over C∗-
algebras of compact operators on some Hilbert space and the C∗-algebras of
bounded operators on a certain Hilbert space contained in these modules which
is simply a restriction. This allows us to transfer many results from Hilbert spaces
to Hilbert C∗-modules over C∗-algebras of compact operators.

The first goal of this article is to describe orthogonally complemented submod-
ules in general Hilbert C∗-modules in terms of their biorthogonal closures (see
see Theorem 2.1 below). The argument is based on simple formulas for sums and
orthogonal complements of submodules obtained by Gebhardt and Schmüdgen
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in [4]. This enables us to give an elementary proof of Schweizer’s theorem on
the characterization of Hilbert C∗-modules over C∗-algebras of compact oper-
ators using the biorthogonal closure property for closed submodules. Although
Magajna’s theorem (based on the complementing property of closed submod-
ules) preceded Schweizer’s theorem (based on the orthogonal closures property of
closed submodules), the original proof in [7] is independent of Magajna’s result
(cf. [5]) and uses pure algebraic techniques. Here we re-prove Schweizer’s theorem
by applying our Theorem 2.1 and Magajna’s theorem.

The second goal of this article, if X is a Hilbert A-module over a nonunital
C∗-algebra A, is to characterize the complementing property of submodules in the
Hilbert M(A)-module M(X ), which is the completion of X in the strict topology
defined by X . Also, we will prove characterization theorems of C∗-algebras of
compact operators related to topological and orthogonal closedness properties of
submodules of strictly complete modules.

1. Preliminaries

A (right) Hilbert C∗-module over a C∗-algebra A is a right A-module X
equipped with anA-valued inner product 〈·|·〉 which isA-linear in the second vari-
able and conjugate linear in the first variable such that X is a Banach space with
the norm ‖v‖ = ‖〈v|v〉‖ 1

2 . We say that X is a full Hilbert A-module if A = 〈X |X 〉,
where 〈X |X 〉 is the closed linear span of all elements in the underlying C∗-algebra
A of the form 〈x|y〉, x, y ∈ X . We denote by F⊥ = {x ∈ X ;∀y ∈ F , 〈y|x〉 = 0}
the orthogonal complement of F in X , and we denote by F⊥Y = F⊥ ∩ Y the
orthogonal complement of F in a submodule Y ⊂ X .

If X and Y are Hilbert A-modules, then we denote by B(X ,Y) the Banach
space of all bounded A-linear operators from X into Y . When X = Y , we write
B(X ) instead of B(X ,X ). The Banach space of all adjointable operators from X
to Y is denoted by Ba(X ,Y). In general, bounded A-linear operators may fail to
possess an adjoint, so Ba(X ,Y) may properly be contained in B(X ,Y).

We use some basic results on extensions of Hilbert C∗-modules and adjointable
operators on these modules from [1], [2], and [3]. The following is a brief summary
of the basic notions and facts used in this article.

If X is a Hilbert C∗-module over a nonunital C∗-algebra A, then we have the
so-called strict topology on the Hilbert M(A)-module M(X ) = Ba(A,X ). It is
a Hausdorff topology defined by the family of seminorms v 7→ ‖〈v|x〉‖ (x ∈ X )
and v 7→ ‖vb‖ (b ∈ A). This means that a net (xi) in M(X ) converges strictly to
x ∈ M(X ), which is denoted by x = st-limi xi, if and only if 〈x|y〉 = limi〈xi|y〉,
∀y ∈ X and xb = limj xjb, ∀b ∈ A. If (ei) is any approximate unit for A, then
each x ∈ M(X ) satisfies x = st-limi xei. In particular, X is dense in M(X ) with
respect to the strict topology and M(X ) is the strict completion of X . Also,
M(X )A = X = XA. Note that the strict topology is weaker than the norm
topology on M(X ). Particularly useful is the following theorem on adjointable
operators.
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Theorem 1.1 ([3, Theorem 2.3]). Let X be a full Hilbert A-module, and let M(X )
be its strict completion. Then the map α : Ba(M(X )) → Ba(X ), α(T ) = T |X is
an isomorphism of C∗-algebras.

Definition 1.2. For S ⊆ M(X ) we denote by c`(S) the norm closure of S, and we
denote by c`st(S) the strict closure of S, that is, the closure in the strict topology.

