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Abstract. In this article we give sufficient conditions for the hypoellipticity
in the first level of the abstract complex generated by the differential operators
Lj =

∂
∂tj

+ ∂φ
∂tj

(t, A)A, j = 1, 2, . . . , n, where A : D(A) ⊂ X −→ X is a sectorial

operator in a Banach space X, with <σ(A) > 0, and φ = φ(t, A) is a series
of nonnegative powers of A−1 with coefficients in C∞(Ω), Ω being an open
set of Rn with n ∈ N arbitrary. Analogous complexes have been studied by
several authors in this field, but only in the case n = 1 and with X a Hilbert
space. Therefore, in this article, we provide an improvement of these results
by treating the question in a more general setup. First, we provide sufficient
conditions to get the partial hypoellipticity for that complex in the elliptic
region. Second, we study the particular operator A = 1 − ∆ : W 2,p(RN ) ⊂
Lp(RN ) −→ Lp(RN ), for 1 ≤ p ≤ 2, which will allow us to solve the problem
of points which do not belong to the elliptic region.

1. Introduction and preliminaries

The present article extends to Banach space scales some ideas developed in
[7] and [12] for Hilbert space scales. We provide sufficient conditions for the
partial hypoellipticity, in the first degree, of the differential complex given by
the operators

Lj =
∂

∂tj
+
∂φ

∂tj
(t, A)A, j = 1, 2, . . . , n,
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where A : D(A) ⊂ X −→ X is a sectorial linear operator with <σ(A) > 0, X is
a Banach space (see [3], [6]), and φ = φ(t, A) is a series of nonnegative powers of
A−1 with coefficients in C∞(Ω), Ω being an open set of Rn.

The map φ = φ(t, A) has the form

φ(t, A) =
∞∑
k=0

φk(t)A
−k,

which converges in L(X)—as well as in each of its t-derivatives—uniformly with
respect to t on compacts of Ω, and φk ∈ C∞(Ω) = C∞(Ω;C) for every k ∈
N ∪ {0}. Moreover, we assume that its leading coefficient φ0 is a real-valued
function.

The key step in solving this problem is to establish an extension—to Banach
spaces—of a method developed for Hilbert spaces in [12], [13], and [14]. This
result says that the hypoellipticity (or solvability) of the differential complex
generated by the operators above is equivalent to the hypoellipticity (resp., solv-
ability) of a simpler complex, namely, the one generated by the differential oper-
ators

Lj,0 :=
∂

∂tj
+
∂φ0

∂tj
(t)A, j = 1, 2, . . . , n.

The local solvability of the transpose of this complex, in the case where X is a
Hilbert space, was carried out by Yamaoka [14]. There he uses a result from [4]
to obtain the local solvability for a class of undetermined systems by assuming
that the leading coefficient in φ(t, A) is analytic and satisfies conditions (ψ1) and
(ψ2). In this article, however, we avoid such conditions.

Here we first assume that the leading coefficient in φ(t, A) is just a real-valued
function C∞ and use some of its dynamical properties to obtain the partial hypoel-
lipticity in the “elliptic region” (see Theorem 2.2). After that, we explore some of
the techniques developed in [2], [5], [8], and [11] to study the problem of points
which do not belong to the elliptic region. That will be the only case where we
assume the analyticity of φ0.

On the other hand, after suggestions from the referees, we realized that by
following the proof of Proposition 9.2 in [14], if we also assume conditions (ψ1)
and (ψ2) for the leading coefficient in φ(t, A), then it seems that these arguments
could be adapted to our context (of the scale of fractional power spaces associated
to a sectorial operator in a Banach space), leading us to the proof of the (partial)
subellipticity of the system under study and thus giving us an improvement of our
Theorem 2.2. (For that we are very thankful, and we look forward to exploring
the possibility of proving these results in future work.)

Finally, we also must say that, in our opinion, there is a slight error in the
statement of Proposition 9.2 in [14]. The conclusion cannot be “for any ε > 0”
but rather “there is ε > 0.” Yamaoka’s arguments, however, can be fixed by
making use of his last inequality on p. 241 in [14].

Now let E := {t∗ ∈ Ω : ∇φ0(t
∗) = 0}. The set Ω \ E will be called the elliptic

region. We will prove that given a point t0 ∈ Ω \ E , there exists an open set



264 E. R. ARAGÃO-COSTA

U ⊂ Ω, with t0 ∈ U and U ∩ E = ∅, such that for each u ∈ C∞(U ;X−∞), if

n∑
j=1

Lj,0u dtj = f in U

and f ∈ Λ1C∞(U ;X∞), then u belongs to C∞(U ;X∞).
To do so, we are going to use dynamical properties of the gradient system (see

[1], [3]) generated by the real-valued function φ0, that is, the system{
t′(s) = −∇φ0(t(s)), s ≥ 0,

t(0) = t0 ∈ Ω.

Below we will introduce the complex of differential operators that we want to
study and then clarify every concept related to it, in order to understand its
hypoellipticity and, finally, to solve this problem.

