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Abstract. Let A and B be complex Banach algebras, and let φ, φ1, and
φ2 be surjective maps from A onto B. Denote by ∂σ(x) the boundary of the
spectrum of x. If A is semisimple, B has an essential socle, and ∂σ(xy) =
∂σ(φ1(x)φ2(y)) for each x, y ∈ A, then we prove that the maps x 7→ φ1(1)φ2(x)
and x 7→ φ1(x)φ2(1) coincide and are continuous Jordan isomorphisms. More-
over, if A is prime with nonzero socle and φ1 and φ2 satisfy the aforemen-
tioned condition, then we show once again that the maps x 7→ φ1(1)φ2(x) and
x 7→ φ1(x)φ2(1) coincide and are continuous. However, in this case we con-
clude that the maps are either isomorphisms or anti-isomorphisms. Finally, if
A is prime with nonzero socle and φ is a peripherally multiplicative map, then
we prove that φ is continuous and either φ or −φ is an isomorphism or an
anti-isomorphism.

1. Introduction

Surjective maps between Banach algebras which preserve spectral properties
have been extensively studied in connection with the so-called Kaplansky’s prob-
lem (see [9]) and now constitute an ongoing field of research. Let B(X) denote
the Banach algebra of all bounded linear operators acting on a Banach space
X. Jafarian and Sourour [8] showed that a linear spectrum-preserving map from
B(X) onto B(Y ) must be an (algebra) isomorphism or an anti-isomorphism. This
result was then extended in [2], where Aupetit and Mouton established that it
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is enough to assume that the algebras in question are primitive Banach algebras
with minimal ideals.

In [12], Molnár investigated a similar problem on operator algebras and commu-
tative C∗-algebras by omitting the condition of linearity. Since nonlinear
spectrum-preserving maps can be almost arbitrary, Molnár had to impose a much
more restrictive spectral condition on the maps he examined. In particular, he
assumed that the spectrum of the product of the images of any two elements
is equal to the spectrum of the product of those two elements. In some sense,
these maps can be thought of as spectrally multiplicative. Molnár also restricted
this condition to hold only on certain subsets of the spectrum; in particular, he
considered the point and surjectivity spectrum.

Recently, Bourhim, Mashreghi, and Stepanyan in [4] investigated spectrally
multiplicative maps in a much broader setting. One aim of the present article is
to extend their results by restricting the multiplicative condition to the bound-
ary of the spectrum. Our second aim is to investigate peripherally multiplicative
maps, that is, maps for which the multiplicative condition has been restricted
to hold only on the peripheral spectrum. The aforementioned maps have been
investigated between special classes of algebras (see, e.g., [10], [11]). Indeed, we
show that a surjective peripherally multiplicative map on a prime Banach algebra
with a minimal ideal is either an isomorphism or an anti-isomorphism (up to a
plus or minus sign).

2. Notation and terminology

Throughout this paper, A and B will denote complex Banach algebras with
identity elements. Additional assumptions to A and B will be indicated as needed.
We will use 1 to denote the identity element in a Banach algebra under consid-
eration. The group of invertible elements and center of A will be denoted by
G(A) and Z(A), respectively, and a similar notational convention will be used for
B. For any element x in a Banach algebra, we let σ(x) be its spectrum and we
denote by ρ(x) its spectral radius. Moreover, the peripheral spectrum of x is the
set σπ(x) = {λ ∈ σ(x) : |λ| = ρ(x)}, and the boundary of σ(x) will be denoted by
∂σ(x). A Banach algebra A is semisimple if its Jacobson radical, Rad(A), is {0}.
Incidentally, x ∈ Rad(A) if and only if σ(xy) = {0} for all y ∈ A. An ideal J of a
Banach algebra is said to be essential if it has a nonzero intersection with every
nonzero ideal in the Banach algebra; if the Banach algebra is semisimple, then
this is equivalent to saying that the condition xJ = {0} implies that x = 0. A
Banach algebra is said to be prime if and only if every nonzero ideal is essential.
Prime algebras can also be characterized spectrally (see, e.g., Theorem 2.3).

