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Abstract. Modifying the moduli of supporting convexity and supporting
smoothness, we introduce new moduli for Banach spaces which occur, for exam-
ple, as lengths of catheti of right-angled triangles (defined via so-called qua-
siorthogonality). These triangles have two boundary points of the unit ball of a
Banach space as endpoints of their hypotenuse, and their third vertex lies in a
supporting hyperplane of one of the two other vertices. Among other things, it
is our goal to quantify via such triangles the local deviation of the unit sphere
from its supporting hyperplanes. We prove respective Day–Nordlander-type
results involving generalizations of the modulus of convexity and the modulus
of Banaś.

1. Introduction

The modulus of convexity (going back to [8]; see also [13]) and the modulus
of smoothness (defined in [9]; see also [14]) are well-known classical constants
from Banach space theory. For these two notions various interesting applications
were found, and a large variety of natural refinements, generalizations, and mod-
ifications created an impressive set of interesting results and problems (see, e.g.,
[5], [6], [15], [17], [18], [21] to cite only references close to our discussion here).
Inspired by [5], two further constants in this direction were introduced and inves-
tigated in [15], namely, the modulus of supporting convexity and the modulus of
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supporting smoothness. These moduli suitably quantify the local deviation of the
boundary of the unit ball of a real Banach space from its supporting hyperplanes
near to arbitrarily chosen touching points. Using the concept of right-angled tri-
angles in terms of so-called quasiorthogonality (which is closely related to the con-
cept of Birkhoff–James orthogonality), we modify and complete the framework
of moduli defined in [8], [5], and [15] by introducing and studying new related
constants. These occur as lengths of catheti of such triangles, whose hypotenuse
connects two boundary points of the unit ball and whose third vertex lies in
the related supporting hyperplane. We prove Day–Nordlander-type results refer-
ring to these moduli, yielding even generalizations of the constants introduced
in [8], [5], and [15]. Respective results on Hilbert spaces are obtained, too. At
the end, we discuss some conjectures and questions which refer to further related
inequalities between such moduli (for general Banach spaces, but also for Hilbert
spaces), possible characterizations of inner product spaces, and Milman’s moduli.

This article is organized as follows. After presenting our notation and basic
definitions in Section 2, we clarify the geometric position of the mentioned right-
angled triangles close to a point of the unit sphere of a Banach space and its
corresponding supporting hyperplane in Section 3. This yields a clear geometric
presentation of the new moduli, but also of further moduli already discussed in
the literature. In Section 4, we particularly study properties of the catheti of
these triangles, yielding the announced results of the Day–Nordlander type as
well as results on Hilbert spaces. In a similar way, we study properties of the
hypotenuses in Section 5, obtaining again Day–Nordlander-type results and fur-
ther new geometric inequalities. In Section 6, our notions and results are put into
a more general framework connected with concepts like monotone operators, dual
mappings of unit spheres, and their monotonicity. And in Section 7, some open
questions and conjectures on the topics shortly described above are collected.

2. Notation and basic definitions

In the rest of this article, we will need the following notation. Let X be a real
Banach space, and let X∗ be its conjugate space. We use H to denote a Hilbert
space. For a set A ⊂ X, we denote by ∂A and intA the boundary and the interior
of A, respectively. We use 〈p, x〉 to denote the value of a functional p ∈ X∗ at
a vector x ∈ X. For R > 0 and c ∈ X, we denote by BR(c) the closed ball
with center c and radius R, and we denote by B∗

R(c) the respective ball in the
conjugate space. Thus, ∂B1(o) denotes the unit sphere of X. By definition, we
put J1(x) = {p ∈ ∂B∗

1(o) : 〈p, x〉 = ‖x‖}.
We will use the notation xy for the segment with the (distinct) endpoints x and

y for the line passing through these points, for (oriented) arcs from ∂BR(c), as
well as for the vector from x to y (the respective meaning will always be clear from
the context). Further on, abbreviations like abc and abcd are used for triangles
and 4-gons as convex hulls of these three or four points.

It is well known that the Birkhoff–James orthogonality (see [11, Chapter 2,
Section 1] and [3]) is not a symmetric relation. Due to this, we say that y is
quasiorthogonal to the vector x ∈ X \ {o}, and we write yqx if there exists a
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functional p ∈ J1(x) such that 〈p, y〉 = 0. Note that the following conditions are
equivalent:

– y is quasiorthogonal to x;
– for any λ ∈ R, the vector x+ λy lies in the supporting hyperplane to the
ball B‖x‖(o) at x;

– for any λ ∈ R, the inequality ‖x + λy‖ ≥ ‖x‖ holds (i.e., x is orthogonal
to y in the sense of Birkhoff–James).

Thus, y is quasiorthogonal to x if and only if x is the Birkhoff–James orthogonal
to y.

