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ABSTRACT. Let K(H) and B(H) be the sets of all compact operators and
all bounded linear operators, respectively, on the Hilbert space H. In this
article, we mainly show that if ® € CB(K(H)",B(K)), then there exist
®;, € CP(K(H)",B(K)), for i = 1,2,3,4, such that ® = (&, — &) +
V—=1(®3 — ®4). However, CP(K(H)",B(K)) ¢ CB(K(H)",B(K)), where
CB(V,W) and CP(V,W) are the sets of all completely bounded maps and
all completely positive maps from V into W, respectively.

1. Introduction

Let H and K be infinite-dimensional separable Hilbert spaces, and let B(H)
(B(H,K)) be the set of all bounded linear operators on H (from H to K). As
usual, |A| is the absolute value operator of A € B(H), and AT and A~ are the
positive and negative parts of the self-adjoint operator A. Let T'(H) and K(H)
be the sets of all trace class operators and all compact operators, respectively,
on H. As T(#H) and B(K) are Banach spaces, we denote by B(T(#),B(K)) the
set of all bounded linear operators from T'(H) into B(K). For z € H and y € K,
x ® y is the rank 1 linear operator  ® y(z) := (z,y)x (z € H). Also, we write
A ~ B to mean that the operators A and B are unitarily equivalent and that

|71 == tx(|T)), for T € T(H).
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An involution on V is a conjugate linear map * : V. — V given by v + v*
such that v™* = v and (v + Ap)* = v* + Ap* for all A € C and v, u € V. The
complex vector space V together with the involution map is called a x-vector
space. If V' is a *-vector space, then we let V;, = {v € V : v = v*} be the real
vector space of self-adjoint elements of V. Note that V}, is a real vector space.
An ordered x-vector space (V, V™) is a pair consisting of a x-vector space V" and
a proper cone V't C Vj. Here, VT C V}, is called a proper cone if the following
three assumptions hold:

(a) Av € VT whenever A € RT :=[0,00) and v € VT,

(b) p+ v € VYt whenever p,v € V*T

(c) Vtn(=Vv*)={0}.
In this case, V' is called the cone of positive elements of V. So B(H)", K(H)",
and T(H)" are the cones of positive elements of B(H), K(H), and T(H), respec-
tively.

Let M, (V) denote the set of all n x m matrices with entries in V. The natu-
ral addition and scalar multiplication turn M, ,,(V') into a complex vector space.
We write M, ,,, = M, ,»(C) and use the identifications M,, ,,(V) = M, ® V =
V ® My . Also, { is the usual transpose map for M, m. If n = m, then we use
M, (V) = M, (V). As usual, suppose that {e;;} is the canonical matrix unit sys-
tem; then we denote ZZ]‘:1 a; @ ey = szzl eij @ aij = (aij)i; € My(V),
where a;; € V, for 1 < 4,5 < n. Furthermore, we define a *-operation on
My (V) by letting (ai;);; = (a};)i; and letting XA be the element of M;,, (V)
whose (i,7) entry (XA);; equals " wpagj, for X = (z4);; € M, and
A = (aij)ij € My (V). The definition of multiplication by scalar matrices on
the right is obtained in a similar way. Let n > 1 be an integer. If V and W are
vector spaces, and ®: V' — W is a linear map, then the map ® induces a linear
map D, M, (V) — M, (W) by the formula

@ ((aig)ig) = (Plaiy)),, for (ai;) € My(V).

Let V' be a -vector space. We say that {C,}>, is a matriz ordering on V if
the following two conditions are satisfied:

(a) C, is a proper cone in M, (V), forn=1,2,..;

(b) X*C,X C C,,, for all positive integers n,m and every X € M, ,; in
this case, we call (V,{C,}52,) a matriz-ordered *-vector space (see [12,
Definition 2.3]).

