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Abstract. This work is inspired by the study of wandering vectors and frame
vectors for unitary systems. We investigate the structure and properties of com-
plete wandering subspaces for unitary systems, and, in particular, we consider
the unitary systems with a structure similar to wavelet systems. Given a uni-
tary system with a complete wandering subspace, a necessary and sufficient
condition for a closed subspace to be a Parseval fusion frame generator is
obtained. Moreover, we study the dilation property for Parseval fusion frame
generators for unitary groups.

1. Introduction

In operator theory, wandering vectors and wandering subspaces have been stud-
ied for unitary systems and isometry systems (see [8], [14], [21]). Wavelet theory
entails the study of wandering vectors for unitary systems. Dai and Larson [8]
showed that orthogonal wavelets can be viewed as wandering vectors for dilation-
translation unitary systems. The connection between multiresolution analysis and
the concept of wandering subspaces of unitary operators in Hilbert spaces was
given by Goodman, Lee, and Tang [13]. We know that multiresolution analysis
plays an important role in wavelet theory. Indeed, the classical construction of
wavelets arises from multiresolution analysis. With the development of wavelets,
many different aspects of the wavelet theory have been studied. They are useful
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in many areas of mathematics and theoretical physics (see [2], [3]) and also in
practical applications such as image and signal processing. One purpose of this
paper is to investigate the properties of wandering subspaces for unitary systems
and especially, with a structure similar to wavelet systems.

As a generalization of Riesz bases in Hilbert spaces, frames allow representa-
tions of vectors which are not necessarily unique. This property makes them very
useful in many fields of applications such as signal and image processing (see [4])
and wavelet and frequency analysis (see [9], [10]). However, in some applications,
when we deal with a huge amount of data it is often beneficial to subdivide a
large frame system into smaller subsystems and locally combine data vectors. In
other words, sometimes we need to construct global frames from smaller local
ones. This leads to the concept of fusion frames (frames of subspaces; see [5], [6]),
which are an extension to frames. Fusion frames are also very useful. They can
provide an extensive framework not only to model sensor networks but also to
improve robustness or develop efficient and feasible information processing algo-
rithms (see [6], [22]). Moreover, as we know, many useful frames with a special
structure, such as Gabor frames and wavelet frames (see [11], [15], [16]), play an
essential role in both theory and applications. Motivated by Gabor analysis, one
often considers unitary systems, group-like unitary systems, or projective unitary
representations for a countable group. So, another purpose of this paper is to
study fusion frames with the structure of unitary systems.

We now review an important example for unitary systems. Let T and D be the
operators on the Hilbert space L2(R) defined by

(Tf)(t) = f(t− 1), (Df)(t) =
√
2f(2t), for f ∈ L2(R).

They are unitary operators and, in fact, bilateral shifts of infinite multiplicity,
with wandering subspaces L2([0, 1]) and L2([−2,−1]∪ [1, 2]), respectively, consid-
ered as subspaces of L2(R). They are not commutative, and we have TD = DT 2.
Hence,

UD,T = {DnT l : n, l ∈ Z}
is an example of a countable unitary system which consists of noncommuting
unitary operators, and it does not form a group (see [7], [9]). Usually, UD,T is
called a wavelet system. It is well known that the group generated by {D,T} is
{DnTβ : n ∈ Z, β ∈ D}, where D denotes the set of dyadic rational numbers, and
for real number β, Tβ denotes the translation unitary operator (Tβf)(t) = f(t−β).

The paper is organized as follows. In Section 2, we first investigate the proper-
ties of the local commutants for a set of operators at a subspace of vectors. Then
for a unital semigroup of unitary operators, we present a structure characteriza-
tion of all complete wandering subspaces. More properties of complete wandering
subspaces for a special class of unitary systems with a structure similar to wavelet
systems are obtained. Section 3 is devoted to the study of fusion frames with the
structure of unitary systems. We introduce the concept of fusion frame genera-
tors, and, for a unitary system with a complete wandering subspace, we give a
necessary and sufficient condition for a closed subspace to be a Parseval fusion
frame generator. Moreover, we study the dilation property for Parseval fusion
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frame generators for unitary groups. We remark that our results partly extend
those in [8] and [16] for complete wandering vectors and complete frame vectors
for unitary systems.

Throughout this paper, H denotes a complex separable Hilbert space, and
B(H) represents the algebra of all bounded linear operators on H. For subsets
W ⊆ H and R ⊆ B(H), let [W ] be the closure of the linear span of W , let
w∗(R) be the von Neumann algebra generated by R, and let U(R) be the set of
all unitary operators in R. If W is a closed subspace of H, then we write πW for
the orthogonal projection onto W unless otherwise specified.