An important ideal in a Banach algebra is the socle, which is the sum of all
minimal left (or right) ideals. If the Banach algebra lacks minimal one-sided ideals,
then its socle is trivial (i.e., {0}). By Soc(A) we will denote the socle of A (and this
notation naturally extends to B). If A is semisimple, Aupetit and Mouton have
shown in [3] that Soc(A) can be conveniently represented using their so-called
finite-rank elements. An element x in a Banach algebra has rank n if and only if
supy∈A#(σ(xy)−{0}) = n, where n is an integer and #K denotes the (possibly
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infinite) number of elements in the set K. If A is semisimple, then x ∈ Soc(A)
if and only if x can be written as a finite sum of rank 1 elements. The set of
rank 1 elements of A (resp., B) will be denoted using the notation F1(A) (resp.,
F1(B)). The following characterization of rank 1 elements was implicitly obtained
by Bourhim, Mashreghi, and Stepanyan in [4]. Its proof is an easy consequence
of the definition and [4, Lemma 3.3].

Theorem 2.1. Let A be a semisimple Banach algebra. Then x ∈ F1(A) if and
only if #σπ(xy) = 1 for all y ∈ A.

Remark. By Jacobson’s lemma, an equivalent formulation of Theorem 2.1 could
have required that #σπ(yx) = 1 for all y ∈ A. We have already mentioned that,
in the semisimple case, the socle coincides with the set of finite-rank elements,
where the finite-rank elements have a completely spectral definition. Aupetit and
Mouton went one step further and gave a completely spectral definition of the
trace. (For particular details, see [3].) We do, however, wish to point out that the
trace has the following useful properties (here A is semisimple):

(i) tr is a linear functional on Soc(A) (see [3, Theorem 3.3] and [14, Lemma
2.1]);

(ii) σπ(x) = {tr(x)} for each x ∈ F1(A) (easily deducible from the definition
of the trace in [3]).

For literary convenience we state two theorems. The former has been used
extensively in spectral preserver problems to obtain linearity (as is the case here)
and the latter was mentioned earlier and will be used in the remainder of this
article.

Theorem 2.2 ([3, Corollary 3.6]). Let A be semisimple, and let a ∈ A. If tr(ax) =
0 for each x ∈ Soc(A), then a Soc(A) = {0}. Moreover, if a ∈ Soc(A), then a = 0.

Theorem 2.3 ([13, Theorem 2.9]). Suppose that A is semisimple and that
Soc(A) 6= {0}. Then A is prime if and only if for any a, b ∈ A the following
are equivalent:

(i) ρ(ax) ≤ ρ(bx) for all x ∈ A,
(ii) a = λb for some λ ∈ C with |λ| ≤ 1.

3. Main results

We are now in a position to state our main results and some consequences. Our
first result extends [4, Theorem 2.1 and Corollary 2.2].

Theorem 3.1. Let A be semisimple, and let B be a Banach algebra with an
essential socle. Suppose that φ1 : A → B and φ2 : A → B are surjective maps
such that

∂σ(xy) = ∂σ
(
φ1(x)φ2(y)

)
for all x, y ∈ A. (3.1)

Then the maps x 7→ φ1(1)φ2(x) and x 7→ φ1(x)φ2(1) coincide and are continuous
Jordan isomorphisms.
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Corollary 3.2. Let A be prime with nonzero socle. Suppose that the surjective
maps φ1 : A → B and φ2 : A → B satisfy the condition in (3.1). Then the maps
x 7→ φ1(1)φ2(x) and x 7→ φ1(x)φ2(1) coincide, and x 7→ φ1(1)φ2(x) is continuous
and is either an isomorphism or an anti-isomorphism.

The next result is similar to Corollary 3.2. In particular, we assume from the
onset that φ1 and φ2 coincide, but relax condition (3.1) somewhat. The conclusion
is quite pleasing.