Let

δX(ε) := inf
{
1− ‖x+ y‖

2
: x, y ∈ B1(o), ‖x− y‖ ≥ ε

}
,

and let

ρX(τ) := sup
{‖x+ y‖+ ‖x− y‖

2
− 1 : ‖x‖ = 1, ‖y‖ = τ

}
.

The functions δX(·) : [0, 2] → [0, 1] and ρX(·) : R+ → R+ are referred to as the
modulus of convexity of X and the modulus of smoothness of X, respectively.

In [5], Banaś defined and studied a new modulus of smoothness; specifically,
he defined

δ+X(ε) = sup
{
1− ‖x+ y‖

2
: x, y ∈ B1(o), ‖x− y‖ ≤ ε

}
, ε ∈ [0, 2].

Let f and g be two nonnegative functions, each of them defined on a segment
[0, ε]. We say that f and g are equivalent at zero, denoted by f(t) � g(t) as t → 0,
if there exist positive constants a, b, c, d, e such that af(bt) ≤ g(t) ≤ cf(dt) for
t ∈ [0, e].

3. Right-angled triangles

We will say that a triangle is right angled if one of its legs is quasiorthogonal
to the other one. (Note that, using also other orthogonality types, there is a large
variety of ways to define right-angled triangles in normed planes; see, e.g., [2].)
In a Hilbert space, this notion coincides with the common, well-known definition
of a right-angled triangle.

Remark 3.1. In a nonsmooth convex Banach space, one leg of a triangle can be
quasiorthogonal to the two others.

For a given right-angled triangle abc, where acqbc, we will say that the legs
ac, bc are the catheti, and ab the hypotenuse, of this triangle. For convenience,
we draw a simple figure (see Figure 1), and we introduce related new moduli
by explicit geometric construction. Let x, y ∈ ∂B1(o) be such that yqx. Let
ε ∈ (0, 1], y1 = x+εy. Denote by z a point from the unit sphere such that, for the
segment zy1, we have zy1 ‖ ox and zy1 ∩B1(o) = {z}. Let {d} = oy1 ∩ ∂B1(o).
Write y2 for the projection of the point d onto the line {x + τy : τ ∈ R} (in the
nonstrictly convex case, we choose y2 such that dy2 ‖ ox). Let p ∈ J1(x) be such
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Figure 1. Right-angled triangles and the unit sphere.

that 〈p, y〉 = 0; that is, the line {x+τy : τ ∈ R} lies in the supporting hyperplane
l = {a ∈ X : 〈p, a〉 = 1} of the unit ball at the point x. Then ‖zy1‖ = 〈p, x− z〉.

Consider the right-angled triangle oxy1 (Figure 1). In a Hilbert space we have
‖oy1‖ =

√
1 + ε2, but in an arbitrary Banach space the length of the hypotenuse

oy1 can vary, and so we introduce moduli that describe the minimal and the
maximal length of the hypotenuse in a right-angled triangle in a Banach space.
More precisely, we write

ζ−X(ε) := inf
{
‖x+ εy‖ : x, y ∈ ∂B1(o), yqx

}
and

ζ+X(ε) := sup
{
‖x+ εy‖ : x, y ∈ ∂B1(o), yqx

}
,

where ε is an arbitrary positive real number. In other words, ζ−X(·)−1 and ζ+X(·)−1
describe extrema of the deviation of a point in a supporting hyperplane from the
unit ball.

On the other hand, the length of the segment zy1 is the deviation of a point
at the unit sphere from the corresponding supporting hyperplane, and at the same
time it is a cathetus in the triangle xzy1.

Let x, y ∈ ∂B1(o) be such that yqx. By definition, put

λX(x, y, ε) := min
{
λ ∈ R : ‖x+ εy − λx‖ = 1

}
for any ε ∈ [0, 1]. In the notation of Figure 1, we have λX(x, y, ε) = ‖zy1‖.
The minimal and the maximal value of λX(x, y, ε) characterize the deviation of
the unit sphere from an arbitrary supporting hyperplane. Let us introduce now
further moduli.

Define the modulus of supporting convexity by

λ−
X(ε) = inf

{
λX(x, y, ε) : x, y ∈ B1(o), yqx

}
,
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and define the modulus of supporting smoothness by

λ+
X(ε) = sup

{
λX(x, y, ε) : x, y ∈ B1(o), yqx

}
.

The notions of moduli of supporting convexity and supporting smoothness were
introduced and studied in [15]. These moduli are very convenient for solving
problems concerning the local behavior of the unit ball compared with that of
corresponding supporting hyperplanes, and we will use some of their properties
here.

