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ABSTRACT. In this article we characterize the form of each 2-local Lie deriva-
tion on a von Neumann algebra without central summands of type I;. We
deduce that every 2-local Lie derivation § on a finite von Neumann alge-
bra M without central summands of type I; can be written in the form
0(A) = AE—FEA+h(A) for all A in M, where E is an element in M and h is a
center-valued homogenous mapping which annihilates each commutator of M.
In particular, every linear 2-local Lie derivation is a Lie derivation on a finite
von Neumann algebra without central summands of type I;. We also show that
every 2-local Lie derivation on a properly infinite von Neumann algebra is a
Lie derivation.

1. Introduction and preliminaries

Let A be a complex linear algebra, and let X be an A-bimodule. Recall that a
linear map d from A into X is called a derivation if d(AB) = d(A)B + Ad(B) for
all A, B in A. Obviously, given an element A in A, if d4(X) = [4, X] = AX - XA
for all X in A, then d4 is a derivation. Such a derivation is called inner. As is
well known, every derivation on a von Neumann algebra is inner. More generally,
a linear mapping d of an associative algebra A is said to be a Lie derivation if
d([A,B]) = [0(A),B] + [A,0(B)] for all A, B in A, where [A,B] = AB — BA
is the usual Lie product. By [10], it follows that every Lie derivation ¢ of a von
Neumann algebra M has the form 6(A) = [A, S]+7(A), where S is an element in

Copyright 2019 by the Tusi Mathematical Research Group.

Received May 15, 2018; Accepted Aug. 29, 2018.

First published online Mar. 19, 2019.

*Corresponding author.

2010 Mathematics Subject Classification. Primary 47B47; Secondary 47C15.

Keywords. 2-local Lie derivations, Lie derivations, von Neumann algebras.
242


https://doi.org/10.1215/20088752-2018-0024
http://projecteuclid.org/afa

2-LOCAL LIE DERIVATIONS 243

M and 7 is a center-valued linear mapping which annihilates each commutator
of M. Obviously, derivations of associative algebras are Lie derivations.

In the study of derivation theory, we cannot overstate the importance of estab-
lishing many sufficient conditions to ensure that a mapping on various algebras is a
(Lie) derivation. We mention some remarkable results in this area. In the setting of
linear mappings, Kadison in [6] first introduced the notion of a local derivation and
also proved that every continuous local derivation from a von Neumann algebra
into any of its Banach bimodules is a derivation. In [5], Johnson generalized Kadi-
son’s conclusion and showed that every local derivation from a C*-algebra into
any of its Banach bimodules is a derivation. In [3], Essaleh, Peralta, and Ramirez
established the definition of a weak-local derivation—extending the notion of
a local derivation—and proved that weak-local derivations on C*-algebras are
derivations. In the setting of nonlinear mappings, Semrl in [14] defined the notion
of a 2-local derivation as follows. A (not necessarily linear) mapping A on a
Banach algebra A is called a 2-local derivation if for every A, B in A there exists
a derivation ds g : A — A, depending on A and B, such that A(A) = dap(A)
and A(B) = dap(B). He also showed that every 2-local derivation on B(H) of
all linear bounded operators on H is a derivation, where H is an infinite separa-
ble Hilbert space. Ayupov and Kudaybergenov showed in [1] that every 2-local
derivation on an arbitrary von Neumann algebra is a derivation. (Whether or
not a 2-local derivation is a derivation on a general C*-algebra remains an open
question.) In order to solve the problem, and motivated by the definitions of local
derivations, weak-local derivations, and 2-local derivations, Niazi and Peralta in
[11] introduced the definition of a weak-2-local derivation and proved that every
weak-2-local #-derivation on M, (C) is a *-derivation. Recently, Cabello and Per-
alta [2] characterized that every weak-2-local derivation on B(H), K(H) of all
compact operators on H, where H is any complex Hilbert space, atomic von
Neumann algebras, and compact C*-algebras, is a derivation. In [16], Yang and
Fang showed that weak-2-local derivations on finite von Neumann algebras are
derivations.

