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Abstract. We study when diameter 2 properties can be inherited by sub-
spaces. We obtain that the slice diameter 2 property (resp., the diameter 2
property, strong diameter 2 property) passes from a Banach space X to a
subspace Y whenever X/Y is finite-dimensional and Y is complemented by a
norm 1 projection (resp., the quotient X/Y is finite-dimensional and strongly
regular). Also, we study the same problem for the dual properties of diameter
2 properties, such as having octahedral, weakly octahedral, or 2-rough norm.

1. Introduction

We recall that a Banach space X satisfies the strong diameter 2 property
(SD2P) (resp., the diameter 2 property, D2P; the slice diameter 2 property,
slice-D2P) if every convex combination of slices (resp., every nonempty relatively
weakly open subset, every slice) in the unit ball of X has diameter two. The
weak-star slice diameter 2 property (w∗-slice-D2P), weak-star diameter 2 prop-
erty (w∗-D2P), and weak-star strong diameter 2 property (w∗-SD2P) for a dual
Banach space are defined as usual, changing slices by w∗-slices and weakly open
subsets by w∗-open subsets in the unit ball. It is known that the Daugavet prop-
erty implies the SD2P, and therefore the D2P and slice-D2P, too. The above
connection between the Daugavet property and the diameter 2 properties was
discovered in [14]. In fact, the dual of a Banach space with the Daugavet prop-
erty also satisfies the w∗-SD2P (see [4]). It is also known that the above six
properties are extremely different, as proved in [5].
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As can easily be seen, the above properties are not inherited by subspaces, and
so, given a Banach space X with some of the above properties, a natural question
is to wonder which subspaces Y of X also have that property. This problem has
been considered in [2] in terms of almost isometric ideals (see definition below) in
the case of diameter 2 properties. Also, it is known that the Daugavet property
is inherited by rich subspaces. However, only Banach spaces with the Daugavet
property can contain rich subspaces (see [11]). The aim of this note is to study
when the diameter 2 properties pass to subspaces regarding the behavior of the
quotient space. We show that the above properties are not 3-space properties.
We also obtain that a subspace Y of a Banach space X with the SD2P has the
SD2P whenever the quotient X/Y is strongly regular, which is a weaker property
than the Radon–Nikodym property (RNP). In particular, we show that the above
holds if X/Y does not contain `n1 uniformly. Moreover, we get that a subspace Y
of a Banach space X with D2P has D2P whenever X/Y is finite-dimensional, and
we also obtain that a subspace Y of a Banach space X with the slice-D2P has
slice-D2P if Y is finite-codimensional and complemented by a norm 1 projection.

Finally, we study the same kind of problems for the dual properties of diameter
2 properties, such as having octahedral, weakly octahedral, or 2-rough norm.
Recall that a Banach space X satisfies the SD2P if and only if the norm on X∗ is
octahedral, and the norm on X is octahedral if and only if X∗ has the w∗-SD2P
(see [4]).

The norm on a Banach space X is octahedral if, for every ε > 0 and for every
finite-dimensional subspace M of X, there is some y in the unit sphere of X such
that

‖x+ λy‖ ≥ (1− ε)
(
‖x‖+ |λ|

)
holds for every x ∈ M and for every scalar λ (see [7]).

Similarly, following [10] and [7, Proposition I.1.11], a Banach space X satisfies
the D2P (resp., the slice-D2P) if the norm on the dual space X∗ is weakly octahe-
dral (resp., 2-rough). Also, the norm on X is weakly octahedral (resp., 2-rough)
if and only if X∗ has the w∗-D2P (resp., the w∗-slice-D2P).

The norm on a Banach space X is weakly octahedral (see [10]) if for every
finite-dimensional subspace Y of X, every x∗ ∈ BX∗ , and every ε ∈ R+ there
exists y ∈ SX satisfying

‖x+ y‖ ≥ (1− ε)
(∣∣x∗(x)

∣∣+ ‖y‖
)

∀x ∈ Y.

The norm on X is said to be 2-rough if, for every u in the unit sphere of X, one
has

lim sup
‖h‖→0

‖u+ h‖+ ‖u− h‖ − 2

‖h‖
= 2.

Recall that a closed, bounded, and convex subset C of a Banach space X
is said to be strongly regular if every closed and convex subset of C has convex
combinations of slices with arbitrarily small diameter (resp., convex combinations
of relatively weakly open subsets with arbitrarily small diameter) since it is known
that every nonempty relatively weakly open subset contains a convex combination
of slices (see [6, Lemma 5.3]). We refer to this fact as the Bourgain lemma. A point
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x of such a subset C of X is said to be a point of strong regularity if there
are convex combinations of slices in C containing x with an arbitrarily small
diameter. If C is strongly regular, then C contains a norm dense subset of points
of strong regularity (see [9, Proposition 3.6]). The strong regularity is a strictly
weaker property than the RNP, and it is known that, for a Banach space X,
X∗ is strongly regular if and only if X does not contain any isomorphic copy of
`1 (see [9, Corollary 6.18]). Also, it is known that Banach spaces not containing
`n1 uniformly are strongly regular (see [12, Proposition 2.14]). Banach spaces not
containing `n1 uniformly are exactly the K-convex Banach spaces.