If F ,G ⊆ M(X ), then (cf. [8, Lemma 15.3.4])

F ⊆ F⊥⊥ (1.1)

and

F ⊆ G ⇒ G⊥ ⊆ F⊥. (1.2)

As an immediate consequence, we get F⊥ = F⊥⊥⊥. Namely, (1.1) applied to F⊥

gives us F⊥ ⊆ (F⊥)⊥⊥, and then by applying (1.2) to G = F⊥⊥ we conclude
that (F⊥⊥)⊥ ⊆ F⊥. The same is true in each Hilbert C∗-module; in particular,
for F ,G ⊆ X and orthogonal complementing in X . For subsets F ,G ⊆ X we
write F + G = {x + y : x ∈ X , y ∈ G} and F ⊕ G := F + G when F ⊆ G⊥ (and
hence G ⊆ G⊥⊥ ⊆ F⊥). It is well known that in Hilbert C∗-modules orthogonal
complements and orthogonal sums of closed submodules are closed submodules,
same as in Hilbert spaces.

Definition 1.3. A submodule F ⊆ X is called essential (cf. [4]) if F⊥ = {0},
orthogonally complemented if F ⊕F⊥ = X , and orthogonally closed if F = F⊥⊥ .

The following lemma contains simple links between sums of submodules and
their orthogonal complements found in [4, Lemma 1].

Lemma 1.4. If F ,G ⊆ X are submodules, then (F ∩ G)⊥ ⊇ (F⊥ + G⊥)
⊥⊥

and
(F + G)⊥ = F⊥ ∩ G⊥. In particular, F ⊕ F⊥ is always an essential submodule.

Proof. If x ∈ F ∩ G, then 〈x|y〉 = 0, ∀y ∈ F⊥ and 〈x|z〉 = 0, ∀z ∈ G⊥; hence,
〈x|y + z〉 = 0, ∀y + z ∈ F⊥ + G⊥, that is, F ∩ G ⊆ (F⊥ + G⊥)⊥. We now
apply (1.2) to get the first assertion. Furthermore, x ∈ F⊥ ∩ G⊥ ⇔ 〈x|y〉 = 0,
∀y ∈ F ∧ 〈x|z〉 = 0, ∀z ∈ G ⇔ 〈x|y + z〉 = 0, ∀y + z ∈ F + G ⇔ x ∈ (F + G)⊥.
This gives us the equality (F +G)⊥ = F⊥∩G⊥. Taking G = F⊥, we now see that
F ⊕ F⊥ is essential. �

2. General Hilbert C∗-modules

The following theorem is a characterization of orthogonally complemented sub-
modules in Hilbert C∗-modules based on the orthogonal closedness property.

Theorem 2.1. Let X be a Hilbert A-module, and let F ⊆ X be a submodule.
Then F is orthogonally complemented if and only if F⊕F⊥ is orthogonally closed.

Proof. If F is orthogonally complemented, then F⊕F⊥ = X ; hence (F⊕F⊥)⊥⊥ =
X⊥⊥ = X = F ⊕ F⊥. Conversely, if F ⊕ F⊥ is orthogonally closed, then from
Lemma 1.4 we have F ⊕ F⊥ = (F ⊕ F⊥)⊥⊥ = {0}⊥ = X . �

We quote Magajna’s theorem on the characterization of C∗-algebras of compact
operators.
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Theorem 2.2 ([5, Theorem 1]). Let X be a full Hilbert A-module. Every closed
submodule F ⊆ X is orthogonally complemented if and only if A is isomorphic
to some algebra of compact operators.

The next theorem is due to Schweizer [7, Theorem 1.]. We give a simple proof
of this theorem by applying Theorem 2.1.

Theorem 2.3. Let X be a full Hilbert A-module. Every closed submodule F ⊆ X
is orthogonally closed if and only if A is isomorphic to some algebra of compact
operators.

Proof. Suppose that all closed submodules are orthogonally closed. If F ⊆ X
is any closed submodule, then F ⊕ F⊥ is also a closed submodule. By assump-
tion, both submodules are orthogonally closed and now the conclusion follows by
applying Theorems 2.1 and 2.2. The converse is clear. �

3. Strict completions of Hilbert C∗-modules

Throughout this section,A denotes a nonunital C∗-algebra. The following prop-
erties of strict closure are of interest.

Lemma 3.1. Let X be a Hilbert A-module, and let F ,G ⊆ M(X ) be submodules.
Then

(i) c`(F)A = c`(FA) = c`st(F)A,
(ii) c`st(c`(F)) = c`st(F) = c`st(c`st(F)A) = c`st(FA),
(iii) c`(F)A = c`(G)A if and only if c`st(F) = c`st(G),
(iv) F ⊆ X if and only if c`(F) = c`(F)A,
(v) c`(F) ∩ X = c`(F)A.

