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Abstract. Let A be the AF algebra whose scaled ordered group K0(A) is
(G⊕H, (G+ \{0})⊕H ∪{(0, 0)}, g̃⊕0), where (G,G+, g̃) is the scaled ordered
group K0(B) of a unital simple AF algebra B, and H is a countable torsion-free
Abelian group. Let σ be an order 2 scaled ordered automorphism of K0(A),
defined by σ(g, h) = (g,−h), where (g, h) ∈ G ⊕H. We show that there is an
order 2 automorphism α of A such that α∗ = σ. This gives a partial answer to
a lifting question posed by Blackadar. Incidentally, the lift α we construct has
the tracial Rokhlin property. Consequently, the crossed product C∗(Z2, A, α)
is a unital simple AH algebra with no dimension growth.

1. Introduction

An important recent problem has been to find and classify all order 2 automor-
phisms of an AF algebra. Historically, partly because of their intrinsic interest
and partly because of their applications in C∗-dynamical systems, these kinds
of problems have attracted considerable attention in the literature (see, e.g.,
[4], [6], [17]). Notable among these efforts is Blackadar’s famous construction.
Blackadar [4] constructed an action of Z2 on the 2∞ uniformly hyperfinite (UHF)
algebra such that the crossed product has nontrivial K1-group, and hence gave a
negative answer to one of two questions about AF algebras posed by him in [3,
Section 10.11.3]. The other one is a lifting question, which is as follows.
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Question 1.1. Let A be an AF algebra, and let σ be an automorphism of the
scaled ordered group K0(A) with σ

n = 1. Is there an automorphism α of A with
α∗ = σ and αn = 1?

Throughout this paper, for simplicity, we only consider the case where A is
unital, simple, and where n = 2. Clearly, this question is important in studying
the algebraic structure of Aut(A). However, this question appears to be open still,
and even satisfactory partial answers to this question are very scarce. Until very
recently, Barlak and Szabó [1, Corollary 2.13] showed that if A is a separable,
unital, simple, and nuclear C∗-algebra with tracial rank zero, then any Z2-action
on the invariant could be lifted to a Rokhlin action of Z2 on A, provided that A
absorbs the 2∞ UHF algebra.

In this article, we consider the following. Let A be the AF algebra whose
scaled ordered group K0(A) is (G ⊕H, (G+ \ {0}) ⊕H ∪ {(0, 0)}, g̃ ⊕ h̃), where
(G,G+, g̃) is the scaled ordered group K0(B) of a unital simple AF algebra B,

H is a countable torsion-free Abelian group, and h̃ ∈ H. Let σ be an order 2
scaled ordered automorphism of K0(A), defined by σ(g, h) = (g, η(h)), where
(g, h) ∈ G ⊕ H, η is an order 2 automorphism of H which is of type I (see
Definition 2.3). Then there is an order 2 automorphism α of A such that α∗ = σ
(see Theorem 4.1). This provides a partial affirmative answer to Question 1.1.
Moreover, we can choose that the action α has the tracial Rokhlin property. In
this case, C∗(Z2, A, α) is a unital simple AH algebra with no dimension growth
(see Theorem 4.1).

Remark 1.2. Let (G,G+, g̃) be the scaled ordered group K0(B) of a unital simple

AF algebra B, let H be any countable torsion-free Abelian group, and let h̃ ∈ H.
Set

F = G⊕H, F+ =
(
G+ \ {0}

)
⊕H ∪

{
(0, 0)

}
, u = g̃ ⊕ h̃.

Then it is easy to check that (F, F+, u) is a scaled ordered unperforated sim-
ple group; moreover, (F, F+, u) also has the Riesz interpolation property (see
Remark 4.3 or [10, Theorem 8.1]). Then by the Effros–Handelman–Shen theorem
(see [9, Theorem 2.2]), (F, F+, u) is a dimension group.

Our K-theory setup, which is assumed for the AF algebra A in question, has
a kind of “split” property (some concrete examples can be found in [3, Sec-
tion 10.11.3], [6, Section 1], [17, Examples 4.1 and 4.5]). Roughly speaking, our
strategy is to rewrite A as an AH algebra in a nonstandard way and then find an
order 2 product-type action α with tracial Rokhlin property such that α∗ = σ.
The construction is inspired by Blackadar’s own in [4], and also by [17], [15], and
[10]. The classification results for C∗-algebras, which have been obtained by many
authors as a part of the Elliott program, play an important role here, illustrating
the power of this theory.

This article is organized as follows. In Section 2, we review definitions, ele-
mentary facts, and important results which we need in later sections. Section 3
contains several technical constructions and existence results. In Section 4, we
prove our main result (Theorem 4.1).
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We use the notation Z2 for Z/2Z. We write K̃0(X) for the reduced K0-group of
a topological space X. If A is a C∗-algebra and α : A→ A is an automorphism of
order 2, then we write C∗(Z2, A, α), A

α for the crossed product and the fixed point
subalgebra of A by the action of Z2 generated by α, respectively. Also, RR and
dr denote the real rank and the decomposition rank, respectively, for convenience.
We take N = {n ∈ Z : n > 0}.

2. Preliminaries

In this section, we recall basic definitions and properties which will be used
throughout the article.

