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Abstract. This article deals with some ergodic properties for general se-
quences in the closed convex hull of the orbit of some (not necessarily power-
bounded) operators in Banach spaces. A regularity condition more general than
that of ergodicity is used to obtain some versions of the Esterle–Katznelson–
Tzafriri theorem. Also, the ergodicity of the backward iterates of a sequence is
proved under appropriate assumptions as, for example, its peripheral bound-
edness on the unit circle. The applications concern uniformly Kreiss-bounded
operators, and other ergodic results are obtained for the binomial means and
some operator means related to the Cesàro means.

1. Introduction and preliminaries

In this paper, X stands for a complex Banach space, and B(X ) is the Banach
algebra of all bounded linear operators on X , I being the identity operator in
B(X ). The range, the null-subspace, and the spectrum of T ∈ B(X ) are denoted
by R(T ), N (T ), and σ(T ), respectively. Also, M denotes the norm closure of a
subspace M of X .

The ergodic projection of T ∈ B(X ) is defined as the idempotent PT ∈ B(X )

having the range N (T − I) and the kernel R(T − I) when the following decom-
position (as a direct sum) holds:

X = R(T − I)⊕N (T − I). (1.1)

As usual, X ∗ stands for the dual (or conjugate) space of X , while T ∗ stands
for the adjoint operator of T ∈ B(X ).
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If {αn}n∈N and {βn}n∈N are two sequences of positive real numbers, then we
use the notation αn = O(βn) as n → ∞ and αn = o(βn) as n → ∞ to indicate
that the sequence {αn

βn
} is bounded, respectively, so that this converges to zero.

In particular, αn = O(1) as n → ∞ or αn = o(1) as n → ∞ means that {αn} is
bounded or it converges to zero, respectively.

We consider some operator means associated to an operator T ∈ B(X ). More
precisely, given a sequence {tn}n∈N of probabilities on N, where each term tn is
a sequence tn = {tnj}j∈N satisfying

∑
j≥0 tnj = 1 for any n ∈ N, we consider

the sequence {Tn}n∈N in the norm closed convex hull of the powers of T of the
form

Tn =
∑
j≥0

tnjT
j. (1.2)

We denote by κ(T ) the set of such (possibly infinite) convex combinations of
powers of T . According to the terminology of [8], we think of the sequence {Tn}
as subordinated to {T n} via the probabilities tn, n ∈ N.

Many sequences in κ(T ) can be inferred from matrix summability methods by
applying such matrices (for example, the Zweier matrix; see [5]) to the sequence
of powers of T . (We discussed such examples in [1], and other particular sequences
are mentioned in this paper, especially in the last section.)

Given a sequence {Tn} ⊂ κ(T ) as in (1.2) with the conditions

tn0 6= 1, αn :=
∑
j≥1

jtnj < ∞ (1.3)

for all n ∈ N, we define as in [1] its backward iterate {T (−1)
n }n∈N by

T (−1)
n =

∑
k≥0

snkT
k where snk =

1

αn

∑
j≥k+1

tnj. (1.4)

Clearly, T
(−1)
n ∈ κ(T ), and the following identity holds:

T (−1)
n (T − I) =

1

αn

(Tn − I) (n ∈ N). (1.5)

The definition of the above backward iterate of {Tn} was inspired (see [1]) by

the Cesàro means of order p ∈ N of T . These are the operators M
(p)
n (T ) given for

n ∈ N by M
(p)
0 (T ) = I, M

(0)
n (T ) = T n, and for n, p ≥ 1 by

M (p)
n (T ) =

p

(n+ 1) · · · (n+ p)

n∑
j=0

(j + p− 1)!

j!
M

(p−1)
j (T )

=
p

n+ p

n∑
j=0

p−1∏
k=1

(
1− j

n+ k

)
T j. (1.6)
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They satisfy the following recurrence relations valid for n, p ≥ 1, namely,

M (p)
n (T )(T − I) =

p

n+ 1

(
M

(p−1)
n+1 (T )− I

)
, (1.7)

TM (p)
n (T ) =

n+ p+ 1

n+ 1
M

(p)
n+1(T )−

p

n+ 1
I, (1.8)

and it is easy to see that, for Tn = M
(p)
n (T ), we have T

(−1)
n = M

(p+1)
n−1 (T ), n > 1.

As usual, we write Mn(T ) := M
(1)
n (T ), which is called the Cesàro mean of T .

When {Mn(T )} is bounded (or it converges strongly or uniformly) in B(X ), we say
that T is Cesàro-bounded (Cesàro-ergodic or uniformly Cesàro-ergodic). Accord-
ing to [22], we say also that T is uniformly Kreiss-bounded if {Mn(T )} is uniformly
peripheral bounded on the unit circle T; that is, supn∈N

λ∈T
‖Mn(λT )‖ < ∞.

The higher-order Cesàro means were extensively studied in the literature and
in some works such as [7], [10], [16]; more recently, [8], [13], [24], and [26] contain
ergodic results concerning certain sequences in κ(T ) in the case when T is a
power-bounded operator; that is, supn∈N ‖T n‖ < ∞. We are now interested in the
general context where T is not necessarily power-bounded. (We continue such a
study which was begun in [1].)

In this article, we have in view two directions: the first is to obtain nonstandard
versions of the well-known Esterle–Katznelson–Tzafriri theorem (see [11], [14]) for
sequences in κ(T ), while the second purpose is to investigate some conditions of
convergence for {Tn} by the uniformly peripheral boundedness of the backward

iterate {T (−1)
n } (similar to the uniform Kreiss boundedness). In both directions,

the essential assumption is a regularity condition on {Tn} (or its adjoint), which
means the strong convergence to zero of the sequence {TTn − Tn+n0} for some
nonnegative integer n0. The particular cases n = 0 and n = 1 are intimately
related to the strong convergence of {Tn} as was recently proved in [17].

The structure of the paper is the following. In Section 2 we describe a method
which is used in the general setting of κ(T ). It is based on the intertwining of T
with another operator V acting on a quotient space of X . Under some conditions,
the operator V still has good ergodic properties, which then can be transferred to
the sequence {Tn}. For example, the condition of regularity of {Tn} introduced
here assures that V is an isometry and even unitary when σ(T ) ∩ T = {1}. This
method was applied in studies concerning the asymptotic behavior of different
averages as in [2], [15], [31], [29], and it was partially described in [1]. In this sec-
tion we characterize the regularity condition of the arithmetic means of a sequence
{Tn} by some convergence conditions of this sequence. Such conditions are satis-
fied, for example, when Tn = Mn(T ) and when T is a uniformly Kreiss-bounded
operator on a Hilbert space as we see in Section 4.

In Section 3 we present two results containing versions of the Esterle–
Katznelson–Tzafriri theorem. Both results involve the spectral condition σ(T ) ⊂
D ∪ {1}, D being the open unit disc in C. The former gives the convergence of
{Tn(T − I)} (see Theorem 3.1), and the second concerns itself with the powers
T n and the convergence of {T ∗

n} (see Theorem 3.4) under the condition of bound-
edness of a sequence {Tn} ⊂ κ(T ). Both results assume the regularity condition,
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and their applications concern the higher-order Cesàro means and the binomial
means.

In Section 4 we study the ergodicity of the backward iterate {T (−1)
n }. Here we

assume uniform boundedness of {T (−1)
nλ } ⊂ κ(λT ) for λ in the unit circle T as well

as an intertwining of T with an isometry by an operator with a closed range (see
Theorem 4.1). We prove also the almost-strong convergence (in the sense defined
in [17]) of some weighted Cesàro means in Hilbert spaces, assuming only their
uniform boundedness on T (see Theorem 4.5). This last result is based on Ker-
chy’s method for the study of almost convergence of operator sequences involving
Banach limits and the almost convergence in Lorentz’s sense (see [15], [21]). We
apply these results to uniform Kreiss-bounded operators and also to supercyclic
operators T ∈ B(X ) (i.e., those for which the set {λT n : n ∈ N, λ ∈ C} is dense in
X ; see [4]). Let us note that some ergodic properties of the supercyclic operators
satisfying the regularity condition were obtained in [1]. As a remarkable fact, we
obtain in this section that the arithmetic means of {Mn(T )} converge strongly
on a Hilbert space X when T is uniformly Kreiss-bounded on X , which gives a
partial answer to a question in [28].

In Section 5 we obtain the ergodicity of the backward iterates of the binomial
means (see Theorem 5.1) and a uniform mean ergodic theorem for these means
(see Theorem 5.3). We see here that some ergodic results can be transferred
from Cesàro means to binomial means, but not conversely. Also, different rela-
tionships between the regularity condition and the ergodicity of some operator
means related to Cesàro means are discussed. More precisely, the cases n = 0
and n = 1 of the regularity condition are considered for some operator means
and their backward iterates, which derive from the Cesàro means Mn(T ) and

M
(2)
n (T ). We establish nice connections between these conditions and the strong

convergence, which lead to some ergodic results obtained by such operator means.

2. Conditions of boundedness and regularity

In the rest of the present article, we investigate the condition of regularity for
sequences in κ(T ) in order to get some convergence results. We use the same
technique as in [1], based on the intertwining of T with an operator on another
Banach space, canonically induced by the corresponding sequence in κ(T ).

For a continuous seminorm γ on X , we denote by N (γ) its kernel, and we let
Xγ be the completion of the quotient space X/N (γ) with respect to the norm

‖x̃‖ = γ(x)
(
x̃ = x+N (γ), x ∈ X

)
.

Then the quotient map Qγ : X → Xγ has the range dense in Xγ, and N (Qγ) =
N (γ).