Similarly, the notions of local and 2-local Lie derivations can be defined. Some
contributions to local Lie derivations can be found in [7]. A (not necessarily linear)
mapping 0 on a Banach algebra A is called a 2-local Lie derivation if for every A,
B in A there exists a Lie derivation 04 g on A, depending on A and B, such that
d(A) =045(A) and §(B) = d4 5(B). We note some new contributions to 2-local
Lie derivations. Liu in [8] characterized 2-local Lie derivations on a semifinite
factor von Neumann algebra and showed that every 2-local Lie derivation on a
semifinite factor von Neumann algebra with dimension greater than 4 can be
written in the form of an inner derivation by adding a center-valued homogenous
mapping which annihilates each commutator. In their recent article [4], He, Li,
An, and Huang showed that 2-local Lie derivations are Lie derivations on factor
von Neumann algebras, uniformly hyperfinite algebras, and the Jiang—Su algebra,
and they constructed an example of a (nonlinear) 2-local Lie derivation, but not
a Lie derivation on a finite von Neumann algebra which is not a factor. It seems
natural to consider the form of a 2-local Lie derivation on a general von Neumann
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algebra which is not a factor and whether all linear 2-local Lie derivations on finite
von Neumann algebras are Lie derivations.

In this article, we expect to obtain a complete characterization for proving
problems in several cases. By [15], we know that every element in a properly
infinite von Neumann algebra M has the form Y ! [A;, B;] for A;, B; € M;
then every 2-local Lie derivation on a properly infinite von Neumann algebra is
a 2-local derivation. Therefore, every 2-local Lie derivation on a properly infinite
von Neumann algebra is a derivation by [1]. Obviously, each derivation on a
properly infinite von Neumann algebra is a Lie derivation. So we only consider
each 2-local Lie derivation on a finite von Neumann algebra. In Theorem 2.1
we obtain that every 2-local Lie derivation ¢ on a finite von Neumann algebra
M without central summands of type [; can be written in the form 0(A) =
AE — EA+ h(A) for all A in M, where E is an element in M and h is a
center-valued homogenous mapping which annihilates each commutator of M. In
particular, every linear 2-local Lie derivation is a Lie derivation on a finite von
Neumann algebra without central summands of type I;.

2. Main results

Let M be a von Neumann algebra. Recall that the set Z(M) = {T € M :
ST = TS for all S € M} is said to be the center of M. For every A € M,
the central carrier of A, denoted by ¢(A), can be defined as the intersection of
all central projections € M such that QA = A. For each self-adjoint element
A € M, the core of A is defined to be sup{T" € Z(M) : T =T*,T < A}, denoted
by A. Furthermore, if P a projection and P = 0, then P is said to be core-free.
Obviously, P = 0 if and only if ¢(/ — P) = . It is well known that every finite von
Neumann algebra has a separating family of normal tracial states. (We refer the
reader to [12] for basic theories of von Neumann algebras involved in this article.)

The following is our main result.

Theorem 2.1. Let M be a finite von Neumann algebra without central summands
of type I. Then every 2-local Lie derivation 6 : M — M can be written in the
form 0(A) = AE — EA+ h(A) for all A in M, where E is an element in M and
h: M — Z(M) is a homogenous mapping which annihilates each commutator

of M.
To prove Theorem 2.1, we need some lemmas.

Lemma 2.2 ([9, Lemmas 4, 5, 14]). Let M be a von Neumann algebra.

(1) If M has no central summands of type I, then each nonzero central pro-
jection of M is the central carrier of a core-free projection of M.

(2) For projections P,QQ € M with ¢(P) = ¢(Q) # 0, if A € M commutes
with PXQ and QXP for all X € M, then A commutes with PXP and
QRXQ for all X € M.

(3) If P is a core-free projection in M, then PMP N Z(M) = 0.

Lemma 2.3 ([12, Lemma 2.6.4]). Let M be a von Neumann algebra. If A is
a self-adjoint operator in M and Z is a self-adjoint operator in Z(M), then
c(A+Z) =c(A) + Z. Moreover, if Z >0, then ¢(AZ) = c¢(A)Z.
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Lemma 2.4 ([13, Lemma 2.1]). Let M be a von Neumann algebra without central
summands of type I, or type Is. Suppose that L : M — M 1is an additive map.
Then L satisfies L([A, B]) = [L(A), B] + [A, L(B)] whenever [A, B] = 0 if and
only if there exits an element Zy € Z(M), an additive derivation D : M — M,
and an addictive map h : M — Z(M) such that L(A) = D(A) + h(A) + Z,A for
all A e M.

Lemma 2.5. Let M be a finite von Neumann algebra. If 6 : M — M is a 2-local
Lie derivation, then 6(AA) = A(A) and 6(A+ B) — 6(A) —0(B) € Z(M) for
each A,B € M and \ € C.