In [15, Theorems 4.1, 4.2], the following inequalities were proved:

ρX

(ε
2

)
≤ λ+

X(ε) ≤ ρX(2ε), ε ∈
[
0,

1

2

]
, (3.1)

δX(ε) ≤ λ−
X(ε) ≤ δX(2ε), ε ∈ [0, 1], (3.2)

and

0 ≤ λ−
X(ε) ≤ λ+

X(ε) ≤ ε. (3.3)

In addition, a Day–Nordlander-type result, referring to these moduli, was
proved in [15, Corollary 5.2]:

λ−
X(ε) ≤ λ−

H(ε) = 1−
√
1− ε2 = λ+

H(ε) ≤ λ+
X(ε) ∀ε ∈ [0, 1].

In some sense, moduli of supporting convexity and supporting smoothness are
estimates of a possible value referring to tangents in a Banach space (we fix the
length of one of the catheti, and calculate then the minimal and maximal length
of the corresponding other cathetus, which is quasiorthogonal to the first one).

Remark 3.2. For arbitrary unit vectors x, y satisfying yqx, the convexity of the
unit ball implies that the function λX(x, y, ·) is a nonnegative monotone convex
function on the interval [0, 1].

But what can one say about the length of the segment zy1 with fixed norm
‖zx‖ (in the notation of Figure 1)? Let us introduce the following new moduli of
a Banach space:

ϕ−
X(ε) = inf

{
〈p, x− z〉 : x, z ∈ ∂B1(o), ‖x− z‖ ≥ ε, p ∈ J1(x)

}
(3.4)

and

ϕ+
X(ε) = sup

{
〈p, x− z〉 : x, z ∈ ∂B1(o), ‖x− z‖ ≤ ε, p ∈ J1(x)

}
(3.5)

for ε ∈ [0, 2].

Remark 3.3. Due to the convexity of the unit ball, we can substitute inequalities
in the definitions of ϕ−

X(·) and ϕ+
X(·) to equalities (i.e., ‖x−y‖ ≥ ε and ‖x−y‖ ≤ ε

to be ‖x− y‖ = ε).
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4. Properties of the catheti

Lemma 4.1. In the notation of Figure 1, we have 2‖y1x‖ ≥ ‖xz‖.

Proof. By the triangle inequality, it suffices to show that ‖y1x‖ ≥ ‖zy1‖. Let the
line `y be parallel to ox with y ∈ `y. By construction, we have that the points
x, y1, z, o, y and the line `y lie in the same plane—the linear span of the vectors
x and y. Then the lines `y and xy1 intersect, and we denote their intersection
point by c. Note that oycx is a parallelogram and that ‖yc‖ = 1; the segment yx
belongs to the unit ball and does not intersect the interior of the segment zy1.
Let {z′} = zy1 ∩ yx. By similarity, we have

‖zy1‖ ≤ ‖y1z′‖ =
‖xy1‖
‖xc‖

‖yc‖ = ‖xy1‖. �

It is worth noticing that, under the conditions of Lemma 4.1, we have that y1
is a projection along the vector ox of the point z on some supporting hyperplane
of the unit ball at x. Moreover, y1 belongs to the metric projection of the point y
on this hyperplane. In other words, Lemma 4.1 shows us that if one projects the
segment xz along the vector ox onto the hyperplane which supports the unit ball
at x, then the length of the segment decreases no more than by a factor of 2.

Lemma 4.2. Let X be an arbitrary Banach space. Then the following inequalities
hold:

λ−
X

(ε
2

)
≤ ϕ−

X(ε) ≤ λ−
X(2ε) and (4.1)

λ+
X

(ε
2

)
≤ ϕ+

X(ε) ≤ λ+
X(2ε) (4.2)

for ε ∈ [0, 1/2].

Proof. In the notation of Figure 1, we assume that, for arbitrary x, y with yqx,
the equality ‖zx‖ = ε holds. Then λX(x, y, ‖xy1‖) = ‖y1z‖. Let p ∈ J1(x) be such
that 〈p, y〉 = 0. Hence ‖y1z‖ = 〈p, x− z〉. Since ‖xy1‖ ≤ ‖y1z‖+ ‖zx‖ ≤ 2ε, and
taking into account Lemma 4.1, we get

ε

2
≤ ‖xy1‖ ≤ 2ε ≤ 1.

Due to this and by Remark 3.2, we have

λX

(
x, y,

ε

2

)
≤ 〈p, x− z〉 ≤ λX(x, y, 2ε).

Taking the infimum (supremum) on the right-hand side, the left-hand side, or in
the middle part of the last inequality, we obtain (4.1) and (4.2). �

From Lemma 4.2 and the inequalities (3.2) and (3.1), we have the following
corollary.
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Corollary 4.3. Let X be an arbitrary Banach space. Then ϕ+
X(ε) � ρX(ε) and

ϕ−
X(ε) � δX(ε) as ε → 0, and for ε ∈ [0, 1

2
] the following inequalities hold:

ρX

(ε
4

)
≤ ϕ+

X(ε) ≤ ρX(4ε) and

δX(ε) ≤ ϕ−
X(ε) ≤ δX(4ε).