Let (V,{C,}>2,) and (W, {D,}>2 ) be matrix-ordered *-vector spaces. A lin-
ear map ® is called completely positive if ®,,(C,,) C D, for every n = 1,2,....
In this case, we write ® € CP(V,W). If we let H™ denote the direct sum of n
copies of H, then there is a natural norm and inner product on H™ that makes
it into a Hilbert space. Also, the identification M, (B(H)) = B(H™) gives a norm
and a positive cone M, (B(H))* of M, (B(H)). Clearly, (B(H), {M,(B(H))"}2,),
(K(H),{M,(K(H))"}e2,), and (T(H),{M,(T'(H))"};>,) are matrix-ordered
s-vector spaces. Let CP(B(#H), B(K)) denote the cone of all completely positive
linear maps from (B(H),{M,(B(H))"}°,) into (B(K), {M,(B(K))*}>2,). The
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definitions of CP(K(H), M,) and CP(T(H), M,,) based on the above matrix-
ordered *-vector spaces are similar.

It is well known that the dual space of KC(H) is isometrically isomorphic to T'(H)
(K(H)" ~ T(H)) and that the dual space of T(H) is isometrically isomorphic
to B(H) (T(H)" ~ B(H)). We say that ® : T(H)(B(H)) — T(K)(B(K)) is
normal if ® is continuous with respect to the ultraweak ( W*) topology. Moreover,
setting M, (K(H)")" := CP(K(H), M,,) and M,(T(H)")" := CP(T(H), M,,), we
might verify that (T(H), {M,(K(H)")*}>2,) and (B(H), M, (T(H)*)"}22,) are
matrix-ordered x-vector spaces. For a linear map ® from T'(H) into B(K), we
define that ® € CP(K(H)", B(K)) if ®,,(M,(K(H)")*) C M,(B(K))" and ® €
CP(K(H)", T(K)") if @, (M, (K(H)")") C M, (T(K)")*, foralln=1,2,.... It is
worth mentioning that the notation 7'(H) means 7'(H) with the usual operator
ordering, while K (H)" carries a completely different matrix ordering.

Let (Ai;)i; € My(T(H)). By the duality theory of operator spaces (see
pp. 4045 of [3]), there is a natural operator space structure for M, (T(H)).
That is,

il = sup (oA 0) ) |l S € K with [ (Sl <1

Then || - ||/, is a matrix norm for T'(#H) (see p. 20 of [3] for the definition). We
denote by CB(K (H)", B(K)) all completely bounded linear maps from 7'(H) into
B(K) with respect to the above matrix norm || - ||/, and usual operator norm || - ||.
That is, for a linear map ® from T(H) into B(K), we have

® € CB(K(H)",B(K)) <= sup{||®,]:n=12,...} <o,
where
1,]| = sup{ || (®(T;)),., || : all Tyy € T(H) with [|(T;))s;], < 1}
Also, we write
1@, == sup{ || (®(T)), ;|| : all T;j € T(H) with ||(T;)s, < 1}
and
CB(T(H), B(K))
= {®:® e B(T(H),B(K)) and sup{[|®,| :n=1,2,...} <oo}.
For ® € CB(K(H)",B(K)) or ® € CB(T(H),B(K)), we denote by ||®||c, the

completely bounded norm of .
As usual, we set

2(H) = {(hl,hg, <) thy € H for all i with Y [|h]]* < oo}
i=1

and A" = 3% tr(Afy;)fi; the transpose of A € B(K), where A =
> i1 tr(Afji) fi; is the matrix expression of A in the orthonormal basis
{fi}2, and fi; = fi ® f;. It is easy to show that A € B(K)" if and only if
At € B(K)". Also, if ¢ is the transpose map on B(K) with respect to another
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orthonormal basis, then there is a unitary operator U € B(K) such that A" =
UA'U* for any A € B(K). Thus,
1A= 1A% = 147
and
AeBK)t — A eBK)'t = A" eBK)".