Proof. For each A € M and A € C, by definition we easily have §(AA) =
Jara(AA) = Adara(A) = Ad(A).

Let P be a projection in M, and denote P+ = I — P. Let ' be the set of a
separating family of normal tracial states on M. Given A, X € M and 7 € T,
there exist an element T’y px p1, depending on A and PX P, and a linear mapping
hapxpr from M into Z(M) annihilating each commutator such that

6(A) = [A, Ty pxpr] +hapxpt(A)
and
§(PXPY) = [PXP,Typxpi]-
Noting that
(6(A) — ha pxpi(A))PXPH+ AS(PXPY)
= [A, Ty pxpr |PXP* + A[PX P+, Ty pxp1]
= [APXPLvTA,PXPLL
we obtain
7((6(A) = ha pxpe(A)PXPY) + 7(AS(PXP)) = 0;
that is,
7(0(A)PXPT) = —7(AS(PX P)).
For arbitrary A, B € M, we then have
7(0(A+ B)PXP*) = —7((A+ B)§(PXP))
= —7(A§(PXP")) — 7(B§(PXPF))
=7(6(A)PXP*) + 7(6(B)PXP™)
=7((6(A) +6(B))PXP").
Hence
7((0(A+ B) — 6(A) — §(B))PXP*) = 0.
Denote Y = 0(A+ B) — §(A) — 0(B). Then
7(YPXPH) =0. (2.1)
Let X =Y* in (2.1). Then
T(PYYP(P'YP)") =7(YPY*P") =0.
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Since the trace 7 is arbitrary in T, it implies that P~Y P = 0. Therefore, by the
arbitrariness of P, PY =Y P for all P € M. Since each self-adjoint operator is the
norm limit of finite linear combinations of projections in von Neumann algebras,
we obtain that AY = Y A for all A € M. Therefore, 6(A+ B) —0(A) — §(B) €
Z(M) for all A,B € M. O

Proof of Theorem 2.1. By Lemma 2.2, we can find out a nontrivial core-free pro-
jection P, with ¢(P;) = I. Denote P, = I — P;. Moreover, by the definition
of central core and central carrier, we can obtain that P, is also core-free and
C(Pg) = 1. Let Mij = PzMPJ, i,j = 1,2. Then M = MH + M12 + M21 + M22
and each element A € M can be represented as A = A1 + Aia + Ax + Ao,
where A;; = P,AP;, i,j = 1,2. We will finish the proof of our main theorem by
considering a number of steps.

Claim 1. There ezists an element Ty € M such that 6(Py) — [Py, Tp] € Z(M),

For each A5 € My, note that Ay = [Py, A12]. We have
6(Ar2) = 0p, a1, ([P1, A12])
= [0p, a1, (P1), Ara] + [P1,0p, 405 (A12)]
= [5(]31)’1412} + [P1,(5(A12)}
=0(P1)A12 — A120(Py) + P10(Age) — 0(Aga) Pr. (2.2)

Furthermore, by multiplying (2.2) on left-hand side by P, and on the right-hand
side by P; (1 <1 # j <2), we deduce that

Pl(S(P1>P1A12 - A12P25(P1)P2 (23)
and
Pgé(Alg)Pl = 0. (24)
Similarly, for each Ay € My, we also have
5(1421) = 5(A21)P1 — P1(5(A21) + Agl(S(Pl) — 5(P1)A21. (25)

By multiplying (2.5) on the left-hand side by P; and on the right-hand side by
P, (1 <i+#j<2), we also deduce that

A1 PLO(P) Py = Py (Pr) Py Ay (2.6)

and
Pl(S(Azl)PQ - O

Hence, by (2.3) and (2.6), we obtain that
o(P) P
2

Ig

From Lemma

|+ P8 (Pr) P, Ara] = [P10(P) Py + Pod(Py)Pa, Asi| = 0.
2(2), it follows that
Po(P) Py + Poo(P) Py € Z(M).
Now we denote Ty = P16(Py) Py — Py6(Py)P;. Then
S(P) — [P, To] = Pi6(P) Py + Pyo(Py) Py € Z(M).
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Since [Alg,To] == —A12P25(P1)P1 + P25(P1)P1A12, (23) 1mp11es that
[A12,To) = —A12Pd(Py) Py + Pyd(Py)PLAs + Pio(P)PLAis — A1 Pyd(Py) Py
= 5(P1)A12 — A125(P1).