Now we will prove a Day–Nordlander-type result for ϕ−
X(·) and ϕ+

X(·). Let us
suitably generalize the notion of the modulus of convexity and the notion of the
Banaś modulus. Namely, let

δX(ε, t) = inf
{
1− ‖tx+ (1− t)y‖

2
: x, y ∈ ∂B1(o), ‖x− y‖ = ε

}
and

δ+X(ε, t) = sup
{
1− ‖tx+ (1− t)y‖

2
: x, y ∈ ∂B1(o), ‖x− y‖ = ε

}
,

respectively. Using the same method as in the classical paper [18, Main Lemma],
we get the following lemma.

Lemma 4.4. Let X be an arbitrary Banach space. Then the following inequalities
hold:

δX(ε, t) ≤ δH(ε, t) = 1−
√
1− t(1− t)ε2 = δ+H(ε, t) ≤ δ+X(ε, t). (4.3)

Proof. Since the proof is almost the same as in [18], we present only a short sketch.
Clearly, again it is sufficient to prove the lemma in the 2-dimensional case.

If the two unit vectors x = (x1, x2) and y = (y1, y2) are rotated around the
unit circle, while their difference x − y has constantly the norm ε, the endpoint
of the vector tx+ (1− t)y describes a curve Γt.

The following integral expresses the area of the region inside the curve described
by the endpoint of the vector x− y if this vector is laid off from a fixed point:∫

(y1 − x1) d(y2 − x2).

On the other hand, the mentioned curve is a homothet of the unit circle with
ratio ε. Hence this integral equals ε2A, where A is the area of the unit ball
(A =

∫
x1 dx2 =

∫
y1 dy2). From this we have∫

x1 dy2 +

∫
y1 dx2 = 2A− ε2A.

Now it is clear that the area of the region inside Γt equals∫ (
tx1 + (1− t)y1

)
d
(
tx2 + (1− t)y2

)
= A

(
1− t(1− t)ε2

)
.

Hence continuity arguments imply that there exists a point z ∈ Γt with the norm√
1− t(1− t)ε2. �
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Theorem 4.5. Let X be an arbitrary Banach space. Then the following inequal-
ities hold:

ϕ−
X(ε) ≤ ϕ−

H(ε) =
ε2

2
= ϕ+

H(ε) ≤ ϕ+
X(ε). (4.4)

Proof. It is sufficient to prove the theorem in the 2-dimensional case. Let x ∈
∂B1(o), and let p ∈ J1(x).

Assume that X is a uniformly smooth space. Notice that p is a Fréchet deriv-
ative of the norm at the point x. Taking into account that B1(o) is convex, for
an arbitrary y we have

〈p, x− y〉 = lim
t↘0

‖x‖ − ‖x+ t(y − x)‖
t

= lim inf
t>0

1− ‖x+ t(y − x)‖
t

.

Fix an arbitrary γ > 0. Since X is uniformly smooth, there exists a t0 < γ such
that, for arbitrary x, y ∈ ∂B1(o), ‖y − x‖ = ε, and t ∈ (0, t0), we have

1− ‖x+ t(y − x)‖
t

− γ ≤ 〈p, x− y〉 ≤ 1− ‖x+ t(y − x)‖
t

. (4.5)

Taking the infimum (supremum) in the last line, we get

δX(ε, t)

t
− γ ≤ ϕ−

X(ε) ≤
δX(ε, t)

t(δ+X(ε, t)
t

− γ ≤ ϕ+
X(ε) ≤

δ+X(ε, t)

t

)
.

Passing to the limit as γ → 0, we have

ϕ−
X(ε) = lim

t→0

δX(ε, t)

t
≤ lim

t→0

δH(ε, t)

t
=

ε2

2(
ϕ+
X(ε) = lim

t→0

δ+X(ε, t)

t
≥ lim

t→0

δ+H(ε, t)

t
=

ε2

2

)
.

Let us now consider the case of a nonsmooth space X. Let SP be the set of all
points of smoothness at the unit circle. We know that the unit circle is compact.
Then there exists t0 < γ such that, for arbitrary x ∈ SP , y ∈ ∂B1(o), ‖y−x‖ = ε,
and t ∈ (0, t0), we can write the inequality (4.5).