The study of completely bounded maps and completely positive maps is essen-
tial and useful in both mathematics and quantum theory. There are many inter-
esting results in the literature focused on operator spaces, completely positive
maps, and their applications (see [1]-[4], [9], [10], [14]). Recently, some delicate
connections between completely bounded (positive) maps and quantum channel
and entanglement theory were presented in [5], [11], [13], and [15]. Also, various
complete order structures between dual spaces were given in [11], [16], and [17]. In
particular, some complete order structures were established for a general *-vector
space in [12].

Let A be a unital C*-algebra. An interesting decomposition theorem (Witt-
stock’s decomposition theorem) for completely bounded maps (see [10, Theo-
rem 8.5]) shows that ® : A — B(H) is a completely bounded linear map if and
only if there exist completely positive linear maps ®; from A into B(H) such that
D =& — Py +/—1(P3 — y) for i = 1,2, 3,4. That is to say, the complete order
structures and operator space structures for the linear maps from A into B(K)
are coordinated.

The purpose of this article is to consider decomposition properties of the
x-vector spaces CB(K (H)*, B(K)) into the positive cones CP(K (H)*, B(K)). Even
though T'(#H) is not a unital C*-algebra, there are partially analogous decom-
positions between them. The motivation of our choice T'(H) is based on the
fact that there are dual relations between it and K (). Furthermore, T'(#) as
target is important and useful in quantum information theory. We get that if
® € CB(K(H)*,B(K)), then there exist ®; € CP(K(H)", B(K)), for i = 1,2,3,4,
such that ® = (®; — ) + /—1(P3 — ). However, CP(K(H)",B(H)) ¢
CB(K(H)*, B(H)). Our results show that the complete order structures and oper-
ator space structures for the linear maps from 7'(H) into B(K) are partially coor-
dinated. Also, the proofs of our main results are completely different from that
of Wittstock’s decomposition theorem (see [10, Theorem 8.5]).

2. Main results
To show our main results, we need the following lemmas.

Lemma 2.1.
(a) Let (Bij)axn € My (T(H)* and let (Ti;)i; € My (K(H))t. Then
(tr(Bi;Tj:))ig € M,y
(b) Let (Bij)nxn € My(T(H))" and (Aij)i; € Mu(B(H))". Then we have
(tr(BijAji))ij € M,

Proof. (a) As T := (Ty)i; € Mp(K(H))* ~ K(H™)", we can then decompose
T =57 Mz ®ay), where A, > 0 and {3 }5 ; is an orthonormal basis of H™,
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so there exists zy; € H (for i = 1,2,...,n) such that z; = (Tg1, Tp2, ..., Tpn) €
H™ . Thus

T X T = (.Ikz X ij)m' e M, (K(H))+, (21)
which implies that T;; = > po | Ai(2r @ xx;), for 4,5 =1,2,...,n, and so

(B8, = (30 30 0)

)

NE

)\k (tr(Bijwkj X xki))i,j

k=1

NE

)\k(<Bijxkj’xki>)i,j' (22)

o

=1

It is clear that ((Bijajkjamki»i,j € Mr—:_7 for k = 1,2, ..., 80 (tr<BZ]7}Z))l,j S Mr—:—
follows from equation (2.2).

(b) Let P,, be the rank m orthogonal projection spanned by the orthonormal
vectors {e; },, form = 1,2,... where {e;} is an orthonormal basis of H. Then
(PrAijPn)i; € My (K(H))", form =1,2,...,s0 (a) yields (tr(B;; PnAjiPr))ij €
M, for m =1,2,.... Thus, (tr(B;;A;i))i; € M, follows from the fact that

Lemma 2.2. Let (Bij)ﬁj S Mn(T(H))Jr and (T%j)i,j S Mm(B<H))+ Then
((tr(Bijﬂk))k,l)i,j < Mﬂtn
Proof. 1t is easy to see that (B;;);; € M,(T(H))" implies that

> e[S ey By € Man(T00) "

k=1 ij=1

Also, 37— e @ Ty € My, (B(H))" implies that

Zm: epr ® [i eij ® Tkl} € an(B(H))Jr

k=1 ij=1
Then
Z tr(B,»jle)ekl X e € Mn—tn
ij=1 k=1
follows from Lemma 2.1(Db). O

Lemma 2.3.