1.1. The complex under study. Let A : D(A) ⊂ X −→ X be a sectorial
operator, with <σ(A) > 0, in a Banach space X with norm ‖ · ‖X . For each real
α we can consider its fractional power space Xα. More precisely, for α > 0, the
fractional power space associated to A is defined by

Xα := {A−αf : f ∈ X} equipped with the norm ‖u‖α := ‖Aαu‖X ,

where the operator A−α is given by

A−α :=
1

Γ(α)

∫ ∞

0

θα−1e−Aθ dθ,

and {e−Aθ : θ ≥ 0} is the analytic semigroup generated by −A. The operator
A−α : X −→ X is injective and its inverse is denoted by Aα : Xα −→ X.
Also, for α < 0, Xα is defined as the completion of the space (X, ‖ · ‖α), where
‖u‖α := ‖Aαu‖X . Under these conditions, X0 = X and, for every real α ≥ β, we
have Xα ⊂ Xβ (see [3] and [6] for more properties).

Now let X∞ :=
⋂
α∈RX

α be equipped with the projective limit topology, that
is, the locally convex topology generated by the family of norms (‖ · ‖α)α>0. Here
X∞ is a Fréchet space. Also, let X−∞ :=

⋃
α∈RX

α be equipped with the inductive
limit topology, namely, the one such that: “a subset U ⊂ X−∞ is open if and only
if U ∩Xα is an open set in Xα for every real α.” Let X−∞ be a topological vector
space.

Remark 1.1. Observe that the operator A : D(A) ⊂ X −→ X “moves through”
the scale of fractional power spaces (Xα)α∈R. That is, by restrictions and exten-
sions (resp., α ≥ 0, α < 0) for every α ∈ R, it holds that

A : Xα+1 ⊂ Xα −→ Xα.

Furthermore, this new A : Xα+1 ⊂ Xα −→ Xα is a sectorial operator, and the
analytic semigroup generated by −A is such that, for all α ∈ R and all θ > 0, the
following inclusion holds (see [3]):

e−Aθ(Xα) ⊂ X∞.
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Example 1.2. As an example, let us consider the operator A = 1−∆ : W 2,p(RN) ⊂
Lp(RN) −→ Lp(RN), for 1 ≤ p < ∞, which satisfies all the abstract hypotheses
above (see [3], [6]). As will be seen in Section 3, we have a very good understanding
of the scale of its fractional power space.

On the other hand, consider the series

φ(t, A) =
∞∑
k=0

φk(t)A
−k

which converges in L(X), uniformly for t on compacts of Ω, where Ω is an open
set of Rn, and φk ∈ C∞(Ω) for every k ∈ N ∪ {0}, with φ0 real-valued.

For j = 1, 2, . . . , n, we define the differential operators Lj : C
∞(Ω;X−∞) −→

C∞(Ω;X−∞) by

Lju :=
∂u

∂tj
+
∂φ

∂tj
(t, A)Au. (1.1)

Taking the leading coefficient in φ(t, A), that is, φ0 ∈ C∞(Ω), we also define,
for each j = 1, 2, . . . , n, the differential operator Lj,0 : C∞(Ω;X−∞) −→ C∞(Ω;
X−∞) by

Lj,0u :=
∂u

∂tj
+
∂φ0

∂tj
(t)Au.

We note that, just by restriction, the space C∞(Ω;X∞) is invariant under Lj
and Lj,0; that is, Lj : C∞(Ω;X∞) −→ C∞(Ω;X∞) and Lj,0 : C∞(Ω;X∞) −→
C∞(Ω;X∞), because X∞ ↪→ X−∞.

The operators Lj and Lj,0 can be used to define complexes of differential oper-
ators

L : ΛpC∞(Ω;X−∞) −→ Λp+1C∞(Ω;X−∞)

and by restriction

L : ΛpC∞(Ω;X∞) −→ Λp+1C∞(Ω;X∞).

Also, for all 0 ≤ p ≤ n,

L0 : Λ
pC∞(Ω;X−∞) −→ Λp+1C∞(Ω;X−∞)

and also by restriction

L0 : Λ
pC∞(Ω;X∞) −→ Λp+1C∞(Ω;X∞).

For each 0 ≤ p ≤ n, they are given by

Lu :=
∑
|J |=p

n∑
j=1

LjuJ dtj ∧ dtJ for u =
∑
|J |=p

uJ dtJ

and

L0u :=
∑
|J |=p

n∑
j=1

Lj,0uJ dtj ∧ dtJ for u =
∑
|J |=p

uJ dtJ ,
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where dtJ = dtj1 ∧ · · · ∧ dtjp , J = (j1, . . . , jp) is an ordered multi-index of integers
with 1 ≤ j1 < · · · < jp ≤ n, and |J | is its length. Thus, we get the global form of
these complexes