2.1. Here are some basic properties of Brouwer’s notion of degree for maps
Sn → Sn.

(1) Let f, g : Sn → Sn, if f ' g, that is, f is homotopic to g. Then deg(f) =
deg(g).

(2) Let (x, y, z) ∈ S2, and let λ be the reflection map defined by λ(x, y, z) =
(x, y,−z). Then deg(λ) = −1.

(3) If f : Sn → Sn has degree d, then f ∗ : Hn(Sn,Z) → Hn(Sn,Z) is multi-
plication by d (see [12, p. 205, Exercise 9]).

2.2. Let X be a connected 3-dimensional finite CW complex. Then K̃0(X) ∼=
H2(X,Z) (see [11, Section 3.12]).

Lemma 2.1 ([2, Lemma 2.1]). Let T be an involutory matrix in Mk(Z), that is,
T 2 = I. Then there is an invertible matrix S ∈Mk(Z), and nonnegative integers
p, q, r, such that

T = S−1 diag
{ p︷ ︸︸ ︷
1, . . . , 1;

q︷ ︸︸ ︷
−1, . . . ,−1;

r︷ ︸︸ ︷[
0 1
1 0

]
, . . . ,

[
0 1
1 0

]}
S.

Proposition 2.2. Let H be a countable torsion-free Abelian group, and let η
be an order 2 automorphism of H. Then there are a nondecreasing sequence of
positive integers {nk : k ∈ N} and monomorphisms βk : Znk → Znk+1, order 2
automorphisms ηk : Znk → Znk such that the following diagram commutes

Zn1
β1−−−→ Zn2

β2−−−→ Zn3
β3−−−→ · · ·Hyη1

yη2

yη3

Zn1
β1−−−→ Zn2

β2−−−→ Zn3
β3−−−→ · · ·H

and H = limk→∞(Znk , βk), η = limn→∞ ηk. Moreover, it can be required that under
the canonical basis of Znk , ηk has the form

ηk = diag
{ pk︷ ︸︸ ︷
1, . . . , 1;

qk︷ ︸︸ ︷
−1, . . . ,−1;

rk︷ ︸︸ ︷[
0 1
1 0

]
, . . . ,

[
0 1
1 0

]}
for suitable nonnegative integers pk, qk, rk such that pk + qk + 2rk = nk, k ∈ N.
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Proof. Since H is countable, we can write H as H = {e1, e2, . . .}, and define

Hk = Z
[
e1, . . . , ek; η(e1), . . . , η(ek)

]
,

so for k ∈ N, η(Hk) = Hk, H = limk→∞(Hk, ιk), where ιk is the embedding
map from Hk to Hk+1. Since Hk is finitely generated, without loss of generality,
only replacing ιk by some suitable monomorphism β′

k, we may assume that H =
limk→∞(Hk, β

′
k), where Hk = Znk , k ∈ N. Moreover, there is a sequence of order

2 automorphisms η′k, such that η′k+1 ◦β′
k = β′

k ◦η′k, k ∈ N, and η = limk→∞ η′. The
proposition follows immediately from Lemma 2.1. �

Inspired by the preceding proposition, we introduce the following definition.

Definition 2.3. Let H be a countable torsion-free Abelian group, and let η be
an order 2 automorphism of H. Then η is said to be of type I if there are a
sequence of positive integers {nk : k ∈ N} and monomorphisms βk : Znk →
Znk+1 , order 2 automorphisms ηk : Znk → Znk such that the following diagram
commutes

Zn1
β1−−−→ Zn2

β2−−−→ Zn3
β3−−−→ · · ·Hyη1

yη2

yη3

Zn1
β1−−−→ Zn2

β2−−−→ Zn3
β3−−−→ · · ·H

and H = limk→∞(Znk , βk), η = limn→∞ ηk, under the canonical basis of Znk , ηk
has the form

ηk = diag{
pk︷ ︸︸ ︷

1, . . . , 1;

qk︷ ︸︸ ︷
−1, . . . ,−1},

for suitable nonnegative integers pk, qk such that pk + qk = nk, k ∈ N.

One special and important case is the minus one map, that is, η(h) = −h, for
h ∈ H.

2.3. Let A1, A2 be unital C∗-algebras, and let ϕ be a unital monomorphism
from A1 to A2. Let αi : Ai → Ai be an automorphism, i = 1, 2. Assume that
α2 ◦ ϕ = ϕ ◦ α1. Then for any a ∈ Aα1

1 , ϕ(a) ∈ Aα2
2 .

By telescoping the Bratteli diagram, the following fact appears to be well
known.

Lemma 2.4 ([13, Proposition 4.7.2, Lemma 4.7.3]). Let A be a unital simple
AF algebra, and let n be a positive integer. Let a1 < a2 < · · · be an increasing
sequence of positive integers, and let c1 < c2 < · · · be another sequence of positive
integers. Then K0(A) can be written so that(

K0(A), K0(A)+
)
= limk→∞

(
Gk, (Gk)+, ϕk

)
,

where Gk is a finite direct sum of mk copies of Z with mk ≥ ak, and each partial
map of ϕk has positive multiplicity at least ck, k ∈ N.
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Theorem 2.5 ([11, Theorem 5.8]). Let A and B be simple real rank zero inductive
limits of direct sums of matrices over 3-dimensional CW complexes. Then A ∼= B
if and only if(

K0(A), K0(A)+, [1A], K1(A)
) ∼= (

K0(B), K0(B)+, [1B], K1(B)
)
.