2. Local commutants and wandering subspaces

Following Dai and Larson [8], a unitary system is a subset of unitary operators
acting on H which contains the identity operator I. For a unitary system U ,
a closed subspace W of H is called a wandering subspace for U if UW and VW
are orthogonal for all U, V ∈ U with U 6= V . A wandering subspace W is called
complete if span{UW : U ∈ U} is dense in H. The set of all complete wandering
subspaces for U is denoted by S(U). It is easy to see that if {ei : i ∈ I} is an
orthonormal basis for W , then W is a complete wandering subspace for U if
and only if {Uei : U ∈ U , i ∈ I} is an orthonormal basis for H. Furthermore,
let R ⊆ B(H) be a set, and let W ⊆ H be a subspace. Call W cyclic for R
if [RW ] = H and separating for R if AW = {0} implies A = 0. The local
commutant of R at W is defined by

CW (R) =
{
T ∈ B(H) : (TR−RT )W = {0} for R ∈ R

}
.

It should be mentioned that (TR−RT )W = {0} implies TRW = RTW , but the
reverse implication is not true. The notation R′ will denote the usual commutant
of R; that is,

R′ =
{
T ∈ B(H) : TR = RT for R ∈ R

}
.

Clearly, CW (R) contains R′ and is a strongly closed subspace of B(H).

Proposition 2.1. Let R ⊆ B(H) be a set, and let W ⊆ H be a cyclic subspace
for R. Then the following hold:

(1) The subspace W is separating for CW (R).
(2) If R is a semigroup, then CW (R) = R′.
(3) If A ∈ CW (R) with dense range, then AW is a cyclic subspace for R.
(4) Suppose that W is also a separating subspace for R. If R1, R2 ∈ R with

R1R2, R2R1 ∈ R and R1R2 6= R2R1, then neither R1 nor R2 is in CW (R).
(5) Let R = R1R2, where R1 is a semigroup. Then CW (R) ⊆ R′

1.
(6) If T ∈ CW (R) is invertible, then CTW (R) = CW (R)T−1.
(7) For any A ∈ R′ and B ∈ CW (R), we have AB ∈ CW (R).

(8) Let R be a semigroup, and let a set R̃ ⊆ B(H) such that R ⊆ R̃, R′ = R̃′.

Then CW (R̃) = CW (R) = R′.

Proof. (1) If A ∈ CW (R) and AW = {0}, then for all R ∈ R, we have ARW =
RAW = {0}. Hence, A[RW ] = AH = {0}, implying A = 0. So, W is separating
for CW (R).
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(2) It is sufficient to show CW (R) ⊆ R′. Suppose that A ∈ CW (R). Then for
any R, T ∈ R, we have RT ∈ R, and so

AR(Tx) = A(RT )x = (RT )Ax = R(TA)x = RA(Tx)

for any x ∈ W . Since [RW ] = H, it follows that AR = RA; that is, A ∈ R′.
(3) Since A ∈ CW (R), for any R ∈ R and x ∈ W , we have ARx = RAx. Also,

[RW ] = H and A has dense range, so [RAW ] = [AH] = H. Hence, AW is a
cyclic subspace for R.

(4) Suppose on the contrary that R1 ∈ CW (R). Then (R1R2 −R2R1)W = {0}
because of R2 ∈ R. Since R1R2, R2R1 ∈ R and W is a separating subspace for
R, we obtain R1R2 = R2R1, which contradicts the assumption R1R2 6= R2R1.
So, R1 /∈ CW (R). Similarly, we can get that R2 /∈ CW (R).

(5) We have R1R ⊆ R, clearly. Let A ∈ CW (R) and B ∈ R1. Then for any
R ∈ R and x ∈ W , we have ARx = RAx, and, moreover,

A(BR)x = (BR)Ax = B(RA)x = B(AR)x

because BR ∈ R. That is, (AB)Rx = (BA)Rx for all R ∈ R, x ∈ W . Since
[RW ] = H, it follows that AB = BA, and so A ∈ R′

1. Hence, CW (R) ⊆ R′
1.

(6) By definition, we have

CTW (R) =
{
A ∈ B(H) : (AR−RA)TW = {0} for R ∈ R

}
=

{
A ∈ B(H) : (ART −RAT )W = {0} for R ∈ R

}
=

{
A ∈ B(H) : (ATR−RAT )W = {0} for R ∈ R

}
=

{
A ∈ B(H) : AT ∈ CW (R)

}
= CW (R)T−1,

where the third equality follows from the fact that T ∈ CW (R).
(7) For any A ∈ R′, B ∈ CW (R) and R ∈ R, we have

(AB)Rx = A(BR)x = A(RB)x = (RA)Bx = R(AB)x

for all x ∈ W . That is, (ABR−RAB)W = {0}. Hence, AB ∈ CW (R).

(8) By the assumptions and the statement (2), we have CW (R) = R′ = R̃′.