Lu := dtu+ ω(t, A) ∧ Au (1.2)

and

L0u := dtu+ ω0(t) ∧ Au, (1.3)

with

ω(t, A) :=
∞∑
k=0

ωk(t)A
−k ∈ Λ1C∞(

Ω;L(X)
)
,

where

ωk(t) :=
n∑
j=1

∂φk
∂tj

(t) dtj

for every integer k ≥ 0 and t ∈ Ω.
In (1.2) and (1.3), dt stands for the exterior derivative with respect to t ∈ Ω,

u ∈ ΛpC∞(Ω;X−∞) or u ∈ ΛpC∞(Ω;X∞), and Au :=
∑

|J |=pAuJ dtJ . Observe
that L ◦ L = 0 and L0 ◦ L0 = 0; consequently, those operators actually define
differential complexes. We can now introduce the kind of hypoellipticity that we
are concerned with (see [12] and [13] for analogous definitions).

Definition 1.3. Let Ω be an open set of Rn. Given U an open set of Ω, we say
that an operator M : C∞(Ω;X−∞) −→ Λ1C∞(Ω;X−∞) is hypoelliptic in U if, for
every distribution u ∈ C∞(U ;X−∞),

Mu ∈ Λ1C∞(U ;X∞) implies that u ∈ C∞(U ;X∞).

When M is hypoelliptic in U = Ω, we say that M is globally hypoelliptic, and
when M is hypoelliptic in U , for every open set U ⊂ Ω, we say that M is locally
hypoelliptic in Ω.

Remark 1.4. We note that the kind of hypoellipticity introduced in Definition 1.3
is “partial” because we start with distributions which are regular in one of its vari-
ables, namely, the variable t ∈ Ω, and we treat the regularity in the “variable x.”
In other words, the regularity relative to the scale of spaces Xα.

Under these circumstances, in the present article we will show that L : C∞(Ω;
X−∞) −→ Λ1C∞(Ω;X−∞) is hypoelliptic in Ω0 := Ω \ E , where E := {t∗ ∈ Ω :
∇φ0(t

∗) = 0}. Here Ω0 is called the elliptic region of L (and L0). After that,
considering A := 1 −∆, by means of certain techniques we learned from [2], we
will be able to study the hypoellipticity of L in points of E . In other words, for
the general case, we do not have all the information about L which would allow
us to obtain its hypoellipticity in Ω. More precisely, we first use the dynamical
properties of the solution of the Cauchy problem{

t′ = −∇φ0(t), s ≥ 0,

t(0) = t0 ∈ Ω,
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to study the hypoellipticity in Ω0, and then we use the structure of the operator
1−∆ to solve the problem in points of E .

Our particular treatment of the case Ω0 is inspired by Hounie in [7], who
considered the same kind of problem as ours, but under the assumptions that
Ω is an interval of the real line and X is a Hilbert space. Hounie also obtained
a complete characterization of the global hypoellipticity by using the so-called
conditions (ψ) and (τ). (We will not, however, assume such conditions here.)

We point out that Trèves [12] also studied the same problem as Hounie and
that both authors obtained the same conclusions by means of different techniques.
As was the case in [12], [13], and [14] in the framework of Hilbert spaces, the key
step in studying the hypoellipticity of the operator L is that we can extend to
the framework of Banach spaces a result which allows us to isolate the “principal
part” of L. This fact allows us to conclude that studying the L’s hypoellipticity
is equivalent to studying the hypoellipticity of the simpler operator L0. More
precisely, we can prove the following.

Lemma 1.5. If the leading coefficient φ0 in φ(t, A) is a real-valued function, then
for each 0 ≤ p ≤ n and each open set U ⊂ Ω,

L : ΛpC∞(U ;X−∞) −→ Λp+1C∞(U ;X−∞)

is hypoelliptic in U if and only if

L0 : Λ
pC∞(U ;X−∞) −→ Λp+1C∞(U ;X−∞)

is hypoelliptic in U .

Proof. We begin by defining, for each t ∈ Ω, the operator

α(t, A) := <φ0(t)− φ(t, A) = φ0(t)− φ(t, A)

and then

α(t, A)A =
[
φ0(t)− φ(t, A)

]
A = −

∞∑
k=1

φk(t)A
1−k.

Observe that the composition α(t, A)A is, for all t ∈ Ω, a bounded linear operator
on X; hence, it is the infinitesimal generator of a group of linear operators (see
[9]).

Thus, we can define the family of operators U(t) := eα(t,A)A, t ∈ Ω. This
family can then be used to generate an automorphism of ΛpC∞(U ;X∞) and of
ΛpC∞(U ;X−∞). For each 0 ≤ p ≤ n, let

(Uu)(t) := U(t)u(t) = eα(t,A)Au(t) for u ∈ C∞(U ;X∞) and t ∈ U.

It is not hard to see that U : C∞(U ;X∞) −→ C∞(U ;X∞) defines an auto-
morphism, because eα(t,A)A is invertible for every t ∈ Ω, which has an extension
U : C∞(U ;X−∞) −→ C∞(U ;X−∞), because of Remark 1.1.