The following key idea is due to Lin.

Definition 2.6 ([13, Definition 3.6.2]). Let A be a unital simple C∗-algebra. Then
the tracial rank of A is zero if the following holds: for any finite subset F ⊂ A,
ε > 0 and c ∈ A+ \ {0}, there exist a nonzero projection p ∈ A and a finite-
dimensional C∗-subalgebra B ⊂ A and with 1B = p such that

(1) ‖xp− px‖ < ε for all x ∈ F ,
(2) dist(pxp,B) ≤ ε for all x ∈ F ,
(3) 1− p is (Murray–von Neumann) equivalent to a projection in cAc.

Lastly, we introduce a special case of a useful criterion for an action of Z2 to
have the tracial Rokhlin property obtained by Phillips. The reader is referred to
Phillips’s seminal work [16] for details and more background information about
the (tracial) Rokhlin property.

Lemma 2.7 ([17, Lemma 1.8]). Let A be a finite infinite-dimensional simple
unital C∗-algebra with tracial rank zero. Let α ∈ Aut(A) satisfy α2 = idA. Suppose
that for every finite set F ⊂ A and every ε > 0, there are mutually orthogonal
projections e0, e1 such that

(1) ‖α(e0)− e1‖ < ε,
(2) ‖eja− aej‖ < ε for all a ∈ F and j = 0, 1,
(3) with e = e0 + e1, τ(1− e) < ε for each tracial state τ on A.

The action of Z2 generated by α has the tracial Rokhlin property.

3. Existence results

We start with the following construction.

3.1. Let S2 = {(sin θ cosϕ, sin θ sinϕ, cos θ) : ϕ ∈ [−π
2
, π
2
], θ ∈ [−π, π]} be an

oriented unit 2-dimensional sphere. Define χ : S2 → S2 by

χ(sin θ cosϕ, sin θ sinϕ, cos θ)

=

{
(cosϕ, sinϕ, 0), θ ∈ [0, π],

(sin(2θ + π
2
) cosϕ, sin(2θ + π

2
) sinϕ cos(2θ + π

2
)), θ ∈ [−π, 0].

Then χ is a continuous surjective map from S2 to S2, and χ ' idS2 . Moreover, χ
is symmetric with respect to the xy-plane; that is, if x1, x2 ∈ S2 are symmetric
with respect to the xy-plane, then χ(x1), χ(x2) are also symmetric with respect
to the xy-plane. That is to say, χ and λ do commute, where λ is defined as in the
preceding Section 2.1(2) above.
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3.2. Let S2 = {(sin θ cosϕ, sin θ sinϕ, cos θ) : ϕ ∈ [0, 2π], θ ∈ [0, π]} be an
oriented unit 2-dimensional sphere. For 0 ≤ ϕ1 < ϕ2 ≤ 2π, consider the following
subset of S2:

I[ϕ1,ϕ2] =
{
(sin θ cosϕ, sin θ sinϕ, cos θ) : ϕ ∈ [ϕ1, ϕ2], θ ∈ [0, π]

}
.

For k 6= 0, define

ĝ[ϕ1,ϕ2],k(sin θ cosϕ, sin θ sinϕ, cos θ)

=
(
sin θ cos

(
2kπ

ϕ− ϕ1

ϕ2 − ϕ1

)
, sin θ sin

(
2kπ

ϕ− ϕ1

ϕ2 − ϕ1

)
, cos θ

)
.

Then for each integer k 6= 0, ĝ[ϕ1,ϕ2],k is a continuous surjective map from I[ϕ1,ϕ2]

to S2. Let g[ϕ1,ϕ2],k = χ ◦ ĝ[ϕ1,ϕ2],k. Then g[ϕ1,ϕ2],k is also a continuous surjective
map from I[ϕ1,ϕ2] to S

2 which satisfies the following:

(1) g[ϕ1,ϕ2],k maps the boundary of I[ϕ1,ϕ2] to the point (1, 0, 0) ∈ S2;
(2) g[ϕ1,ϕ2],k is symmetric with respect to the xy-plane, that is, if x1, x2 ∈

I[ϕ1,ϕ2] are symmetric with respect to the xy-plane, then g[ϕ1,ϕ2],k(x1),
g[ϕ1,ϕ2],k(x2) are also symmetric with respect to the xy-plane (i.e., g[ϕ1,ϕ2],k

and λ do commute).

Inspired by [15, Definition 3.3], we have the following constructions.

3.3. Let

β =


t1,1 t1,2 · · · t1,n1

t2,1 t2,2 · · · t2,n1

...
...

. . .
...

tn2,1 tn2,2 · · · tn2,n1


be a monomorphism from Zn1 to Zn2 . Let ηk be an order 2 automorphism of Znk

which has the form

ηk = diag{
pk︷ ︸︸ ︷

1, . . . , 1;

qk︷ ︸︸ ︷
−1, . . . ,−1}

under the canonical basis of Znk , such that β ◦ η1 = η2 ◦ β, k = 1, 2. It is
straightforward to check that tj,i = 0 when η1iη2j = −1, where 1 ≤ i ≤ n1,
1 ≤ j ≤ n2.