Theorem 3.3. Let A be prime with nonzero socle. Suppose that φ : A → B is a
surjective map such that

σπ(xy) = σπ
(
φ(x)φ(y)

)
for all x, y ∈ A. (3.2)

Then φ is continuous and either φ or −φ is an isomorphism or an anti-
isomorphism.

Using Theorem 3.3 in conjunction with [15, Theorem 1.1], we obtain an inter-
esting consequence. Indeed, this result adds to the work done in [12] and improves
on [11, Theorem 1.1].

Corollary 3.4. Suppose that φ : B(X) → B(Y ) is a surjective map which satisfies

σπ(TS) = σπ
(
φ(T )φ(S)

)
for all T, S ∈ B(X). (3.3)

Then either φ or −φ is an isomorphism or an anti-isomorphism. Hence, either

(i) there exists a bounded invertible linear operator U : X → Y such that
φ(T ) = ±UTU−1 for each T ∈ B(X), or

(ii) there exists a bounded invertible linear operator V : X ′ → Y such that
φ(T ) = ±V T ∗V −1 for each T ∈ B(X).

4. Some properties of peripherally multiplicative maps

Throughout this section we assume that the surjective maps φ1 : A → B and
φ2 : A→ B satisfy

σπ(xy) = σπ
(
φ1(x)φ2(y)

)
for all x, y ∈ A. (4.1)

Some of the properties that we present here have been obtained in one form or
another (sometimes implicitly) in [4]. However, we provide short arguments for
these lemmas so that the proofs of our main results are essentially self-contained
within this article.

Lemma 4.1 ([4, Lemma 3.2(2)]). If A is semisimple, then B is semisimple.

Proof. Suppose that y ∈ Rad(B). Then, by surjectivity, y = φ1(x) for some
x ∈ A. Moreover, by (4.1), we have 0 = ρ(φ1(x)φ2(u)) = ρ(xu) for all u ∈ A. So
x ∈ Rad(A) = {0}. Since y was arbitrary, this shows that Rad(B) = {φ1(0)}.
Thus, since 0 ∈ Rad(B), it must be the case that Rad(B) = {0} as desired. �

Lemma 4.2 ([4, Lemma 3.4(1)]). Let A be semisimple, and suppose that B has
an essential socle. Then F1(B) = φ1(F1(A)) = φ2(F1(A)). Thus, Soc(A) 6= ∅.
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Proof. From (4.1) we have that

σπ(xy) = σπ
(
φ1(x)φ2(y)

)
for each x, y ∈ A.

The first part therefore follows directly from Theorem 2.1 and Jacobson’s lemma.
The last part now follows from the fact that Soc(B) 6= {0} (by hypothesis). �

Lemma 4.3. Let A be semisimple, and suppose that B has an essential socle.
Then tr(xy) = tr(φ1(x)φ2(y)) for all x ∈ A and y ∈ F1(A) (resp., for all x ∈
F1(A) and y ∈ A).

Proof. This is easy if one considers Lemma 4.2 and (4.1). The result then follows
from the fact that

σπ(xy) =
{
tr(xy)

}
and σπ

(
φ1(x)φ2(y)

)
=

{
tr
(
φ1(x)φ2(y)

)}
for all x ∈ A and y ∈ F1(A); or, in the second case, for all x ∈ F1(A) and
y ∈ A. �

Lemma 4.4 ([4, Proof of Theorem 2.1, Step 1]). Let A be semisimple, and suppose
that B has an essential socle. Then φ1 and φ2 are linear and injective mappings.

Proof. The linearity of the mappings follows easily from Lemma 4.3, the linearity
of the trace, Lemma 4.2, and Theorem 2.2. The injectivity then follows from the
linearity of φ1 and φ2, (4.1), and the semisimplicity of A. �

The aim of the next few lemmas is to establish that B is prime with nonzero
socle whenever A has these properties.

Lemma 4.5. Suppose that A is prime with nonzero socle. Then B is semisimple.