It is a straightforward consequence of the definition of U that[
Lj(Uu)

]
(t) =

[
U(Lj,0u)

]
(t) for u ∈ C∞(U ;X∞), t ∈ U, and j = 1, 2, . . . , n.

(1.4)



268 E. R. ARAGÃO-COSTA

If we define, for u =
∑

|J |=p uJ dtJ ,

Uu :=
∑
|J |=p

(UuJ) dtJ ,

then the equality (1.4) tells us that

L(Uu) = (UL0)u for u ∈ C∞(U ;X∞).

As the equality above is also true for every u ∈ C∞(U ;X−∞), our claim follows.
�

Remark 1.6. The proof we gave above does not work if φ0 is not real-valued, for
if that were the case, then we would have

α(t, A)A := <φ0(t)A− φ(t, A)A =
[
φ0(t)− φ(t, A)

]
A− i=φ0(t)A.

Since A is an arbitrary sectorial operator, iA might not be a generator of a group
in X.

On the other hand, if Imφ0(t) 6= 0, then the number −i Imφ0(t) does not
belong to the sector {z ∈ C : | arg z| < ε} on which the analytic semigroup
{e−Aθ : θ ≥ 0} has an analytic extension (see page 21 in [6] for more details).
So the operator U(t) = eα(t,A)A might not be well defined and the proof breaks
down. However, when X is a Hilbert space H, A : D(A) ⊂ H −→ H is a positive
self-adjoint linear operator with 0 ∈ ρ(A), iA generates a group in H, and now
eα(t,A)A is well defined (see [12], [13] for more details).

2. Main theorems

Let us start with a simple result from ODE theory which will be extremely
useful for proving Theorem 2.2 and whose proof we leave to the reader. In it for
B ⊂ Ω, the symbol Oδ(B) will stand for the union of all the open balls with
radius δ > 0 and centered at some point of B.

Lemma 2.1. Let φ0 ∈ C∞(Ω;R), E := {t∗ ∈ Ω : ∇φ0(t
∗) = 0}, and consider the

Cauchy problem {
t′(s) = −∇φ0(t(s)), s ≥ 0,

t(0) = t0 ∈ Ω.
(2.1)

For each t0 ∈ Ω, let ω(t0) > 0 be the maximal time of existence of the solution
s 7→ T (s)t0 of (2.1). Then for each t0 ∈ Ω0 := Ω \ E and each δ > 0 with
d(t0, E) > 2δ, there exist an open set U ⊂ Ω, with t0 ∈ U , and τ > 0 such that

(i) ω(t) ≥ τ for every t ∈ U ,
(ii) T (s)U ⊂ Oδ(E ∪ ∂Ω) whenever s ≥ τ ,
(iii) T (s)U ⊂ Ω0 when 0 ≤ s ≤ τ , and
(iv) U ∩ Oδ(E ∪ ∂Ω) = ∅.

We can now prove our main result, which will be based on ideas from [7].
According to Lemma 1.5, it is sufficient to study the complex generated by L0.
This fact will be implicit in the following results.
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Theorem 2.2. If the leading coefficient φ0 in φ(t, A) is a real-valued function,
then, given any t0 ∈ Ω \ E, there exists an open set U ⊂ Ω \ E, with t0 ∈ U , such
that L is hypoelliptic in U . Consequently, L is locally hypoelliptic in Ω \ E.

Proof. Indeed, given t0 ∈ Ω0 = Ω\E and δ > 0 with d(t0, E) > 2δ, let U and τ > 0
be the ones obtained in the last lemma. Also, let {e−Aθ : θ ≥ 0} be the analytic
semigroup in X generated by −A. As we saw in Remark 1.1, e−Aθu ∈ X∞ for
every u ∈ X−∞ whenever θ > 0.

Now, for ω ∈ Λ1C∞(U ;X∞) (or ω ∈ Λ1C∞(U ;X−∞)) and t ∈ U , we define the
linear operator

(Kω)(t) := −
∫
γt

e(φ0(z)−φ0(t))Aω(z) dz, (2.2)

where the integration path is γt(s) := T (s)t, s ∈ [0, τ ], the solution of (2.1)
through t.

In the same way, we can define K on each open subset W of U . Observe that
the value (Kω)(t) is well defined because the function φ0 is a Lyapunov function
for the Cauchy problem (2.1) (see [1], [3]). So φ0(T (s)t) ≤ φ0(t) for every s ∈ [0, τ ]
and t ∈ U , and hence we can evaluate the semigroup {e−Aθ : θ ≥ 0} at time

θ = −
(
φ0

(
T (s)t

)
− φ0(t)

)
≥ 0.

Furthermore, it is not hard to see that K maps Λ1C∞(U ′;X∞) into C∞(U ′;X∞)
and Λ1C∞(U ′;X−∞) into C∞(U ′;X−∞) for every open subset U ′ ⊂ U .