For k = 1, 2, let Xk,l = {(x, y, z, w) : x2 + y2 + z2 = 1, w = l} ⊂ R4, øk,l =
(1, 0, 0, l). Then Xk,l = S2, l = 1, 2, . . . , nk. We define Xk =

∨
1≤l≤nk

Xk,l to be the
quotient of

⊔
1≤i≤nk

Xk,i obtained by identifying øk,1, . . . , øk,nk
to a single point

ø1, and we define πk :
⊔

1≤l≤nk
Xk,l → Xk to be the corresponding quotient map.

As we know, K̃0(X1) = Zn1 and K̃0(X2) = Zn2 .
First, we will define an order 2 homeomorphism ωk of Xk such that the induced

map ω∗
k : K̃0(Xk) → K̃0(Xk) is exactly ηk, k = 1, 2. Fix k ∈ {1, 2}. For l ∈

{1, . . . , pk}, define ωl
k : Xk,l → Xk,l by

ωl
k(ξ) = ξ;

for l ∈ {pk + 1, . . . , pk + qk = nk}, define ωl
k : Xk,l → Xk,l by

ωl
k(x, y, z, l) =

(
λ(x, y, z), l

)
= (x, y,−z, l), where (x, y, z, l) = ξ ∈ Xk,l.

Note that πk(ω
l
k(øk,l)) = øk.
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For ζ ∈ Xk, if ζ = øk, define ωk(ζ) = øk; if ζ 6= øk, there exists a unique ξ ∈⊔
1≤l≤nk

Xk,l such that πk(ξ) = ζ. Let l1 = P4(ξ), where P4 is the projection onto

the fourth coordinate axis, and define ωk(ζ) = πk(ω
l1
k (ξ)). Then by Section 2.1, it

is straightforward to check that ωk is an order 2 homeomorphism ωi of Xk such
that the induced map ω∗

k : K̃0(Xk) → K̃0(Xk) is exactly ηk, and øk is a fixed
point of ωk, k = 1, 2.

Lemma 3.1. There exists a map s : X2 → X1 such that the induced map s∗ :
K̃0(X1)→ K̃0(X2) is exactly β; moreover, s ◦ ω2 = ω1 ◦ s.

Proof. For each 1 ≤ j ≤ n2, set

Ij,i =
{
(sin θ cosϕ, sin θ sinϕ, cos θ, w) : ϕ ∈

[2π(i− 1)

n1

,
2πi

n1

]
, θ ∈ [0, π], w = j

}
⊂ X2,j,

i = 1, 2, . . . , n1. For each pair (j, i) ∈ {1, 2, . . . , n2} × {1, 2, . . . , n1}, we define a
continuous map from Ij,i to X1,i by

(1) sj,i(x, y, z, j) = (1, 0, 0, i), if tj,i = 0;
(2) sj,i(x, y, z, j) = (g

[
2π(i−1)

n1
, 2πi
n1

],tj,i
(x, y, z), i), if tj,i 6= 0.

Fix j ∈ {1, 2, . . . , n2}. Since sj,i always maps the boundary of Ij,i to the point
(1, 0, 0, i) = ø1,i, and recalling that π1(1, 0, 0, i) = ø1 for each i ∈ {1, 2, . . . , n1}, by
the gluing lemma in general topology, define a map sj : X2,j =

⋃
1≤i≤n1

Ij,i → X1

by gluing together the π1 ◦ sj,i, that is, sj(ξ) = π1 ◦ sj,i(ξ) if ξ ∈ Ij,i. Note that
each sj maps ø2,j to ø1, a repeated use of the gluing lemma. Define s : X2 → X1

by s(ζ) = sj(ξ), where ζ = π2(ξ). Note that s(ø2) = ø1. Moreover, as β is
injective, then for each 1 ≤ i ≤ n1,

∑n2

j=1 |tj,i| > 0, and it follows that s is
surjective.

We now turn to check s ◦ ω2 = ω1 ◦ s. If ζ2 = ø2, it is evident that s ◦ ω2(ζ2) =
ω1 ◦ s(ζ2) = ø1. If ζ2 6= ø2, then there exists a unique ξ2 ∈

⊔
1≤j≤n2

X2,j such

that π2(ξ2) = ζ2. Let j
∗ = P4(ξ2). Then ξ2 ∈ X2,j∗ . Since π2(sj∗(∂Ij,i)) = ø2 for

each i ∈ {1, 2, . . . , n1} and sj∗(ξ2) 6= ø2, there exists a unique i∗ ∈ {1, 2, . . . , n1}
such that ξ2 = (x, y, z, j∗) ∈ I◦j∗,i∗ , where X◦ denotes the interior of a topological
space X. We have the following.