Proof. In order to prove (i), observe that the inclusions F ⊆ c`(F) ⊆ c`st(F)
imply that

FA ⊆ c`(F)A ⊆ c`st(F)A
=

{
xb;x = st-lim

i
xi, xi ∈ F , b ∈ A

}
=

{
xb;xb = lim

i
xib, xib ∈ FA

}
⊆ c`(FA).

By applying the Cohen–Hewitt factorization theorem (see [6, Proposition 2.31])
the submodule c`(F)A of c`(F) is closed; hence c`(F)A = c`(FA) = c`st(F)A.
Also, the inclusions F ⊆ c`(F) ⊆ c`st(F) imply that c`st(F) ⊆ c`st(c`(F)) ⊆
c`st(c`st(F)) = c`st(F), and this is the first equality in (ii).

Furthermore, we show that c`st(F) = c`st(c`st(F)A). Let (eλ)λ be any approx-
imate unit in A. Then for each x ∈ c`st(F), we have x = st-limλ xeλ, that is,
c`st(F) ⊆ c`st(c`st(F)A). For the opposite inclusion, c`st(F)A ⊆ c`st(F) implies
that c`st(c`st(F)A) ⊆ c`st(c`st(F)) = c`st(F) and this gives the second equality
in (ii).

For the proof of the last equality in (ii), observe that FA ⊆ c`st(F)A implies
that c`st(FA) ⊆ c`st(c`st(F)A). Also c`(FA) ⊆ c`st(FA) by (i) implies in this
case that c`st(c`st(F)A) = c`st(c`(FA)) ⊆ c`st(c`st(FA)) = c`st(FA). Statement
(iii) is a direct consequence of (i) and (ii).
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For the proof of the necessity in (iv), because by (i) c`(F)A is a closed submod-
ule, observe that if x ∈ c`(F) ⊆ X , then for any approximate unit (eλ)λ in A we
have x = limλ xeλ ∈ c`(c`(F)A) = c`(F)A; hence c`(F) = c`(F)A. Conversely, if
c`(F) = c`(F)A, then c`(F) ⊆ M(X ) implies c`(F) = c`(F)A ⊆ M(X )A = X .
Claim (v) follows directly from (iv): namely, for F ⊆ M(X ) we have c`(F)A ⊆
c`(F) ∩ X = (c`(F) ∩ X )A ⊆ c`(F)A. �

Lemma 3.2. Let X be a Hilbert A-module. If F ⊆ M(X ) is a submodule, then

F⊥ is strictly closed, and hence c`st(F) ⊆ F⊥⊥. Also, (FA)⊥ = (c`(F)A)⊥ =

(c`st(F)A)
⊥
= F⊥ = c`(F)⊥ = c`st(F)

⊥
and (FA)⊥X = F⊥A.

Proof. The fact that F⊥ is strictly closed is a consequence of the strict continuity
of the inner product in both variables. Namely, for any x ∈ F and y ∈ c`st(F⊥)
such that y = st-limλ yλ for some net (yλ)λ in F⊥ , we have 〈x|y〉 = st-limλ〈x|yλ〉 =
0, and hence c`st(F⊥) ⊆ F⊥ ; that is, F⊥ is strictly closed.

Similarly, for any x ∈ F⊥ and all y ∈ c`st(F), y = st-limλ yλ for some net (yλ)λ
in F , we have 〈x|y〉 = st-limλ〈x|yλ〉 = 0, and hence x ∈ c`st(F)

⊥
. Because the

opposite inclusion is clear, we have F⊥ = c`st(F)
⊥
. Analogously, norm continuity

of the inner product implies F⊥ = c`(F)⊥ .

Now, we prove (FA)⊥ = F⊥ . Let x ∈ (FA)⊥ . Then ∀y ∈ FA, 〈x|y〉 = 0. This
implies that ∀z ∈ F , ∀b ∈ A, 0 = 〈x|zb〉 = 〈x|z〉b; that is, for any z ∈ F , 〈x|z〉 ∈
A⊥ = {0} (A is an essential ideal in M(A)), and hence 〈x|z〉 = 0 or x ∈ F⊥. The
opposite inclusion is obvious. Other equalities follow from Lemma 3.1. Finally,
by Lemma 3.1(v), we have (FA)⊥X = (FA)⊥ ∩ X = F⊥ ∩ X = F⊥A. �

Lemma 3.3. If X is a Hilbert A-module and F ,G ⊆ M(X ) are closed submodules
with F⊥G, then (F⊕G)A = FA⊕GA. In particular, we have (c`st(F)⊕F⊥)A =

FA⊕(FA)⊥X . Then FA is orthogonally complemented in X exactly when c`st(F)
is orthogonally complemented in M(X ).