Note that for t ∈ U fixed, the equality φ0(T (s)t) = φ0(t) is only possible for a
finite number of s ∈ [0, τ ]. Otherwise, there exists a sequence (sj)j∈N in [0, τ ] with
sj −→ s0 ∈ [0, τ ] and φ0(T (sj)t) = φ0(t), so ∇φ0(T (s0)t) = 0; that is, T (s0)t ∈ E .
Thus, we are led to a contradiction, since T (s)U ⊂ Ω0 when 0 ≤ s ≤ τ , according
to Lemma 2.1.

This fact says that the coefficients of the 1-form e(φ0(T (s)t)−φ0(t))Aω(T (s)t) are
in X∞, except for a finite number of s ∈ [0, τ ]. Then for every t ∈ U we have
(Kω)(t) ∈ X∞. By derivation under integral sign, we obtain Kω ∈ C∞(U ;X∞)
for every ω ∈ C∞(U ;X−∞).

On the other hand, let g ∈ C∞
c (U ;X−∞), and consider L0g ∈ Λ1C∞(U ;X−∞).

For every t ∈ U we have, by Lemma 2.1, that T (τ)t /∈ U and hence T (τ)t /∈
supp(g), so integrating by parts and using the fact that T (s)t is the solution of
(2.1), we see that[
K(L0g)

]
(t) = −

∫
γt

e(φ0(z)−φ0(t))A(L0g)(z) dz

= −
∫
γt

e(φ0(z)−φ0(t))A(dtg)(z) dz −
∫
γt

e(φ0(z)−φ0(t))Aω0(z) ∧ Ag(z) dz

= −
[
e(φ0(T (τ)t)−φ0(t))Ag

(
T (τ)t

)
− e(φ0(t)−φ0(t))Ag(t)

]
= g(t);

that is, [
K(L0g)

]
(t) = g(t) for every t ∈ U. (2.3)

Thus, if u ∈ C∞(U ;X−∞) is such that L0u = f ∈ Λ1C∞(U ;X∞), for each t′ ∈ U
we can choose ϕ ∈ C∞

c (U ;R), with ϕ = 1 in some neighborhood U ′ of t′. Then
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g := ϕu ∈ C∞
c (U ;X−∞) and we have

L0(ϕu) = ϕL0u+
n∑
j=1

∂ϕ

∂tj
(t)u(t) dtj = ϕf +

n∑
j=1

∂ϕ

∂tj
(t)u(t) dtj.

So, by (2.3) we obtain[
K(ϕf)

]
(t) +

[
K
( n∑
j=1

∂ϕ

∂tj
u dtj

)]
(t) =

[
KL0(ϕu)

]
(t) = (ϕu)(t) for all t ∈ U.

Since ϕf ∈ Λ1C∞(U ;X∞), we have K(ϕf) ∈ C∞(U ;X∞). Also, since U ′ was
arbitrary, the theorem will be proved if we show that

K
( n∑
j=1

∂ϕ

∂tj
u dtj

)
∈ C∞(U ′;X∞).

Indeed, since ϕ is constant on U ′, we have
∑n

j=1
∂ϕ
∂tj

(r)u(r) dtj = 0 as long as

r ∈ U ′. On the other hand, each t′ ∈ U ′ has a neighborhood V ′ ⊂ U ′ and there
exists τ1 > 0 such that T (s)t ∈ U ′ whenever s ∈ [0, τ1] and t ∈ V ′. So, if t ∈ V ′,
then

K
( n∑
j=1

∂ϕ

∂tj
u dtj

)
(t)

= −
∫ τ

τ1

e(φ0(T (s)t)−φ0(t)+η)A
[
e−ηA

( n∑
j=1

∂ϕ

∂tj

(
T (s)t

)
u
(
T (s)t

)d(T (s)t)j
ds

)]
ds,

where τ1 > 0 may be chosen such that η := (φ0(t)− φ0(T (τ1)t) > 0, and
d(T (s)t)j

ds

stands for the components j = 1, 2, . . . , n of the vector dT (s)t
ds

∈ Rn.
Finally, it is not hard to see that if α ∈ R is fixed, then for every h ∈

C∞([τ1, τ ];X
−∞) we have e−ηAh ∈ C∞([τ1, τ ];X

α) and so

e(φ0(T (s)t)−φ0(t)+η)A[e−ηAh] ∈ C∞(
[τ1, τ ];X

∞)
.

All these facts together give us that, for every t ∈ U ′,

(ϕu)(t) = K(ϕf)(t)−
∫ τ

τ1

e(φ0(T (s)t)−φ0(t)+η)A

× e−ηA
[ n∑
j=1

∂ϕ

∂tj

(
T (s)t

)
u
(
T (s)t

)d(T (s)t)j
ds

]
ds

holds, so the second term in the last sum also defines an element of C∞(U ′;X∞);
therefore, ϕu ∈ C∞(U ′;X∞). But ϕu = u in U ′, and the proof is complete. �

The last theorem does not provide an answer for the hypoellipticity in points
of E . The next result shows that there may be points in E where we cannot have
hypoellipticity, which means that we will need something else if we want to obtain
hypoellipticity in points of E . In Section 3 we provide the conditions needed to
overcome this difficulty.
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Theorem 2.3. If t∗ ∈ E is a local minimal point for φ0, then t
∗ has a neighborhood

V in Ω where L is not hypoelliptic.