(a) Let ®;; be bounded linear functions on K(H) with ®;;(-) = tr(By;-), for
i,j=1,2,...,n, and let B(-) := (tr(Bi;-))i; be the linear map from K(H)
into M,. Then ® € CP(K(H),M,) if and only if > i1 65 ® By €
M (T(H))".
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(b) Let W;; be bounded linear functions on T(H) with W;;(-) = tr(A;;-), for
i,j = 1,2,...,n, and let V(-) = (tr(Ai;-))i; be the linear map from
T(H) into M,. Then W € CP(T(H), My,) if and only if 37, e;; @ Aj; €
M (B(H))*.
Proof. (a) Clearly, B;; € T(H), for 1,5 =1,2,...,n.
Sufficiency: Let (T};)i; € My (K(H))". Then Lemma 2.2 implies that

((tx(BiyTw)) ) ;5 € Mo

which yields

n

(EIS(TM))M = ((tr(ByTw)), )0 = > te(ByTu)en ® ey € M,

i,j=1k,l=1

Thus, ® € CP(K(H), M,) follows from the arbitrariness of m.

Necessity: 1t is easy to see that (Bj;);; € M, (T(#H))* if and only if

Z tr(BijSij) = tr[(z eij (029 Bﬂ> Z eij & Szy} Z 0
i,j=1 i,j=1 i,j=1

for any > 7" eij ® Siy € My (K(H))™.
Suppose that (Sk)k; € M, (K(#H))". Then

S0 3 rlBiSuden @ e = (((BySi)), ), = (B(Su),, € M.

i,j=1k,l=1

Setting «; € C" with «; = (014,02, - - ., 0ni), Where ¢&;; is the Kronecker delta for
l,i=1,2,...,n, we get that

o
n i
a
Z tI‘(BZ]Sz]> = (Oél, Qo, ... ,Oén) ((tr(BijSkl))i,j)k,l :2 2 0
i,j=1 i
ay,
The proof of (b) is similar to (a). O

We denote by M,,(T'(#H))+ and M, (B(#))+ the partial transpose of M,,(T'(#H))*
and M, (B(H))", respectively. That is,

M (T(H)), = {(Ty)s : (T)iy € Ma(T(H)) "}
and
M (B(H)) , = {(Sij)ij + (S;)is € Ma(B(H))"}.

Lemma 2.3(a) shows that ® € CP(K (%), M,) if and only if Y16 @ Bij €
M, (T(H))+, where ®(-) = (tr(Bi;-))ij- Suppose that ® is a linear map from
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T(H) into B(K). Then Lemma 2.3 says that ® € CP(K(H)*, B(K)) if and only
if ®,(M,(T(H));+) € M,(B(K))" for all n =1,2,.... Indeed,
® € CP(K(H),B(K)) <= &,(CP(K(H),M,)) < M,(BK))"
= O(Ma(T(H),) € Ma(B))

Similarly,

® € CP(K(H)", T(K)) <= &,(M,(T(H)),) < M. (B(K)),

foralln=1,2,....

Lemma 2.4. Let ® be a linear map from T(H) into B(K). Then we have the
following:

(a) @ € CP(K(H)",B(K)) if and only if t o ® € CP(T(H),B(K)) for the
transpose map t of B(IC) in any orthonormal basis of IC;

(b) ® € CP(K(H)",B(K)) if and only if ® ot' € CP(T(H),B(K)), where t'
is a transpose map for B(H).