Proof. By [6, Corollary 4.1],A is semisimple, so the result follows from Lemma 4.1.
�

Lemma 4.6. Suppose that A is prime with nonzero socle. Then φ1 and φ2 are
injective.

Proof. Suppose first that φ1(x) = φ1(y). Then

ρ
(
φ1(x)φ2(z)

)
= ρ

(
φ1(y)φ2(z)

)
for all z ∈ A.

Hence, by the condition in (4.1), we may infer that

ρ(xz) = ρ(yz) for all z ∈ A. (4.2)

Thus, by Theorem 2.3 it follows that x = λy for some λ ∈ C with |λ| ≤ 1. If
σ(yu) = {0} for all u ∈ F1(A), then tr(yv) = 0 for all v ∈ Soc(A). Consequently,
since Soc(A) is essential, it follows from Theorem 2.2 that y = 0. Hence, x = y =
0. So assume that σ(yu) 6= {0} for some u ∈ F1(A). Now, by the condition in
(4.1) it follows that

σπ(λyu) = σπ
(
φ1(x)φ2(u)

)
= σπ

(
φ1(y)φ2(u)

)
= σπ(yu).

Hence, since σπ(yu) = {α} for some α ∈ C−{0}, by the spectral mapping theorem
we may conclude that λ = 1. Therefore, x = y and φ1 is injective. Using similar
reasoning and Jacobson’s lemma, we obtain that φ2 is injective as well. �

The idea in the proof of Lemma 4.6 allows us to say a bit more.
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Lemma 4.7. Suppose that A is prime with nonzero socle. Then φ1 and φ2 are
homogeneous maps.

Proof. Let x ∈ A and λ ∈ C. By the spectral mapping theorem and the condition
in (4.1) it follows that

σπ
(
φ1(λx)φ2(z)

)
= σπ(λxz) = λσπ(xz) = σπ

(
λφ1(x)φ2(z)

)
for all z ∈ A. Since φ1 is surjective, it follows that λφ1(x) = φ1(y) for some
y ∈ A. Arguing as in the proof of Lemma 4.5, we conclude that y = λx. Of course
a similar argument works for φ2. �

Lemma 4.8. Suppose that A is prime with nonzero socle. Then F1(B) =
φ1(F1(A)) = φ2(F1(A)). Thus, Soc(B) 6= ∅.
Proof. The first part is immediate from (4.1) and Theorem 2.1. The last part
then follows since Soc(A) 6= {0}. �

Lemma 4.9. Suppose that A is prime with nonzero socle. Then B is prime.

Proof. Suppose first that A is prime with nonzero socle. From Lemma 4.5 and
Lemma 4.8 it follows that B is a semisimple Banach algebra with Soc(B) 6= ∅.
Moreover, recall that φ1 is homogeneous and bijective. Thus, since A is prime
with nonzero socle, we may use (4.1) and Theorem 2.3 to conclude that B is
prime. �

5. Proof of Theorem 3.1

The following notation will be fixed throughout this section. By A we denote
a semisimple Banach algebra, and by B we denote a Banach algebra with an
essential socle. We also assume that the surjective maps φ1 : A → B and φ2 :
A→ B satisfy the condition in (3.1). It is easy to see that if φ1 and φ2 satisfy the
condition in (3.1), then the condition in (4.1) is also met (but not conversely).
We now proceed to establish a further sequence of lemmas which will ultimately
prove the desired result.

Lemma 5.1. Suppose that z ∈ G(A) and that φ1(z) ∈ G(B). Define ψ : A → B
by

ψ(x) = φ1(z)φ2(z
−1x) for each x ∈ A.

Then ψ is a surjective linear spectral isometry. Moreover, ψ(1) = 1. Hence,
φ2(z

−1) = φ1(z)
−1.