But, it is easy to see that R̃′ ⊆ CW (R̃) ⊆ CW (R). So CW (R̃) = CW (R) = R′. �

Denote C1(H) by the space of trace-class operators and by tr(·) the trace of a
trace-class operator. It is well known that B(H) can be identified with the dual of
C1(H) via the pairing (T, S) = tr(TS) for S ∈ B(H), T ∈ C1(H). For a subspace
R of B(H), call R reflexive if

R =
{
T ∈ B(H) : Tx ∈ [Rx] for all x ∈ H

}
,

and n-reflexive if the n-fold ampliation R(n) := {T (n) : T ∈ R} is a reflexive
subspace of B(H(n)). A famous result tells us that a weakly closed subspace of
B(H) is n-reflexive if and only if the preannihilator R⊥ in C1(H) is a trace-class
norm ‖ · ‖1-closed linear span of operators of rank at most n (see, e.g., [19]).
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Proposition 2.2. Let R ⊆ B(H), and let W be a subspace of H. Then(
CW (R)

)
⊥ = span‖·‖1

{
[R, x⊗ y] : R ∈ R, x ∈ W, y ∈ H

}
,

where x⊗y denotes the rank-one operator defined by (x⊗y)z = 〈z, y〉x for z ∈ H,
and [R, x⊗ y] = R(x⊗ y)− (x⊗ y)R. Hence, CW (R) is 2-reflexive.

Proof. For any A ∈ B(H), we have

tr
(
A[R, x⊗ y]

)
= tr

(
A(Rx⊗ y − x⊗R∗y)

)
= tr(ARx⊗ y)− tr(Ax⊗R∗y)

= 〈ARx, y〉 − 〈Ax,R∗y〉
= 〈ARx, y〉 − 〈RAx, y〉
=

〈
(AR−RA)x, y

〉
.

This implies that A ∈ CW (R) if and only if A is annihilated by all trace-class
operators of the form [R, x ⊗ y] for R ∈ R and x ∈ W, y ∈ H. So, (CW (R))⊥ =
span‖·‖1{[R, x⊗ y] : R ∈ R, x ∈ W, y ∈ H}. �

We now want to characterize the set of all complete wandering subspaces for a
unital semigroup of unitaries. For this, we need two lemmas.

Lemma 2.3. Suppose that U is a unitary system on H and W ∈ S(U).
(1) If Ω ∈ S(U) with dimΩ = dimW , then there exists a unitary operator

T ∈ CW (U) such that Ω = TW .
(2) If T is a unitary operator in CW (U), then TW ∈ S(U).

Proof. (1) Suppose Ω ∈ S(U) such that dimΩ = dimW . Let {ei}i∈I and {fi}i∈I
be orthonormal bases for W and Ω, respectively, where I is an index set with
cardinal number dimW . Then both {Uei : i ∈ I, U ∈ U} and {Ufi : i ∈ I, U ∈ U}
are orthonormal bases for H. So, we can define a unitary operator T on H by
TUei = Ufi for all i ∈ I, U ∈ U . Then clearly TW = Ω. Since I ∈ U , for any
U ∈ U , we have TUei = Ufi = UTei for all i ∈ I, and hence, T ∈ CW (U).

(2) Let T be a unitary operator in CW (U). We first prove that UTW ⊥ V TW
for all U, V ∈ U with U 6= V . In fact, for any U, V ∈ U with U 6= V and x, y ∈ W ,
since W ∈ S(U), we have

〈UTx, V Ty〉 = 〈TUx, TV y〉 = 〈Ux, V y〉 = 0.

So, UTW ⊥ V TW for all U 6= V . Second, we verify that span{UTW : U ∈
U} = H. Let y ⊥ span{UTW : U ∈ U}. Then for all U ∈ U , x ∈ W , we have

〈T−1y, Ux〉 = 〈y, TUx〉 = 〈y, UTx〉 = 0.

Since span{UW : U ∈ U} = H, it follows that T−1y = 0, and so y = 0. Thus,
span{UTW : U ∈ U} = H. So TW ∈ S(U) as required. �

Lemma 2.4 ([17, Corollary 1.2]). Let U be a unitary group on H, and let W be
a complete wandering subspace for U . Then every complete wandering subspace
for U has the same dimension as W .
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The following theorem is one main result in this section and plays a key role
in the rest of the paper.

Theorem 2.5. Let U be a unital semigroup of unitaries in B(H), and suppose
that there exists an element W ∈ S(U). Then

S(U) =
{
TW : T ∈ U(U ′)

}
.

Proof. We claim that U is, in fact, a group. Otherwise, there exists A ∈ U such
that A−1 /∈ U . For every B ∈ U , since U is a semigroup, we have AB ∈ U and
AB 6= I. Fix a nonzero vector x ∈ W . Then for all y ∈ W , one has 〈A−1x,By〉 =
〈x,ABy〉 = 0. This implies that A−1x ⊥ BW for all B ∈ U , contradicting the
fact [UW ] = H. So, U is a group.

Suppose that Ω ∈ S(U). By Lemma 2.4, we obtain dimΩ = dimW . Then the
result follows immediately from Lemma 2.3. �

The following result shows the commutativity of local commutants.

Proposition 2.6. Let U be a unitary system on H, and suppose that CW (U)
is abelian for some W ∈ S(U). Then CΩ(U) is abelian for all Ω ∈ S(U) with
dimΩ = dimW .