Proof. (a) For necessity, let ® € CP(K(H)",B(K)) and (B;;)i; € M,(T(H))*.
We need to show that

Y e ® (2(By)' = (to®(By)), , € My (B(K))", (2.3)

ij=1

which is equivalent to

n i n .
Y i@ ®(By) = (fet) [Z ei; ® (®(By)) } e M,(B(K)".  (24)
i,j=1 tj=1
According to Lemma 2.3, we get that (By;);; € M, (T(H))" implies that

n

D i ® Bij € M, (T(H)),

1,j=1

which yields

Zn: €j X (I)(BZ]) S Mn (B(IC))+

ij=1
Then by the arbitrariness of n, we get
tod e CP(T(H), B(IC)).

Sufficiency is clear from the converse direction of the above proof. The proof
of (b) is similar to (a). O

The following lemma (see [7]) seems to be natural and its proof is direct.
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Lemma 2.5 ([7, Lemma 2.1]). Let

All A12 e Alm
00 A21 A22 e A2m
,j=1 Aml Am2 T Amm

and let M > 0, where all A;; € B(H). If n x n operator matrices ||(A;j)i || < M
for all positive integers n, then A is densely defined on I*(H) and can be uniquely
extended to an operator B € B(I*(H)) with || B|| < M.

Lemma 2.6. Let (Aij)i,j € Mn(T(H)> and (Bij)i,j S Mn(B(H)) Then
(@) [1(Aij)ijlln < 1(Ai)iglls
(b) the following holds:
H(BZJ)WH = sup{H ((tr(BZJTkl))zj)kl” s all Tkl € T(H) with H(Tkl)k’,l”; S 1} (25)

Proof. (a) As K(H) with operator norm ||-|| is an operator space, [3, Lemma 4.1.1]
and [3, (4.1.6)] imply that the first inequality ||(A;)nxnll, < [[(Aij)ijl1- Also, (b)
follows directly from [3, Theorem 3.2.3]. O

Lemma 2.7. Let X € T(H) and B;; € B(H), fori,j =1,2,...,n. Then
| (¢x(XByy)), || < 1X || (Big)ig |-

Proof. By defining the linear function for B(#H) by f(Y) := tr(XY'), we conclude
from [3, Corollary 2.2.3] that f is completely bounded with || f||en = || f|| = || X |-
Thus,

| (t2(B3;X)) || < W llew [ (Big)ig || = 1X 11 [ (Big)i - 0

Lemma 2.8 ([8, Lemma 3.3]). Let P,,A € B(H), n = 1,2,.... If P, is an
orthogonal projection such that P, converges to the unit operator I in the weak
operator topology, then A > 0 if and only if P,AP, >0 for alln =1,2,.

Theorem 2.9. Let & € CB( (H)*,B(K)). Then there exist completely posi-
tive maps ®; € CP(K(H)",B(K)) fori = 1,2,3,4 such that ® = (®; — ®y) +

V—1(®5 — By).
Proof. Let ® € CB(K(H)", B(K)), and let {f;}°; be the orthonormal basis of K.

Denote
®;(X) =(®(X)f;, fi) for X € T(H),i,j=1,2,.... (2.6)

Then ®;; is a bounded linear functional on T'(H), so there exist operators T;; €

B(H) such that
Q;;(X) =tr(T;;X) fori,j=1,2,....
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Define

T:Zfij@)Tii: T;m Tn.lm . (2.7)

4,j=1

Suppose that P, is the rank n orthogonal projection spanned by the orthonormal
vectors {f;},, for n = 1,2,.... Then P,®P, € CB(K(H)",B(K)) and for X €
T(H),
n tI‘(THX) s tI‘(TlnX)
PO(X)Py= > fij® ®i(X) ~ : :
ij=1 tr(Tn X) -+ tr(ThnX)
Thus Lemma 2.6(b) implies that for n =1,2,. ..
1(T:5)i])
= sup{H (tl“ TUSM))z])le all Skl S T(H) with H<Skl)k’lH;z <1
= sup{H(P O(Sk) P, )kl” all Sy € T(H) with H(Skl)’”H; < 1}
< |[Pa®() Pal

