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Abstract. In this article, we give a boundedness criterion for Cauchy singular
integral operators in generalized weighted grand Lebesgue spaces. We estab-
lish a necessary and sufficient condition for the couple of weights and curves
ensuring boundedness of integral operators generated by the Cauchy singular
integral defined on a rectifiable curve. We characterize both weak and strong
type weighted inequalities. Similar problems for Calderón–Zygmund singular
integrals defined on measured quasimetric space and for maximal functions
defined on curves are treated. Finally, as an application, we establish existence
and uniqueness, and we exhibit the explicit solution to a boundary value prob-
lem for analytic functions in the class of Cauchy-type integrals with densities
in weighted grand Lebesgue spaces.

1. Introduction

The theory of grand Lebesgue spaces Lp) introduced by Iwaniec and Sbordone
in [11] is nowadays the focus of one of the most intensively developing directions
in modern analysis. The necessity of introducing and studying these spaces grew
out of their rather essential role in various fields. For example, besides the orig-
inal question about minimal hypotheses to ensure the integrability of the Jaco-
bian determinant, we recall applications in partial differential equations (PDEs)

Copyright 2018 by the Tusi Mathematical Research Group.
Received Jun. 6, 2017; Accepted Sep. 5, 2017.
First published online Feb. 6, 2018.
*Corresponding author.
2010 Mathematics Subject Classification. Primary 42B20; Secondary 42B25, 46E30.
Keywords. Cauchy singular integral operator, Carleson curve, Muckenhoupt Ap class,

Calderón–Zygmund singular integrals, Riemann boundary value problem.
413

https://doi.org/10.1215/20088752-2017-0056
http://projecteuclid.org/afa


414 A. FIORENZA and V. KOKILASHVILI

(see, e.g., [9]), geometric function theory (see, e.g., [4]), Sobolev spaces theory
(see, e.g., [8], [6]), and Banach function spaces theory (see, e.g., [3], [6], [7]). In
order to study the existence and uniqueness of solutions for the nonhomogeneous
n-harmonic equation div a(x,∇u) = µ, Greco, Iwaniec, and Sbordone [9] defined
the more general grand Lp),θ spaces. Afterwards, it turned out that, in the the-
ory of PDEs, generalized Lp),θ spaces were also appropriate for treating some
regularity problems (see, e.g., [6]).

An intensive study of the boundedness of singular integrals in weighted grand
Lebesgue spaces was carried out in [13, Chapter 14]. In the present article, we
explore the same problem in the more general grand Lebesgue spaces introduced,
in the unweighted case, by Capone, Formica, and Giova in [3]. We treat both
cases of weighted spaces differing by the position of the weight function in the
norms.

Let Γ = {t ∈ C : t = t(s), 0 ≤ s ≤ l < ∞} be a simple rectifiable curve with
arc-length measure. In the remainder of this article, we use the notation

D(t, r) = Γ ∩B(t, r), 0 < r < diamΓ,

where B(t, r) = {z ∈ C : |z − t| < r}. A rectifiable curve Γ is called a Carleson
(regular) curve if

sup
t∈Γ,0<r<diam Γ

|D(t, r)|
r

< ∞.

Here |D(t, r)| denotes the arc-length measure of the portion D(t, r).
Now let w be a weight, that is, an almost everywhere positive integrable func-

tion on a given rectifiable simple curve Γ; for arbitrary Borel sets e on Γ, we
denote

we =

∫
e

w(t) ds.

Let 1 < p < ∞, and let δ be a positive, nondecreasing, bounded function on

(0, p − 1), δ(0+) = 0. By L
p),δ
w (Γ), we denote the set of all measurable functions

on Γ for which

‖f‖
L
p),δ
w (Γ)

= sup
0<ε<p−1

(
δ(ε)

∫
Γ

∣∣f(t)∣∣p−ε
w(t) ds

) 1
p−ε

< ∞.

In the following, we will consider also the generalized weighted grand Lebesgue

space Lp),δ
w (Γ) defined by the norm

‖f‖Lp),δ
w (Γ)

= sup
0<ε<p−1

(
δ(ε)

∫
Γ

∣∣f(t)w(t)∣∣p−ε
ds
) 1

p−ε
.

