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Abstract. We consider continuous gradient operators F acting in a real
Hilbert space H, and we study their surjectivity under the basic assumption
that the corresponding functional 〈F (x), x〉—where 〈·〉 is the scalar product in
H—is coercive. While this condition is sufficient in the case of a linear operator
(where one in fact deals with a bounded self-adjoint operator), in the general
case we supplement it with a compactness condition involving the number ω(F )
introduced by Furi, Martelli, and Vignoli, whose positivity indeed guarantees
that F is proper on closed bounded sets ofH. We then use Ekeland’s variational
principle to reach the desired conclusion. In the second part of this article, we
apply the surjectivity result to give a perspective on the spectrum of these
kinds of operators—ones not considered by Feng or the above authors—when
they are further assumed to be sublinear and positively homogeneous.

1. Introduction and main result

Let H be a real Hilbert space with scalar product denoted 〈·, ·〉 and corre-

sponding norm ‖x‖ =
√

〈x, x〉. Let T : H → H be a bounded linear operator,
and suppose that

〈Tx, x〉 ≥ c‖x‖2 (1.1)

for some constant c > 0 and for all x ∈ H. Then T is evidently injective, and
by using for instance the Lax–Milgram lemma (see, e.g., [5, Corollary 5.8]), it
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follows from (1.1) that T is also surjective. Indeed, the equation Tx = y, for a
given y ∈ H, is equivalent to the problem

〈Tx, v〉 = 〈y, v〉, ∀v ∈ H, (1.2)

and the existence of an x ∈ H satisfying (1.2) then follows on considering the
continuous bilinear form a on H × H defined by putting a(u, v) = 〈Tu, v〉 for
u, v ∈ H, which is coercive by virtue of (1.1).

It has to be noted for completeness that—aside from any consideration on
surjectivity—(1.1) guarantees that T is not only injective, but is in fact boundedly
invertible, that is, injective with continuous inverse T−1. Indeed, (1.1) and the
Cauchy–Schwarz inequality imply that ‖Tx‖ ≥ c‖x‖ for all x ∈ H, or equivalently
(putting y = Tx) that ‖Ty‖ ≤ c−1‖y‖, and thus ensure that T−1 is a bounded,
that is, continuous, linear operator of the range R(T ) of T into H.

If we look for extensions to nonlinear operators of these “regularity” results
under assumptions similar to (1.1), we easily find one which follows by the
celebrated Minty–Browder theorem for monotone operators (see, e.g., [5, The-
orem 5.16]). Indeed, suppose that F : H → H is continuous and such that〈

F (x)− F (y), x− y
〉
≥ c‖x− y‖2 (1.3)

for some c > 0 and all x, y ∈ H. Then F is clearly injective with Lipschitz
continuous inverse F−1; moreover, F is also surjective, because by (1.3) F is
monotone and satisfies the coercivity condition 〈F (x), x〉/‖x‖ → +∞ as ‖x‖ →
+∞.

It is our aim in this article to prove a surjectivity result for F based on a
condition like (1.1), supplemented by two more assumptions on F . As to the
first of them, we observe that the surjectivity of a linear operator T satisfying
(1.1) has a simple meaning, and a more direct proof, in the case in which T
is self-adjoint, that is, such that 〈Tx, y〉 = 〈x, Ty〉 for all x, y ∈ H. Indeed, in
this case the bilinear form a induced by T is symmetric, and—as explained for
instance in [5]—the unique solution x0 of the equation Tx = y, for a given y ∈ H,
is characterized as the unique point x0 where the functional