Moreover, the set ∂B1(o)\SP has measure zero. Thus, the infimum (supremum)
of 1− ‖x+ t(y − x)‖ taken over all x ∈ SP coincides with δX(ε, t) (δ

+
X(ε, t)). Then

we have

ϕ−
X(ε) ≤ lim sup

t→0

δX(ε, t)

t
≤ ε2

2

and

ϕ+
X(ε) ≥ lim inf

t→0

δ+X(ε, t)

t
≥ ε2

2
. �
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5. Properties of the hypotenuse

Lemma 5.1. Let X be an arbitrary Banach space. Then for ε ∈ [0, 1] the follow-
ing inequalities hold:

λ−
X

( ε

1 + ε

)
≤ ζ−X(ε)− 1 ≤ λ−

X(ε), (5.1)

λ+
X

( ε

1 + ε

)
≤ ζ+X(ε)− 1 ≤ λ+

X(ε). (5.2)

Proof. From the triangle inequality, we have that ‖y1d‖ equals the distance from
the point y1 to the unit ball. Hence

‖y1d‖ ≤ ‖y1z‖ = λX(x, y, ε) ≤ ε. (5.3)

By similarity arguments and (5.3), we have

‖xy2‖ =
‖od‖

‖od‖+ ‖dy1‖
‖xy1‖ =

1

1 + ‖dy1‖
ε ≥ ε

1 + ε
.

Then, by construction and by the convexity of the unit ball, we get the inequality

‖y2d‖ = λX

(
x, y, ‖xy2‖

)
≥ λX

(
x, y,

ε

1 + ε

)
. (5.4)

Since y2 is a projection of the point d onto the line {x + τy : τ ∈ R}, we have
‖y2d‖ ≤ ‖dy1‖. Combining the previous inequality with (5.3) and (5.4), we obtain
the inequalities

λX

(
x, y,

ε

1 + ε

)
≤ ‖dy1‖ ≤ λX(x, y, ε).

Taking the infimum (supremum) on the right-hand side, the left-hand side, or in
the middle part of the last line, we obtain (5.1) and (5.2). �

Corollary 5.2. Let X be an arbitrary Banach space. Then ζ+X(ε) − 1 � ρX(ε)
and ζ−X(ε)− 1 � δX(ε) as ε → 0, and the following inequalities hold:

ρX

( ε

2(1 + ε)

)
≤ ζ+X(ε) ≤ ρX(2ε), ε ∈

[
0,

1

2

]
, and

δX

( ε

1 + ε

)
≤ ζ−X(ε) ≤ δX(2ε), ε ∈ [0, 1].

Now we will prove results of the Day–Nordlander type for ζ−X(·) and ζ+X(·).
Suppose that we have an orientation ω in R2. We will say that a curve C in the
plane is a good curve if it is a closed rectifiable simple Jordan curve, which is
enclosed by a star-shaped set S with the center at the origin and a continuous
radial function.

Lemma 5.3. Let C1 be a closed simple Jordan curve enclosing the convex set S1

with area A1 > 0 and 0 ∈ intS1. Let C2 be a good curve, which is enclosing an
area of measure A2. Then we have the following:

(1) We can parameterize Ci by a function f i(·) : [0, 1) → Ci (i = 1, 2) in such
a way that
(a) f 2(τ) is a direction vector of the supporting line of the set S1 at the

point f 1(τ) for all τ ∈ [0, 1),
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(b) [f 1(τ), f 2(τ)] = ω for all τ ∈ [0, 1),
(c) the functions f i(·) (i = 1, 2) are angle monotone.

(2) The curve C3 = {f 1(τ) + f 2(τ) : τ ∈ [0, 1)} encloses an area of measure
A1 + A2.

Proof. (1) First of all, due to the continuity of the radial function of the curve
C2, we can assume that C2 and C1 are coincident. Let C1 be a smooth curve.
Let f 1 : [0, 1) → C1 be a parameterization given by clockwise rotation. Then at
every point f 1(τ), we have a unique supporting line to S1, and we can choose
f 2(τ) in a proper way. In this case the problem is quite easy, and one can see its
geometric interpretation. The general case (when C1 has nonsmooth points) yields
additional difficulties. At a point of nonsmoothness we have continuously many
supporting lines; hence we cannot give a parameterization depending only on this
point of C1. However, in [16, Section 2] Joly gives a suitable parameterization.

(2) Let A3 be the measure of the area enclosed by C3. Let f
i(·) be the parame-

terization of Ci (i = 1, 2) constructed above. Fix µ ∈ R. Denote by S(µ) and A(µ)
the set and the area enclosed by the curve C(µ) = {f 1(τ) + µf 2(τ) : τ ∈ [0, 1)},
respectively. Since for all τ ∈ [0, 1) we have that f 2(τ) is a direction vector of the
supporting line of the set S1 at the point f 1(τ), then we have S1 ⊂ S(µ). Hence
A(µ) ≥ A1. Using consequences of Green’s formula and properties of the Stieltjes
integral, we have∫

τ∈[0,1)
f 1
1 df

1
2 ≤

∫
τ∈[0,1)

(
f 1
1 (τ) + µf 2

1 (τ)
)
d
(
f 1
2 (τ) + µf 2

2 (τ)
)
.