In particular, if {Tn} ⊂ B(X ) is a bounded sequence on R((T − I)m) for some
fixed m ∈ N, then one can consider the seminorm γm given by

γm(x) = lim sup
n→∞

∥∥Tn(T − I)mx
∥∥ (x ∈ X ). (2.1)
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In this case we write X̃m = Xγm and Qm = Qγm for short, and also we put

Xm =
{
x ∈ X :

∥∥Tn(T − I)mx
∥∥ → 0, n → ∞

}
. (2.2)

Since γm is continuous on X , in fact ‖QmTx‖ ≤ ‖T‖‖Qmx‖ for all x ∈ X ,

there exists a unique operator Vm ∈ B(X̃m) satisfying the relation

VmQm = QmT. (2.3)

In addition, one has σ(Vm) ⊂ σ(T ). In order to obtain some ergodic properties of
T from Vm, we are interested to see when Vm can be chosen as an isometry.

We mention some facts concerning the (null-) spaces X0 and X1 from (2.2)
in addition to similar facts from [1]. We omit the proofs, which easily follow as
in [1].

Proposition 2.1. Let T ∈ B(X ) and {Tn} ⊂ κ(T ) be a bounded sequence on

R(T − I). Then the subspaces X0 and X1 are closed and

X0 = (T − I)pX1 ⊂ X1 ∩ (T − I)pX (p ≥ 1). (2.4)

We have X0 = (T − I)p+1X for some integer p ≥ 1 if and only if (V1 − I)p = 0,

or, equivalently, (T − I)pX ⊂ X1. If {Tn} is bounded on X , then X0 = (T − I)X
if and only if V0 = I, or, equivalently, Q1 = 0.

Remark 2.2. From Proposition 2.1 we infer that, if (T − I)pX ⊂ X0 for some

integer p ≥ 1, then X0 = (T − I)pX .

In general, it is possible to have X0 = (T − I)2X 6= (T − I)X ⊂ N (T−I) = X1,
or V1 = I and (V0−I)2 = 0. For example, let T ∈ B(X ) with (T −I)2 = 0, T 6= I,
and let Tn = Mn(T ), n ∈ N. Then X0 = {0} by the previous remark, and
Tn(T − I) = T − I. Therefore, {Tn} is bounded on R(T − I), and we have

R(T − I) ⊂ N (T − I) = X1 6= X .

Let us note that in this case, {Tn} is unbounded on X because, for n ≥ 2, one

can express Tn by M
(3)
n−2(T ) to conclude that Tn = n

2
(T − I) + I.

This example shows that the boundedness on R(T − I) alone cannot ensure
valuable ergodic properties of {Tn}, such as the convergence to zero on this range

or the condition R(T − I) ∩N (T − I) = {0}. But the convergence on R(T − I)
can be regarded as a special case of the following condition.

According to [1], we say that a sequence {Tn} ⊂ κ(T ) is n0-regular on X for
some n0 ∈ N if there exists the limit

lim
n→∞

∥∥(TTn − Tn+n0)x
∥∥ = 0 (x ∈ X ). (2.5)

In the case that (2.5) holds with n0 = 0, we say that the sequence {Tn} is ergodic
(following [16]). But when n0 = 1 in (2.5), we simply say that {Tn} is regular.

As we have seen in [1], this property can be used to obtain some growth con-
ditions on the powers of operator T or even concerning the convergence of {Tn}.

Notice that the condition (2.5) ensures that limn→∞ Tnx ∈ N (T − I) when the
limit exists. In fact, if {Tn} converges strongly on X , then the condition (2.5) is
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satisfied for some (any) n0 ∈ N and every x ∈ X if and only if the strong limit
of {Tn} is PT (the ergodic projection of T ). Since such a type of convergence is
considered in the operator-ergodic context (see [16]), it is important to investigate
sequences in κ(T ) satisfying this condition of regularity and, in particular, that
of ergodicity.

Proposition 2.3. Let T ∈ B(X ) and {Tn} ⊂ κ(T ) be n0-regular on X and
bounded on R(T−I). Then the corresponding operator V1 in (2.3) is an isometry,
and

X0 ⊕N (T − I) =
{
x ∈ X : {Tnx} converges in X

}
. (2.6)

Moreover, one has (T −I)pX ⊂ X0 for some integer p ≥ 1 if and only if V1 = I
in the case p ≥ 2, respectively, V1 = 0 when p = 1. If {Tn} is bounded on X , then
the operator V0 in (2.3) is an isometry, and V0 = I if and only if V1 = 0.

Remark 2.4. The extreme case V0 = I just means that {Tn} is ergodic, and in
this case it is easy to see that N (T − I) = N ((T − I)2).

For the Cesàro means M
(p)
n (T ), the condition of regularity means { 1

n
M

(p)
n (T )}

converges strongly to 0 on X , and it is equivalent to the ergodicity of {M (p+1)
n (T )}

(by (1.7), (1.8)). Also, the boundedness of a Cesàro mean gives R(T − I) =

(T − I)2X . These facts lead to the following corollary.

Corollary 2.5. If T ∈ B(X ) is such that { 1
n2M

(p−1)
n (T )} converges strongly to

zero on X and {M (p+1)
n (T )} is bounded, then {M (p)

n (T )} is regular.

Note that if the peripheral spectrum σ(T )∩T of T contains at most the single-

ton {1}, then only the boundedness of {M (p+1)
n (T )} assures the two convergences

in this corollary (see [29, Theorem 2.2] or Theorem 3.1(ii) below). The condition

(2.5) can be transferred from a sequence T̂ = {Tk} ⊂ κ(T ) to the arithmetic

means of T̂ given by Mn(T̂ ) = 1
n+1

∑n
k=0 Tk, n ∈ N. Furthermore, the property

(2.5) for Mn(T̂ ) can be described in the terms of T̂ as follows.

Proposition 2.6. Let T ∈ B(X ) and T̂ = {Tn} ⊂ κ(T ) be such that ‖Mn(T̂ )x‖ =
o(n) as n → ∞ for any x ∈ X . The following statements hold:

(i) {Mn(T̂ )} satisfies (2.5) with n0 ≥ 1 and x ∈ X if and only if∥∥∥ n∑
k=0

(TTk − Tk+n0)x
∥∥∥ = o(n) (n → ∞),

(ii) {Mn(T̂ )} is ergodic if and only if for some integer n0 ≥ 1 and every x ∈ X
we have∥∥∥ n∑

k=0

(TTk − Tk+n0)x+

n0∑
k=1

Tn+kx
∥∥∥ = o(n) (n → ∞),
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(iii) ‖(Mn(T̂ )−Mn+n0(T̂ ))x‖ = o(1) as n → ∞ for some n0 ≥ 1 and x ∈ X if
and only if ∥∥∥ n0∑

k=1

Tn+kx
∥∥∥ = o(n) (n → ∞).

Proof. Let T, T̂ be as above with n > n0 ≥ 1. We have by a simple computation

TMn(T̂ )−Mn+n0(T̂ ) =
1

n+ 1

n∑
k=0

(TTk −Tk+n0)+
n0

n+ 1

[
Mn+n0(T̂ )−Mn0−1(T̂ )

]
,

and so the equivalence of (i) follows by using the hypothesis on Mn(T̂ ). Also, the
equivalences of (ii) and (iii) are obtained from the relations

Mn(T̂ )(T − I) =
1

n+ 1

( n∑
k=0

(TTk − Tk+n0) +

n0∑
k=1

Tn+k − n0Mn0−1(T̂ )
)

and, respectively,

Mn(T̂ )−Mn+n0(T̂ ) =
n0

n+ 1
Mn+n0(T̂ )−

1

n+ 1

n0∑
k=1

Tn+k (n ≥ n0 ≥ 1).
�

Remark 2.7. The assertion (ii) holds without the convergence stipulated in the

hypothesis. In addition, {Mn(T̂ )} is ergodic if {Tn} is either ergodic or bounded

(by (ii) and (iii)). When {Tn} is n0-regular with n0 ≥ 1, {Mn(T̂ )} is ergodic if
and only if { 1

n

∑n0

k=0 Tn+k} converges strongly to zero on X . In the case when

{Tn} is bounded, the sequence {Mn(T̂ )} is ergodic if and only if it is n0-regular
for n0 ≥ 1.

The strong convergence of {Mn(T̂ )} is related to that of T̂ = {Tn}. More
precisely, it is known from [17] that {Tn} converges strongly to PT if and only if
it is bounded, ergodic, regular, and {Tn} almost converges strongly to PT , which
means that

lim
k→∞

sup
n∈N

∥∥Mk(T̂n)x− PTx
∥∥ = 0 (x ∈ X ), (2.7)

where T̂n = {Tn+j}j∈N. This shows that ergodicity and regularity are necessary
but not sufficient conditions for strong convergence of a sequence.

In general, the limit in (2.7) exists even if {Tn} is neither regular nor ergodic,
as we will see in the example below. This example shows also that the hypothesis

on T̂ in the following corollary is essential.

Corollary 2.8. Let T ∈ B(X ), and let T̂ = {Tn} ⊂ κ(T ) be a bounded and

regular sequence. Then {Mn(T̂ )} converges strongly on X if and only if it almost
converges strongly on X .

In Section 4 we illustrate this corollary by proving that the arithmetic means
of {Mn(T )} converges strongly when T is a uniformly Kreiss-bounded operator
on a Hilbert space.
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Example 2.9. Consider X = Lp[0, 1] with 1 < p < ∞, p 6= 2, and let V be the
Volterra operator on X given by

V x(t) =

∫ t

0

x(s) ds for x ∈ X , t ∈ [0, 1].

Put S = V − I, T = 2V − 3I, and let Tk = Sk = 1
2k
(T + I)k, k ∈ N. Then T̂ =

{Tk} is unbounded, but {Mn(T̂ )} is bounded (see [22]). By symmetry {Mn(−S)}
is bounded too, and since σ(−S) = {1}, one has 1

n
‖Sn‖ → 0 (as we remarked

after Corollary 2.5). Since 1 /∈ σ(S), we have R(S−I) = X , while by the uniform

ergodic theorem (see [19, Main Theorem]) we have ‖Mn(T̂ )‖ = ‖Mn(S)‖ → 0.
This implies that {Tk} almost converges strongly on X .