(1) If tj∗,i∗ 6= 0, and η1i∗ = η2j∗ = 1, then

ω1 ◦ s(ζ2) = ωi∗

1

(
sj∗,i∗(ξ2)

)
= ωi∗

1

(
g
[
2π(i∗−1)

n1
, 2πi∗

n1
],tj∗,i∗

(x, y, z), i∗
)

=
(
[g

[
2π(i∗−1)

n1
, 2πi∗

n1
],tj∗,i∗

](x, y, z), i∗
)
;

s ◦ ω2(ζ2) = sj∗,i∗
(
ωj∗

2 (ξ2)
)

= sj∗,i∗(x, y, z, j
∗)

=
(
[g

[
2π(i∗−1)

n1
, 2πi∗

n1
],tj∗,i∗

(x, y, z), i∗
)
.
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(2) If tj∗,i∗ 6= 0, and η1i∗ = η2j∗ = −1, then

ω1 ◦ s(ζ2) = ωi∗

1

(
sj∗,i∗(ξ2)

)
= ωi∗

1

(
g
[
2π(i∗−1)

n1
, 2πi∗

n1
],tj∗,i∗

(x, y, z), i∗
)

=
(
[λ ◦ g

[
2π(i∗−1)

n1
, 2πi∗

n1
],tj∗,i∗

](x, y, z), i∗
)
;

s ◦ ω2(ζ2) = sj∗,i∗
(
ωj∗

2 (ξ2)
)

= sj∗,i∗
(
λ(x, y, z), j∗

)
=

(
[g

[
2π(i∗−1)

n1
, 2πi∗

n1
],tj∗,i∗

◦ λ](x, y, z), i∗
)
.

(3) If η1i∗ and η2i∗ have different signs, then tj∗,i∗ = 0. Hence

ω1 ◦ s(ζ2) = ωi∗

1

(
sj∗,i∗(ξ2)

)
= ωi∗

1

(
λ(1, 0, 0), i∗

)
= (1, 0, 0, i∗);

s ◦ ω2(ζ2) = sj∗,i∗
(
ωj∗

2 (ξ2)
)
= (1, 0, 0, i∗).

By Section 3.2, λ ◦ g
[
2π(i∗−1)

n1
, 2πi∗

n1
],tj∗,i∗

= g
[
2π(i∗−1)

n1
, 2πi∗

n1
],tj∗,i∗

◦ λ, and it follows that

ω1 ◦ s(ζ2) = s ◦ ω2(ζ2).
Lastly, by Section 2.1 and Section 2.2, it is standard to check that the induced

map s∗ : K̃0(X1)→ K̃0(X2) is exactly β. �

4. The main result

We are now in a position to prove the main result.

Theorem 4.1. Let A be the AF algebra whose scaled ordered group K0(A) is

(G⊕H, (G+ \ {0})⊕H ∪ {(0, 0)}, g̃ ⊕ h̃), where (G,G+, g̃) is the scaled ordered
group K0(B) of a unital simple AF algebra B, H is a countable torsion-free

Abelian group, and h̃ ∈ H. Let σ be an order 2 scaled ordered automorphism of
K0(A), defined by σ(g, h) = (g, η(h)), where (g, h) ∈ G⊕H, and η is an order 2
automorphism of H which is of type I. Then there is an order 2 automorphism
α of A such that α∗ = σ. Moreover, α could be constructed to have the tracial
Rokhlin property. In this case, C∗(Z2, A, α) is a unital simple AH algebra with no
dimension growth.

Proof. Since η is of type I, there is a sequence of positive integers {nk : k ∈ N} and
monomorphisms βk : Znk → Znk+1 and of order 2 automorphisms ηk : Znk → Znk

such that the following diagram commutes

Zn1
β1−−−→ Zn2

β2−−−→ Zn3
β3−−−→ · · ·Hyη1

yη2

yη3

Zn1
β1−−−→ Zn2

β2−−−→ Zn3
β3−−−→ · · ·H
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and H = limk→∞(Znk , βk), η = limn→∞ ηk. Moreover, under the canonical basis
of Znk , ηk has the form

ηk = diag{
pk︷ ︸︸ ︷

1, . . . , 1;

qk︷ ︸︸ ︷
−1, . . . ,−1}

for suitable nonnegative integers pk, qk such that pk + qk = nk, k ∈ N.
Set Xk = S2 ∨ S2 ∨ · · · ∨ S2, where S2 repeats nk times, k ∈ N. Then by

Section 3.3 and Lemma 3.1, there exist an order 2 homeomorphism ωk of Xk such
that ωk

∗ = ηk, and a surjective continuous map sk from Xk+1 to Xk such that the
induced map s∗k : K̃0(Xk) → K̃0(Xk+1) is exactly βk, k ∈ N; and the following
diagram commutes:

X1
s1←−−− X2

s2←−−− X3
s3←−−− · · ·xω1

xω2

xω3

X1
s1←−−− X2

s2←−−− X3
s3←−−− · · ·

Without loss of generality, we may assume that there exists h1 ∈ Zn1 such that
β1,∞(h1) = h̃. It is easy to see that η1(h1) = h1. Denote

h1 = (λ1, . . . , λp1 ; ζ1, . . . , ζq1) ∈ Zn1 .

Since η1(h1) = h1, we have

ζ1 = · · · = ζq1 = 0.

By an elementary fact of K-theory (see, e.g., [19, Exercise 11.2]), there exists a
projection q1 ∈M•(C(X1)), where • is a large positive integer, such that

[q1] =
(
rank(q1), h1

)
∈ Z⊕ Zn1 = K0

(
C(X1)

)
and w∗

1(q1) = q1,

where the first coordinate of Z ⊕ Zn1 denotes the rank part (in fact, we could
choose • = 2 and rank(q1) = 1).

For fixed j < k ∈ N, since Xj is a compact metric space, there exist γ(j, k)

open balls of radius 1
k
, D

(j,k)
1 , . . . , D

(j,k)
γ(j,k), in Xj such that⋃

1≤i≤γ(j,k)

D
(j,k)
i = Xj.