Proof. By (3.1) it follows that

ρ
(
ψ(x)

)
= ρ

(
φ1(z)φ2(z

−1x)
)
= ρ(zz−1x) = ρ(x) for all x ∈ A,

whence ψ is a spectral isometry. The linearity of ψ follows readily from that of
φ2. To see that ψ is surjective, fix any y ∈ B. Since φ1(z) ∈ G(B), there exists
some u ∈ B such that φ1(z)u = 1. Moreover, since φ2 is surjective, there exists
some w ∈ A such that φ2(w) = uy. But then

ψ(zw) = φ1(z)φ2(z
−1zw) = φ1(z)uy = y.

This shows that ψ is surjective.
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We now proceed to prove that ψ(1) = 1. Using (3.1), we deduce that

ρ
(
ψ(1) + ψ(x)

)
= ρ

(
φ1(z)φ2(z

−1) + φ1(z)φ2(z
−1x)

)
= ρ

(
φ1(z)φ2(z

−1 + z−1x)
)

= ρ
(
z(z−1 + z−1x)

)
= ρ(1+ x)

for each x ∈ A. But 1 ∈ Z(A), so by [1, Corollary 3.2.10],

ρ(1+ x) ≤ ρ(1) + ρ(x) = ρ
(
ψ(1)

)
+ ρ

(
ψ(x)

)
.

Hence, ρ(ψ(1) + ψ(x)) ≤ ρ(ψ(1)) + ρ(ψ(x)) for all x ∈ A. Thus, since ψ is
surjective, it follows from [1, Theorem 5.2.2] that ψ(1) ∈ Z(B). Now, by condition
(3.1), we note that ∂σ(ψ(1)) = {1}. But then it must be true that σ(ψ(1)) = {1}.
Hence, by [5, Theorem 2.1] we conclude that ψ(1) = 1. The last part of the lemma
now readily follows. �

Lemma 5.2. We have φ2(1) ∈ G(B) and φ2(1)
−1 = φ1(1).

Proof. We first show that φ1(1)φ2(1) = 1. From the condition in (3.1), it follows
that ∂σ(φ1(1)φ2(1)) = σ(φ1(1)φ2(1)) = {1}. In particular, this implies that
φ1(1) is right invertible. Moreover, by [5, Theorem 2.1] it now suffices to prove
that φ1(1)φ2(1) ∈ Z(B). By (3.1) and [1, Corollary 3.2.10], for each y ∈ A, we
have

ρ
(
φ1(1)φ2(1) + φ1(1)φ2(y)

)
= ρ

(
φ1(1)φ2(1+ y)

)
= ρ(1+ y)

≤ ρ(1) + ρ(y)

= ρ
(
φ1(1)φ2(1)

)
+ ρ

(
φ1(1)φ2(y)

)
.

Hence, since φ1(1) is right invertible, φ2 is surjective, and y ∈ A is arbitrary, we
may apply [1, Theorem 5.2.2] and conclude that φ1(1)φ2(1) ∈ Z(B). This then
establishes that φ1(1)φ2(1) = 1.

We now proceed as follows. To establish the lemma we need only verify that
φ2(1)φ1(1) = 1. Using the surjectivity of φ2, we can find some x ∈ A such that
φ2(x) = 1− φ2(1)φ1(1). In particular, we see that

φ1(1)φ2(x) = φ1(1)− φ1(1)φ2(1)φ1(1) = φ1(1)− φ1(1) = 0.

Consequently,

ρ
(
φ1(1)

(
φ2(y) + φ2(x)

))
= ρ

(
φ1(1)φ2(y)

)
for all y ∈ A.

Hence, by (3.1) we may infer that

ρ(y + x) = ρ(y) for all y ∈ A.

Thus, by Zemánek’s result (see, e.g., [1, Theorem 5.3.1]) it follows that x ∈
Rad(A) = {0}. But φ2 is linear by Lemma 4.4. Thus,

0 = φ2(x) = 1− φ2(1)φ1(1),

and so we get the result. �
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Lemma 5.3. The maps φ1 and φ2 are both continuous.