Proof. Indeed, let V be an open set of Ω with t∗ ∈ V such that φ0(t
∗) ≤ φ0(t)

for all t ∈ V . Fix u0 ∈ X \ X∞, and define u : V −→ X−∞ by u(t) :=
e−(φ0(t)−φ0(t∗))Au0, t ∈ V . It follows that u is well defined and u ∈ C∞(V ;X−∞).
It is easy to see that L0u = 0 in V , so L0u ∈ Λ1C∞(V ;X∞). However, since
u(t∗) = u0 /∈ X∞, we do not have u ∈ C∞(V ;X∞), as we wish. �

Remark 2.4. It is easy to see that when t∗ ∈ E is an isolated saddle point, φ0

is an open map on some neighborhood of t∗; therefore, t∗ is not a local minimal
point for φ0.

We finish our contribution by studying the particular operator A : D(A) ⊂
X −→ X, where A = 1−∆, D(A) = W 2,p(RN), and X = Lp(RN).

3. Application to the operator 1−∆

In this section we present very important information about the scale of frac-
tional power spaces associated to the operator

1−∆ : W 2,p(RN) ⊂ Lp(RN) −→ Lp(RN),

where 1 ≤ p ≤ 2, which will be useful in the proof of Theorem 3.6. This operator
satisfies all the hypotheses we have made so far in this work, namely, that it is a
sectorial operator with <σ(A) > 0, as we can see in [3], [6], and [10]. Furthermore,
we have a very good understanding of the embeddings of its scale of fractional
power spaces into known spaces, as we explain below.

Definition 3.1. For every 1 ≤ p ≤ 2 and α ∈ R, we define the space

L p
α (RN) :=

{
u ∈ S ′(RN) :

(
1 + 4π2|ξ|2

)α/2
û ∈ Lp

′
(RN)

}
, (3.1)

where 1/p+ 1/p′ = 1, S ′(RN) stands for the space of tempered distributions on
RN and the “hat” stands for the Fourier transform with respect to the variable x.
Also, L p

α (RN) is equipped with the norm ‖u‖L p
α
:= ‖(1 + 4π2|ξ|2)α/2û‖Lp′ .

On the other hand, in [6] and [10] we find the following.

Definition 3.2. For every 1 ≤ p <∞ and α > 0, we define

Lpα(RN) :=
{
u ∈ Lp(RN) : u = Gα ∗ f, for some f ∈ Lp(RN)

}
, (3.2)

where Gα : RN −→ C is the function such that Ĝα(ξ) = (1+4π2|ξ|2)−α/2, and the
∗ stands for the convolution product. Also, Lpα(RN) is equipped with the norm
‖u‖Lp

α
:= ‖f‖Lp , where u = Gα ∗ f .

Now, in [6] it is shown that, for every α > 0,[
Lp(RN)

]α/2
= Lpα(RN),

holds; that is, the fractional power space [Lp(RN)]α/2 associated to the operator
1−∆ coincides with the space Lpα(RN) for each α > 0, because (1−∆)−α/2ϕ =
Gα ∗ ϕ, for each ϕ ∈ S (RN).
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For every α ≥ 0 and 1 ≤ p ≤ 2, it easily follows that Lpα(RN) ⊂ L p
α (RN),

because of the Hausdorff–Young inequality and the formula Ĝα ∗ f = (1 +

4π2|ξ|2)−α/2f̂ , f ∈ Lp(RN). On the other hand, when α < 0 we have the embed-
ding [

Lp(RN)
]α/2 ⊂ L p

α (RN). (3.3)

Remark 3.3. Since S (RN) is dense in L p
α (RN), for every α ∈ R and 1 ≤ p ≤ 2,

we obtain that α > m + N
p′

=⇒ L p
α (RN) ⊂ Cm(RN). This embedding with (3.3)

give us the inclusion [
Lp(RN)

]∞ ⊂
⋂
α>0

L p
α (RN) ⊂ C∞(RN). (3.4)

The framework Lp allows us to use the Fourier transform to obtain the regu-
larity of the solutions u ∈ C∞(Ω; [Lp(RN)]−∞) of the equation Lu = f by means
of adapted techniques from [2].

Next we recall Lemmas 4.4 and 4.5 from [2], which we will need to prove
Theorem 3.6. Each result will be introduced with a slight modification of its
statement, but its proof remains unchanged. These results are consequences of
more general results due to Maire [8], Hardt [5], and Teissier [11] involving bonds
for the length of curves joining points in analytic spaces.