Let Γk,j = sj ◦ · · · ◦ sk−1 be the surjective map from Xk to Xj. Define Ω
(j,k)
i

.
=

Γ−1
k,j(D

(j,k)
i ). Then Ω

(j,k)
i is an open set in Xk, 1 ≤ i ≤ γ(j, k); moreover,⋃

1≤i≤γ(j,k)

Ω
(j,k)
i = Xk.

Let ξj,k,1, ξj,k,2, . . . , ξj,k,γ(j,k) be a sequence of points of Xk such that ξj,k,i ∈ Ω
(j,k)
i ,

1 ≤ i ≤ γ(j, k), and denote

Ej,k = {ξj,k,1, ξj,k,2, . . . , ξj,k,γ(j,k)}.
For k ≥ 2, rewrite the finite set

⋃
1≤j<k Ej,k as

{ξk,1, . . . , ξk,2, ξk,γ(k)}
.
= Ek.
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It follows from Lemma 2.4 that (G,G+) = limk→∞(Gk, (Gk)+, ϕk), where Gk

is Zmk and mk ≥ 2, k ∈ N. Denote by ϕ
(i,j)
k the partial map of ϕk from the ith

summand of Zmk to the jth summand of Zmk+1 . By Lemma 2.4, we may assume
that d(k, i, j) ≥ 2γ(k) + 4, where d(k, i, j) is the multiplicity of the partial map

of ϕ
(i,j)
k . Also, we may assume that

lim
k→∞

min
1≤i≤mk,1≤j≤mk+1

d(k, i, j) = +∞.

When d(k, i, j) is odd, define r′(k, i, j) = 2; when d(k, i, j) is even, define
r′(k, i, j) = 1, 1 ≤ i ≤ mk, 1 ≤ j ≤ mk+1, k ∈ N. Set

r(k, i, j) = d(k, i, j)− 2γ(k)− 1,

and define

r′′(k, i, j) =
r(k, i, j)− r′(k, i, j)

2
.

Then r′′(k, i, j) is a positive integer, 1 ≤ i ≤ mk, 1 ≤ j ≤ mk+1, k ∈ N. By the
Effros–Handelman–Shen theorem (see [9]; see also [13, Proposition 3.4.9]), there
is a unital AF algebra B = limk→∞(Bk, ψk), where

Bk =Ml(k,1) ⊕ · · · ⊕Ml(k,mk),

such that (
K0(Bk), K0(Bk)+, [1Bk

]
)
=

(
Gk, (Gk)+, gk

)
and

(ψk)∗ = ϕk, k = 1, 2, . . . , lim
k→∞

ϕk,+∞(gk) = g̃.

Since B is simple, we may assume without loss of generality that l(1, 1) is larger
than •.

Define

Ck =
(
M2l(k,1)

(
C(Xk)

))
⊕

( mk⊕
i=2

M2l(k,i)

)
.

Therefore, (
K0(Ck), K0(Ck)+, [1Ck

]
)

=
(
Zmk ⊕ Znk ,

[
(N⊕ Znk) ∪

{
(0, 0)

}]
⊕ Zmk−1

+ , 2gk ⊕ 0
)
,

K1(Ck) = 0.

Define

π
(k)
1 : Ck →M2l(k,1)

(
C(Xk)

)
and

π
(k)
i : Ck →M2l(k,i) for 2 ≤ i ≤ mk

as the quotient maps. Let

Zk =
{
y : y ∈ Xk, ωk(y) = y

}
.

Choose z∗k ∈ Zk.
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For i = 1 and j = 1, define Φk,1,1 :M2l(k,1)(C(Xk))→M2l(k+1,1)(C(Xk+1)) by

Φk,1,1(f) = diag
(
f ◦ sk;

r′(k,i,j)+2r′′(k,i,j)︷ ︸︸ ︷
f(z∗k), . . . , f(z

∗
k); f(ξk,1), f

(
ωk(ξk,1)

)
; . . . ;

f(ξk,γ(k)), f
(
ωk(ξk,γ(k))

))
.

For i = 1, and j > 1, define Φk,1,j :M2l(k,1)(C(Xk))→M2l(k+1,j) by

Φk,1,j(f) = diag
(
f(z∗k);

r′(k,i,j)+2r′′(k,i,j)︷ ︸︸ ︷
f(z∗k), . . . , f(z

∗
k); f(ξk,1), f

(
ωk(ξk,1)

)
; . . . ;

f(ξk,γ(k)), f
(
ωk(ξk,γ(k))

))
.

For i > 1, and j = 1, define Φk,i,j :M2l(k,i) →M2l(k+1,1)(C(Xk+1)) by

Φk,i,j(a) = ιk+1,1 ◦ diag(
r′(k,i,j)+1︷ ︸︸ ︷
a, . . . , a;

2r′′(k,i,j)+2γ(k)︷ ︸︸ ︷
a, . . . , a ),

where ιk+1,1 is the embedding of M2l(k+1,1) into M2l(k+1,1)C(Xk+1).
For i > 1 and j > 1, define Φk,i,j :M2l(k,i) →M2l(k+1,j) by

Φk,i,j(a) = diag(

r′(k,i,j)+1︷ ︸︸ ︷
a, . . . , a;

2r′′(k,i,j)+2γ(k)︷ ︸︸ ︷
a, . . . , a ).