Thus, by (22) and (24), we have proved that (5(1412) = Pl(S(Alg)PQ—f— [A127 To] By
the same argument as that used above, we can get §(Az;) = P2d(Aar) Pi+[Aa, Tol.

Remark 1. Let 61, (A) = [A,Ty] for all A € M. Then o7, is an inner derivation
on M. Denote ¢ = o — dp,. Then it is easy to verify that ¢ is a 2-local Lie
derivation.

Claim 2. We have ¢(Py) € Z(M) and ¢p(A;;) € My; (1 <i#75<2).

From Claim 1, we can get ¢(P;) € Z(M) and ¢(A;;) € My; (1 <i#j<2).
Claim 3. We have ¢(P,) € Z(M).

Note that Ajy = [Aj2, P2]. Then we have

¢(A12) = ¢A12,P2(A12)
= Qa1 ([A12, P2])
= [0a10,7(A12), P2] + [A12, G ap.p. (P2)]
= [¢(A12)7P2} + [A12,¢(P2)]-

Hence, by Claim 2, we deduce that [Ai2, ¢(FP2)] = 0. By the same argument as
that used above, we can get [¢(P,), A21] = 0. Thus, we can get ¢p(P) € Z(M)
by Lemma 2.2(2).

Claim 4. For each A € M, if PAP; =0 (1 <i# j <2), then Pp(A)P; =0
(1<i#j<2)

For each A € M, by assumption we have [P, A] = DA — AP, = DAP; —
P;AP; = 0. Furthermore, Claims 2 and 3 imply that

0=¢p.a([P, A])
[¢P A( 2)7A] [ i’¢Pi7A(A)]
= [P, ¢(A)],

which implies that P,¢(A) — ¢(A)P; = 0. Hence, by multiplying the last equality
on the right-hand side by P;, we can get the desired equality.

Claim 5. We have ¢(Ay) € My + Z(M), i =1,2.

For every Aj;; € My, denote ¢(Ayq) = Z” | Bij, where B;; = P,¢(An)P;
(1 <4,j <2). Then, by Claim 4, Bys = By = 0. For each Sys € Mys, we Obtam

0= a5 ([A11, S22])

= [¢A11,522<A11)7SQ2] + [A11a¢A11,S22<822)]
= BQQSQQ - 522322 + A11¢(522) - ¢<522)A11- (27)
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Furthermore, multiplying (2.7) from both sides by P,, we deduce that

By Sas = Sz Ba»;
that is,

Boy = Py 74

for some Z; € Z(M). Thus ¢p(Ay1) = By — PiZy + Z1 € My + Z(M). By the
same argument as that used above, we can get ¢(Agn) € Moy + Z(M).
Remark 2. In fact, both By; and Z; in the Claim 6 are unique. Indeed, if (A1) =
By + PyZy and ¢(Aqq) = By + P2Z1, then by multiplying the above equalities
from both sides by Py, we get By = Bll, which 1mphes that Py(Z1 — Zl) = 0. By

Lemma 2.3, we can get ¢(Py)(Z; — Zl)(Zl Zl) = 0. Thus Z;, — Z; = 0 since
c(Py) =1. Then we can define a mapping f; : M;; — Z(M) by fi(Ay) = Z; for
all A; € M;; (i = 1,2). Obviously, f; is homogeneous. Indeed, it suffices to see
that the case ¢ = 1 for all @« € C. We easily have fi(aA;1)Py = ¢(aAy)P =
ap(A1)Pe = afi(A1r)Ps. Therefore, by Lemma 2.3 and ¢(P;) = I, we can get
fi(aArr) = afi(An), as desired.