Lemma 3.4 ([2, Lemma 4.4]). Suppose that φ0 is an analytic function. Let t∗ ∈ E ,
let B be an open ball contained in Ω such that B ∩ E is connected by piecewise
smooth paths (i.e., given two points in B ∩ E, there exists a piecewise smooth
path in B ∩ E which connects these two points), and take t0 ∈ B ∩ E . Then there
exist

(a) an open neighborhood B∗ ⊂ B of t∗,
(b) a constant K > 0 and ε > 0, and
(c) a family (γt)t∈B∗ of piecewise smooth paths γt : [0, 1] −→ B such that

(I) γt(0) = t, for every t ∈ B∗,
(II) φ0(γt(s)) ≤ φ0(t) for all s ∈ [0, 1] and all t ∈ B∗,
(III) the length l(γt) of γt is such that l(γt) ≤ K for all t ∈ B∗,
(IV) if t ∈ B∗, then one of the following properties holds:

(IV)1 γt(1) = t0,
(IV)2 φ0(γt(1)) ≤ φ0(t)− ε.

Lemma 3.5 ([2, Lemma 4.5]). Let φ0 be a real-valued, real-analytic function.
Suppose that, for each t∗ ∈ E, φ0 is an open function at t∗ and that there exists
an open ball B centered at t∗, with B ⊂ Ω, such that B ∩ E is piecewise smooth
connected. Then there exist

(a) an open neighborhood B∗ ⊂ B of t∗,
(b) a constant K > 0 and ε > 0,
(c) a family (γt)t∈B∗ of piecewise smooth paths γt : [0, 1] −→ B such that

(I) γt(0) = t, for every t ∈ B∗,
(II) φ0(γt(s)) ≤ φ0(t) for all s ∈ [0, 1] and all t ∈ B∗,
(III) the length l(γt) of γt is such that l(γt) ≤ K for all t ∈ B∗,
(IV) for each t ∈ B∗ we have φ0(γt(1)) ≤ φ0(t)− ε.
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The modification we made in the statement of Lemma 4.4 in [2] was to assume
that “B∩E is piecewise smooth connected” instead of “B∩E is connected,” as the
authors consider in [2]. We do that because our φ0 does not need to be a constant
equal to zero on E , as they have there. The hypothesis “B∩E is piecewise smooth
connected” allows us to obtain that φ0 is constant on B ∩ E . This modification
does not change the proof introduced in [2] for this result.

We note that the hypothesis “B ∩ E is piecewise smooth connected” is always
satisfied whenever E is discrete because one can take B small enough so that
B ∩ E is a singleton. Now we can prove our main application.

Theorem 3.6. Let φ0 : Ω −→ R be a real-valued analytic function such that for
every t∗ ∈ E there exists an open ball B centered at t∗, with B ⊂ Ω and B ∩ E
piecewise smooth connected. Let A = 1 − ∆ : W 2,p(RN) ⊂ Lp(RN) −→ Lp(RN),
u ∈ C∞(Ω; [Lp(RN)]−∞) with L0u = f ∈ Λ1C∞(Ω; [Lp(RN)]∞), fix t∗ ∈ E, and
suppose that one of the following properties holds:

(i) φ0 is an open map at t∗.
(ii) there exists t0 ∈ B ∩ E such that u(t0, ·) ∈ [Lp(RN)]∞.

Then, u ∈ C∞(B′ × RN) for some neighborhood B′ ⊂ B of t∗.

Proof. In the first place, we can apply the Fourier transform on RN to the equality
L0u = f and obtain

dtû(t, ξ) + ω0(t) ∧ a(ξ)û(t, ξ) = f̂(t, ξ) for t ∈ B, ξ ∈ RN , (3.5)

where the “hat” stands for the Fourier transform in the variable x, and a(ξ) =
1 + 4π2|ξ|2 is the symbol of the operator 1−∆.

One must observe that (3.5) makes sense for ξ ∈ RN , since u(t, ·) ∈ L p
α (RN),

for some real α; therefore, û(t, ·) is a function. So by multiplying the equality
(3.5) by ea(ξ)φ0(t), for t ∈ Ω, we can write

dt
(
ea(ξ)φ0(t)û(t, ξ)

)
= ea(ξ)φ0(t)f̂(t, ξ) for all t ∈ B and all ξ ∈ RN .

Also by Lemma 3.4 or 3.5, considering the family of paths (γt)t∈B∗ and by
integrating the last equality along γt, we get

ea(ξ)φ0(γt(1))û
(
γt(1), ξ

)
− ea(ξ)φ0(t)û(t, ξ)

=

∫
γt

dt
(
ea(ξ)φ0(z)û(z, ξ)

)
dz =

∫
γt

ea(ξ)φ0(z)f̂(z, ξ) dz.