Set Φk =
⊕

1≤j≤mk+1
(
⊕

1≤i≤mk
Φk,i,j). Then (Φk)∗ = ϕk ⊕ βk. Let

C = lim
k→∞

(Ck,Φk).

Therefore, C is an AH algebra and(
K0(C), K0(C)+

)
= lim

k→∞

(
Zmk ⊕ Znk ,

[
(N⊕ Znk) ∪

{
(0, 0)

}]
⊕ Zmk−1

+ , ϕk ⊕ βk
)
,

K1(C) = 0.

Note that (
G⊕H,

(
G+ \ {0}

)
⊕H ∪

{
(0, 0)

})
= lim

k→∞

(
Zmk ⊕ Znk ,

(
Zmk

+ \ {0}
)
⊕ Znk

)
∪
{
(0, 0)

}
, ϕk ⊕ βk).

Moreover, since d(k, i, j) > 0 for 1 ≤ i ≤ mk, 1 ≤ j ≤ mk+1, k ∈ N, it is
straightforward to check that(

K0(C), K0(C)+, [1C]
) ∼= (

G⊕H,
(
G+ \ {0}

)
⊕H ∪

{
(0, 0)

}
, 2g̃ ⊕ 0

)
.

We next show that C is simple. Fix j ∈ N, for a nonzero element f ∈ Cj.

Case 1 : π
(j)
i (f) 6= 0 for some i > 1. As each partial map of Φj = Φj,j+1 has

positive multiplicity, Φj,j+1(f) is full in Cn+1.

Case 2 : π
(j)
1 (f) 6= 0. Choose x∗ ∈ Xj such that π

(j)
1 (f)(x∗) 6= 0. Since π

(j)
1 (f)

is a continuous map on the compact metric space Xj, there exists a δ > 0 such
that ∥∥π(j)

1 (f)(x)− π(j)
1 (f)(x∗)

∥∥ < ‖π(j)
1 (f)(x∗)‖

2
,
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provided that dist(x, x∗) < δ, where x ∈ Xj. Choose k ∈ N, k > j, such that
1
k
< δ

2
. Then we could find ξ ∈ Ek such that dist(Γk,j(ξ), x

∗) < 1
k
. Now Φj,k(f) is

full in Ck.
By [7, Proposition 2.1(iii)], it follows that C is simple.
Next we will show that RR(C) = 0. Fix j ∈ N. For any f = f ∗ ∈ Cj, note that

Xj is a connected 2-dimensional compact metric space and that π
(j)
1 (f) is a con-

tinuous map on Xj. Recall the fact that a continuous map from a compact metric
space to another metric space is automatically uniformly continuous. Hence, for
ε > 0, there exists a δ > 0 such that∥∥π(j)

1 (f)(x)− π(j)
1 (f)(y)

∥∥ < ε

10
,

provided that d(x, y) < δ. Choose k ∈ N, k > j, such that 1
k
< δ

2
. According to

the choice of Ek, we have

max
{
sup

{∣∣λi(Φj,k(f)(x)
)
− λi

(
Φj,k(f)(y)

)∣∣;x, y ∈ Xk

}
: 1 ≤ i ≤ 2l(k, 1)

}
≤ ε

5
,

where λi(T ) = the ith lowest eigenvalue of a matrix T , counted with multiplicity.
Therefore, by [5, Theorem 1.3, Note added in proof], RR(C) = 0. Hence, a priori,
C is an AH algebra, but by Theorem 2.5, C turns out to be an AF algebra.

For k ∈ N, define ρk = w∗
k ⊕ id⊕mk

i=2 M2l(k,i)
. Set u1 = idC1 , and for 1 ≤ i ≤

mk, 1 ≤ j ≤ mk+1, k ∈ N, define

uk+1,i,j = diag
{r′(k,i,j)+1︷ ︸︸ ︷
1, . . . , 1;

r′′(k,i,j)+γ(k)︷ ︸︸ ︷[
0 1
1 0

]
, . . . ,

[
0 1
1 0

]}
⊗ idM2l(k,i)

.

Next define

uk =
( mk⊕

i=1

uk+1,i,1

)
⊗ 1C(Xk+1) ⊕

mk+1⊕
j=2

( mk⊕
i=1

uk+1,i,j

)
, k ∈ N.

Then it is straightforward to check that

Φk ◦ (ρk) = Aduk+1 ◦ (ρk+1) ◦ Φk and u2k+1 = idCk+1
, k ∈ N.

Set v1 = idC1 , and define vk+1 = Φk(vk)uk+1 inductively. Then vk = v∗k and
v2k = idCk

, k = 1, 2, . . . . Define αk = Ad vk ◦ ρk, k ∈ N. So one can easily
construct the following commutative diagram:

C1
Φ1−−−→ C2

Φ2−−−→ C3
Φ3−−−→ · · ·Cyα1

yα2

yα3

C1
Φ1−−−→ C2

Φ2−−−→ C3
Φ3−−−→ · · ·C

Hence the automorphisms αk define

α : C = lim
k→∞

(Ck,Φk)→ C = lim
k→∞

(Ck,Φk),
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which is a symmetry with

α∗ : G⊕H → G⊕H and α∗(g, h) =
(
g, η(h)

)
.