)

Using Lemma 2.5, we get that T' is densely defined on K ® H and can be uniquely
extended to T € B(K ®@ H). Clearly, T = (B1 - Bg) + \/_(Bg By), where
B, € B(K®H)". Also, we write B, = = a1 fij ® BZ(] , for s = 1,2, 3,4, where
{fij}75=1 are the matrix units corresponding to the orthonormal basis { f;}32,, so

®y;(X) = tr(T;;X)
_ Dy _ (2) ~ 3) vy _ (@)
= tr(B;;’ X) — tr(B;;’ X) + v—1[tx(B;;’ X) — tx(B;;’ X)],  (2.9)

where X € T(H) and i,j =1,2,....
By Lemma 2.7, for n =1,2,... and s = 1,2, 3,4, we have

|32 Ay @ (B 0|| < 1Bl IX 1 < IBNIX

3,7=1

and so Y 75 fi ®tr(Bi(;)X) € B(K) for all X € T(#). That is, for s = 1,2, 3,4,
the map

- i fi @ tr(BYX) (2.10)

3,j=1

is well defined from T'(#) into B(K).



DECOMPOSITIONS OF COMPLETELY BOUNDED MAPS 25

Let (A;j)i; € My(T(H))*t. Then Lemma 2.2 and the fact that (BZ(]S))” €
M, (B(H))" for s =1,2,3,4 imply that

Ms

Z Alk P,) ® ey

=1

|:P (I) (Alk) } ®6[k

>

ko
Il
—

tr(Bi(jS)Alk>fji & e

M-
NE

@
<
Il
—
=
T~
Il
—

tr(BY Au)es @ e € M, (2.11)

~.
Il

—_
I

_

2
NE

J=1kl

for all n = 1,2,.... Thus P,(t o ®,)P, € CP(T(H),B(K)), which yields ¢ o
o, € CP(T(H),B(K)) from Lemma 2.8. Then by Lemma 2.4, we can directly get
d, € CP(K(H)",B(K)) for s = 1,2,3,4. Obviously, equations (2.6), (2.9), and
(2.10) induce ® = (®; — Py) + /—1(P3 — y). O

Theorem 2.10.
(a) We have CP(K(H)*,B(H)) € CB(K(H)", B(H)).
(b) We have CP(K(H)",T(K)*) = CP(T(H),B(K)) C CB(T(H),B(K)).
(c) We have CB(K(H)*,B(K)) € CB(T(H),B(K)) nto CB(T(H),B(K)),
where t is the transpose map in an orthonormal basis of K and t o

CB(T(H), BIK)) = {to ® : & € CB(T'(H), B(K))}.

Proof. (a) Let t' be the transpose map in the orthonormal basis {f;}3°, of H.
Then Lemma 2.4 implies that ¢ € CP(K(H)", B(H)), as the identity i =t o t’ €
CP(T(H),B(H)).

For any positive integer m, setting B := > i1 € @ fii € My (T(H)), we claim
that || B||,, < 1. Indeed, suppose that (S;);; € My (K(H)) with |[(S;;)i,]] < 1.
Then we get

HZ Z tr(fjiSi)eis © || = HZ (Z tr(Swfiidess ) @ ew

1,j=1k,l=1 JI=1 1,5=1

= H Z (Z tr(Sklfji)fij> ® ek

=1 ‘ij—1
< H(Szg)ng <1,

which yields || B||,, < 1. However,
Ht/m(é)H = ||(fzg)”|| =m

so |[t,]] > m, which implies that ¢’ ¢ CB(K(H)", B(H)).
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(b) It is easy to see that (®(B;;))i; € M, (B(H))" for all (B;):; € M,(T(H))*
if and only if (®(Cjj)):; € M, (B(H))+ for all (Cy)):; € M, (T (H))+. Thus

CP(K(H)",T(K)") = CP(T(H),B(K)).