Proof. The closed submodules F , G are Hilbert A-modules. After applying the
Cohen–Hewitt factorization theorem, we obtain that (F ⊕ G)A is a closed sub-
module in F⊕G. Clearly, (F⊕G)A ⊆ FA⊕GA. On the other hand, (F⊕{0})A =
FA⊕{0} and ({0}⊕G)A = {0}⊕GA are orthogonal submodules in (F⊕G)A, and
hence FA⊕GA = (FA⊕{0})⊕({0}⊕GA) ⊆ (F⊕G)A. Now, by Lemmas 3.1(i)

and 3.2, (c`st(F)⊕F⊥)A = c`st(F)A⊕F⊥A = FA⊕ (FA)⊥X .
If c`st(F) is orthogonally complemented in M(X ), then X = M(X )A =

(c`st(F)⊕c`st(F)
⊥
)A = c`st(F)A⊕c`st(F)

⊥A = FA⊕(FA)⊥X . If FA is orthog-
onally complemented in X , then we have an orthogonal projector P ∈ B(X ) such

that R(P ) = FA and N (P ) = (FA)⊥X . By Theorem 1.1 there exists a unique

orthogonal projector P̂ ∈ B(M(X )), a strict extension of P (see [3, Remark 2.4.]),

such that P = P̂ |X . Consequently, R(P̂ ) = c`st(R(P )) = c`st(FA) = c`st(F)

and by Lemmas 3.1(ii) and 3.2, N (P̂ ) = R(P̂ )⊥ = c`st(F)
⊥

= (FA)⊥ =

c`st((FA)⊥A) = c`st((FA)⊥X ) = c`st(N (P )). Now, M(X ) = R(P̂ ) ⊕ N (P̂ ) =

c`st(F)⊕ c`st(F)
⊥
. �

The following result is analogous to Theorem 2.2.
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Theorem 3.4. Let X be a full Hilbert A-module, and let M(X ) be its strict com-
pletion. Every strictly closed submodule in M(X ) is orthogonally complemented
if and only if A is isomorphic to some algebra of compact operators.

Proof. First, let us note that by the Cohen–Hewitt factorization theorem every
closed submodule F ⊆ X is of the form F = FA. Let us suppose that every
strictly closed submodule in M(X ) is orthogonally complemented. Take an arbi-
trary closed submodule F ⊆ X . Because c`st(F) = c`st(FA) is strictly closed sub-
module inM(X ) it is orthogonally complemented inM(X ); hence, by Lemma 3.3,
F = FA is orthogonally complemented in X . By Theorem 2.2 this implies that
A is isomorphic to some algebra of compact operators.

Conversely, let A be isomorphic to some algebra of compact operators. Then by
Theorem 2.2 all closed submodules in X are orthogonally complemented. Take any
strictly closed submodule F = c`st(F) = c`st(FA) in M(X ). By Lemma 3.3 it is
orthogonally complemented because FA is orthogonally complemented in X . �

The following result is analogous to Theorem 2.3.

Theorem 3.5. Let X be a full Hilbert A-module, and let M(X ) be its strict
completion. Every strictly closed submodule in M(X ) is orthogonally closed if
and only if A is isomorphic to some algebra of compact operators.

Proof. First, we prove that strictly closed submodule F ⊆ M(X ) is orthog-
onally closed exactly when FA is orthogonally closed in X . If strictly closed
submodule F ⊆ M(X ) is orthogonally closed, then by Lemmas 3.1(i) and 3.2,

FA = c`st(F)A = c`st(F)
⊥⊥A = (c`st(F)A)

⊥X⊥X = (FA)⊥X⊥X is orthogonally
closed in X .

Conversely, if for strictly closed submodule F ⊆ M(X ) submodule FA is

orthogonally closed in X , then F⊥⊥A = (FA)⊥X⊥X = FA and by Lemma 3.1 we
have c`st(F⊥⊥) = c`st(F). But F⊥⊥ and F are strictly closed; hence F = F⊥⊥ .

Now, let us suppose that every strictly closed submodule in M(X ) is orthog-
onally closed. Take any closed submodule F ⊆ X . Then c`st(F) is orthogonally
closed in M(X ). Then, as proved in Lemma 3.3, F = FA = c`st(F)A is orthogo-
nally closed in X and Theorem 2.3 implies that A is isomorphic to some algebra
of compact operators.

If A is isomorphic to some algebra of compact operators, then by Theorem 3.4
every strictly closed submodule in M(X ) is orthogonally complemented; hence it
is orthogonally closed. �
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