So, for all t ∈ B∗ and ξ ∈ RN , it holds that

û(t, ξ) = ea(ξ)[φ0(γt(1))−φ0(t)]û
(
γt(1), ξ

)
−
∫
γt

ea(ξ)[φ0(z)−φ0(t)]f̂(z, ξ) dz,

and hence∣∣û(t, ξ)∣∣ ≤ ea(ξ)[φ0(γt(1))−φ0(t)]
∣∣û(γt(1), ξ)∣∣+ ∣∣∣∫

γt

ea(ξ)[φ0(z)−φ0(t)]f̂(z, ξ) dz
∣∣∣. (3.6)

At this point, we divide the proof into two cases.
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Case 1. The hypothesis (ii) and conclusion (IV)1 from Lemma 3.4 hold. There-
fore, for every α ∈ R we have(

1 + |ξ|2
)α/2

û(t0, ·) ∈ Lp
′
(RN). (3.7)

Since f ∈ Λ1C∞(Ω; [Lp(RN)]∞), for every α ∈ R and every t ∈ Ω we have(
1 + |ξ|2

)α/2
f̂j(t, ·) ∈ Lp

′
(RN).

Also, the map Ω 3 t 7→ fj(t, ·) ∈ [Lp(RN)]∞ is C∞ for all j, where f =
∑n

j=1 fj dtj.

Thus, using these facts and conclusion (III) of Lemma 3.5 in (3.6), we obtain
that, for each real α, ξ ∈ RN and t ∈ B∗,(
1 + |ξ|2

)α/2∣∣û(t, ξ)∣∣ ≤ (
1 + |ξ|2

)α/2∣∣û(t0, ξ)∣∣+ ∣∣∣∫
γt

(
1 + |ξ|2

)α/2
f̂(z, ξ) dz

∣∣∣. (3.8)

For the last integral, by Minkowski’s inequality for integrals we have(∫
RN

∣∣∣∫
γt

(
1 + |ξ|2

)α/2
f̂(z, ξ) dz

∣∣∣p′ dξ)1/p′

≤
∫
γt

(∫
RN

(
1 + |ξ|2

)αp′/2∣∣f̂(z, ξ)∣∣p′ dξ)1/p′

| dz| ≤ K sup
z∈B

∥∥f(z, ·)∥∥
L p

α
<∞.

This and (3.7) give us that (1 + |ξ|2)α/2|û(t, ·)| ∈ Lp
′
(RN) for all real α.

Case 2. The conclusion (IV)2 of Lemma 3.4 or hypothesis (i) holds. In this case
the estimate (3.6) gives us that, for each real α,(

1 + |ξ|2
)α/2∣∣û(t, ξ)∣∣

≤
(
1 + |ξ|2

)α/2
e−εa(ξ)

∣∣û(γt(1), ξ)∣∣+ ∣∣∣∫
γt

(
1 + |ξ|2

)α/2
f̂(z, ξ) dz

∣∣∣, (3.9)

from where we see that to take care of |
∫
γt
(1 + |ξ|2)α/2f̂(z, ξ) dz|, we can use the

same method we used in case 1.
Now, since for some real γ, (1 + |ξ|2)γû(γt(1), ·) ∈ Lp

′
(RN), we have that for

every real α, (1+|ξ|2)α/2e−εa(ξ)û(γt(1), ·) ∈ Lp
′
(RN). Hence, for all t ∈ B∗, ξ ∈ RN ,

and α ∈ R, (
1 + |ξ|2

)α/2
û(t, ·) ∈ Lp

′
(RN),

completing the proof of this case. From these two cases we conclude that for every
α ∈ R, there exists a constant Kα > 0 such that

sup
t∈B∗

∥∥u(t, ·)∥∥
L p

α
≤ Kα.

Finally take ψ ∈ C∞
c (B∗;R) with ψ ≡ 1 on some neighborhood B′ ⊂ B of t∗.

Differentiating with respect to tk the equation

Lj,0(ψu) =
∂ψ

∂tj
u+ ψfj,

we get
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∂

∂tk

(∂(ψu)
∂tj

)
(t) +

∂φ0

∂tk
(t)A

(∂(ψu)
∂tj

(t)
)

=
∂

∂tk

(∂ψ
∂tj

u+ ψfj

)
(t)− ψ(t)

∂2φ0

∂tk∂tj
(t)Au(t).

So replacing u by ∂(ψu)
∂tj

and fj by ∂
∂tk

( ∂ψ
∂tj
u + ψfj)(t) − ψ(t) ∂2φ0

∂tk∂tj
(t)Au(t), we

can repeat the same procedure as above to conclude that for every α ∈ R and
j = 1, 2, . . . , n, there exists a constant Kα,j > 0 such that

sup
t∈B′

∥∥∥ ∂u
∂tj

(t, ·)
∥∥∥

L p
α

≤ Kα,j.

Observe that ∂u
∂tk

= fk− ∂φ0
∂tk

(t)Au, which helps us to obtain the estimates we need

to replace supz∈B ‖f(z, ·)‖L p
α
, as we did in case 1. Thus proceeding by induction,

we will obtain that, for every α ∈ R and β ∈ Zn+, there exists a constant Kα,β > 0
such that

sup
t∈B′

∥∥∂βt u(t, ·)∥∥L p
α
≤ Kα,β,

from where we can easily get that u ∈ C∞(B′; [Lp(RN)]∞) ⊂ C∞(B′ × RN). �
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