When w(t) ≡ 1, we put Lp),δ(Γ) = L
p),δ
1 (Γ), Lp),δ(Γ) = Lp),δ

1 (Γ). It is clear that
in such a case, when Γ = (0, 1), both these spaces coincide with the space Lp),δ

introduced in [3].
In the following, we will also need the definition of Muckenhoupt-type weights

suited to the curves. We set

Ap(Γ) =
{
w : sup

t∈Γ,0<r<diam Γ

(1
r

∫
D(t,r)

w(τ) ds
)(1

r

∫
D(t,r)

w1−p′(τ) ds
)p−1

< ∞
}
.
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Together with L
p),δ
w (Γ) spaces, we are interested in the weak grand Lebesgue

spaces WL
p),δ
w (Γ), which we define by the quasinorm

‖f‖
WL

p),δ
w (Γ)

= sup
λ>0

λ sup
0<ε<p−1

(
δ(ε)w

{
t ∈ Γ :

∣∣f(t)∣∣ > λ
}) 1

p−ε .

It is clear that L
p),δ
w (Γ) ↪→ WL

p),δ
w (Γ).

2. Boundedness of the Cauchy singular integral operator in L
p),δ
w (Γ)

In this section, we prove the following statement.

Theorem 2.1. Let 1 < p < ∞. Then the following conditions are equivalent:

(i) the Cauchy singular integral operator

SΓf(t) =

∫
Γ

f(τ)

τ − t
dτ

is bounded in L
p),δ
w (Γ);

(ii) SΓ is bounded from L
p),δ
w (Γ) to WL

p),δ
w (Γ);

(iii) Γ is a Carleson curve and w ∈ Ap(Γ).

Corollary 2.2. Let 1 < p < ∞. Then the operator SΓ is bounded in Lp),δ(Γ) if
and only if Γ is a Carleson curve.

It is evident that, after formally setting δ(ε) ≡ 1, Corollary 2.2 is G. David’s
well-known result.

Proof. First, we show that (iii) =⇒ (i). It is well known that Carleson curves
with arc-length measure and Euclidean distance are spaces of homogeneous type;
moreover, the Muckenhoupt class of weights defined on spaces of homogeneous
type is always open (see, e.g., [16]).

From the openness of Ap(Γ), there exists a small positive number σ such that

w ∈ Ap−σ(Γ). Furthermore, by the definition of L
p),δ
w (Γ), we have that f ∈ Lp−σ

w (Γ)
for 0 < σ < p− 1. Using Hölder’s inequality, we get∫

Γ

∣∣f(t)∣∣ ds ≤ ‖f‖Lp−σ
w (Γ) ·

(∫
Γ

w1−(p−σ)′(t) ds
) p−σ−1

p−σ
< ∞;

hence, if f ∈ L
p),δ
w (Γ), then from f ∈ Lp−σ

w (Γ) and w ∈ Ap−σ(Γ) we get f ∈ L1(Γ),
and the Cauchy singular integral SΓf(t) exists almost everywhere on Γ. This
latter existence of SΓf(t) almost everywhere when Γ is an arbitrary rectifiable
curve is in fact a consequence of Calderón’s well-known result in [2, Theorem 1]
on the boundedness of SΓ in the case of Lipschitz curves when Lipschitz constants
are sufficiently small (for details, we refer the reader to [5, Theorem 2.23, p. 215]).
It is well known that for the operator SΓ to be bounded in Lp

w(Γ) (1 < p < ∞) it
is necessary and sufficient that Γ be a Carleson curve and that w ∈ Ap(Γ). This
result was established independently in [1, Theorem 4.8 and Chapter 5] and [12,
Theorem 4.2], using different approaches.
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Fix some σ, 0 < σ < p− 1 such that w ∈ Ap−σ(Γ). Due to the aforementioned
results, we have

‖SΓ‖Lp−σ
w (Γ) ≤ M1‖f‖Lp−σ

w (Γ)

and

‖SΓ‖Lp
w(Γ) ≤ M2‖f‖Lp

w(Γ).