Therefore, for all µ ∈ R the following inequality holds:

µ2

∫
τ∈[0,1)

f 2
1 df

2
2 + µ

(∫
τ∈[0,1)

f 1
1 df

2
2 +

∫
τ∈[0,1)

f 2
1 df

1
2

)
≥ 0.

This implies that (∫
τ∈[0,1)

f 1
1 df

2
2 +

∫
τ∈[0,1)

f 2
1 df

1
2

)
= 0.

Then we have

A3 = A(1) =

∫
τ∈[0,1)

(
f 1
1 (τ) + f 2

1 (τ)
)
d
(
f 1
2 (τ) + f 2

2 (τ)
)

=

∫
τ∈[0,1)

f 1
1 df

1
2 +

∫
τ∈[0,1)

f 2
1 df

2
2 = A1 + A2. �

Theorem 5.4. Let X be an arbitrary Banach space. Then the following inequal-
ities hold:

ζ−X(ε) ≤ ζ−H(ε) =
√
1 + ε2 = ζ+H(ε) ≤ ζ+X(ε). (5.5)

Proof. Again it is sufficient to prove the theorem in the 2-dimensional case. Apply-
ing Lemma 5.3 for C1 = ∂B1(o), C2 = ∂Bε(o) and using continuity arguments,
we obtain (5.5). �

Remark 5.5. In [16, Proposition in Section 2], inequality (5.5) was proved for the
subcase ε = 1.
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6. Some notes about monotonicity properties of the dual mapping

The notion of themonotone operator is well known, and has a lot of applications
and useful generalizations. Let us recall some related notions, and, based on them,
explain their relations to the geometry of the unit sphere.

Let X be a Banach space, let T : X → 2X
∗
be a point-to-set operator, and let

G(T ) be its graph. Suppose that the following inequality holds:

〈px − py, x− y〉 ≥ α‖x− y‖2 for all (x, px), (y, py) ∈ G(T ). (6.1)

(1) If α = 0, then T is a monotone operator. For example, the subdifferential
of a convex function is a monotone operator.

(2) If α > 0, then T is a strongly monotone operator. For example, the sub-
differential of a strongly convex function on a Hilbert space is a strongly
monotone operator.

(3) If α < 0, then T is a hypomonotone operator. For example, the subdif-
ferential of a prox-regular function on a Hilbert space is a hypomonotone
operator (see [20]).

Inequality (6.1) is often called the variational inequality. Usually, the operator T
is a derivative or subderivative of a convex function. Then we can speak about
the variational inequality for a convex function.

As usual in convex analysis, we can reformulate inequality (6.1) for convex
(or prox-regular) sets and their normal cone (or Fréchet normal cone) (see [19]);
in this case, T (x) is a intersection of the ∂B∗

1(o) and the normal cone to the
set at point x. In a Hilbert space there are some characterizations of strongly
convex and prox-regular functions (or strongly convex and prox-regular sets) via
the variational inequality (see [7], [20], and [19]).

But in a Banach space the situation is much more complicated, and it is getting
obvious that the right-hand side of the variational inequality cannot always be a
quadratic function. Then in many applications we have to substitute α‖x − y‖2
in (6.1) by some proper convex function α(‖x− y‖).

For example, what can we say about the most simple convex function in a
Banach space—its norm (in this case, T is a dual mapping)? Even in a Hilbert
space, for arbitrary x, y we can only put zero in the right-hand side of the
variational inequality. Nevertheless, there exist variational inequalities for norms
depending on ‖x‖, ‖y‖, and ‖x− y‖. For example, in [23, Theorems 1, 2] charac-
terizations of uniformly smooth and uniformly convex Banach spaces were given
in terms of monotonicity properties of the dual mapping.

In this paragraph, we investigate monotonicity properties of the dual mapping
onto the unit sphere. In fact, we study monotonicity properties of the convex
function on its Lebesgue level. Hence this result can be generalized to an arbitrary
convex function. We are interested in asymptotically tight lower and upper bounds
for the value of 〈p1−p2, x1−x2〉, where x1, x2 ∈ ∂B1(o), p1 ∈ J1(x1), p2 ∈ J1(x2).
For the sake of convenience, we introduce new moduli:

γ+
X(ε) = sup

{
〈p1 − p2, x1 − x2〉

}
and γ−

X(ε) = inf
{
〈p1 − p2, x1 − x2〉

}
,
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where we choose x1, x2 ∈ ∂B1(o), ‖x1 − x2‖ = ε, p1 ∈ J1(x1), p2 ∈ J1(x2) for each
ε ∈ [0, 2].