Proof. Since φ1(1), φ2(1) ∈ G(B) by Lemma 5.2, and since φ1 and φ2 are linear
bijective mappings, it readily follows that the maps defined by

x 7→ φ1(1)φ2(x) and x 7→ φ1(x)φ2(1) for x ∈ A

are linear bijective mappings. Thus, by (3.1), we may actually infer that these
mappings are surjective linear spectral isometries. Hence, by [1, Theorem 5.5.2] we
may conclude that these maps are continuous. Noting again that φ1(1), φ2(1) ∈
G(B), we obtain the result since multiplication is continuous. �

Proof of Theorem 3.1. By Lemma 4.4, φ1 and φ2 are linear and bijective map-
pings. Thus, since φ1(1), φ2(1) ∈ G(B) by Lemma 5.2, it readily follows that the
maps x 7→ φ1(1)φ2(x) and x 7→ φ1(x)φ2(1) are linear and bijective. The continu-
ity of each of these maps was established in Lemma 5.3. We now proceed to show
that these two maps coincide and are Jordan isomorphisms. Fix any x ∈ A. Let
λ ∈ C, and suppose that |λ| > max{‖x‖, ‖φ1(x)φ2(1)‖}. Then λ1 − x ∈ G(A)
and λ1−φ1(x)φ2(1) = φ1(λ1−x)φ2(1) ∈ G(B), where we have used the fact that
φ1(1)φ2(1) = 1. Since φ2(1) ∈ G(B), it readily follows that φ1(λ1− x) ∈ G(B).
Thus, by Lemma 5.1 we conclude that φ2((λ1 − x)−1) = φ1(λ1 − x)−1. Conse-
quently,

φ1(1)φ2

(
(λ1− x)−1

)
=

(
φ1(λ1− x)φ2(1)

)−1
=

(
λ1− φ1(x)φ2(1)

)−1
.

For the next step we recall, from basic spectral theory, that our choice of |λ| >
max{‖x‖, ‖φ1(x)φ2(1)‖} implies that

(λ1− x)−1 =
1

λ

∞∑
j=0

(x
λ

)j

and (
λ1− φ1(x)φ2(1)

)−1
=

1

λ

∞∑
j=0

(φ1(x)φ2(1)

λ

)j

.

Fix any bounded linear functional f on B. Since both f and φ2 are linear and
continuous, it follows that

∞∑
j=0

f(φ1(1)φ2(x
j))

λj+1
=

∞∑
j=0

f((φ1(x)φ2(1))
j)

λj+1
.

Noting that λ 7→ f((λ1−φ1(x)φ2(1))
−1) is analytic, we may compare coefficients

in the series expansions above and conclude in particular for j = 1 and j = 2
that

f
(
φ1(1)φ2(x)

)
= f

(
φ1(x)φ2(1)

)
and

f
(
φ1(1)φ2(x

2)
)
= f

((
φ1(x)φ2(1)

)2)
.
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Since f and x ∈ A were arbitrary, it follows that φ1(1)φ2(x) = φ1(x)φ2(1) for all
x ∈ A, and, consequently, that

φ1(1)φ2(x
2) =

(
φ1(x)φ2(1)

)2
=

(
φ1(1)φ2(x)

)2
for all x ∈ A. This shows that x 7→ φ1(1)φ2(x) is a Jordan isomorphism. Since
the maps coincide, this completes the proof. �

6. Proofs of Corollary 3.2 and Theorem 3.3

We fix the following notation throughout this section. By A we denote a prime
Banach algebra with nonzero socle, and by B we denote a Banach algebra. We
also assume that the surjective maps φ1 : A → B and φ2 : A → B satisfy the
condition in (3.1), and that the map φ : A→ B satisfies the condition in (3.2).

Proof of Corollary 3.2. From Lemma 4.9 it follows thatB is prime, whence Soc(B)
is an essential ideal. Moreover, A is necessarily semisimple. Hence, we may apply
Theorem 3.1 and conclude that the maps x 7→ φ1(1)φ2(x) and x 7→ φ1(x)φ2(1)
coincide and are continuous Jordan isomorphisms. The result now follows by [7,
Theorem 3.1] which states that any Jordan homomorphism into a prime Banach
algebra is either a homomorphism or an antihomomorphism. �

We now proceed to develop a proof of Theorem 3.3. In particular, we note that
the results from Section 4 apply to the situation in Theorem 3.3 as a special case.
From Lemma 4.9, as we have mentioned, it follows that Soc(B) is an essential
ideal. In addition, we also obtain that Z(B) is trivial. As we will soon see, these
properties of B are very useful.