By the Riesz–Thorin interpolation theorem, there exists a constant M > 0 such
that the inequality

‖SΓf‖Lp−ε
w (Γ) ≤ M‖f‖Lp−ε

w (Γ)

holds uniformly for all ε, 0 < ε ≤ σ and for all f ∈ Lp−ε
w (Γ). From the latter

inequality, it follows that

sup
0<ε≤σ

(
δ(ε)

) 1
p−ε‖SΓf‖Lp−ε

w (Γ) ≤ M sup
0<ε≤σ

(
δ(ε)

) 1
p−ε‖f‖Lp−ε

w (Γ). (2.1)

Now let ε > σ. Using Hölder’s inequality with the exponent p−σ
p−ε

, we get

‖SΓf‖Lp−ε
w (Γ) ≤ ‖SΓf‖Lp−σ

w (Γ) · (wI)
ε−σ

(p−σ)(p−ε) ; (2.2)

therefore,

‖SΓf‖Lp),δ
w (Γ)

= max
{
sup

0<ε≤σ

(
δ(ε)

) 1
p−ε‖SΓf‖Lp−ε

w (Γ), sup
σ<ε<p−1

(
δ(ε)

) 1
p−ε‖SΓf‖Lp−ε

w (Γ)

}
≤ max

{
sup

0<ε≤σ

(
δ(ε)

) 1
p−ε‖SΓf‖Lp−ε

w (Γ),

sup
σ<ε<p−1

(
δ(ε)

) 1
p−ε‖SΓf‖Lp−σ

w (Γ)(wI)
ε−σ

(p−ε)(p−σ)
}

= max
{
sup

0<ε≤σ

(
δ(ε)

) 1
p−ε‖SΓf‖Lp−ε

w (Γ),

sup
σ<ε<p−1

δ(σ)−
1

p−σ δ(ε)
1

p−ε δ(σ)
1

p−σ ‖SΓf‖Lp−σ
w (Γ)(wI)

ε−σ
(p−ε)(p−σ)

}
≤ I ·max

{
1, δ(σ)−

1
p−σ sup

0<ε<p−1
δ(ε)

1
p−ε (1 + wΓ)

p−1−σ
p−σ

}
,

where

I = sup
0<ε≤σ

δ(ε)
1

p−ε‖SΓf‖Lp−ε
w (Γ).

From estimate (2.1), we conclude that

‖SΓf‖Lp),δ
w (Γ)

≤ M‖f‖
L
p),δ
w

· δ(σ)−
1

p−σ sup
0<ε<p−1

δ(ε)
1

p−ε (1 + wΓ)
p−1−σ
p−σ .

Thus we have proved the implication (iii) =⇒ (i) and, consequently, since again
by [5, Theorem 2.23, p. 215] (i) =⇒ (ii) holds, we have that (iii) =⇒ (ii). It
remains to prove that (ii) =⇒ (iii). The proof of this implication is divided into
two steps.

Step 1. We prove that, from condition (ii), the inequality∫
D(t,r)

w(τ)−
1

p−1 ds < ∞
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holds for arbitrary t ∈ Γ and r, 0 < r < diamΓ. Let us suppose the contrary,
namely, that ∫

D(t,r)

w(τ)−
1

p−1 ds = ∞

holds for some t ∈ Γ and r, 0 < r < diamΓ, which we may assume to be suffi-

ciently small. We have w− 1
p /∈ L

p
p−1 (D(t, r)); therefore, there exists a nonnegative

h ∈ Lp(D(t, r)) such that h = 0 outside of D(t, r) and∫
D(t,r)

w(τ)−
1
ph(τ) ds = ∞. (2.3)

Set f = w− 1
ph. It is obvious that f ∈ Lp

w(Γ); consequently, f ∈ L
p),δ
w (Γ). Recalling

that the point t ∈ Γ and the radius r are fixed, let x ∈ Γ be such that |x−t| = 3r.
Introduce the function

g(τ) = f(τ)
dτ

|dτ |
ei arg(t−x). (2.4)

Then for arbitrary z ∈ D(x, r), we have∣∣SΓg(z)
∣∣ ≥ c

r

∫
D(t,r)

w− 1
p (τ)h(τ) ds,

and, taking (2.3) into account, we conclude that∣∣SΓg(z)
∣∣ = ∞ (2.5)

for z ∈ D(x, r). Therefore, according to (ii) there exists c > 0 such that(
δ(ε)w

{
t ∈ Γ :

∣∣(SΓϕ)(t)
∣∣ > λ

}) 1
p−ε ≤ c

λ
‖ϕ‖

L
p),δ
w

for arbitrary ϕ ∈ L
p),δ
w (Γ), λ > 0 and ε, 0 < ε < p − 1. Then the last inequality

for ϕ ≡ g and arbitrary λ > 0, by virtue of (2.5), yields

wD(x, r) ≤ c

λ
‖g‖

L
p),δ
w

.