Next, we introduce some notation. We consider real Banach spaces BX (resp.,
SX) to denote the closed unit ball (resp., sphere) of the Banach space X. All
subspaces of a Banach space will be considered closed subspaces. If Y is a subspace
of a Banach space X, then X∗ stands for the dual space of X, and the annihilator
of Y is the subspace of X∗ given by

Y ◦ =
{
x∗ ∈ X∗ : x∗(Y ) = {0}

}
.

A slice of a bounded subset C of X is the set

S(C, f, α) :=
{
x ∈ C : f(x) > M − α

}
,

where f ∈ X∗, f 6= 0, M = supx∈C f(x), and α > 0. If X = Y ∗ is a dual space
for some Banach space Y and if C is a bounded subset of X, then a w∗-slice of
C is the set

S(C, y, α) :=
{
f ∈ C : f(y) > M − α

}
,

where y ∈ Y , y 6= 0, M = supf∈C f(y), and α > 0. The weak (resp., weak-star)
topology of a Banach space is denoted by w (resp., w∗).

According to [2], given a Banach space X and a subspace Y ⊆ X, it is said that
Y is an almost ideal in X if, for every ε > 0 and every finite-dimensional subspace
E ⊆ X, there exists a bounded and linear operator T : E −→ Y satisfying the
following conditions:

(1) T (e) = e for every e ∈ E ∩ Y .
(2) For each e ∈ E, one has

1

1 + ε
‖e‖ ≤

∥∥T (e)∥∥ ≤ (1 + ε)
∥∥T (e)∥∥.

The well-known principle of local reflexivity (see [3, Chapter 11]) asserts that a
Banach space X is an almost isometric ideal in its bidual (see [2, Theorem 1.4]),
which provides us with a wide class of examples of almost isometric ideals.

It is known that the slice-D2P, the D2P, the SD2P, and the Daugavet property
are inherited by almost isometric ideals (see [2, Propositions 3.1, 3.2, 3.8 and
Corollary 3.4]).

2. Main results

We shall begin with the following question: Can a closed subspace satisfying any
diameter 2 property force the space to have any diameter 2 property? Although
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the answer to the above question is negative, we will go further, proving that
diameter 2 properties are not 3-space properties.

Indeed, it is possible to construct an example Z = X×Y for X = Y = C([0, 1])
and a norm ‖ · ‖ on Z such that Z fails every diameter 2 property in spite of the
fact that X and Y have the SD2P under the norm of Z restricted to X and Y ,
respectively. In order to provide such a norm, we give a proof, for the reader’s
convenience, of a special case of the well-known Bourgain–Namioka super lemma
(see [8, p. 157]).

Lemma 2.1. Let X be a Banach space, and assume that C = co(B ∪ {x0}) for
some closed, bounded, and convex subset B of X and x0 ∈ X \ B. Then x0 is a
denting point of C. Moreover, if B is the unit ball of X, then co(C ∪ {−x0}) is
the unit ball of some equivalent norm on X and x0 is a denting point of the unit
ball for this new norm.

Proof. As x0 /∈ B, we can find by a separation argument x∗ ∈ SX∗ such that
x∗(x0) > supx∗(B) = M . Hence sup x∗(C) = x∗(x0). Fix ε > 0. Let β :=

supx∈B ‖x‖, and let 0 < α < x∗(x0)−M
2(β+‖x0‖)ε. Consider S = {x ∈ C : x∗(x) > x∗(x0)−

α}. Now S is a slice of C. Pick y, z ∈ co(B ∪ {x0}) ∩ S with y = λb1 + (1− λ)x0

and z = µb2 + (1 − µ)x0 for some 0 ≤ λ, µ ≤ 1, and b1, b2 ∈ B. As y, z ∈ S, we
deduce that λ, µ < ε

2(β+‖x0‖) . Hence, ‖y − z‖ < ε
2(β+‖x0‖)(‖b1‖+ ‖b2‖+ ‖x0‖) < ε.

This proves that co(B ∪ {x0})∩ S has diameter less than ε, and so S is a slice of
C containing x0 with diameter less than ε and x0 is a denting point of C.

In the case that B is in particular the unit ball of X, it is easy to see that the
above set S is a slice of co(C ∪ {−x0}) containing x0 with diameter less than ε
for α small enough. �

In order to exhibit the announced example, let B be the closed unit ball of
C([0, 1])⊕1 C([0, 1]) and let C = co(B ∪ {(x0, x0)} ∪ {(−x0,−x0)}), where x0 is
a point in C([0, 1]) whose usual norm in C([0, 1]) is 1. From Lemma 2.1, C is the
unit ball of some norm on C([0, 1])× C([0, 1]), failing every diameter 2 property
whose restriction to the factor spaces has the SD2P.