〈Tx, x〉
2

− 〈x, y〉

attains its absolute minimum on H. Motivated by this variational interpretation,
we restrict ourselves to considering the nonlinear analogues of self-adjoint opera-
tors, namely, the gradient operators (see below for the precise definition), and we
apply Ekeland’s variational principle to the corresponding functional (see, e.g.,
[7]) to prove that it reaches an absolute minimum also in this more general case.
However, in order to obtain the desired conclusion we need to exploit a “numerical
characteristic”—in the sense of [1]—of (linear and) nonlinear operators acting in
a Banach space E which is related to the measure of noncompactness of bounded
subsets of E, and whose introduction seems to be due to Furi, Martelli, and Vig-
noli’s seminal paper [10] on nonlinear spectral theory. Here we briefly recall its
definition and properties.
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Measure of noncompactness. If A is a bounded subset of a Banach space E,
let α(A) denote the (Kuratowski) measure of noncompactness of A (see, e.g., [2])
defined by

α(A) = inf{ε > 0 : A can be covered by finitely many subsets of diameter ≤ ε}.
Here and henceforth, we will only consider maps F : E → E that are bounded
on bounded sets, so that α(F (A)) is defined whenever A ⊂ E is bounded. We
assume, moreover, that dimE = ∞, so that there exist bounded sets A ⊂ E with
α(A) > 0.

Definition 1.1. A map F : E → E is said to be α-Lipschitz if α(F (A)) ≤ kα(A)
for some k ≥ 0 and all bounded subsets A of E; in this case we put

α(F ) = inf
{
k ≥ 0 : α

(
F (A)

)
≤ kα(A) for all bounded A ⊂ E

}
; (1.4)

that is,

α(F ) = sup
{α(F (A))

α(A)
: A ⊂ E,A bounded, α(A) > 0

}
. (1.5)

Note that α(F ) = 0 if and only if F is compact, that is, such that F (A) is
relatively compact whenever A ⊂ E is bounded.

Next, let ω(F ) be defined as follows:

ω(F ) = inf
{α(F (A))

α(A)
: A ⊂ E,A bounded, α(A) > 0

}
. (1.6)

It follows by (1.6) that, for all bounded A ⊂ E,

α
(
F (A)

)
≥ ω(F )α(A)

and that ω(F ) ≤ α(F ) when F is α-Lipschitz. Among the several properties
of ω(F ) (see, e.g., [10, Proposition 3.1.3], [1, Proposition 2.4]), we select a few
especially useful to us in the following statement. First, recall that

• F : E → E is said to be proper on closed bounded sets if, given any closed
bounded set M of E, the set M ∩ F−1(K) is compact whenever K ⊂ E
is compact;

• a linear map F : E → E is said to be left semi-Fredholm if it has finite-
dimensional nullspace N(F ) and closed range R(F ).

Proposition 1.2. Let F : E → E be continuous, and let ω(F ) be as in (1.6).
Then we have the following.

(i) If ω(F ) > 0, then F is proper on closed bounded sets.
(ii) Suppose that F is α-Lipschitz, and let I be the identity map in E. Then,

for any c ∈ R,
|c| − α(F ) ≤ ω(F − cI) ≤ |c|+ α(F ). (1.7)

(iii) If F is linear, then ω(F ) > 0 if and only if F is left semi-Fredholm.
(iv) If F is linear, then

ω(F ) ≥ b(F ) ≡ inf
x 6=0

‖Fx‖
‖x‖

. (1.8)
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Remark 1.3. As already noted, the condition b(F ) > 0 holds if and only if F is
boundedly invertible, that is, injective with continuous inverse F−1. We recall,
moreover, that if F is injective, the continuity property of F−1 is equivalent to
the condition that the range R(F ) of F is a closed subspace of H. Therefore, in
view of (iii), the inequality (1.8) can be seen as a quantitative (and most useful)
version of the implication “F boundedly invertible ⇒ F left semi-Fredholm.”

Remark 1.4. In their original article, Furi, Martelli, and Vignoli [10] used the
symbol β(F ) rather than ω(F ). To the best of my knowledge, the latter was first
used by Edmunds and Webb [8], then used again in the 1997 paper by Feng [9],
and is now acknowledged by some (if not all) of the symbol’s originators, as shown
recently for instance in [3].