On the other hand, it is easy to see that, for any integer n0 ≥ 1,

TTk − Tk+n0 =
(
Tk −

1

2

n0−1∑
j=0

Tk+j

)
(T − I) = 2Sk

(
I − n0

2
Mn0(S)

)
(S − I).

As σ(S) = {−1} one has 1 /∈ σ(
n0

2
Mn0(S)); that is, I − n0

2
Mn0(S) is invertible.

Since {Sk} is unbounded, we infer that {TTk−Tk+n0} does not converge strongly
to zero. Then {Tk} does not satisfy (2.5) and consequently is not ergodic because
Tk(T − I) = 2(TTk − Tk+1).

3. Versions of the Esterle–Katznelson–Tzafriri theorem

The spectral condition mentioned above, namely,

σ(T ) ∩ T ⊂ {1}, (3.1)

is frequently used in the operator-ergodic context, for instance, this appears in the
Esterle–Katznelson–Tzafriri theorem (see [11], [14]) concerning power-bounded
operators. But for some sequences in κ(T ), this condition can lead to the extreme
cases quoted in Proposition 2.3. Thus an extension of the Esterle–Katznelson–
Tzafriri theorem for some sequences in κ(T ) can be now obtained.

Theorem 3.1. Let T ∈ B(X ) be an operator satisfying the spectral condition

(3.1), and let {Tn} ⊂ κ(T ) be a bounded sequence on R(T − I)m for some inte-
ger m. The following statements hold.

(i) If {Tn} satisfies (2.5) on R(T − I)m, then either X0 = R(T − I)m or

X0 = R(T − I)m+1.
(ii) If {Tn} satisfies the stronger regularity assumption

lim
n→∞

∥∥(TTn − Tn+n0)|R(T − I)m
∥∥ = 0 (3.2)

for some n ∈ N, then {Tn(T − I)|R(T−I)m} converges in norm to zero.

Proof. (i) Let γm be given by (2.1). If Xγm = {0}, then X0 = R(T − I)m. If
Xγm 6= {0}, then by using the condition (2.5) on R(T − I)m one can easily see
that the corresponding operator Vm in (2.3) is an isometry with σ(Vm) ⊂ σ(T ).
But by (3.1), we have σ(Vm) 6= D; hence Vm is unitary. In fact, Vm = I by
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Gelfand’s theorem [12, Satz]. This means that Tn(T − I)m+1 → 0 strongly, and
the conclusion follows by Remark 2.2.

(ii) Let Xm = R(T − I)m. Consider the operator T̂ : B(Xm) → B(Xm) defined
by

T̂ S = T |XmS
(
S ∈ B(Xm)

)
.

Clearly, T̂ satisfies the spectral condition (3.1), and by (3.2) the sequence {T̂n}
corresponding to T̂ satisfies also the condition (2.5) with n0 ≥ 0 on B(Xm). Then

by (i) we have that {T̂n(T̂ −I)} converges strongly to zero in B(Xm). By applying
this sequence to the identity operator in B(Xm), we infer that {Tn(T − I)|Xm}
converges to zero in the norm of B(Xm). �

In particular, assertion (i) shows that the spectral condition together with
the boundedness and the regularity of {Tn} on X ensures the ergodicity of this
sequence. But assertion (ii) just gives a version of Esterle–Katznelson–Tzafriri’s
theorem for general sequences {Tn} ⊂ κ(T ) in the following form.

If {Tn} is bounded and the conditions (3.1) and (3.2) with m = 0 and n0 ≥ 1
are satisfied, then ‖Tn(T − I)‖ → 0.

Clearly, the Esterle–Katznelson–Tzafriri theorem can be obtained from this
result for Tn = T n, the condition (3.2) being satisfied with m = 0 and n0 = 1.

For Cesàro means, we have as a direct application of (1.7) that if ‖M (p+1)
n (T )‖ =

O(nα), then ‖M (p)
n (T )‖ = O(nα+1), n → ∞, while Theorem 3.1 implies even

‖M (p)
n (T )‖ = o(nα+1), n → ∞, where α is a positive scalar.
Concerning the above results, it turns out that such a “comparative growth of

means” remains true in a very general context. Using the backward iterates, as a
direct application of Theorem 3.1 we obtain the following.

Corollary 3.2. Let T ∈ B(X ) be an operator satisfying (3.1), and let {Tn} be a

sequence in κ(T ) of the form Tn =
∑

j≥0 tnjT
j, which is bounded on R(T − I)m

with αn := limn→∞
∑

j≥1 jtnj = ∞, and tn0 6= 1 for n ∈ N. The following state-
ments hold.

(i) If the sequence {T (−1)
n } satisfies (2.5) on R(T − I)m for some m,n0 ≥ 0,

then

‖Tnx‖ = o(αn)
(
x ∈ R(T − I)m

)
.

(ii) If the sequence {T (−1)
n } satisfies (3.2) for some m,n0 ≥ 0, then∥∥Tn|R(T − I)m

∥∥ = o(αn).

In the particular case of the Cesàro means, we are led to the following corollary.
The proof is a straightforward application of the above ideas and will be omitted.

Corollary 3.3. Let T ∈ B(X ) be an operator satisfying (3.1) such that

{M (p)
n (T )|R(T − I)r} is bounded for some integers p, r with 0 ≤ r < p. The

following statements hold.

(i) For all integers q < p− r and all x ∈ X , we have ‖M (q)
n (T )x‖ = o(np−q),

n → ∞.
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(ii) If r > 0, and q ≥ p− r, then ‖M (q)
n (T )‖ = O(nr), n → ∞. Furthermore,

one has ‖M (q)
n (T )x‖ = o(nr), n → ∞, for any x ∈ X if and only if

R(T − I)r = R(T − I)r+1.

(iii) If r = 0, then ‖M (q)
n (T )‖ = o(np−q) as n → ∞ when q < p.

Another version of Esterle–Katznelson–Tzafriri’s theorem is the following.

Theorem 3.4. Let T ∈ B(X ) be such that R(T ∗ − I) is weak∗-closed in X ∗. Let
{Tn} ⊂ κ(T ) be a bounded sequence which has backward iterates such that the
sequence {T ∗

n} satisfies condition (2.5). The following statements are equivalent:

(i) T satisfies (3.1), and {T n(T − I)} is bounded;
(ii) {T n(T − I)2} converges uniformly to zero, and {T n(T − I)x} converges

weakly to zero for all x ∈ X ;
(iii) {T n(T − I)2} is as in (ii), and {T ∗n(T ∗ − I)} converges strongly to zero

on X ∗.

Moreover, if T satisfies (3.1), then {T ∗
n} converges strongly on X ∗. In addition,

{Tn} converges strongly to PT on X if and only if PT ∗ = S∗ for some operator S ∈
B(X ) and {Tn} satisfies (2.5). In this case, the sequence {T n(T − I)} converges
strongly to zero on X if (one of) the above equivalent statements hold.

Proof. Suppose first that (3.1) is satisfied (under the other assumptions from the
hypothesis). Since {T ∗

n} satisfies (2.5), the corresponding isometry V0 for {T ∗
n}

given by Proposition 2.3 is either V0 = 0 or V0 = I. In both cases we have
T ∗
n(T

∗ − I)f → 0 for f ∈ X ∗.

Consider the (algebraic) direct sum X ∗ = R(T ∗ − I)⊕ G for some subspace G
of X ∗. Then as {T ∗

n} is bounded, for g ∈ G there exists g∗ ∈ X ∗ and a subnet
{nν} ⊂ N such that T ∗

nν
g → g∗ in the weak∗-topology of X ∗. But by the previous

conclusion, we obtain (T ∗ − I)g∗ = w∗ − limν T
∗
nν
(T ∗ − I)g = 0; that is, g∗ ∈

N (T ∗ − I). By hypothesis we can consider the backward iterates T
∗(−1)
n of T ∗

n ,
and by (1.4) and the previous convergence we have

g∗ − g = w∗ − lim
ν
(T ∗

nν
− I)g = w∗ − lim

ν
αnνT

∗(−1)
nν

(T ∗ − I)g,

where αn is defined by (1.3). Therefore, g∗ − g ∈ R(T ∗ − I) because this range is

weak∗-closed. Then g ∈ R(T ∗ − I) ⊕ N (T ∗ − I) for g ∈ G, and with the choice
of G we obtain

X ∗ = R(T ∗ − I)⊕N (T ∗ − I).

Now, by this decomposition, we conclude that the sequence {T ∗
n} converges

strongly on X ∗ to PT ∗ , as we already remarked that it converges to zero on
R(T ∗ − I).

Clearly, if the sequence {Tn} also converges strongly to PT on X , then PT ∗ =
P ∗
T , and {Tn} satisfies (2.5). Conversely, let us assume that PT ∗ = S∗ for some

S ∈ B(X ). Then, for every f ∈ X ∗ and every x ∈ X , one has (T ∗
nf)x → (S∗f)x,

which means that Tnx → Sx weakly in X . This gives the decomposition

X = R(T − I)⊕N (T − I).
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If {Tn} also satisfies (2.5), then by (3.1) and Proposition 2.3 we have Tn(T −
I)x → 0 for x ∈ X . Hence {Tn} converges strongly to PT on X by the above
decomposition of X .

Assume now (i), that is, the spectral condition (3.1) and that {T n(T − I)} is
bounded. Then the isometry V1 in (2.3) corresponding to the sequence {T n} by
Proposition 2.3 is either V1 = 0 or V1 = I. Hence T n(T − I)2x → 0 for x ∈ X .