Consequently, wD(x, r) = 0. The latter expression contradicts the assumption
that w(t) is positive almost everywhere.

Now, substituting in (2.4) the function f by w− 1
p−1χD(t,r), for z ∈ D(x, r), we

have ∣∣SΓg(z)
∣∣ ≥ 2

r

∫
D(t,r)

w− 1
p−1 (τ) ds. (2.6)

For λ = 2
r

∫
D(t,r)

w− 1
p−1 (τ) ds, condition (ii) turns into the estimate

1

r

∫
D(t,r)

w− 1
p−1 (τ) ds

(
δ(ε)wD(x, r)

) 1
p−ε ≤ c‖w− 1

p−1‖Lp),δ(D(t,r)),

which in turn implies that

1

r

∫
D(t,r)

w− 1
p−1 (τ) ds‖χD(x,r)‖Lp),δ

w
≤ c‖w− 1

p−1‖
L
p),δ
w (D(t,r))

(2.7)

with a constant c that does not depend on t, x, and r.
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Step 2. We now assert that for arbitrary D(t, r) and f ∈ L
p),δ
w (Γ), the inequality

‖f‖
L
p),δ
w (D(t,r))

≤
(
wD(t, r)

)− 1
p‖f‖Lp

w(D(t,r))‖χD(t,r)‖Lp),δ
w

(2.8)

holds; in fact, by applying Hölder’s inequality with the exponent p
p−ε

, we get the

chain of inequalities

‖f‖
L
p),δ
w (D(t,r))

≤ sup
0<ε<p−1

δ(ε)
1

p−ε

(∫
D(t,r)

w(τ) ds
) ε

(p−ε)p · ‖f‖Lp
w(D(t,r))

= sup
0<ε<p−1

δ(ε)
1

p−ε‖f‖Lp
w(D(t,r))

(
wD(t, r)

)− 1
p
(
wD(t, r)

) 1
p−ε

=
(
wD(t, r)

)− 1
p‖f‖Lp

w(D(t,r))‖χD(t,r)‖Lp),δ
w

.

Setting f = w− 1
p−1 in (2.8) and using (2.7), we deduce that

1

r

∫
D(t,r)

w− 1
p−1 (τ) ds‖χD(x,r)‖Lp),δ

w

≤ c
(∫

D(t,r)

w− 1
p−1 (τ) ds

) 1
p (
wD(t, r)

)− 1
p‖χD(t,r)‖Lp),δ

w
,

and hence(
wD(t, r)

) 1
p

(∫
D(t,r)

w− 1
p−1 (τ) ds

) 1
p′ ‖χD(x,r)‖Lp),δ

w
≤ cr‖χD(t,r)‖Lp),δ

w
. (2.9)

Changing the roles of D(t, r) and D(x, r), we get(
wD(x, r)

) 1
p

(∫
D(x,r)

w− 1
p−1 (τ) ds

) 1
p′ ‖χD(t,r)‖Lp),δ

w
≤ cr‖χD(x,r)‖Lp),δ

w
. (2.10)

Multiplying the inequalities (2.9) and (2.10) term by term and taking into account
the rectifiablity of Γ and the estimate

r ≤
∣∣D(x, r)

∣∣ ≤ (
wD(x, r)

) 1
p

(∫
D(x,r)

w− 1
p−1 (τ) ds

) 1
p′
,

we come to the condition

1

r

∫
D(t,r)

w(τ) ds
(1
r

∫
D(t,r)

w1−p′(τ) ds
)p−1

≤ c,

where c does not depend on t ∈ Γ and 0 < r < diamΓ. Theorem 1 is proved. �

By analyzing the proof of Theorem 2.1, we can conclude that, in fact, for
Calderón–Zygmund singular integrals defined on measured quasimetric space, a
more general statement is true.

Definition 2.3. Let (X, d, µ) be a quasimetric measured space. The conditions

µB(x, r) ≤ c1r
α (2.11)

and

µB(x, r) ≥ c2r
β
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imposed on measure µ are known as the upper and lower Ahlfors conditions
of orders α and β, respectively. The first one is also referred to as the growth
condition. Here the constants c1 and c2 do not depend on x ∈ X and 0 < r <
diamX, and B(x, r) denotes the ball in X with center x ∈ X and radius r.

Theorem 2.4. Let (X, d, µ) be a quasimetric measured space. Let 1 < p < ∞,
and let δ be a positive, nondecreasing, bounded function on (0, p− 1), δ(0+) = 0.
Then the following assertions are true.