Surjectivity of gradient mappings. Before stating and proving our main result,
we need to recall (see, e.g., [4]) that F : H → H is said to be a gradient (or
potential) operator if there exists a differentiable functional f : H → R such that〈

F (x), y
〉
= f ′(x)y for all x, y ∈ H, (1.9)

where f ′(x) denotes the (Fréchet) derivative of f at the point x ∈ H. When it is
so, the functional f defined for x ∈ H via the equation

f(x) =

∫ 1

0

〈
F (tx), x

〉
dt (1.10)

coincides (up to a constant) with the function f previously mentioned and is
called the potential of F . We also recall that a linear continuous operator is a
gradient if and only if it is self-adjoint (see [4]).

Theorem 1.5. Let H be a real Hilbert space, and let F : H → H be a continuous
gradient operator. Suppose that

(i) 〈F (x), x〉 ≥ c‖x‖2 for some c > 0 and for all x ∈ H,
(ii) ω(F ) > 0.

Then F is surjective.

Proof. Let f be the potential of F , as given by the formula (1.10). Using the
assumption (i) we then have, for x ∈ H and t ∈ R, t > 0,〈

F (tx), x
〉
=

〈F (tx), tx〉
t

≥ c‖tx‖2

t
= ct‖x‖2,

whence

f(x) =

∫ 1

0

〈
F (tx), x

〉
dt ≥ c‖x‖2

∫ 1

0

t dt = c′‖x‖2 (1.11)

with c′ = c/2 > 0. To prove that F is surjective, we take y ∈ H and look for an
x ∈ H such that F (x) = y; however, this equation is equivalent to〈

F (x)− y, v
〉
= 0, ∀v ∈ H,

and therefore is equivalent to the search of a critical point x (i.e., a point where
the derivative vanishes) for the functional f1 defined on H by putting

f1(x) = f(x)− 〈y, x〉. (1.12)
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Using (1.11) and Cauchy–Schwarz, we get

f1(x) ≥ c′‖x‖2 − ‖y‖‖x‖, (1.13)

whence, using the elementary inequality at2 − bt ≥ −b2/4a valid for fixed a > 0,
b ∈ R, and all t ∈ R, it follows that

f1(x) ≥ −‖y‖2

4c′
≡ K (x ∈ H). (1.14)

Therefore, f1 is bounded below on H. As f1 is of class C1, Ekeland’s variational
principle (see, e.g., [7]) ensures the existence of a minimizing sequence along which
the derivative of f1 tends to zero, that is, a sequence (xn) ⊂ H such that

f1(xn) → c1 ≡ inf
x∈H

f1(x) and f ′
1(xn) → 0.

Using the expression (1.12) of f1 and (1.9), we see that the condition f ′
1(xn) → 0

is equivalent to

F (xn) → y.

Here the assumption ω(F ) > 0 comes into play, for the sequence (xn) is bounded
by virtue of (1.13), and since F is proper on closed bounded sets by Proposi-
tion 1.2(i), it follows that (xn) contains a convergent subsequence. Letting (xnk

)
denote this subsequence and letting x = limk→∞ xnk

, we then see immediately by
the continuity of f1 and F that f1(x) = c1 and F (x) = y. �

Remark 1.6. For a linear operator, Theorem 1.5(ii) is redundant because it is a
consequence of (i). Indeed, as has already been remarked, (i) implies that ‖Fx‖ ≥
c‖x‖ for all x ∈ H, whence

b(F ) = inf
x6=0

‖Fx‖
‖x‖

≥ c > 0.

It follows from (1.8) that ω(F ) > 0. Therefore, when considered for linear opera-
tors, Theorem 1.5 reduces to the statement of surjectivity for coercive self-adjoint
operators recalled and commented in the Introduction.

Remark 1.7. To exhibit examples of mappings F having ω(F ) > 0, just take
F = I −G with G compact; indeed, it follows from (1.7) that ω(F ) = 1 for such
an F .