Next, we consider the operator T̃ on B(X ) given by

T̃ S = TS
(
S ∈ B(X )

)
.

Then {T̃ n(T̃−I)} is bounded, and σ(T̃ )∩T ⊂ {1}, and so one has T̃ n(T̃−I)2S →
0 for S ∈ B(X ). Hence it follows that ‖T n(T − I)2‖ → 0. This also implies that

‖T ∗n(T ∗ − I)f‖ → 0 for f ∈ R(T ∗ − I) because {T ∗n(T ∗ − I)} is bounded, while
by the above decomposition of X ∗ we infer that this convergence holds for all
f ∈ X ∗. Then the implication (i) ⇒ (iii) is proved, while the implications (iii) ⇒
(ii) ⇒ (i) are trivial, taking into account that the spectral condition follows from
the convergence to zero of {T n(T − I)2} by the spectral mapping theorem. In
addition, if one of the statements (i)–(iii) holds and if {Tn} converges strongly

on X , then (ii) gives T n(T − I)x → 0 for x ∈ R(T − I); hence this convergence
also happens for each x ∈ X by the above decomposition of X . This ends the
proof. �

Corollary 3.5. Let T ∈ B(X ) be an operator satisfying (3.1) such that T − I
has a right or a left inverse in B(X ). If {Tn} ⊂ κ(T ) is as in Theorem 3.4, then
{T n} converges uniformly to zero and {T ∗

n} converges strongly to zero on X ∗. In
addition, {Tn} converges strongly to zero on X if and only if it satisfies (2.5).

Proof. Assume first that S(T − I) = I for some S ∈ B(X ). Then R(T ∗− I) = X ∗

and T ∗
n → 0 strongly on X ∗ by Theorem 3.4, N (T ∗ − I) = {0}. Hence T − I is

invertible; that is, 1 /∈ σ(T ). By (3.1) this means that σ(T ) ⊂ D or ‖T n‖ → 0.
If (T − I)S = I, then one has R(T − I) = X and N (T ∗ − I) = {0}. Since

T ∗
n(T

∗ − I)f → 0 for f ∈ X ∗ (by proof of the theorem), we obtain T ∗
nf =

S∗T ∗
n(T

∗ − I)f → 0, f ∈ X ∗. This also implies that Tnx → 0 weakly in X for
x ∈ X ; hence N (T − I) = {0}, and so 1 /∈ σ(T ).

Now, if {Tn} satisfies (2.5), then the spectral condition and Proposition 2.3
ensure (as for T ∗

n) that Tnx → 0 for x ∈ R(T − I) = X . Clearly, the regularity
condition is just necessary for this convergence. �

If in this corollary the assumption of regularity of {T ∗
n} is changed to the

uniform regularity of {Tn} in (2.5) (that is, (3.2) with m = 0), then one can
conclude that ‖Tn‖ → 0.

In reflexive spaces, the assumption on R(T ∗ − I) to be weak∗-closed is super-
fluous. Thus, one obtains the following corollary.

Corollary 3.6. Let X be a reflexive space, and let T ∈ B(X ) be an operator
satisfying the condition (3.1). If {Tn} ⊂ κ(T ) is bounded and satisfies (2.5), then
{Tn} converges strongly on X . Moreover, the sequence {T n(T − I)} converges
strongly to zero if and only if it is bounded.
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Remark 3.7. The above results can easily be applied to Cesàro and the discretized
Abel sums An(T ), where

An(T ) =
1

n

∞∑
j=0

(
1− 1

n

)j

T j = A(−1)
n (T ) (n ∈ N). (3.3)

Notice that {An(T )} is simultaneously ergodic and regular, which means that
1
n
An(T ) → 0 strongly.
Another application refers to the binomial means Bn(T ) ∈ κ(T ) given by

Bn(T ) =
1

2n

n∑
k=0

Ck
nT

k. (3.4)

Proposition 3.8. Let T ∈ B(X ) with σ(T ) ⊂ D be such that the sequence
{Mn(B)} is bounded, where B = {Bn(T )}. Then ‖Bn(T )‖ = o(n) as n → ∞. In

addition, if R(T ∗ − I) is weak∗-closed, then {Mn(B
∗)} converges strongly on X ∗.

Proof. Considering the operator S = 1
2
(T + I), we have that Bn(T ) = Sn, Tn =

Mn(S), and R(T ∗−I) = R(S∗−I). Also, σ(S)∩T ⊂ {1} because σ(T ) ⊂ D. The
spectral condition on S and the boundedness of {Tn} assures by [29, Theorem 2.2]
that 1

n
‖Bn(T )‖ = 1

n
‖Sn‖ → 0, which is the first assertion. The second assertion

follows from Theorem 3.4 because {T ∗
n} is bounded and hence regular. �

Remark 3.9. When X is reflexive, the proposition gives that {Mn({Bk(T )})}
converges strongly on X if it is bounded. In the case that {Bn(T )} is bounded,
then it follows directly from the Esterle–Katznelson–Tzafriri’s theorem that
‖Bn(T )(T − I)‖ → 0, and if X is reflexive, then {Bn(T )} converges strongly
on X . A direct proof of the last convergence for T a Hilbert space contraction
was given in [9].

Let us remark that the boundedness and the regularity of {T ∗
n} are essential

conditions in Theorem 3.4, as we see in the following example.

Example 3.10. Let T ∈ B(X ⊕ X ) be given by the matrix representation

T =

[
I J
0 I

]
,

where I is the identity operator on X and where J(0⊕y) = y⊕0, y ∈ X . Clearly,
σ(T ) = {1}, and for n ≥ 1 one has T n(T − I) = T − I. Then the sequence
{T n(T − I)} is bounded, but {T n(T − I)y} does not converge weakly to zero for
0 6= y ∈ {0} ⊕ X .

In addition, one has R(T−I) = N (T−I) = X⊕{0}. Thus, by Proposition 2.3,
it follows that every sequence {Tn} ⊂ κ(T ) satisfying the condition (1.3) is either

unbounded or is not regular. In particular, Tn = M
(p)
n (T ) for p ≥ 1 is unbounded

and not regular. Observe also that the assertions (ii) and (iii) are not true even
if (i) holds in this case.

Notice that the weak convergence of {T n(T − I)} in statement (ii) of Theo-
rem 3.4 is an optimal requirement. In reflexive spaces this convergence becomes
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the strong convergence by the other condition of (ii). But we cannot obtain the
norm convergence to zero of this sequence in general, as we see in the following
example.

Example 3.11. Consider the Volterra operator V on L2[0, 1], and let T = I−V .
Then T is power-bounded with σ(T ) = {1}, and Mn(T ) → 0 strongly. Define the
operator T on L = L2[0, 1]⊕ L2[0, 1] by

T =

[
T T − I
0 T

]
.

Then σ(T ) = {1}, T is Cesàro-bounded, and 1
n
T n → 0 strongly; hence Mn(T ) →

0 strongly (T acts on a reflexive space) because L = R(T − I) = R(T − I) ⊕
R(T − I). Thus, by Theorem 3.4, the sequence {T n(T − I)} converges strongly
to zero if it is bounded. But its boundedness follows easily from the matrix of
T n(T − I) because nT n−1(T − I)2 → 0 strongly, as was proved in [18]. Also, by
[30, Lemma 2.1], we have ‖T n(T − I)‖ 9 0.

4. Uniform peripheral boundedness and ergodicity

For a sequence {Tn} ⊂ κ(T ) and λ ∈ C with |λ| ≤ 1, we define Tnλ ∈ κ(λT ) by
the same convex combination of Tn; that is, if Tn =

∑
j≥0 tnjT

j as in (1.2), then

Tnλ =
∑
j≥0

tnjλ
jT j.

In the case where αn :=
∑

j≥1 jtnj < ∞, one can also define the backward

iterates T
(−1)
n ∈ κ(T ) as in (1.4). We investigate the ergodicity of {T (−1)

n } by
considering the condition (2.5) and the corresponding operators Q1 and V1 from
Proposition 2.3 for this sequence. Equivalently, by (1.5), we are interested in the
strong convergence of { 1

αn
Tn}.

Theorem 4.1. Let T ∈ B(X ) and let {Tn} ⊂ κ(T ) be a sequence which has

backward iterate {T (−1)
n } satisfying the conditions (2.5) and

sup
n∈N
λ∈T

‖T (−1)
nλ ‖ < ∞. (4.1)

Suppose that the operator Q1 has closed range and that the sequence {αn} is
unbounded and satisfies the condition

sup
n,q∈N

αn

αn+q

< ∞. (4.2)

Then, for any x ∈ X , we have

‖Tnx‖ = o(αn) (n → ∞). (4.3)

Proof. The condition (4.1) implies by (1.5) that the sequence { 1
αn
Tn} is bounded.

Hence one can consider the continuous seminorm γ on X given for x ∈ X by

γ(x) = lim sup
n→∞

1

αn

‖Tnx‖ = lim sup
n→∞

∥∥T (−1)
n (T − I)x

∥∥.
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We show first that the sequence {γ(αnT
(−1)
nλ x)} is uniformly bounded for n ∈ N,

λ ∈ T, and ‖x‖ = 1. Indeed, for any q ∈ N, we have by direct computation

Tq(αnT
(−1)
nλ ) =

∑
m≥0

tqm
∑
k≥0

( ∑
j≥k+1

tnj

)
λkT k+m

= αntq0T
(−1)
nλ +

∑
m≥1

tqmλ
m ∑

i≥m

( i∑
j=i+1−m

+
∑
j≥i+1

)
tnj(λT )

i

= αntq0T
(−1)
nλ

+
∑
m≥1

tqmλ
m
[∑
i≥m

( i∑
j=i+1−m

tnj

)
+
(∑

i≥0

−
m−1∑
i=0

)( ∑
j≥i+1

tnj

)]
(λT )i

= αn

∑
m≥0

tqmλ
m
T

(−1)
nλ

+
∑
m≥2

tqmλ
m
[m−1∑
i=1

itni +m
∑
i≥m

tni −
m−1∑
i=0

( ∑
j≥i+1

tnj

)]
(λT )i

=
∑
m≥0

αntqmλ
m
T

(−1)
nλ

+
∑
m≥2

tqmλ
m
[m−1∑
i=1

(
itni −

∑
j≥i+1

tnj

)
+
∑
i≥m

mtni −
∑
j≥1

tnj

]
(λT )i

= αn

∑
m≥0

tqmλ
m
T

(−1)
nλ .