The inclusion relation is in [7, Lemma 2.5]. For the reader’s convenience, we give
the proof here. B

Let ® € CP(T(H),B(K)) and T := (T};);; € M,(T(#))*. Then by a similar
way as [8, Lemma 2.3], we get

||| := sup{||®(A)| : A € T(H) with ||A[|; <1} < cc.

Furthermore, [6, Theorem 2.3] and the fact that (®(7};)):; € M,(B(K))* imply
that

1 @), | < SNe@)]| < el D> 1 Talls = @I T (2.12)

i=1 i=1
For a general S e M, (T(H)), we also write S=28 — S+ vV —1(S5 — Sy), where
S; € M,(T(H))* for i = 1,2, 3,4 satisfy that
1S4l + 11Sall = 1181 = Sallx < [1S]h

and
1S5l + [15alls = 155 = Sallx < [15Th-
Thus inequality (2.12) implies that

4
[2a(S) < 21 @a(Si]
k=1
4
<Y ISulhlie]
k=1

< 2[|[[[[S]]s, (2.13)
which yields
|P]|er, = sup{||(I>n|| n=12,.. } < 2[|®|], (2.14)

and so CP(T(H), B(K)) C CB(T'(H), B(K)).
(c) Let @ € CB(K(H)", B(K)). Then for any positive integer n and (T};);; €
M, (T(H)), we conclude from Lemma 2.6(a) that

1(@(Ti)) 1 < N@llew | (Tig)islf, < N@len] (Tl

and so
NS CB(T(H),B(IC)).
Using Theorem 2.9, we get that

D = (D) — Dy) + V—1(P3 — Dy),
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where ®; € CP(K(H)", B(K)) for i = 1,2,3,4. Thus Lemma 2.4 and (b) imply
that

to®; € CP(T(H),B(K)) € CB(T(H),B(K)) fori=1,2,34.
Then
tod=(tod —tody)+vV—1(tods —tod,) € CB(T(H),B(K))

yields ® € t o CB(T(H), B(K)). O
Remark 2.11. (a) Lemma 2.4 and Theorem 2.10(c) show that

® € CP(K(H)",B(K)) <= to®eCP(T(H),B(K))
and that

® € CB(K(H)",B(K)) = to®e CB(T(H),B(H)).

We claim that t o @ € CB(T(H),B(H)) does not imply that & € CB(K(H)",
B(H)). Indeed, the identity map ¢ from T'(#) onto T'(H) belongs to CB(T'(H),
B(H)),sotot =i € CB(T(H),B(H)). However, Theorem 2.10 says that t ¢
CB(K(H)",B(H)).

(b) Using the advanced operator space theory (the projective tensor product
and normal spatial tensor product), there is a completely isometric isomorphism

CB(K(H)", B(K)) = (K(H)" @ K(K)")" = B(H)®@B(K) = B(H® K),

where K(H)*® K (K)* is the projective tensor product of operator spaces K (H)*
and K(K)*, and where B(H) ® B(K) is the usual spatial von Neumann algebraic

tensor product of B(#H) and B(K). Let A be this completely isometric isomorphism
from CB(K (H)", B(K)) onto B(H ® K). The inclusion relation

A(CP(K(H)", B(K))) 2 B(H® K)*
seems true. However,
A(CP(K(H)",B(K))) € B(H®K)™,
CP(K(H)*,B(IC)) ¢ CB(K(H)*,B(IC)).

(c¢) It seems difficult for us to determine whether a similar decomposition
between CP(T'(H), B(K)) and CB(T'(H), B(K)) exists, although

CP(T(H), B(K)) € CB(T(H), B(K)).
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