Remark 1.8. The conclusion of Theorem 1.5 continues to hold if the assumption
(i) on F is relaxed to 〈

F (x), x
〉
≥ c‖x‖2 + 〈p, x〉 (1.15)

for some c > 0, some p ∈ H, and all x ∈ H. Indeed in this case, (1.11) is modified
as

f(x) ≥ c′‖x‖2 + 〈p, x〉 (1.16)

so that from (1.12) we have

f1(x) = f(x)− 〈y, x〉 ≥ c′‖x‖2 + 〈p− y, x〉 ≥ c′‖x‖2 − ‖p− y‖‖x‖. (1.17)

The proof now proceeds as before.
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Remark 1.9. Of course, it would be interesting to know if the conclusion of The-
orem 1.5 continues to hold if one drops the assumption that F is a gradient.

2. Consequences on (linear and) nonlinear spectral theory

For a bounded linear operator T acting in a real Banach space E, denote by
σ(T ) the spectrum of T :

σ(T ) = {λ ∈ R : T − λI is not a homeomorphism of E onto E}.

In a Hilbert space H, the spectrum of T is to a good extent determined by its
quadratic form 〈Tx, x〉. We report in particular the following statement.

Proposition 2.1 ([5, Proposition 6.9]). Let T : H → H be a self-adjoint bounded
linear operator. Set

m = inf
‖x‖=1

〈Tx, x〉, M = sup
‖x‖=1

〈Tx, x〉. (2.1)

Then σ(T ) ⊂ [m,M ] and m,M ∈ σ(T ).

As to the inclusion σ(T ) ⊂ [m,M ] stated in Proposition 2.1, we first observe
that the self-adjointness of T should be strictly required in the case of a complex
Hilbert space (see, e.g., [12, Theorem 6.2-B]), while in the context of real Hilbert
spaces—considered here and in [5]—the inclusion holds in fact for any bounded
linear operator. Indeed, it follows from (2.1) that 〈Tx, x〉 ≥ m‖x‖2 for every
x ∈ H, and therefore that

〈Tx− λx, x〉 = 〈Tx, x〉 − λ‖x‖2 ≥ (m− λ)‖x‖2. (2.2)

Thus if λ < m, then Tλ ≡ T − λI satisfies the condition (1.1), ensuring as
explained at the beginning of this article that Tλ is a homeomorphism of H
onto itself, and therefore that λ /∈ σ(T ). A similar conclusion holds if λ > M ,
whence one concludes that σ(T ) ⊂ [m,M ]. Second, we emphasize the fact that
the inclusion σ(T ) ⊂ [m,M ], valid for bounded linear operators in a real Hilbert
space, improves the inclusion

σ(T ) ⊂
[
−‖T‖, ‖T‖

]
holding for a bounded linear operator acting in any Banach space (see e.g. Propo-
sition 6.7 of [5]). Indeed by the Schwarz inequality, if ‖x‖ = 1, then∣∣〈Tx, x〉∣∣ ≤ ‖T‖

so that

− ‖T‖ ≤ m ≤ M ≤ ‖T‖. (2.3)

Essentials on the nonlinear spectrum. Let E be a real, infinite-dimensional
Banach space and let F : E → E be continuous and bounded on bounded subsets
of E. To recall very briefly the definition of the spectrum of F along the lines of
[9] and [10] (see also [1]), consider first the quantities

|F | = lim sup
‖x‖→∞

‖F (x)‖
‖x‖

, d(F ) = lim inf
‖x‖→∞

‖F (x)‖
‖x‖

. (2.4)
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Note that |F | can be ∞. However, |F | is finite if (and only if ) F is linearly
bounded—that is, it satisfies an inequality of the form ‖F (x)‖ ≤ A‖x‖ + B for
some A,B ≥ 0 and all x ∈ E.

For the statements and definitions which follow, we refer the reader to [10];
some of them hold in greater generality than given here. A map F : E → E is
said to be stably solvable if the equation F (x) = H(x) has a solution x ∈ E for
any H : E → E such that H is compact and |H| = 0. A stably solvable map is
clearly surjective, and vice versa (a (continuous) linear surjective map is stably
solvable).