Proof. Suppose that CW (U) is abelian for some W ∈ S(U) and Ω ∈ S(U) with
dimΩ = dimW . By Lemma 2.3(1), we know that there exists T ∈ U(CΩ(U)) such
thatW = TΩ. Then CW (U) = CTΩ(U) = CΩ(U)T ∗ by Proposition 2.1(6). Clearly,
T ∗ ∈ CW (U) and T ∗ ∈ (CW (U))′. Since T is normal, we have T ∈ (CW (U))′ by the
Fuglede–Putnam theorem. This implies that CΩ(U) = CW (U)T is abelian. �

In the remainder of this section, unless otherwise specified, we always suppose
that U is a unitary system in B(H) and that U contains a subset U0 which is
a group such that UU0 = U . Since this is just the case of the wavelet system
UD,T = {DnT l : n, l ∈ Z} for L2(R), where U0 = {T l : l ∈ Z}, we call U a
wavelet-like unitary system.

Lemma 2.7. Let W ∈ S(U), and let U ∈ U0. Then UW ∈ S(U), and there exists
a unique unitary operator TU in CW (U) such that TUx = Ux for all x ∈ W .

Proof. Clearly, UW ∈ S(U) and dimW = dimUW . Let {ei}i∈I be an orthonormal
basis forW . Similar to the proof of Lemma 2.3(1), define an operator TU on H by
V ei 7→ V Uei for all i ∈ I, V ∈ U . Then TU is in CW (U) and unitary and satisfies
TUx = Ux for all x ∈ W . Suppose that there are two operators T1, T2 in CW (U)
such that T1x = T2x = Ux for all x ∈ W . Then

T1V x = V T1x = V Ux = V T2x = T2V x

for all V ∈ U , x ∈ W . The uniqueness of the operator TU follows from
[UW ] = H. �

By this lemma, for a given W ∈ S(U), we get a well-defined map

KW : U0 → U
(
CW (U)

)
, U 7→ TU .

Note that U0 will not usually be contained in CW (U).
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Theorem 2.8. Let W ∈ S(U). Then KW (U0) is a group, and KW is a group
anti-isomorphism. Moreover, if we regard the elements in S(U) as orthogonal
projections, then the set U0W is contained in a connected subset of S(U) in the
norm topology.

Proof. For any U1, U2 ∈ U0, T ∈ U , and x ∈ W , we have

KW (U2)KW (U1)Tx = KW (U2)TKW (U1)x = KW (U2)TU1x

= TU1KW (U2)x = TU1U2x

= TKW (U1U2)x = KW (U1U2)Tx.

Since [UW ] = H, we know KW (U2)KW (U1) = KW (U1U2) and KW (I) = I by tak-
ing U1 = U2 = I. Then clearly KW (U0) is a group, and KW is an antihomomor-
phism. Moreover, if U1, U2 ∈ U0 are different, then U1W 6= U2W as U1W ⊥ U2W .
This implies KW (U1) 6= KW (U2), and hence, KW is one-to-one.

Observe that the closure of the span{KW (U0)} in the strong operator topology
is the von Neumann algebra w∗(KW (U0)) and is contained in CW (U). Define a
map

U
(
w∗(KW (U0)

))
→ B(H), U 7→ πUW .

Since U is a unitary operator, we know that πUW = UπWU
∗. Then it is easy to see

that the map U 7→ πUW is norm continuous. Recalling that Theorem 2.5 and that
the unitary group of a von Neumann algebra is norm connected (see [18]), we can
get that {πUW : U ∈ U(w∗(KW (U0)))} is norm connected in {πΩ : Ω ∈ S(U)}.
For U ∈ U0, x ∈ W , since Ux = TUx = KW (U)x, we have UW = KW (U)W , and
hence,

{πUW : U ∈ U0} ⊆
{
πUW : U ∈ U

(
w∗(KW (U0)

))}
,

as required. �

In the case that U0 is abelian, the domain of the map KW can be enlarged as
follows.

Theorem 2.9. Let U be a waveletlike unitary system such that U0 is abelian.

(1) If U ∈ U(w∗(U0)), then US(U) ⊆ S(U).
(2) For W ∈ S(U), the map KW extends to a homomorphism from U(w∗(U0))

into U(CW (U)).

Proof. (1) Let U ∈ U(w∗(U0)), W ∈ S(U), and write Ω = UW . To show Ω ∈
S(U), denote

EW = [U0W ] =
[
w∗(U0)W

]
.

Then clearly UEW ⊆ EW and U∗EW ⊆ EW , from which we have UEW = EW .
Let T ∈ U , but T /∈ U0. Then TS /∈ U0 for all S ∈ U0, and so TS1W ⊥
S2W for all S1, S2 ∈ U0, because W ∈ S(U). This yields TEW ⊥ EW . More
generally, if T1, T2 ∈ U such that T1U0 6= T2U0, we have T1U0 ∩ T2U0 = ∅. Hence,
T1U1W ⊥ T2U2W for all U1, U2 ∈ U0. Thus, T1EW ⊥ T2EW , and then T1Ω ⊥ T2Ω
as Ω = UW ⊆ EW . On the other hand, suppose that T1, T2 ∈ U such that
T1 6= T2 but T1U0 = T2U0. Then there exists some U1 ∈ U0 such that U1 6= I,
T1U1 = T2. Noting that U0 is abelian, so is w∗(U0) and UU1 = U1U . It follows
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from U1W ⊥ W that 〈U1Ux, Uy〉 = 〈UU1x, Uy〉 = 〈U1x, y〉 = 0 for all x, y ∈ W .
This yields U1Ω ⊥ Ω, and then T1Ω ⊥ T2Ω(= T1U1Ω). Also,

[U0Ω] = [U0UW ] =
[
w∗(U0)UW

]
=

[
w∗(U0)W

]
= EW .