Now we define a homogeneous mapping w on M such that
W(A) = ¢(PLAP,) + ¢(PLAP,) + ¢(PoAPy) + ¢(PAP)
— [i(PLAP)) — fo(PRAPR)
for all A € M. Then, by Claims 2, 3, and 5, we get
(1) w(P)=0,i=1,2
(2) w (U)GMZWZ] L, 2,
(3) w(Ai) = o(Ai) — fi(A u) for each Ay € My, 1 =1,2,
(4) w(Ay) = 6(Aiy), 1< i #j <2
Claim 6. We have w(A;;+ Bii) = w(Ay;)+w(By;) for all Ay, By € My; (i =1,2).
For all A;, B;; € M;;, by Lemma 2.5, we have
w(Ay + Bii) — w(Au) — w(Bi) = ¢(Aii + Bii) — ¢0(Ais) — ¢(Byi)
— fi(As + Byi) + fi(Au) + fi(Bii)
€ Z(M).
Since w( Ay + Bii) — w(Ay) —w(By;) € My, it follows that w(Ay; + Biy) — w(Ay) —
w(By;) € M;NZ(M). Thus, by Lemma 2.2(3), we can get w(A; + By;) —w(Ai;) —
Claim 7. We have w(A;; + Byj) = w(A;;) +w(Byj) for all Ajj, Bij € M;; (1 <
i£5<2).
For all Ay, B1s € M3, by Lemma 2.5 and Claims 2 and 3, we have
w(A12 + Bia) = ¢(A1z + Bia)
= ¢A12+312,P2 ([A12 + Bl?’ PQ])
= [¢A12+Bl2,P2 <A12 + Bl?)a PQ] + [A12 + Bl?a ¢A12+B127P2(P2)}
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= [PA104B10.P (A12) + G a134B10, P, (Br2), P2
+ [A12 + Bia, Ga1p4B1o. 2 (P2)]
[ (As2) + ¢(Bra), P } [Alz + B, ¢(P2)}
[ ¢(A12) + ¢(Bi2), P }
= ¢(A12) + ¢(Bi2)
= w(A1) + w(B2).
Claim 8. We have that [w(A), B] + [A,w(B)] = 0 whenever [A, B] = 0.

By Lemma 2.5, we have

0= ¢a5([4, B])
= [quB( ), B] + [A ¢a.5(B)]
= [6(4), B] + [A4,6(B)]
[925(1411 +¢ A12) + ¢(Aa1) + ¢(Az), B}
+ [A, ¢(Bu1) + ¢(Bi2) + ¢(Ba1) + ¢(B2)]
(A) + f1(An) + f2(Asz), B] + [A,w(B) + fi(Bn) + f2(Ba2)]
(A), B] + [A,w(B)].

By Claims 6 and 7, we easily obtain that w is linear. From Lemma 2.4 and
Claim 8, it follows that there exists an element Z, € Z(M), a derivation d, and a
linear mapping hy : M — Z(M) such that w(A) = d(A) + hi(A) + ZpA. And we
claim that Zy = 0. Indeed, by the properties of w, 0 = w(Py) = d(P,) + hi(P) +
ZoP;. Multiplying this identity on both sides by P; (i = 1,2), we then obtain
hl(P1>P1 = _ZOPI and h1<P1)P2 = O, which ylelds ZO =0 by C(Pl) = C(PQ) =1
and Lemma 2.3. Thus we get

w

[w

W(A) = d(A) + I (A)

for all A € M.

We denote 6 = d+ dr, and h(A) = hy(A) + fi(PLAP)) + fo( PBeAP) + ¢(A) —
@(PlApl) — ¢(P1AP2) — ¢(P2AP1) — ¢(P2AP2) ObViOUSly, by Lemma 25, his a
center-valued homogenous mapping. Then the definition of w implies that

6(A) = ¢(A) + 7, (A)
W(A) + fi(PIAP) + f2(PAPy) 4+ ¢(A) — ¢(PLAP;)
— O(PLAPy) — ¢(PyAP) — o(PyAPy) + 1, (A)
d(A) + hi(A) + fi(PLAPy) + fo(PAPy) + ¢(A) — o(PLAP)
— O(PLAPy) — ¢(PyAP) — ¢p(PyAPy) + 1, (A)
= p(A) + h(A)
for all A € M.

Since every finite von Neumann algebra has a unique center-valued trace, it
follows that each nonzero element in the center of Z(M) cannot be the form
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> [A;, By] for A;, B; € M. Then for every A € M and commutator X € M,

we have

B(A + X) — h(A) = (A + X) — 6u(A + X) — 5(A) + 65(A)
=[A+ X,Sarxa] +Tarxa(A+X) —[A+ X, E]
—[A, Sasx,a]l — Tarx,a(A) + [A E]
=[A+X,Sarxa— E]|—[A,Sarxa — E]
= [X,Satxa — E].

Thus h is a homogenous mapping of M into its center which annihilates each
commutator of M. O

Corollary 2.6. Fvery linear 2-local Lie derivation on a finite von Neumann
algebra without central summands of type I, is a Lie derivation.
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