A map F : E → E is said to be FMV-regular (Furi–Martelli–Vignoli regular)
if it is stably solvable and moreover d(F ) > 0, ω(F ) > 0 (ω(F ) was defined in
(1.6)). It follows that an FMV-regular map is surjective and proper, and that a
linear map is FMV-regular if and only if it is a homeomorphism.

The spectrum of F , denoted σFMV(F ), is defined as

σFMV(F ) = {λ ∈ R : F − λI is not FMV-regular}.

If |F | < ∞ and F is α-Lipschitz, then σFMV(F ) is compact, and moreover,

σFMV(F ) ⊂ {λ ∈ R : |λ| ≤ max
{
α(F ), |F |

}
(2.5)

with α(F ) as in (1.4).
It is often useful to also consider the partial spectra

σω(F ) =
{
λ ∈ R : ω(F − λI) = 0

}
,

Σ(F ) =
{
λ ∈ R : d(F − λI) = 0

}
,

σδ(F ) = {λ ∈ R : F − λI is not stably solvable}.

We then have by definition

σFMV(F ) = σω(F ) ∪ Σ(F ) ∪ σδ(F ). (2.6)

In general, σFMV(F ) need not contain the point spectrum σp(F ),

σp(F ) =
{
λ ∈ R : F (x)− λx = 0 for some x 6= 0

}
,

that is, the set of eigenvalues of F (see, e.g., the discussion in [8]). This is one of
the main reasons motivating Feng’s extension of σFMV(F ) (see [9]). Essentially,
Feng replaces the quantities |F | and d(F ) defined in (2.4) with the following ones:

‖F‖ = sup
‖x‖6=0

‖F (x)‖
‖x‖

, b(F ) = inf
‖x‖6=0

‖F (x)‖
‖x‖

. (2.7)

Note that, of course,

b(F ) ≤ d(F ) ≤ |F | ≤ ‖F‖. (2.8)

Again, we remark that ‖F‖ can be ∞ unless we assume that F is sublinear ; that
is, it satisfies an inequality of the form∥∥F (x)

∥∥ ≤ A‖x‖

for some A ≥ 0 and all x ∈ E. Moreover, Feng [9] replaces the property of
being stably solvable with a stronger requirement based on the concept of p-epi
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mapping introduced in [11]. The spectrum is defined consequently along the same
lines sketched above and will be denoted σF (F ). We do not go into further details,
but simply note the following:

(i) σF (F ) ⊃ σp(F ), since b(F − λI) = 0 if λ is an eigenvalue of F ;
(ii) what we have just said about stable solvability, together with the inequal-

ity b(F ) ≤ d(F ) shown in (2.8), yields the inclusion σFMV(F ) ⊂ σF (F ),
which in general may be strict.

Positively homogeneous operators. The situation becomes more definite when
F is positively homogeneous (of degree 1), that is, such that F (tx) = tF (x) for
x ∈ E and t > 0. We first note that in this case F is linearly bounded if and only
if it is sublinear; for if F satisfies the inequality ‖F (x)‖ ≤ A‖x‖ + B for some
A,B ≥ 0 and all x ∈ E, then writing this for tx (t > 0) we obtain at once that
‖F (x)‖ ≤ A‖x‖ + B/t, whence letting t → ∞ it follows that ‖F (x)‖ ≤ A‖x‖.
Using similar remarks, one can easily check the equalities

|F | = ‖F‖ = sup
‖x‖=1

∥∥F (x)
∥∥, d(F ) = b(F ) = inf

‖x‖=1

∥∥F (x)
∥∥ (2.9)

to hold for a positively homogeneous F . More importantly, Theorem 8.11 in [1]
proves that in this case

σFMV(F ) = σF (F ) (2.10)

and allows us to rewrite (2.6) as

σ(F ) = σω(F ) ∪ Σ(F ) ∪ σδ(F ) (2.11)

with σ(F ) denoting any of the two spectra defined above.
To see the effect of Theorem 1.5 in this spectral framework, we focus now on

the case (not considered in [9] and [10]) that F is a gradient operator acting in a
real Hilbert space H.