Thus, [UΩ] = [UU0Ω] = [UEW ] ⊇ [UW ] = H. So Ω ∈ S(U).
(2) Let W ∈ S(U), and let U ∈ U(w∗(U0)). Then we have UW ∈ S(U) by

the conclusion (1). Similar to Lemma 2.7, we can get a unique unitary operator
TU ∈ CW (U) such that TUx = Ux for all x ∈ W . Define a map

KW : U
(
w∗(U0)

)
→ U

(
CW (U)

)
, U 7→ TU .

Let U1, U2 ∈ U(w∗(U0)), x ∈ W , and let T ∈ U . Note that TU1 is in the strongly
closed linear span of U ; thus, similar to the proof of Theorem 2.8, one has

KW (U2)KW (U1)Tx = KW (U2)TKW (U1)x = KW (U2)TU1x

= TU1KW (U2)x = TU1U2x

= TKW (U1U2)x = KW (U1U2)Tx.

This implies that KW (U2)KW (U1) = KW (U1U2) = KW (U2U1), since [UW ] = H
and U0 is abelian. �

We now give two examples to illustrate some of the results in this section.

Example 2.10. Let {en}+∞
n=−∞ be an orthonormal basis for a separable Hilbert

space H, and let S be the bilateral shift of multiplicity one; that is, Sen = en+1

for any n ∈ Z. Let U = {S2n : n ∈ Z} be the group generated by S2, and let
W = span{e0, e1}. Then it is easy to check W ∈ S(U). By Proposition 2.1(2) and
Theorem 2.5, we have

S(U) =
{
TW : T ∈ U

(
{S2}′

)}
.

More generally, given a positive integer k, let Uk = {Skn : n ∈ Z} be the group
generated by Sk, and let Wk = span{e0, e1, . . . , ek−1}. Then Wk ∈ S(Uk) and

S(Uk) =
{
TWk : T ∈ U

(
{Sk}′

)}
.

Example 2.11. LetD,T be operators on L2(R) defined in the Introduction. A fam-
ily of closed subspaces {Ωj : j ∈ Z} of L2(R) is said to be a multiresolution
analysis if it satisfies the following conditions (see [7], [13], [20]):

(i) Ωj ⊂ Ωj+1 for each j ∈ Z;
(ii) D(Ωj) = Ωj+1 and T (Ω0) = Ω0;

(iii)
⋃

j Ωj = L2(R) and
⋂

j Ωj = {0};
(iv) there exists a scaling function ϕ ∈ Ω0 such that {T kϕ : k ∈ Z} is an

orthonormal basis for Ω0.

For every j ∈ Z, letWj be the orthogonal complement of Ωj in Ωj+1. From [20],
we know that there exists ψ ∈ W0 such that {T kψ : k ∈ Z} is an orthonormal
basis for W0, and so we can obtain an orthonormal basis {DjT kψ : j, k ∈ Z}
for L2(R). Then W0 is a complete wandering subspace for the wavelet system
UD,T = {DnT l : n, l ∈ Z} and the unitary group U1 = {Dn : n ∈ Z}, respectively.
So by Proposition 2.1, we have the following:
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(1) CW0(U1) = {D}′.
(2) CW0(UD,T ) ⊆ {D}′ ∩ {T}′.
(3) Let W̃ ⊆ H and A ∈ U(CW0(UD,T )) such that AW0 = W̃ . Then

CW̃ (UD,T ) = CW0(UD,T )A
∗.

3. Wandering subspaces and fusion frame generators

In this section, we consider fusion frames with the structure of unitary systems.
In the case when the unitary system has a complete wandering subspace, we
obtain a necessary and sufficient condition for a closed subspace to be a Parseval
fusion frame generator. Moreover, we want to study the dilation property for
Parseval fusion frames and Parseval fusion frame generators.

Definition 3.1 (see [5], [6]). Let I be some index set, let {Wi}i∈I be a family of
closed subspaces in a Hilbert space H, and let {vi}i∈I be a family of weights;
that is, vi > 0 for all i ∈ I. Then the family {(Wi, vi)}i∈I is called a fusion frame
(frame of subspaces) for H if there exist constants 0 < C ≤ D <∞ such that

C‖x‖2 ≤
∑
i∈I

v2i ‖πWi
x‖2 ≤ D‖x‖2 for all x ∈ H.

We call C and D the fusion frame bounds, and if we only have the upper bound,
then {(Wi, vi)}i∈I is said to be a Bessel fusion sequence. The family {(Wi, vi)}i∈I
is called a Parseval fusion frame provided that C = D = 1, and an orthonormal
fusion basis if H =

∑
i∈I⊕Wi. Moreover, we call a fusion frame with respect to

{vi}i∈I v-uniform if v := vi = vj for all i, j ∈ I.