Lemma 6.1. We have that φ(1) = 1 or φ(1) = −1.

Proof. By the spectral mapping theorem and the condition in (3.2), it follows
that

ρ
(
φ(1)φ(x)

)2
= ρ(x)2 = ρ(x2) = ρ

(
φ(x)2

)
= ρ

(
φ(x)

)2
for all x ∈ A. Consequently,

ρ
(
φ(1)φ(x)

)
= ρ

(
φ(x)

)
for all x ∈ A,

and so, by Theorem 2.3 we may infer that φ(1) = λ1 for some λ ∈ C with |λ| ≤ 1.
However, since σπ(φ(1)

2) = {1}, it follows from the spectral mapping theorem
that φ(1) = 1 or φ(1) = −1 are the only possibilities. �

Since φ(1) ∈ G(B), the same argument used in the proof of Lemma 5.3 with
φ1 = φ2 proves the following result.

Lemma 6.2. The map φ is continuous.

Lemma 6.3. Suppose that z ∈ G(A) and that φ(z) ∈ G(B). Define ψ : A → B
by

ψ(x) = φ(z)φ(z−1x) for each x ∈ A.

Then ψ is a surjective linear spectral isometry. Moreover, ψ(1) = 1. Hence,
φ(z−1) = φ(z)−1.
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Proof. The first part of the proof is essentially the same as the first part of the
proof of Lemma 5.1.

We now proceed to prove that ψ(1) = 1. Using the condition in (3.2), we
deduce that

ρ
(
ψ(1) + ψ(x)

)
= ρ

(
φ(z)φ(z−1) + φ(z)φ(z−1x)

)
= ρ

(
φ(z)φ(z−1 + z−1x)

)
= ρ

(
z(z−1 + z−1x)

)
= ρ(1+ x)

for each x ∈ A. But 1 ∈ Z(A), so by [1, Corollary 3.2.10],

ρ(1+ x) ≤ ρ(1) + ρ(x) = ρ
(
ψ(1)

)
+ ρ

(
ψ(x)

)
.

Hence, ρ(ψ(1) + ψ(x)) ≤ ρ(ψ(1)) + ρ(ψ(x)) for all x ∈ A. Thus, since ψ is
surjective, it follows from [1, Theorem 5.2.2] that ψ(1) ∈ Z(B). Since Z(B) is
trivial and σπ(ψ(1)) = {1} (by (3.2)), we conclude that ψ(1) = 1. The last part
of the lemma now readily follows. �

Proof of Theorem 3.3. From Lemma 6.2 it follows that φ is continuous. Moreover,
recall that φ is linear and bijective (e.g., using Lemma 4.4). We proceed to show
that either φ or −φ is an isomorphism or anti-isomorphism. By [7, Theorem 3.1]
it suffices to show that either φ or −φ is a Jordan isomorphism. By Lemma 6.1,
φ(1) = 1 or φ(1) = −1. Suppose first that φ(1) = 1. Fix any x ∈ A. Let
λ ∈ C, and suppose that |λ| > max{‖x‖, ‖φ(x)‖}. Then λ1 − x ∈ G(A) and
λ1−φ(x) = φ(λ1−x) ∈ G(B), where we have used the fact that φ(1) = 1. Thus,
by Lemma 6.3 we conclude that

φ
(
(λ1− x)−1

)
=

(
λ1− φ(x)

)−1
.

As in the proof of Theorem 3.1, we see that φ(x2) = φ(x)2 for all x ∈ A. Hence,
we conclude that φ is indeed a Jordan isomorphism. If φ(1) = −1, then we may
apply the same argument to −φ. This completes the proof. �
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