Theorem 2.2. Let F : H → H be a continuous gradient operator. Suppose
further that F is sublinear and positively homogeneous, and let m(F ), M(F ) be
defined by

m(F ) = inf
‖x‖=1

〈
F (x), x

〉
, M(F ) = sup

‖x‖=1

〈
F (x), x

〉
. (2.12)

Then the following conclusions hold true:

(1) m(F ) and M(F ) belong to the spectrum σ(F ) of F ; more precisely,

m(F ),M(F ) ∈ Σ(F ) =
{
λ ∈ R : b(F − λI) = 0

}
;

(2) Σ(F ) ⊂ [m(F ),M(F )];
(3) If λ /∈ σω(F ) ∪ [m(F ),M(F )], then Fλ ≡ F − λI is surjective.

Proof.

(1) For the proof of the first assertion, see Theorem 1.1 of [6].
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(2) In order to prove the second assertion, observe that the definitions (2.12)
and the positive homogeneity of F imply—exactly as for linear operators—
that, for every x ∈ H,

m(F )‖x‖2 ≤
〈
F (x), x

〉
≤ M(F )‖x‖2, (2.13)

whence, as in Proposition 2.1,〈
F (x)− λx, x

〉
=

〈
F (x), x

〉
− λ‖x‖2 ≥

(
m(F )− λ

)
‖x‖2. (2.14)

Equation (2.14) implies once again that b(Fλ) > 0 if λ < m(F ). The same
conclusion holds if λ > M(F ). Therefore, no such λ belongs to Σ(F ).

(3) What is more, (2.14) shows that Fλ satisfies Theorem 1.5(i) if λ < m(F ).
For these λ’s—and in fact for every λ /∈ [m(F ),M(F )]—the surjectivity
of Fλ under the additional condition that ω(Fλ) > 0 thus follows from
Theorem 1.5. �

Remark 2.3. If to the assumptions of Theorem 2.2 one adds that F is α-Lipschitz,
then the first conclusion can be strengthened as follows (see [6]). IfM(F ) > α(F ),
then M(F ) is an eigenvalue of F ; moreover it is (clearly) the largest eigenvalue
of F , and finally it is a compact eigenvalue of F in the sense that the set of
corresponding normalized eigenvectors{

x ∈ H : F (x)−Mx = 0, ‖x‖ = 1
}

is compact. Similar conclusions hold for m(F ) in the case when m(F ) < −α(F ).

Remark 2.4. The content of Theorem 2.2 becomes clearer when considered for
a compact operator F . In this case, from (1.7) we have ω(Fλ) = |λ|, so that
σω = {0}. Therefore, the last two statements in Theorem 2.2 imply that

λ < m(F )
(
or λ > M(F )

)
, λ 6= 0 ⇒ b(Fλ) > 0 and Fλ is surjective. (2.15)

Moreover, we know from (2.5) and (2.9) that

σ(F ) ⊂
[
−‖F‖, ‖F‖

]
. (2.16)

Assume further that m(F ) ≤ 0 ≤ M(F ) (this is necessarily the case when F is
linear, for if for example m(F ) > 0, then F would be boundedly invertible and
I = F−1F would be compact, which is impossible since dimH = ∞). When at
least one of the strict inequalities (see (2.3)) −‖F‖ < m(F ) or M(F ) < ‖F‖
holds, we then have the following situation:

• if −‖F‖ ≤ λ < m(F ) or M(F ) < λ ≤ ‖F‖, then b(Fλ) > 0 and Fλ is
surjective;

• while for λ outside [−‖F‖, ‖F‖], Fλ is regular.

In this rough picture, the two intervals [−‖F‖,m(F )[, ]M(F ), ‖F‖] seem to
be a sort of ambiguous zone between the core of the spectrum, contained in
[m(F ),M(F )], and the set {λ ∈ R : |λ| > ‖F‖} on which Fλ is definitely regular.
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