Lemma 6.1. Let X be an arbitrary Banach space. Then the functions γ+
X(·) and

γ−
X(·) are monotonically increasing functions on [0, 2].

Proof. In the notation of Figure 1, let z1, z2 be points in the arc −xyx of the unit
circle such that z1 belongs to the arc xz2 (here and in the sequel all arcs lie in
the plane of xoy). Let p ∈ J1(x), let q1 ∈ J1(z1), and let q2 ∈ J1(z2). It is worth
mentioning that ‖xz1‖ ≤ ‖xz2‖ (see [1, Lemma 1]). Then, to prove our lemma, it
is sufficient to show that

〈p− q1, x− z1〉 ≤ 〈p− q2, x− z2〉. (6.2)

From the convexity of the unit ball we have that 〈p, x − z1〉 ≤ 〈p, x − z2〉. To
prove inequality (6.2), let us show that 〈q1, z1 − x〉 ≤ 〈q2, z2 − x〉.

We can assume that X is the plane of xoy. By definition, put l = {a ∈ X :
〈a, p〉 = 1}, l1 = {a ∈ X : 〈a, q1〉 = 1}, l2 = {a ∈ X : 〈a, q2〉 = 1}, and
H+ = {p ∈ X : 〈a, p〉 ≥ 1}.

First case: Let z2 be in the arc xy of the unit circle (see Figure 2). All three cases
l = l1, l = l2, or l1 = l2 are trivial. Let l∩ l1 = {b1}, l∩ l2 = {b2}. Again, all three
cases x = b1, x = b2, or b1 = b2 are trivial. By convexity arguments, b1 belongs to
the relative interior of the segment xb2 and l1∩ l2 /∈ H+. Hence l1 separates point
x and the ray l2 ∩H+ in the half-plane H+. Let x2 be a projection of the point x
onto l2 (in the nonstrictly convex case, we choose x2 such that xx2 ‖ oz2). Then
the segment xx2 is parallel to oz2, and therefore xx2 ⊂ H+. Now we can say that
the segment x2x and the line l1 have an intersection point; let it be x1. Since the
values 〈q1, z1 − x〉 and 〈q2, z2 − x〉 are equal to the distances from the point x to

Figure 2. Illustration of the proof of Lemma 6.1.
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the lines l1 and l2, respectively, we have

〈q1, z1 − x〉 ≤ ‖xx1‖ < ‖xx2‖ = 〈q2, z2 − x〉.

Second case: Let z2 be in the arc −xy of the unit circle. We can assume that
z1 lies on the arc −xy of the unit circle, too (if z1 lies on the arc xy of the
unit circle, then by the first case, we can substitute z1 to y). We have that
〈−qi,−zi − x〉 = 2 − 〈q1, zi − x〉 for i = 1, 2. Therefore, applying the first case
to the points −z1,−z2, x and to the functionals p,−q1,−q2, we have proved the
second case. �

Remark 6.2. It is worth mentioning that in the first case of Lemma 6.1, the lines
l1 and ox can have no common point in H+.

Remark 6.3. Using Lemma 6.1, we can modify the definitions of γ+
X(·) and γ−

X(·)
by

γ+
X(ε) = sup

{
〈p1 − p2, x1 − x2〉

}
,

where we choose x1, x2 ∈ ∂B1(o), ‖x1 − x2‖ ≤ ε, p1 ∈ J1(x1), p2 ∈ J1(x2), and by

γ−
X(ε) = inf

{
〈p1 − p2, x1 − x2〉

}
,

where we choose x1, x2 ∈ ∂B1(o), ‖x1 − x2‖ ≥ ε, p1 ∈ J1(x1), p2 ∈ J1(x2) for each
ε ∈ [0, 2].

Lemma 6.4. Let X be an arbitrary Banach space. Then the following inequalities
hold:

ϕ+
X(ε) ≤ γ+

X(ε) ≤ 2ϕ+
X(ε) for ε ∈ [0, 2], (6.3)

2ϕ−
X

(e
4

)
≤ γ−

X

(ε
4

)
≤ ϕ−

X(ε) for ε ∈ [0, 1]. (6.4)

Proof. All inequalities, except for the right-hand side of (6.4), are obvious.
Let us prove that γ−

X(
ε
4
) ≤ 2ϕ−

X(ε). It is sufficient to prove the lemma in the
2-dimensional case. In this case and in the notation of Figure 1, we can put
‖zx‖ = ε and ‖y1z‖ = ϕ−

X(ε). Let yb be a bisecting point of the segment xy1.
Denote by zb a point from the unit sphere such that zbyb ‖ ox and zbyb ∩B1(o) =
{zb}. Let pb ∈ J1(zb). Denote by lb the line {a ∈ X : 〈pb, a〉 = 1}. By convexity
the line lb intersects the segment zy1, and we denote the intersection point as a1.
By definition, put {a2} = l1 ∩{τx : τ ∈ R}. From the trapezoid a2xa1y1, we have

‖ybzb‖+ ‖xa2‖ ≤ ‖y1a1‖ ≤ ‖zy1‖ = ϕ−
X(ε). (6.5)

Since 〈pb, zb − x〉 equals the distance from the point x to the line lb, we have
〈pb, zb − x〉 ≤ ‖xa2‖. From here, since 〈p, x − zb〉 = ‖ybzb‖, and from inequality
(6.5), we obtain

〈p− pb, x− zb〉 ≤ ϕ−
X(ε).