(i) If w ∈ Ap(X) and µ satisfies the upper Ahlfors condition of order 1, then
the Calderón–Zygmund operator

Kf(x) =

∫
X

k(x, y)f(y) dµ

is bounded in L
p),δ
w (X).

(ii) Let µ satisfy the lower Ahlfors condition of order 1. Suppose that the kernel
k : X × X −→ R is such that for arbitrary ϕ ∈ L1(X,µ), there exist a
measurable function g and balls B, B1 in X such that supp g ⊂ B1 and∣∣Kg(z)

∣∣ ≥ c0

∫
B1

|ϕ(y)|
d(z, y)

dµ(y) ∀z ∈ B,

where c0 does not depend on ϕ and z. Then from the boundedness of K

from Lp),δ(X) to WL
p),δ
w (X), it follows that the measure µ satisfies the

upper Ahlfors condition of order 1 and that w ∈ Ap(X).

3. Boundedness of the Cauchy singular integral operator in Lp),δ
w (Γ)

In this section, we establish the boundedness of SΓ in the other weighted gen-
eralized grand Lebesgue spaces, namely, the generalization where weights are
interpreted as multipliers.

Theorem 3.1. If 1 < p < ∞, Γ is a Carleson curve, wp ∈ Ap(Γ), and δ is as in

Theorem 2.1, then SΓ is bounded in Lp),δ
w (Γ).

Proof. By the virtue of the openness of Ap(Γ) and the assumption that wp ∈
Ap(Γ), there exists a small positive number σ such that wp ∈ Ap−σ(Γ). Note that
it is also wp−σ ∈ Ap−σ; in fact, by applying Jensen’s inequality, we derive the
estimate (1

r

∫
D(t,r)

wp−σ(t) ds
) 1

p−σ
(1
r

∫
D(t,r)

w(p−σ)[1−(p−σ)′](t) ds
) 1

(p−σ)′

≤
(1
r

∫
D(t,r)

wp(t) ds
) 1

p
(1
r

∫
D(t,r)

wp[1−(p−σ)′](t) ds
) p−σ

(p−σ)′ ·
1
p
.

Since p−σ
(p−σ)′

= p− σ − 1, we conclude that wp−σ ∈ Ap−σ.

Now let us consider the operator

f −→ Kwf := wSΓ

( f

w

)
.
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It is obvious that the boundedness of SΓ in Lp
w(Γ) is equivalent to the boundedness

of Kw in Lp(Γ). Since wp ∈ Ap and wp−σ ∈ Ap−σ, the inequalities

‖Kwf‖Lp ≤ c1‖f‖Lp

and

‖Kwf‖Lp−σ ≤ c2‖f‖Lp−σ

hold, and by repeating verbatim the arguments used to prove Theorem 2.1, we get
the boundedness of Kw in Lp),δ(Γ), which in turn is equivalent to the boundedness

of SΓ in Lp),δ
w (Γ). Theorem 3.1 is proved. �

4. Hardy–Littlewood maximal function defined on curve

Let Γ be a rectifiable curve of finite length. Let us consider the Hardy–Little-
wood maximal function defined as

(MΓf)(t) = sup
1

r

∫
D(t,r)

∣∣f(τ)∣∣ ds,
where the supremum is taken over all r, 0 < r < diamΓ. Using the arguments in
Section 2, we are able to prove the following statement.

Theorem 4.1. Let 1 < p < ∞, and let δ be a positive, nondecreasing, bounded
function on (0, p− 1), δ(0+) = 0. The following conditions are equivalent:

(i) MΓ is bounded in L
p),δ
w (Γ);

(ii) MΓ is bounded from L
p),δ
w (Γ) to WL

p),δ
w (Γ);

(iii) Γ is a Carleson curve and w ∈ Ap(Γ).

We provide a sketch of the proof.
Sufficient part : The operator MΓ is bounded in Lp(Γ) (1 < p < ∞) when Γ is

Carleson curve and w ∈ Ap(Γ). This follows from the fact that Γ with arc-length
measure and Euclidean distance is a space of homogeneous type. On the other
hand, the Hardy–Littlewood maximal function defined on a space of homogeneous
type is bounded in Lp

w, if w is a Muckenhoupt weight (see [16]).
Necessary part : It is sufficient to note that from the definition of the maximal

function, we have that

1

r

∫
D(t,r)

∣∣f(τ)∣∣ ds ≤ cMΓ(f · χD(t,r))(z), z ∈ D(t, r).