For the last equality we see that the expression in brackets is zero (which is easy
to verify). We infer that

γ(αnT
(−1)
nλ x) = lim sup

q→∞

αn

αn+q

‖Tn+qT
(−1)
nλ x‖

= lim sup
q→∞

αn

αn+q

∥∥∥∑
m≥0

tn+q,mλ
m
T

(−1)
nλ x

∥∥∥
≤ sup

n,q∈N
λ∈T

αn

αn+q

(∑
m≥0

tn+q,m

)
‖T (−1)

nλ x‖ < ∞,

whence the claim follows by (4.1), (4.2), and using the fact that Tn+q ∈ κ(T ).
Now let Q1 and V1 be the operators from (2.3) corresponding to the bounded

sequence {T (−1)
n }. In fact, as this sequence satisfies (2.5), V1 will be an isometry

(by Proposition 2.3). Then, by the previous conclusion and using the equality

γ(αnT
(−1)
nλ x) =

∥∥Q1(αnT
(−1)
nλ x)

∥∥,
one obtains the condition

β := sup
n∈N
λ∈T

∥∥∥∑
k≥0

( ∑
j≥k+1

tnj

)
λkV k

1 Q1

∥∥∥ < ∞. (4.4)
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We show that this implies even Q1 = 0 under the assumption that R(Q1) is
closed in the corresponding Banach space Xγ; in fact, R(Q1) = Xγ by the density
of this range.

Assume to the contrary that Q1 6= 0. Let µ ∈ T be an approximate eigenvalue
for V1. Then there exists a sequence {x̃q} ⊂ Xγ with ‖x̃q‖ = 1 for any q, and
(V1−µI)x̃q → 0. SinceQ1 maps X onto Xγ, there exists r > 0 such that x̃q = Q1xq

for some xq ∈ X with ‖xq‖ ≤ r.
Now let fq ∈ X ∗

γ with ‖fq‖ = 1 and |fq(x̃q)| > 1
2
for any q. Then from (4.4) we

have, for n, q ≥ 1,

1

2π

∫ 2π

0

∣∣∣∑
k≥0

( ∑
j≥k+1

tnj

)
fq(V

k
1 x̃q)e

ikt
∣∣∣2 dt ≤ β2r2,

while by Parseval’s formula we obtain∑
k≥0

∣∣∣( ∑
j≥k+1

tnj

)
fq(V

k
1 x̃q)

∣∣∣2 ≤ β2r2.

But with the choice of µ we have, for every k ∈ N,

lim
q→∞

fq
(
(V k

1 − µk)x̃q

)
= 0;

hence from the preceding inequality, we infer for each integer N ≥ 1 that

lim sup
q→∞

N∑
k=0

( ∑
j≥k+1

tnj

)∣∣fq(x̃q)
∣∣2 ≤ β2r2.

Since |fq(x̃q)| > 1
2
for any q, and letting N → ∞, we get finally αn ≤ (2βr)2,

a contradiction because {αn} is assumed unbounded by the hypothesis. Hence
Q1 = 0, which even means that the sequence { 1

αn
Tn} converges strongly to zero

on X . �

Corollary 4.2. Let T ∈ B(X ) with σ(T ) ⊂ D, and let {Tn} ⊂ κ(T ) be such that
condition (4.1) is satisfied. If the operator Q1 has the closed range while {αn} is
increasing to infinity and limn→∞

αn+1

αn
= 1, then the convergence (4.3) holds true.

Proof. Clearly, the conditions (4.2) and consequently (4.4) are satisfied, and

putting V = V1 and Ṽn in the corresponding sequence in κ(V1) obtained by

the relation Q1Tn = ṼnQ1, by (4.4) we then have

Ṽ
(−1)
nλ x̃ =

1

αn

∑
k≥0

( ∑
j≥k+1

tnj

)
λkV kx̃ → 0

for all x̃ ∈ Xγ = R(Q1) and every λ ∈ T. Hence Xγ = R(V − λI) for λ ∈ T
(by the previous convergence), and as σ(V ) ⊂ σ(T ) ⊂ D, two cases arise: either
σ(V )∩T is nonempty or σ(V ) ⊂ D. In the former case V 6= 0 has an approximate
eigenvalue on T, while this fact together with the assumption that R(Q1) = Xγ

leads (as in the previous proof) to the conclusion that V = 0, a contradiction.
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Thus the second case occurs; that is, ‖V n‖ → 0. In this last case, for 0 < ε < 1,
there exists n0 ∈ N with ‖V n0‖ < ε so that, for x ∈ X , we have

‖Q1x‖ = lim sup
n→∞

1

αn+n0

‖T n+n0x‖ = lim
n→∞

αn

αn+n0

‖Q1T
n0x‖,

= ‖V n0Q1x‖ ≤ ε‖Q1x‖,
which yields Q1 = 0. Therefore, 1

αn
Tn → 0 strongly on X , which finishes the

proof. �

The assumption on R(Q1) or the regularity assumption can also be suppressed
in Theorem 4.1 in some cases. For instance, if the spectral condition (3.1) is
satisfied for T ∈ B(X ) while {Tn} ⊂ κ(T ) has a bounded and n0-regular backward

iterate {T (−1)
n } for an integer n0 ≥ 1, then {T (−1)

n } is ergodic (by Theorem 3.1(i));
that is, the convergence (4.3) holds. In this case the conclusion of Theorem 4.1
occurs under a weaker assumption than the uniform boundedness (4.1).

Let us comment on a special case where the condition onR(Q1) in Theorem 4.1
is satisfied. Namely, if T is a supercyclic operator, then under the conditions (4.1)
and (2.3) for {Tn}, one has Q1T = V1Q1, and it follows that V1 is also supercyclic

on Xγ. Thus, if V1 is an isometry (for example, when {T (−1)
n } satisfies (2.5)), then

we have dim X̃0 ≤ 1 (as it is known from [3]). Therefore, R(Q1) is closed, and in
fact R(Q1) = Xγ={0}. Thus, from Theorem 4.1 and [1, Corollary 3.7], we infer
the following result which extends in the general context of the sequences in κ(T )
the well-known result of Ansari–Bourdon [3], which says that {T n} converges
strongly to zero if T is supercyclic and power-bounded. In particular, our results
apply to uniformly Kreiss-bounded operators.

Corollary 4.3. Let T ∈ B(X ) be supercyclic, and let {Tn} ⊂ κ(T ) be a sequence
which has backward iterates satisfying conditions (4.1), (4.2), and (2.5). Then

{T (−1)
n } is ergodic. Moreover, it converges strongly on X if and only if 1 /∈ σp(T

∗)\
σp(T ). In this case, the limit is nonzero if and only if 1 ∈ σp(T ).

In particular, if T is supercyclic and uniformly Kreiss-bounded, then {Mn(T )}
is ergodic in reflexive spaces by the mean ergodic theorem (see [16]) and this
corollary, while the means Mn(T ) always converge strongly, and the limit is zero
if and only if 1 /∈ σp(T ). Such an operator was recently constructed in [1].

The above results can be applied to many useful operator means such as for
Cesàro means or binomial means. For the Abel mean An(T ), the boundedness

condition (4.1) is equivalent to a similar condition for M
(p)
n (T ), which simulta-

neously holds for all p ≥ 2 (see [1], [27], [28]). This is the Kreiss boundedness
condition on the resolvent function of T , namely,∥∥(T − λI)−1

∥∥ ≤ C

|λ| − 1

(
|λ| > 1

)
for some constant C > 0. Moreover, it is known from [27] that the above Kreiss
condition implies ‖Mn(T )‖ = O(log n), n → ∞. Hence, if the condition (4.1) is

satisfied for Tn = M
(p)
n (T ) with some (any) integer p ≥ 2, then ‖Mn(T )‖ = o(n)

as n → ∞. Hence the conclusion of Theorem 4.1 is interesting for Cesàro means of
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order 1 and for other sequences in κ(T ). When T is power-bounded, each sequence
{Tn} ⊂ κ(T ) is bounded, and the convergence (4.3) always occurs. But Theorem
4.1 gives the same conclusion under other assumptions concerning the backward
iterates of {T n}.

Corollary 4.4. Let T ∈ B(X ) be uniformly Kreiss-bounded. If R(Q1) is closed,
where the operator Q1 corresponds to sequence {Mn(T )} by Proposition 2.3, then
‖T nx‖ = o(n) as n → ∞ for each x ∈ X .

Turning to the general context of the sequences in κ(T ), let us note that the
method based on the seminorm from (2.1) does not give more precise information
in the case of Hilbert spaces because the corresponding complete quotient space

X̃ is not always a Hilbert space. But if the seminorms induced by Banach limits

are used, then it is possible to make X̃ a Hilbert space when X is such (see [15]).
In this case, the method is related only with the almost convergence of bounded
sequences of scalars. By using this general argument, we give now a Hilbertian
version of Theorem 4.1, where almost-strong convergence (in the sense of (2.7))
of some weighted Cesàro means is obtained.

Recall (see [15]) that a Banach limit is a positive linear functional L on l∞ =
l∞(N,C) with ‖L‖ = L({1}) and L(uη) = L(η) for every η ∈ l∞, where {1} =
(1, 1, . . .) and u stands for the truncated backward shift on l∞.