We are now in a position to show that the action of Z2 generated by α has
the tracial Rokhlin property. To this end, we fix a finite set F ⊂ C1

.
= {a :

a ∈ C, ‖a‖ ≤ 1} and an ε > 0. Then there exists a positive integer k such that
F ⊂ ε

2
Ck and

max
1≤i≤mk,1≤j≤mk+1

3

d(k, i, j)
<
ε

2
.

Define

ek+1,i,j = diag
{r′(k,i,j)+1︷ ︸︸ ︷
0, . . . , 0;

r′′(k,i,j)+γ(k)︷ ︸︸ ︷[
1 0
0 0

]
, . . . ,

[
1 0
0 0

]}
⊗ idM2l(k,i)

, for 1 ≤ i ≤ mk, 1 ≤ j ≤ mk+1,

and take

e =
( mk⊕

i=1

ek+1,i,1

)
⊗ 1C(Xk+1) ⊕

mk+1⊕
j=2

( mk⊕
i=1

ek+1,i,j

)
.

Then αk+1(e)e = 0, and e commutates with Φk(Ck). Moreover, for any tracial
state τ on Ak+1,

τ
(
1− e− αk+1(e)

)
≤ max

1≤i≤mk,1≤j≤mk+1

3

d(k, i, j)
<
ε

2
.

Then α has the tracial Rokhlin property.
Set p1 = (q1 ⊕ 1Ml(1,1)−rank(q1)

) ⊕ 1Ml(1,2)
⊕ · · · ⊕ 1Ml(1,m1)

. Inductively, we define

pk+1 as pk+1 = Φk(pk), k ∈ N. Noting that p1 ∈ Cα1
1 and α2◦Φ = Φ◦α1, it follows

from Section 2.3 that p2 ∈ Cα2
2 ; similarly, we have pk ∈ Cαk

k , k ∈ N. For k ∈ N, let
Ak = pkCkpk. Since pk ∈ Cαk

k , it is routine to check that Φk maps Ak into Ak+1,
αk maps Ak onto Ak and is also an order 2 automorphism of Ak, k ∈ N. Let

A = lim
k→∞

(Ak,Φk).

Then it is straightforward to check that(
K0(A), K0(A)+, [1A]

)
=

(
G⊕H,

(
G+ \ {0}

)
⊕H ∪

{
(0, 0)

}
, g̃ ⊕ h̃

)
.

Also, as the following diagram commutes:

A1
Φ1−−−→ A2

Φ2−−−→ A3
Φ3−−−→ · · ·Ayα1

yα2

yα3

A1
Φ1−−−→ A2

Φ2−−−→ A3
Φ3−−−→ · · ·A

the automorphisms αk define α : A→ A, which is a symmetry with α∗ : G⊕H →
G⊕H, such that α∗(g, h) = (g, η(h)) = σ(g, h).

Define p = Φ1,∞(p1). Then it is obvious that A = pCp; hence A is an AF
algebra. Therefore, by Elliott’s classification theorem of AF algebras (see, e.g.,
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[13, Theorem 3.4.8]), A ∼= A. Finally, noting that p ∈ Aα, by [16, Lemma 3.7],
the Z2-action α of A has the tracial Rokhlin property.

Hence, by [16, Corollary 1.6, Theorem 2.6], C∗(Z2, A, α) is a unital simple,
separable C∗-algebra with tracial rank zero. Since Ck is nuclear, Ak = pkCkpk
is a hereditary subalgebra of Ak, hence Ak is nuclear. Note that Z2 is amenable
and compact. It follows from [20, Corollary 7.18] and [8, Proposition 6.1] that
C∗(Z2, Ak, αk) is nuclear and satisfies the universal coefficient theorem. Hence,
by [18, Proposition 2.4.7(ii)],

C∗(Z2, A, α) = lim
k→∞

(
C∗(Z2, Ak, αk),Φk

)
is also nuclear and satisfies the universal coefficient theorem. Therefore, by [14,
Theorem 5.2] and its proof, C∗(Z2, A, α) is a unital simple AH algebra with no
dimension growth. �

Remark 4.2. Let A be the unital simple AF algebra with(
K0(A), K0(A)+, [1A]

)
=

(
Z
[1
2

]
⊕ Z,Z

[1
2

]
>0
⊕ Z ∪

{
(0, 0)

}
, (1, 0)

)
.

Let σ be the order 2 scaled ordered automorphism of K0(A) defined by σ(a, b) =
(a,−b), where (a, b) ∈ Z[1

2
] ⊕ Z. Let γ be any order 2 automorphism of A such

that γ∗ = σ. As the proof is outlined in [3, Section 10.11.3], C∗(Z2, A, γ) is not an
AF algebra. Hence, by [16, Theorem 2.2], γ does not have the Rokhlin property.

Remark 4.3. Let (G,G+) be the ordered group of a unital simple AF algebra B,
and let H be a countable torsion-free Abelian group. From the proof of the above
theorem, C is a unital, simple AH algebra of no dimension growth and of real rank
zero. Hence, by [11, p. 571], (K0(C), K0(C)+) = (G⊕H, (G+ \{0})⊕H∪{(0, 0)})
has the Riesz interpolation property.

Remark 4.4. If we further assume that η is the minus one map in the assumption
of Theorem 4.1, the corresponding proof becomes relatively easy because we do
not need to cut down the algebra C with projection p.
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