The remaining part of the proof is once more analogous to that of Theorem 2.1,
and so we omit the details. Finally, we state the following result, whose proof
follows the same lines as that of Theorem 3.1.

Theorem 4.2. Let 1 < p < ∞ and wp ∈ Ap(Γ). Then the operator MΓ is bounded

in Lp),δ
w (Γ).
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5. The Riemann problem for analytic functions in the class of
Cauchy-type integrals with densities in Lp),δ(Γ)

In this section, we show an application of Theorem 2.1 to boundary value prob-
lems for analytic functions, a topic which was formulated for the first time by
Riemann and which arose from several important results established by Hilbert,
Sokhotski, Plemely, Poincaré, Bertrand, Noether, Carleman, Gakhov, Muskhel-
ishvili, and Vekua.

We begin by introducing the necessary notation and definitions. Let

Cp),δ
Γ =

{
Φ : Φ(z) = CΓ(ϕ)(z) =

1

2πi

∫
Γ

ϕ(τ) dτ

τ − z
, ϕ ∈ Lp),δ, z /∈ Γ

}
and

CΓ =
{
Φ : Φ(z) = CΓ(ϕ)(z) =

1

2πi

∫
Γ

ϕ(τ) dτ

τ − z
, ϕ ∈ L1, z /∈ Γ

}
.

The function ϕ is known as the density of the Cauchy-type integral CΓ(ϕ).

Definition 5.1 ([15, p. 203]). Let D be a simply connected domain in the complex
plane with rectifiable Jordan boundary Γ. The Smirnov class Es(D) (s > 0) is the
set of analytic functions on D enjoying the following property. For every sequence
(Γn)n=1,2,..., Γn ⊂ D being rectifiable Jordan curves approaching Γ as n −→ ∞,
in the sense that if Dn is the bounded domain with boundary Γn, we have

D1 ⊂ D2 ⊂ · · · ⊂ D and
∞⋃
n=1

Dn = D,

the condition

sup
n

∫
Γn

∣∣f(z)∣∣s |dz| < ∞

is fulfilled.

The classes Ep(D) generalize the well-known Hardy classes.

Proposition A ([10, p. 501]). Let D be a simply connected domain in the complex
plane with rectifiable Jordan regular boundary Γ. Then Φ ∈ Es(D) (1 < s < ∞)
if and only if it is represented by a Cauchy-type integral with density from Ls(Γ).

Proposition B ([15, p. 205]). The class E1(D) coincides with the class of func-
tions representable in D by a Cauchy-type integral.

By using Theorem 2.1 and following the approach developed in [14, Section 4.18],
we can establish the following result. Here we just recall that for Φ defined in
C, the symbol Φ+ denotes the restriction of Φ in D+ := D, and the symbol Φ−

denotes the restriction of Φ in D− := C \D.

Theorem 5.2. Let Γ be a simple closed rectifiable Carleson curve, and let G(t)
be continuous on Γ, with G(t) 6= 0, t ∈ Γ, p > 1, and g(t) ∈ Lp),δ(Γ). If κ =
indG(t) = 1

2π
[argG(t)]Γ, then
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(i) for κ = 0, the boundary value problem

Φ+(t) = G(t)Φ−(t) + g(t) a.e. on Γ (5.1)

is uniquely solvable in Cp),δ
Γ and the solution is given by

Φ(z) =
X(z)

2πi

∫
Γ

g(t)

X+(t)(t− z)
, (5.2)

where

X(z) = exp CΓ(lnG)(z), z /∈ Γ;

(ii) for κ > 0, problem (5.1) is unconditionally solved in Cp),δ
Γ and its general

solution is given by the equality

Φ(z) =
X(z)

2πi

∫
Γ

g(t)

X+(t)(t− z)
+X(z)Qκ−1(z), (5.3)

where

X(z) =

{
exph(z), z ∈ D+,

(t− z0)
−κ exph(z), z ∈ D−, z0 ∈ D+,

h(z) = CΓ
(
lnG(t)(t− z0)

−κ)(z),
and Qκ−1(z) is an arbitrary polynomial of order κ − 1 (Q−1(z) ≡ 0).

(iii) for κ < 0, problem (5.1) is solvable in Cp),δ
Γ if and only if∫

Γ

g(t)

X+(t)
tk dt = 0, k = 0,κ − 1.