Theorem 4.5. Suppose X to be a Hilbert space, and let T ∈ B(X ) satisfying the
condition

sup
n≥1
λ∈T

1

nr

∥∥Mn(λT )
∥∥ < ∞ (4.5)

for some integer r ≥ 0. Then the sequence { 1
nr+1‖T nx‖} almost converges to zero

for every x ∈ X . Moreover, for any λ ∈ T, the sequence { 1
nrMn(λT )x} almost

converges to zero for every x ∈ R(λT − I) + N (λT − I) in the case r > 0,
respectively, to PλTx for every x ∈ X when r = 0.

Proof. Consider first the bounded sequences ξx = { 1
nr+1‖T nx‖} for x ∈ X . By a

well-known result of Lorentz [21], the almost convergence to zero of ξx is equivalent
with the fact that L(ξx) = 0 for each Banach limit L. The nontrivial case is when

{‖Tn‖
nr+1 } does not almost converge to zero. In this case, by [15, Theorem 2] there

exists an isometry V acting on a Hilbert space H and an operator Q ∈ B(X ,H)
such that QT = V Q and

N (Q) =
⋂
L

{
x ∈ X : L(ξx) = 0

}
.

We wish to prove that N (Q) = X . Assuming first that X is separable, we need
to prove that

‖Qx‖ = L
({ 1

nr+1
‖T nx‖

})
= 0

for some Banach limit L (see the proof of [15, Theorem 2 and Lemma 3]) and
any x ∈ X .
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Assume that Qx0 6= 0 for some x0 ∈ X and L, as above. It is known from [21]
that

‖Qx0‖ = L(ξx0) ≤ lim sup
n→∞

1

nr+1
‖T nx0‖.

By a standard argument we can obtain from (4.5) (as in the proof of [1, The-
orem 4.8]) the estimate

β := sup
n≥1
|λ|=1

∥∥∥ n∑
k=0

λkV kQx0

∥∥∥ < ∞.

From this we infer that, for any n ≥ 1,∫ 2π

0

∥∥∥ n∑
k=0

eiktV kQx0

∥∥∥2 dt

2π
≤ β2,

and taking into account that V is an isometry, this leads to contradiction
(n+ 1)‖Qx0‖2 ≤ β2. Hence Q = 0; that is,

lim
k→∞

sup
n≥1

1

k + 1

k∑
j=0

‖T n+jx‖
(n+ j)r+1

= 0,

which means that the sequences {‖Tnx‖
nr+1 } almost converge to zero for any x ∈ X .

In the case that X is nonseparable, by the construction from the proof of
[15, Theorem 2] one can find an orthogonal decomposition X =

⊕
α∈AXα such

that Xα is separable and invariant for T . Then, for each α ∈ A, there exist as
above a Hilbert space Hα, Vα an isometry on Hα, and Qα ∈ B(Xα,Hα) such that
QαTα = VαQα where Tα = T |Xα . By the conclusion from the separable case we

have Qα = 0; that is, Hα = R(Qα) = {0} for each α ∈ A, which gives that the
sequence ξx almost converges for any x ∈ X . This proves the first statement.

Now, if we denote the sequence from the previous limit by {βk}, then we have
by (1.7) for n, k ≥ 1, λ ∈ T and x ∈ X , the relations

βk ≥ sup
n≥1

( 1

k + 1

k∑
j=1

1

(n+ j)r

∥∥∥Mn+j−1(λT )(λT − I)x+
x

n+ j

∥∥∥)

= sup
n≥1

1

k + 1

k∑
j=1

(n+ j − 1

n+ j

)r 1

(n+ j − 1)r

∥∥∥Mn+j−1(λT )(λT − I)x+
x

n+ j

∥∥∥
≥ sup

n≥1

( n

n+ 1

)r 1

k + 1

k−1∑
j=0

1

(n+ j)r

∥∥∥Mn+j(λT )(λT − I)x+
x

n+ j + 1

∥∥∥
≥ 1

2r

( 1

k + 1

∥∥∥k−1∑
j=0

1

(n+ j)r
Mn+j(λT )(λT − I)x

∥∥∥− 1

k + 1

k−1∑
j=0

‖x‖
(n+ j)r+1

)
.
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From this we infer that

sup
n≥1

1

k

∥∥∥k−1∑
j=0

1

(n+ j)r
Mn+j(λT )(λT − I)x

∥∥∥ ≤ k + 1

2−rk

(
βk + sup

n≥1

1

k

k−1∑
j=0

‖x‖
(n+ j)r+1

)
.

Since the sequence from the right-hand side converges to 0, we have

lim
k→∞

sup
n≥1

1

k

∥∥∥k−1∑
j=0

1

(n+ j)r
Mn+j(λT )x

∥∥∥ = 0

for every λ ∈ T and x ∈ R(λT − I). But by (4.5) this statement holds also for

any x ∈ R(λT − I), while for x ∈ N (λT − I) the limit exists trivially when

r > 0. Therefore, { 1
nrMn(λT )} almost converges strongly to zero on R(λT − I)+

N (λT − I).

In the case r = 0, we have by (4.5) that {M (2)
n (λT )} strongly converges on X ,

which yields the decomposition X = R(λT − I)⊕N (λT − I). Then when r = 0,
we get

lim
k→∞

sup
n∈N

∥∥∥1
k

k−1∑
j=0

Mn+j(λT )x− PλTx
∥∥∥ = 0

for x ∈ X , which means by (2.7) that the sequence {Mn(λT )} almost converges
strongly on X for every λ ∈ T. This ends the proof. �

The interesting fact reflected by Theorem 4.5 is that, for a uniformly Kreiss-
bounded operator T on a Hilbert space, the Cesàro mean {Mn(λT )} almost con-
verges strongly on X for every λ ∈ T. But for a power-bounded operator T its
powers T n do not almost converge strongly in general, for example, when T is
the unilateral forward shift on l2(N,C).

As a consequence of Theorem 4.5 and Corollary 2.8, we obtain the strong
convergence of the arithmetic means from Proposition 2.6 when Tn = Mn(T ).

Corollary 4.6. If T ∈ B(X ) is uniformly Kreiss-bounded on a Hilbert space, then
the sequence of arithmetic means of the Cesàro mean of λT strongly converges to
PλT for every λ ∈ T.

5. Applications to operator means derived from Cesàro means

The first application refers to the binomial means Bn(T ) and their backward
iterates.

Theorem 5.1. For any operator T ∈ B(X ), the backward iterate of Bn(T ) is
given by the relations

B(−1)
n (T ) =

1

n2n−1

n∑
k=1

kCk
nMk−1(T ) = Mn−1

(I + T

2

)
(5.1)

for every integer n ≥ 1. In addition, the following statements hold.
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(i) If ‖B(−1)
n (λT )‖ = O(1) as n → ∞ and λ ∈ T, and the correspond-

ing operator Q1 for {B(−1)
n (T )} satisfying (2.3) has closed range, then

‖Bn(T )x‖ = o(n) as n → ∞ for every x ∈ X .

(ii) If σ(T ) ⊂ D and ‖B(−1)
n (T )‖ = O(1) as n → ∞, then ‖Bn(T )‖ = o(n) as

n → ∞.
(iii) If the Lebesgue measure of σ(T ) ∩ T is zero and ‖Bn(λT )‖ = O(1) as

n → ∞ and λ ∈ T, then ‖T n‖ = o(n2n) as n → ∞.

Proof. To see the first relation in (5.1), we note that αn = n
2
for the sequence

{Bn(T )} ⊂ κ(T ), and that the scalar coefficients of the backward iteratesB
(−1)
n (T ) :=

Bn(T )
(−1) are given by

snk =
2

n
− 1

n2n−1

k∑
j=0

Cj
n (0 ≤ k ≤ n− 1), snk = tn,k+1 = 0 (k ≥ n).

Then for n ≥ 1 we have

B(−1)
n (T ) =

n−1∑
k=0

( 2
n
− 1

n2n−1

k∑
j=0

Cj
n

)
T k

= 2Mn−1(T )−
1

n2n−1

(
n(2n − 1)Mn−1(T )−

n−1∑
k=1

kCk
nMk−1(T )

)
=

1

n2n−1

n∑
k=1

kCk
nMk−1(T ).

This is the first equality in (5.1), while the second can be easily obtained.

Now the assertion (i) follows directly from Theorem 4.1 because {B(−1)
n (T )} is

regular by (5.1) and the hypothesis from (i), and αn → ∞ while {αn} satisfies
(4.2) in this case.

Next, the assertion (ii) is a consequence of Corollary 3.3(i) applied to the

sequence Tn = B
(−1)
n (T ) = Mn(S), where S = I+T

2
. Here {Tn} is bounded by the

hypothesis of (ii) and σ(S) ∩ T ⊂ {1} because σ(T ) ⊂ D. Hence ‖Sn‖ = o(n) as
n → ∞ (by the quoted corollary), which is just the conclusion in (ii).

To prove (iii), we first remark that the condition ‖Bn(λT )‖ ≤ c for some con-

stant c > 0 means that 1
2n
(I + λT )n ≤ c, which by (5.1) implies ‖B(−1)

n (λT )‖ ≤ c
for every λ ∈ T, n ∈ N. Then the conclusion of (iii) follows from [1, Theorem 4.1]
applied to the sequence {Bn(T )}. For this we only mention that, since the coef-

ficients of Bn(T ) are tnj = Cj
n

2n
for 0 ≤ j ≤ n and tnj = 0 for j > n, we have∑

j≥n tnj = tnn = 1
2n

and αn =
∑n

j=1 jtnj =
n
2
. Then by the above-quoted theorem

(taking into account the spectral condition in (iii)), we have

tnn
αn−1

‖T n−1‖ = o(1) as n → ∞;

that is, ‖T n‖ = o(n2n), n → ∞. This ends the proof. �
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Note that if T is uniformly Kreiss-bounded, then ‖B(−1)
n (λT )‖ = O(1) as n →

∞ and λ ∈ T, but this does not imply that S has the same property as T . On
the other hand, if T is Cesàro-bounded, then S has the same property (by (5.1)),
and in this case σ(T ) ⊂ D, and so we infer the following corollary.