By [5, Proposition 3.23], the family {Wi}i∈I of closed subspaces in H is a
1-uniform Parseval fusion frame if and only if it is an orthonormal fusion basis.

Let {(Wi, vi)}i∈I be a Bessel fusion sequence for H. The analysis operator θ is
defined by

θ : H →
(∑

i∈I

⊕Wi

)
`2

with θ(x) = {viπWi
x}i∈I,

where (∑
i∈I

⊕Wi

)
`2
:=

{
{xi}i∈I : xi ∈ Wi and

∑
i∈I

‖xi‖2 <∞
}

is the usual (external) direct sum of Hilbert spaces. It is easy to see that the
adjoint operator θ∗ is given by

θ∗ :
(∑

i∈I

⊕Wi

)
`2
→ H with θ∗(x) =

∑
i∈I

vixi,

where x = {xi}i∈I ∈ (
∑

i∈I⊕Wi)`2 . The frame operator S is defined by

S : H → H with Sx = θ∗θ(x) =
∑
i∈I

v2i πWi
x.

Clearly, a Bessel fusion sequence {(Wi, vi)}i∈I is a fusion frame if and only if the
frame operator is positive and invertible on H.
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For our purpose, and motivated by frame vectors for unitary systems (see [16]),
we introduce the following concept.

Definition 3.2. Let U be a unitary system on H. A closed subspace W of H
is called a fusion frame generator (resp., Parseval fusion frame generator and
Bessel fusion sequence generator) for U with respect to {vU}U∈U of weights, if
{(UW, vU)}U∈U is a fusion frame (resp., Parseval fusion frame and Bessel fusion
sequence) for H.

Let R ⊆ B(H) be a set, and let W be a subspace of H. We say that two
operators A,B ∈ B(H) are linearly dependent on W if there exists some nonzero
constant µ such that Ax = µBx for all x ∈ W . Denote that

Cg
W (R) =

{
T ∈ B(H) : TR and RT are linearly dependent on W

for all R ∈ R
}
,

R′
g =

{
T ∈ B(H) : TR and RT are linearly dependent on H

for all R ∈ R
}
.

We call Cg
W (R) and R′

g the generalized local commutant of R at W and the
generalized commutant of R, respectively. Clearly, Cg

W (R) contains R′
g, but it is

not necessarily a subspace.

Proposition 3.3. Let U be a unitary system on H, let W be a fusion frame
generator for U with respect to some weights, and let T be an invertible operator
in Cg

W (U). Then TW is a fusion frame generator for U with respect to the same
weights as W .

Proof. Note that T ∈ Cg
W (U) implies TUW = UTW for every U ∈ U . The result

is immediate by [12, Theorem 2.4]. �

The following result shows that all Parseval fusion frame generators for a uni-
tary system U can be characterized in terms of operators in Cg

W (U), where W is
a complete wandering subspace for U .

Theorem 3.4. Let U be a unitary system on H, let W be a complete wandering
subspace for U , and let Ω be a closed subspace of H such that dimΩ = dimW .
Then Ω is a Parseval fusion frame generator for U with respect to some family
{vU}U∈U of weights if and only if there are a coisometry A ∈ Cg

W (U) (i.e., A∗ is
an isometry) and a nonzero constant µ such that Ω = AW and the operator µA
is isometric on W .

Proof. Suppose that Ω is a Parseval fusion frame generator for U with respect
to the weights {vU}U∈U . Let {ei}i∈I and {fi}i∈I be orthonormal bases for W and
Ω, respectively, where I is an index set with cardinal number dimW and it can
be ∞. Note that for U ∈ U , {Ufi}i∈I constitutes an orthonormal basis for UΩ.
Then for any x ∈ H, we have∑

i∈I

∑
U∈U

v2U
∣∣〈x, Ufi〉∣∣2 = ∑

i∈I

∑
U∈U

v2U
∣∣〈πUΩx, Ufi〉

∣∣2
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=
∑
U∈U

v2U‖πUΩx‖2

= ‖x‖2.

Taking into account that {Uei}i∈I,U∈U is an orthonormal basis for H, we can
define a linear isometric operator B : H → H by

Bx =
∑
i∈I

∑
U∈U

vU〈x, Ufi〉Uei, x ∈ H.

Obviously, B is of closed range. Denote P by the orthogonal projection onto BH,
and let A = B∗(= B∗P ). Then for all x ∈ W , U, V ∈ U and i ∈ I, we have

〈V x,AUei〉 = 〈BV x, Uei〉 =
〈∑

j∈I

∑
S∈U

vS〈V x, Sfj〉Sej, Uei
〉

= vU〈V x, Ufi〉.

Recalling [UW ] = H, we get AUei = vUUfi and, in particular, Aei = vIfi by
choosing U = I. It follows that

AUei =
vU
vI
UAei

for all i ∈ I, U ∈ U . Then clearly the coisometry A ∈ Cg
W (U) and Ω = [AW ].