If the latter conditions are fulfilled, then problem (5.1) has a unique solu-
tion given by equality (5.3) for Qκ−1(z) ≡ 0.

Proof. Select a rational function G̃(t) such that

sup
t∈Γ

∣∣∣G(t)

G̃(t)
− 1

∣∣∣ < 1

2

(
1 + ‖SΓ‖Lp(·),θ→Lp(·),θ

)−1
. (5.4)

It is clear that ind G̃(t) = 0; indeed,

indG = ind
G

G̃
+ ind G̃,

and by (5.4), we have ind G

G̃
= 0, so that ind G̃(t) = 0.

Consider now the function

X̃(z) = exp CΓ(ln G̃)(z), z /∈ Γ, (5.5)

so that the functions [X̃(z)]±1 are bounded and

G̃(t) =
X̃+(t)

X̃−(t)
.
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Let us rewrite condition (5.1) in the form(Φ

X̃

)+

=
G

G̃

(Φ

X̃

)−
+

g

X̃+
. (5.6)

Since the sought function Φ ∈ Cp),δ
Γ , we have that Φ(z) ∈ Ep−ε for 0 < ε < p− 1

and that, according to Theorem 2.1, Φ±(t) ∈ Lp),δ(Γ). The fact that 1

X̃(z)
is

bounded implies that

Φ(z)

X̃(z)
∈ Ep−ε(D±) ⊂ E1(D±).

Due to the latter inclusion, the function Φ

X̃
belongs to Cp(·),θ

Γ ; indeed,

CΓ
(Φ

X̃

)+

(z) =

{
Φ(z)

X̃(z)
, z ∈ D+,

0, z ∈ D−

and

CΓ
(Φ

X̃

)−
(z) =

{
0, z ∈ D+,

− Φ(z)

X̃(z)
, z ∈ D−.

Thus,
Φ(z)

X̃(z)
= CΓ

[(Φ

X̃

)+

−
(Φ

X̃

)−]
(z)

and [(Φ

X̃

)+

−
(Φ

X̃

)−]
∈ Lp),δ(Γ).

Therefore,
Φ

X̃
∈ Cp),δ

Γ ;

that is,
Φ(z)

X̃(z)
= CΓ(ϕ)(z), ϕ ∈ Lp),δ(Γ).

The equality (Φ

X̃

)+

−
(Φ

X̃

)−
=

(G
G̃

− 1
)(Φ

X̃

)−
+

g

X̃+

follows from (5.6). Consequently, by the Sokhotski–Plemely formula we derive
that

ϕ(t) =
(G
G̃

− 1
)(

−1

2
ϕ(t) +

1

2
(SΓϕ)(t)

)
+

g(t)

X̃+(t)
. (5.7)

The latter is the equation

ϕ = Mϕ, (5.8)

where, due to Theorem 2.1, the operator M is bounded in Lp),δ(Γ). Then, by
virtue of condition (5.4), the norm of the operator M is less than 1 and it is a
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contractive operator. Therefore, equation (5.8) is uniquely solvable in Lp),δ(Γ).

Hence, Φ(z) = X̃(z)CΓ(ϕ)(z) ∈ Cp),δ
Γ ⊂ CΓ.

Now if we consider the function

X(z) = exp
(
CΓ(lnG)

)
(z), (5.9)

then

G(t) =
X+(t)

X−(t)
, t ∈ Γ,

and the boundary condition (5.1) can be rewritten in the form(Φ

X

)+

−
(Φ

X

)−
=

g

X+
. (5.10)

Since the boundary Γ is a Carleson curve, we have that (see [12])

Φ ∈ Ep−ε(D±),
1

X(z)
∈

∞⋂
µ=1

Eµ(D+),
( 1

X(z)
− 1

)
∈

∞⋂
µ=1

Eµ(D−).

Therefore, Φ(z)
X(z)

∈ E1(D±) and, consequently, Φ
X

∈ CΓ. But equation (5.10) has

the unique solution

Φ(z) = X(z)CΓ
( g

X+

)
(z) (5.11)

in CΓ, and then Φ ∈ Cp),δ
Γ .

If we take into account that the function Φ+(t) − (t − z0)
κΦ−(t) belongs to

Lp),δ(Γ), then the remaining part of the proof of Theorem 5.2 for the case κ 6= 0
is valid. Theorem 5.2 is proved. �
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