Corollary 5.2. For every Cesàro-bounded operator T ∈ B(X ), we have∥∥Bn(T )
∥∥ = o(n) (n → ∞).

In addition, if X = R(T − I)⊕N (T − I), then {B(−1)
n (T )} converges strongly to

the ergodic projection PT .

Proof. The first assertion follows from Theorem 5.1(ii). Now assume that T is

Cesàro-bounded and that X = R(T − I) ⊕ N (T − I). If S = 1
2
(I + T ), then

X = R(S − I)⊕N (S−I), and 1
n
‖Sn‖ → 0 by the previous conclusion. But these

imply that S is Cesàro-ergodic, which by (5.1) means that {B(−1)
n (T )} converges

strongly on X . �

The second assertion of the corollary implies also that if T is Cesàro ergodic,
then S has the same property. Note that the statement (iii) in Theorem 5.1 can
be considered a version for binomial means of O. Nevanlinna’s result [23] for the
Cesàro means. In reflexive spaces Theorem 5.1 implies under the hypotheses of

(i) and (ii) that the sequence {B(−1)
n (T )} converges strongly on X . In particular,

this happens when T is Cesàro-bounded (by Corollary 5.2).
We mention now another result which holds for binomial means, in fact an

improvement of the corresponding result for Cesàro means. More precisely, since
R(T − I) = R(S − I) and σ(S) ∩ T ⊂ {1} if σ(T ) ⊂ D, we have the following
version for binomial means of the uniform mean ergodic theorem of Lin [19, Main
Theorem].

Theorem 5.3. For T ∈ B(X ) with σ(T ) ⊂ D, the following statements are
equivalent:

(i) {Bn(T )} converges uniformly to the ergodic projection PT of T ;

(ii) {B(−1)
n (T )} converges uniformly to PT ;

(iii) {B(−1)
n (T )} is bounded, and R(T − I) is closed;

(iv) 1 is a simple pole of the resolvent function of T , jor 1 /∈ σ(T ).

Proof. Assertion (i) means that ‖Sn−PT‖ → 0, which also yields ‖Mn(S)−PT‖ →
0; that is, ‖B(−1)

n (T )−PT‖ → 0 by (5.1). Then (i) implies (ii), which implies (iii)
by (5.1) and by [19, Main Theorem]. Also, (i) follows from (iii) by (5.1) and
[20, Theorem 2.7]. Now (i) gives the decomposition X = R(T − I)⊕N (T − I),
which implies immediately the assertions of (iv) (see [6]). Conversely, the assertion
(iv) ensures the previous decomposition of X or, equivalently, X = R(S − I) ⊕
N (S − I). Also, one has R((S − I)2) = R(S − I) (see [6]), and putting S0 =
S|R(S−I), we have 1 /∈ σ(S0). Hence σ(S0) = σ(S) \ {1} ⊂ D; that is, ‖Sn

0 ‖ → 0,
which implies (by the decomposition of X ) that ‖Sn − PS‖ → 0. Consequently,
(iv) implies (i). �
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Let us note that the assertion (iv) is ensured by the uniform convergence of a

(every) Cesàro mean {M (p)
n (T )} or of the Abel mean {An(T )}. In particular, it

follows that if T is uniformly Cesàro-ergodic, then S has the same property (that
is, all assertions (i)–(iv) are true in this case).

Remark 5.4. If T is power-bounded, then S is power-bounded, too. But the uni-
form Kreiss boundedness cannot be transferred between T and S. More precisely,
the condition ‖Mn(λS)‖ = O(n) as n → ∞ and λ ∈ T can equivalently be
expressed by the partial sums of the Taylor expansion at infinity of the resolvent
function of S (as in [1, Theorem 4.7]), which in terms of T becomes

sup
n∈N

|λ+1|>2

|λ+ 1|
∥∥∥ n∑
k=0

λ−k−1T k
∥∥∥ < ∞. (5.2)

This just means that S is uniformly Kreiss-bounded, but it does not force T to
be uniformly Kreiss-bounded in general (see the theorem in [1] quoted before).

To end this discussion, let us remark that the spectral condition in the hypothe-
sis of Theorem 5.3 is essential for the equivalence of (i) to other assertions. For this
purpose, let us consider the operator T = 2V −3I, where V is the above Volterra
operator on Lp[0, 1], 1 ≤ p ≤ ∞. Then the operator S = 1

2
(T + I) = V − I is uni-

formly Kreiss-bounded, and we have 1
n
‖Sn‖ → 0 by [22]. As R(S − I) = Lp[0, 1]

because σ(S) = {−1}, one obtains that B
(−1)
n (T ) = Mn(S) → 0 uniformly.

Obviously σ(T ) = {−3}. In the case p = 2, the operators S and −S are power-
bounded, and σ(−S) = {1}. In this case, ‖Bn(T )‖ = ‖Sn‖ = ‖(−S)n‖ 9 0.
However, by the Esterle–Katznelson–Tzafriri theorem one has ‖Sn(S − I)‖ → 0,
which leads in the end to Sn → 0 strongly. We conclude in this case that the
assertion (i) in Theorem 5.3 is not true even if the other assertions (ii)–(iv) hold.

The above facts show that different sequences in κ(T ) can have different as-
ymptotic behaviors.

We see next that some ergodic properties for other important operator means
in applications can be expressed in terms of corresponding properties for the
Cesàro means. More precisely, we study the connection between ergodicity and
regularity (the cases n = 0 and n = 1 of condition (2.5)) on the one hand and
the strong convergence on the other hand for certain operator means and their
backward iterates, which derive from Cesàro means.

We first refer to the square of the Cesàro mean, that is, the averages Mn(T )
2

(which were also considered in [25]). It is easy to see that these can be expressed
by the relation

Mn(T )
2 =

1

n+ 1

[
(2n+ 1)M

(2)
2n (T )− nM

(2)
n−1(T )

]
(n ≥ 1). (5.3)

It is clear that Mn(T )
2 ∈ κ(T ), and this relation shows that the bounded-

ness, the ergodicity, or the strong convergence of Mn(T )
2 is ensured by those of

M
(2)
n (T ), respectively.
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Concerning the regularity (that is, (2.5) with n0 = 1), we have in view the
following relation:

TMn(T )
2 −Mn+1(T )

2 =
2n+ 3

(n+ 2)2
(
TMn(T )

2 −M2(n+1)(T )
)
.

Then it is natural to assume that { 1
n
Mn(T )

2} converges strongly to zero on X , and

under this assumption we have that {Mn(T )
2} is regular if and only if {M (2)

2n−1(T )}
is ergodic. In this case, {M (2)

n (T )} is ergodic if and only if {Mn(T )
2} is ergodic

and regular. This fact can be equivalently expressed by involving the subsequence
{M2n(T )

2} as below.
First, from (5.3) with 2n instead of n, we derive under the above assumption

and the regularity of {Mn(T )
2} that {M2n(T )

2} is ergodic if and only if {M (2)
4n (T )}

is ergodic. Concerning the regularity of M2n(T )
2, we obtain by (5.3) and a direct

computation that

TM2n(T )
2 −M2(n+1)(T )

2

=
1

(2n+ 3)2
[
8(n+ 1)TM2n(T )

2 + 4(n+ 1)M2n+1(T )− 3(4n+ 5)M4(n+1)(T )

+
(
(2n+ 1)M2n(T )(T − I) + I

)2
(T + 2T 2)

]
.

Under the assumption of regularity of {Mn(T )
2} and of ergodicity of {M2n(T )

2},
we infer that all terms on the right-hand side of this relation converge strongly to
zero, excepting the term corresponding to M2n+1(T ). In this case, the sequence
{M2n(T )

2} is regular if and only if 1
n
M2n+1(T ) → 0 strongly on X . This together

with the regularity of {Mn(T )
2} implies that 1

n
Mn(T ) → 0 strongly on X , which

means that {M (2)
n (T )} is ergodic. We can summarize these facts in the following.

Proposition 5.5. Let T ∈ B(X ) be such that the sequence { 1
n
Mn(T )

2} converges
strongly to zero. The following statements are equivalent:

(i) {M (2)
n (T )} is ergodic,

(ii) {Mn(T )
2} is ergodic and regular,

(iii) {Mn(T )
2} is regular, and {M2n(T )

2} is ergodic and regular.

Note that by (5.3) the condition in the hypothesis of this proposition is satisfied

if { 1
n
M

(2)
n (T )} converges strongly to zero on X , which means that {M (3)

n (T )} is
ergodic, which will be next assumed. Then by (1.8) and the above regularity of
{Mn(T )

2}, we obtain the assertion (i) below.

On the other hand, if {Mn(T )
2} converges strongly on X , then X = R(T − I)⊕

N (T−I), while Proposition 5.5 gives that {M (2)
n (T )} is ergodic. In addition, if this

sequence is bounded, then it converges strongly on X by using the decomposition
of X . From these facts and (5.3), we infer the following ergodic result.

Theorem 5.6. The following statements hold for T ∈ B(X ):

(i) {M (2)
n (T )} is ergodic if and only if {M (3)

n (T )} is ergodic and {Mn(T )
2} is

regular,
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(ii) {M (2)
n (T )} converges on X if and only if it is bounded and {Mn(T )

2}
converges strongly on X .