From Lemma 6.1, it is sufficient to show that ‖xzb‖ ≥ ε
4
. By definition, put

{z′} = ybzb ∩ xz. Obviously, we have

‖xzb‖ ≥ ‖xz′‖ − ‖z′zb‖ ≥ ‖xz′‖ − ‖z′yb‖ =
ε− ϕ−

X(ε)

2
.
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Using Theorem 4.5, we see that

‖xzb‖ ≥ ε

2
− ε2

4
≥ ε

4
. �

Corollary 6.5. Let X be an arbitrary Banach space. Then γ+
X(ε) � ρX(ε) and

γ−
X(ε) � δX(ε) as ε → 0, and for ε ∈ [0, 1

2
] the following inequalities hold:

ρX

(ε
4

)
≤ γ+

X(ε) ≤ 2ρX(4ε) and

2δX

(ε
4

)
≤ γ−

X

(ε
4

)
≤ δX(ε).

Remark 6.6. Combining results from [23, Theorems 1, 2] for some constant c1,
c2, c3, c4 (depending on X), one can get the following inequality:

c1ρX(c2ε) ≥ γ+
X(ε) ≥ γ−

X(ε) ≥ c3δX(c4ε).

7. Some open questions

Although there are no difficulties preventing us from proving an analogue of
the Day–Nordlander theorem for the moduli γ+

X(·) and γ−
X(·) in the infinite-

dimensional case using Dvoretzky’s theorem (see [12, Theorem 1]), we have no
proof for the following conjecture in the finite-dimensional case.

Conjecture 7.1. Let X be an arbitrary Banach space. Then the following inequal-
ities hold:

γ−
X(ε) ≤ γ−

H(ε) = ε2 = γ+
H(ε) ≤ γ+

X(ε). (7.1)

All moduli mentioned above characterize certain geometrical properties of the
unit ball. Obviously, the geometry of the unit ball totally describes the geometry
of the unit ball in the dual space. Nevertheless, we know a few results about
coincidences of values of some moduli or other characteristics of a Banach space
and its dual space. We are interested in properties of the dual mapping (i.e.,
x → J1(x)). The following conjecture seems to be very essential. By definition,
put

d−X(ε) = inf
{
‖p1 − p2‖

∣∣ p1 ∈ J1(x1), p2 ∈ J1(x2), ‖x1 − x2‖ = ε, x1, x2 ∈ ∂B1(o)
}

and

d+X(ε) = sup
{
‖p1−p2‖

∣∣ |p1 ∈ J1(x1), p2 ∈ J1(x2), ‖x1−x2‖ = ε, x1, x2 ∈ ∂B1(o)
}
.

Conjecture 7.2. Let X be an arbitrary Banach space. Then the following inequal-
ities hold:

d−X(ε) ≤ d−H(ε) = ε = d+H(ε) ≤ d+X(ε). (7.2)

It is well known that the equality δX(ε) = δH(ε) for ε ∈ [0, 2) implies that X is
an inner product space (see [10]). There exist such results for some other moduli
(see [1] and [4]). We are interested in the following question.

Question 7.3. For what modulus fX(·) (where fX(·) can be ϕ−
X(·), ϕ

+
X(·), ζ

−
X(·),

ζ+X(·), λ
−
X(·), λ

+
X(·)) does the equality fX(ε) = fH(ε), holding for all ε in the

domain of the function fX(·) (or even for fixed ε), imply that X is an inner
product space?
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The definitions of the moduli ζ−X(·)−1 and ζ+X(·)−1 are similar to the definitions
of Milman’s moduli, which were introduced in [17] as

β−
X(ε) = inf

x,y∈∂B1(o)

{
max

{
‖x+ εy‖, ‖x− εy‖

}
− 1

}
and

β+
X(ε) = sup

x,y∈∂B1(o)

{
min

{
‖x+ εy‖, ‖x− εy‖

}
− 1

}
.

We think that in the definitions of Milman’s moduli it is sufficient to take only
yqx. Hence we get the following.

Conjecture 7.4. Let X be an arbitrary Banach space. Then for positive ε we
have

ζ−X(ε)− 1 = β−
X(ε) and ζ+X(ε)− 1 = β+

X(ε).
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