Moreover, for every x ∈ W ,

‖Ax‖2 =
∥∥∥∑

i∈I

〈x, ei〉Aei
∥∥∥2

= v2I

∥∥∥∑
i∈I

〈x, ei〉fi
∥∥∥2

= v2I
∑
i∈I

∥∥〈x, ei〉∥∥2
= v2I‖x‖2.

This implies that the operator 1
vI
A is isometric on W . It turns out that AW is

closed, and so Ω = AW .
Conversely, let A and µ be of the properties described as in the theorem. Write

(still) {ei}i∈I for an orthonormal basis for W , and let fi = µAei for all i ∈ I.
Then {fi}i∈I is an orthonormal basis for Ω, because Ω = AW and µA is isometric
on W . Noting that A ∈ Cg

W (U), we have, for each U ∈ U , a nonzero constant λU
so that AUx = λUUAx for all x ∈ W . Denote

vU =
∣∣∣λU
µ

∣∣∣
for all U ∈ U . Since A∗ is an isometry and {UW}U∈U is an orthonormal fusion
basis for H, we have, for all x ∈ H,

‖x‖2 = ‖A∗x‖2 =
∑
U∈U

‖πUWA
∗x‖2

=
∑
U∈U

∑
i∈I

∣∣〈πUWA
∗x, Uei〉

∣∣2
=

∑
U∈U

∑
i∈I

∣∣〈x,AUei〉∣∣2 = ∑
U∈U

∑
i∈I

|λU |2
∣∣〈x, UAei〉∣∣2



WANDERING SUBSPACES AND FRAME GENERATORS 859

=
∑
U∈U

∑
i∈I

∣∣∣λU
µ

∣∣∣2∣∣〈x, Ufi〉∣∣2 = ∑
U∈U

∑
i∈I

v2U
∣∣〈πUΩx, Ufi〉

∣∣2
=

∑
U∈U

v2U‖πUΩx‖2.

This shows that {(UΩ, vU)}U∈U is a Parseval fusion frame for H; that is, Ω is
a Parseval fusion frame generator for U with respect to {vU}U∈U . The proof is
complete. �

It is well known that frames have a natural geometric interpretation as sequences
of vectors which can be dilated to bases, and a similar dilation property holds true
for frame vectors (see [16]). We now consider the generalizations of this dilation
property for fusion frames.

Proposition 3.5. Let {(Wi, vi)}i∈I be a Parseval fusion frame for H. Then there
exist a Hilbert space K ⊇ H and an orthonormal fusion basis {Ni}i∈I for K such
that PNi = Wi for all i ∈ I, where P is the orthogonal projection from K onto H.

Proof. Let θ : H → (
∑

i∈I ⊕Wi)`2 be the analysis operator for {(Wi, vi)}i∈I. Since
{Wi, vi}i∈I is a Parseval fusion frame, we have that θ is an isometry with closed
range. Denote the Hilbert space K = H ⊕ θ(H)⊥, and define a linear operator

U : K →
(∑

i∈I

⊕Wi

)
`2

by x⊕ y 7→ θx+ y,

where x ∈ H and y ∈ θ(H)⊥. Then clearly U is unitary. Let Ei be the canon-
ical embedding of Wi in (

∑
i∈I⊕Wi)`2 , and let Ni = U∗Ei. Then {Ei}i∈I is

an orthonormal fusion basis for (
∑

i∈I⊕Wi)`2 , and hence {Ni}i∈I constitutes an
orthonormal fusion basis for K. Denote by P the orthogonal projection from K
onto H. It is easily seen that θ = U |H , θ∗ = PU∗ and that θ∗({. . . , 0, xi, 0, . . .}) =
vixi for xi ∈ Wi. Then PNi = PU∗Ei = θ∗Ei = Wi. �

We remark that the above result appeared in [1]. Here, we present a different
proof and a smaller dilation space “K.” We next study the dilation property for
fusion frame generators.

Let U be a unitary group on H, and let eU be the element in the Hilbert space
`2(U) which takes values 1 at U and zero elsewhere. Then {eU : U ∈ U} is an
orthonormal basis for `2(U). The left regular representation of U on `2(U) gives
the unitary group {LU}U∈U , where we describe the transformation of LU on each
element of the orthonormal basis as follows:

LUeV = eUV , V ∈ U .

Theorem 3.6. Suppose that U is a unitary group on H and Ω is a Parseval
fusion frame generator for U with respect to the weights {vU}U∈U . Then there
exist a Hilbert space K ⊇ H, a unitary group G on K which has a complete
wandering subspace W , and a group isomorphism α from U onto G such that
UΩ = Pα(U)W for all U ∈ U , where P is the orthogonal projection from K
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onto H. In particular, if Ω is a v-uniform Parseval fusion frame generator for
U , then G and W can be chosen so that H is an invariant subspace of G and
G|H = U .