If T is Kreiss-bounded, then as we already noted, {M (2)
n (T )} is ergodic, or,

equivalently, {Mn(T )
2} is regular. Moreover, the two sequences simultaneously

converge strongly on X . On the other hand, on reflexive spaces, the regularity
of {Mn(T )

2} is equivalent with the strong convergence of this sequence when

ergodicity of {M (3)
n (T )} is assumed.

Similar properties can be obtained for the backward iterates of Tn = Mn(T )
2,

which will be denoted by M
(−2)
n (T ) for short. We write Tn =

∑2n
j=0 tnjT

j using

(5.3). Then αn =
∑

j≥1 jtnj = n, and for n ≥ 2 we have

M (−2)
n (T ) =

1

3(n+ 1)

[
2(2n+ 1)M

(3)
2n−1(T )− (n− 1)M

(3)
n−2(T )

]
. (5.4)

We investigate the regularity under the assumption that {M (4)
n (T )} is ergodic;

that is, that 1
n
M

(3)
n (T ) → 0 strongly on X . We have, for n ≥ 1,

TM (−2)
n (T )−M

(−2)
n+1 (T )

=
1

3(n+ 1)

[
2(2n+ 1)

(
TM

(3)
2n−1(T )−M

(3)
2n (T )

)
− (n− 1)

(
TM

(3)
n−2(T )−M

(3)
n−1(T )

)]
+

2

3

[(
2− 1

n+ 1

)
M

(3)
2n (T )−

(
2− 1

n+ 2

)
M

(3)
2n+1(T )

]
+

2

3(n+ 1)(n+ 2)
M

(3)
n−1(T ).

Now, by our assumption and the relation (1.7), the first and the last terms on

the right-hand side converge strongly to zero. Hence {M (−2)
n (T )} is regular if and

only if M
(3)
2n (T ) −M

(3)
2n+1(T ) → 0 strongly on X . But by (1.8), this implies that

1
2n+1

M
(2)
2n+1(T ) → 0 strongly, which means that {M (3)

2n (T )} is ergodic. We infer

that {M (3)
n (T )} is ergodic when {M (−2)

n (T )} is regular. Conversely, if {M (3)
n (T )} is

ergodic, then {M (4)
n (T )} is such, while by (1.6) and (1.8) we have that {M (−2)

n (T )}
is regular (having in view the above characterization of this property).

A relationship between the strong convergence of {M (−2)
n (T )} and {M (3)

n (T )}
can also be established as above for {Mn(T )

2}. These facts lead to the following
theorem.

Theorem 5.7. The following statements hold for T ∈ B(X ):

(i) {M (3)
n (T )} is ergodic if and only if {M (4)

n (T )} is ergodic and {M (−2)
n (T )}

is regular,

(ii) {M (3)
n (T )} converges on X if and only if it is bounded and {M (−2)

n (T )}
converges strongly on X .

Remark 5.8. If T is Kreiss-bounded, then {Mn(T )
2} and {M (−2)

n (T )} are ergodic
and regular, while in reflexive spaces both sequences converge strongly.
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Another sequence {Tn} ⊂ κ(T ) related to the Cesàro means is given by

Tn =
2

n(n+ 1)

n∑
j=1

jT j =
2(n+ 1)

n
Mn(T )−

n+ 2

n
M (2)

n (T ). (5.5)

We have the following result derived from (5.5) and Theorem 5.6.

Corollary 5.9. Let T ∈ B(X ) be such that {M (2)
n (T )} is bounded. The following

statements are equivalent:

(i) {Mn(T )} converges strongly on X ,
(ii) {Tn} converges strongly on X and {Mn(T )

2} is regular,
(iii) {Mn(T )

2} converges strongly on X and {Tn} is ergodic.

Remark 5.10. If T is Kreiss-bounded, then by (5.5) the sequences {Tn} and
{Mn(T )} are simultaneously ergodic (resp., regular). But if T is uniformly Kreiss-
bounded on a Hilbert space H, then by Corollary 4.6 and (5.5) the sequence
{Mn({Tk})} converges strongly on H.

The above results show that in κ(T ) it is possible to transfer some ergodic
properties between Cesàro means and other sequences related to these in both
senses, which can be important for applications. Also, the results obtained on
binomial means in the preceding sections show that some ergodic properties can
be true for some operator means related to Cesàro means even if such properties
do not hold for the latter.
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References

1. A. Aleman and L. Suciu, On ergodic operator means in Banach spaces, Integral Equations
Operator Theory 85 (2016), no. 2, 259–287. Zbl 06599317. MR3511367. DOI 10.1007/
s00020-016-2298-x. 240, 241, 242, 243, 254, 256, 258, 260

2. G. R. Allan, “Power-bounded elements and radical Banach algebras” in Linear Operators
(Warsaw, 1994), Banach Center Publ. 38, Polish Academy of Sciences–Inst. of Mathemat-
ics, Warsaw, 1997, 9–16. Zbl 0884.47003. MR1456997. 241

3. S. I. Ansari and P. S. Bourdon, Some properties of cyclic operators, Acta Sci. Math. (Szeged)
63 (1997), no. 1–2, 195–207. Zbl 0892.47004. MR1459787. 254

4. F. Bayart and E. Matheron, Dynamics of Linear Operators, Cambridge Tracts in Math.
179, Cambridge Univ. Press, Cambridge, 2009. Zbl 1187.47001. MR2533318. DOI 10.1017/
CBO9780511581113. 242

5. J. Boos, Classical and Modern Methods in Summability, Oxford Math. Monogr., Oxford
Univ. Press, New York, 2000. Zbl 0954.40001. MR1817226. 240

6. L. Burlando, A generalization of the uniform ergodic theorem to poles of arbitrary order,
Studia Math. 122 (1997), no. 1, 75–98. Zbl 0869.47007. MR1425876. 259

7. L. W. Cohen, On the mean ergodic theorem, Ann. of Math. (2) 41 (1940), no. 3, 505–509.
Zbl 0024.21401. MR0002027. 241

8. N. Dungey, Subordinated discrete semigroups of operators, Trans. Amer. Math.
Soc. 363 (2011), no. 4, 1721–1741. Zbl 1228.47012. MR2746662. DOI 10.1090/
S0002-9947-2010-05094-9. 240, 241

http://www.emis.de/cgi-bin/MATH-item?06599317
http://www.ams.org/mathscinet-getitem?mr=3511367
http://dx.doi.org/10.1007/s00020-016-2298-x
http://dx.doi.org/10.1007/s00020-016-2298-x
http://www.emis.de/cgi-bin/MATH-item?0884.47003
http://www.ams.org/mathscinet-getitem?mr=1456997
http://www.emis.de/cgi-bin/MATH-item?0892.47004
http://www.ams.org/mathscinet-getitem?mr=1459787
http://www.emis.de/cgi-bin/MATH-item?1187.47001
http://www.ams.org/mathscinet-getitem?mr=2533318
http://dx.doi.org/10.1017/CBO9780511581113
http://dx.doi.org/10.1017/CBO9780511581113
http://www.emis.de/cgi-bin/MATH-item?0954.40001
http://www.ams.org/mathscinet-getitem?mr=1817226
http://www.emis.de/cgi-bin/MATH-item?0869.47007
http://www.ams.org/mathscinet-getitem?mr=1425876
http://www.emis.de/cgi-bin/MATH-item?0024.21401
http://www.ams.org/mathscinet-getitem?mr=0002027
http://www.emis.de/cgi-bin/MATH-item?1228.47012
http://www.ams.org/mathscinet-getitem?mr=2746662
http://dx.doi.org/10.1090/S0002-9947-2010-05094-9
http://dx.doi.org/10.1090/S0002-9947-2010-05094-9


264 L. SUCIU

9. K. Dykema and H. Schultz, Brown measure and iterates of the Aluthge transform for some
operators arising from measurable actions, Trans. Amer. Math. Soc. 361 (2009), no. 12,
6583–6593. Zbl 1181.47006. MR2538606. DOI 10.1090/S0002-9947-09-04762-X. 250

10. W. F. Eberlein, Abstract ergodic theorems and weak almost periodic functions, Trans. Amer.
Math. Soc. 67 (1949), no. 1, 217–240. Zbl 0034.06404. MR0036455. 241

11. J. Esterle, “Quasimultipliers, representations of H∞, and the closed ideal problem for com-
mutative Banach algebras” in Radical Banach Algebras and Automatic Continuity (Long
Beach, 1981), Lecture Notes in Math. 975, Springer, Berlin, 1983, 66–162. Zbl 0536.46041.
MR0697579. DOI 10.1007/BFb0064548. 241, 246

12. I. Gelfand, Zur Theorie der Charaktere der Abelschen topologischen Gruppen, Mat. Sbornik
9 (1941), 49–50. Zbl 0024.32301. MR0004635. 247

13. J. Glück, On the peripheral spectrum of positive operators, Positivity 20 (2016), no. 2,
307–336. Zbl 06591946. MR3505354. DOI 10.1007/s11117-015-0357-1. 241

14. Y. Katznelson and L. Tzafriri, On power-bounded operators, J. Funct. Anal. 68 (1986),
313–328. Zbl 0611.47005. MR0859138. DOI 10.1016/0022-1236(86)90101-1. 241, 246

15. L. Kérchy, Operators with regular norm-sequences, Acta Sci. Math. (Szeged) 63 (1997),
no. 3–4, 571–605. Zbl 0893.47006. MR1480500. 241, 242, 255, 256

16. U. Krengel, Ergodic Theorems, De Gruyter Stud. Math. 6, de Gruyter, Berlin, 1985.
Zbl 0575.28009. MR0797411. DOI 10.1515/9783110844641. 241, 243, 244, 254

17. M. K. Kuo, Tauberian conditions for almost convergence, Positivity 13 (2009), no. 4,
611–619. Zbl 1186.40007. MR2538509. DOI 10.1007/s11117-008-2282-z. 241, 242, 245
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