Proof. Since Ω is a Parseval fusion frame generator for U with respect to the
weights {vU}U∈U , we can define an isometric operator

θ : H → `2(U)⊗H by x 7→
∑
U∈U

eU ⊗ vUπUΩx,

where the notation ⊗ denotes the tensor product. Let the Hilbert space K =
H ⊕ θ(H)⊥, and define

B : K → `2(U)⊗H by x⊕ y 7→ θx+ y,

where x ∈ H and y ∈ θ(H)⊥. Then B is a unitary operator. Denote L̃U =

B∗(LU ⊗ I)B for every U ∈ U and G = {L̃U : U ∈ U}. It is easy to see that G
constitutes a unitary group on K, B∗(eU ⊗H) is a complete wandering subspace
for G for every U ∈ U , and the mapping

α : U → G by U 7→ L̃U

is an isomorphism. Put W = B∗(eI ⊗H), and let P be the orthogonal projection

from K onto H. We now want to prove that PL̃UW = UΩ for all U ∈ U . In fact,
we have θ∗ = PB∗, clearly. Then for U ∈ U , x, y ∈ H, we obtain〈

PL̃UB
∗(eI ⊗ x), y

〉
=

〈
PB∗(eU ⊗ x), y

〉
=

〈
θ∗(eU ⊗ x), y

〉
= 〈eU ⊗ x, θy〉 =

〈
eU ⊗ x,

∑
S∈U

eS ⊗ vSπSΩy
〉

= vU〈πUΩx, y〉.

It follows that PL̃UB
∗(eI ⊗ x) = vUπUΩx. Hence, PL̃UW = UΩ, and PW = Ω

by taking U = I.
In particular, suppose that Ω is a v-uniform Parseval fusion frame generator

for U . Then for x ∈ H, U ∈ U , one has

(LU ⊗ U)Bx = (LU ⊗ U)θx = (LU ⊗ U)
(∑
S∈U

eS ⊗ vπSΩx
)

=
∑
S∈U

eUS ⊗ vUπSΩx =
∑
S∈U

eS ⊗ vUπU−1SΩx

=
∑
S∈U

eS ⊗ vπSΩUx = θUx

= BUx.

So, B∗(LU ⊗ U)B|H = U . Take Ĝ = {L̂U : U ∈ U}, where L̂U = B∗(LU ⊗ U)B.

Then Ĝ is a unitary group on K and Ĝ|H = U . Additionally, we can check that the
subspace W = B∗(eI ⊗H) defined above is still a complete wandering subspace

for Ĝ, and UΩ = PL̂UW for all U ∈ U . This completes the proof. �
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Let us conclude by considering the equivalence of unitary representations for
groups, which is determined by wandering subspaces.

Let G be a group. A unitary representation of G on a Hilbert space H is a
group homomorphism π from G into the unitary group on H; as usual, write
(G, π,H) or simply π for such a representation. If a closed nonzero subspace K
of H is invariant under each operator in π(G), then the mapping g 7→ π(g)|K is
a unitary representation of G on K, which is called a subrepresentation of π. Let
H1, H2 be two Hilbert spaces. Call two unitary representations (G, π1, H1) and
(G, π2, H2) unitarily equivalent if there is a unitary operator T : H1 → H2 such
that Tπ1(g) = π2(g)T for all g ∈ G.

Proposition 3.7. Let G be a group, and let (G, π1, H1), (G, π2, H2) be two unitary
representations such that π1(G) and π2(G) admit complete wandering subspaces
W1 and W2, respectively. Then the following hold:

(1) If dimW1 = dimW2, then π1, π2 are unitarily equivalent.
(2) If dimW1 < dimW2, then π1 is equivalent to a subrepresentation of π2.

Proof. (1) Suppose that dimW1 = dimW2, and let {ei}i∈I, {fi}i∈I be orthonormal
bases for W1, W2, respectively, where I is an index set with cardinal number
dimW1. Then let {π1(g)ei : i ∈ I, g ∈ G}, {π2(g)fi : i ∈ I, g ∈ G} be orthonormal
bases for H1, H2, respectively. Define a unitary operator T : H1 → H2 by

Tπ1(g)ei = π2(g)fi for all i ∈ I, g ∈ G.

Then for any g, h ∈ G and i ∈ I, we have

Tπ1(g)π1(h)ei = Tπ1(gh)ei = π2(gh)fi = π2(g)π2(h)fi = π2(g)Tπ1(h)ei.

Hence, Tπ1(g) = π2(g)T , which implies that π1, π2 are unitarily equivalent.
(2) Let m = dimW1 and n = dimW2. By the hypothesis, we know m < ∞.

Take an m-dimensional subspace N of W2. Then N is a wandering subspace (not
necessarily complete) for π2(G). Denote

K = span
{
π2(G)N

}
.

Then clearly, K is a closed subspace of H2 and is invariant under every operator
in π2(G). Define a new mapping

π̃2 : G → B(K) by g 7→ π2(g)|K .

We have that π̃2 is a unitary representation of G on K. Consider the unitary
representations (G, π1, H1) and (G, π̃2, K). By (1), there is a unitary operator
A : H1 → K such that Aπ1(g) = π̃2(g)A for all g ∈ G. This shows that π1, π̃2 are
unitarily equivalent. �
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