Recall that a property (P) is said to be a 3-space property if a Banach space
X satisfies (P) whenever there exists a closed subspace Y ⊆ X such that Y and
X/Y enjoy the property (P).

As a consequence of the previous lemma, neither the Daugavet property nor
the diameter 2 properties are 3-space properties.

We now study the following question: Given a Banach space X satisfying some
diameter 2 property, which closed subspaces of X enjoy this diameter 2 property?
The following result enables us to draw such conclusions, assuming quite simple
properties on the quotient X/Y .

Theorem 2.2. Let X be a Banach space, and let Y be a subspace of X.

(i) If X has the slice-D2P and if X/Y is finite-dimensional, and there exists a
linear and norm 1 projection π from X onto Y , then Y has the slice-D2P.

(ii) If X has the D2P and X/Y is finite-dimensional, then Y has the D2P.
(iii) If X has the SD2P and X/Y is strongly regular, then Y has the SD2P.
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Proof. (i) Note that, since ‖π‖ = 1,

π(BX) = BY .

Under the hypotheses of (i), it is proved in [13, Theorem 5.3] that

2 = inf
{
diam(S) : S slice of BX

}
≤ inf

{
diam(T ) : T slice of π(BX) = BY

}
.

Thus Y has the slice-D2P, as desired.
(ii) Consider

W :=
{
y ∈ Y :

∣∣y∗i (y − y0)
∣∣ < εi ∀i ∈ {1, . . . , n}

}
for n ∈ N, εi ∈ R+, y∗i ∈ Y ∗ for each i ∈ {1, . . . , n} and y0 ∈ Y such that

W ∩BY 6= ∅.

Let us prove thatW∩BY has diameter 2. To this aim, pick an arbitrary 0 < δ < 1.
There is no loss of generality by the Hahn–Banach theorem if we assume that

y∗i ∈ X∗ for each i ∈ {1, . . . , n}.
Define

U :=
{
x ∈ X :

∣∣y∗i (x− y0)
∣∣ < εi ∀i ∈ {1, . . . , n}

}
,

which is a weakly open set in X such that U ∩BX 6= ∅.
Let p : X −→ X/Y be the quotient map, which is a w − w open map. Then

p(U) is a weakly open set in X/Y . In addition,

∅ 6= p(U ∩BX) ⊆ p(U) ∩ p(BX) ⊆ p(U) ∩BX/Y .

Defining A := p(U)∩BX/Y , we see that A is a nonempty, relatively weakly open
and convex subset of BX/Y which contains 0. Hence, as X/Y is finite-dimensional,
we can find a weakly open set V of X/Y , in fact a ball centered at 0, such that
V ⊂ A and such that

diam
(
V ∩ p(U) ∩BX/Y

)
= diam(V ) <

δ

16
. (2.1)

As V ⊂ A, we have B := p−1(V )∩U ∩BX 6= ∅. Hence B is a nonempty relatively
weakly open subset of BX . Using the fact that X satisfies the D2P, we can assure
the existence of x, y ∈ B such that

‖x− y‖ > 2− δ

16
. (2.2)

Note that x ∈ B implies that p(x) ∈ V = V ∩ P (U) ∩ BX/Y . In view of (2.1), it
follows that ∥∥p(x)∥∥ ≤ diam

(
V ∩ p(U) ∩BX/Y

)
<

δ

16
.

Hence there exists v ∈ Y such that ‖x − v‖ < δ
16
, and so ‖v‖ < 1 + δ

16
. Letting

u = v
‖v‖ , we have

‖x− u‖ ≤ ‖x− v‖+
∥∥∥v − v

‖v‖

∥∥∥
<

δ

16
+ ‖v‖

(
‖v‖ − 1

)
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<
δ

16
+
(
1 +

δ

16

) δ

16

=
δ

16

(
2 +

δ

16

)
,

and so

‖x− u‖ <
δ

4
. (2.3)

Again using (2.1), by a similar argument we can find v ∈ BY satisfying

‖v − y‖ <
δ

4
. (2.4)

Note that, given i ∈ {1, . . . , n} and keeping in mind (2.3), one has∣∣y∗i (u− y0)
∣∣ ≤ ∣∣y∗i (y − x)

∣∣+ ∣∣y∗i (x− y0)
∣∣ ≤ ‖y∗i ‖

δ

4
+ εi

using the fact that x ∈ U . Thus, if we define

Wδ :=
{
y ∈ Y/

∣∣y∗i (y − y0)
∣∣ < εi + ‖y∗i ‖

δ

4
∀i ∈ {1, . . . , n}

}
,

then it follows that u, v ∈ Wδ ∩ BY . On the other hand, in view of (2.2), (2.3),
and (2.4), we can estimate

diam(Wδ∩BY ) ≥ ‖u−v‖ ≥ ‖x−y‖−‖x−u‖−‖y−v‖ ≥ 2− δ

16
− δ

4
− δ

4
> 2−δ.

As 0 < δ < 1 was arbitrary, we deduce that diam(W ∩BY ) = 2, as requested.
(iii) Assume that X has the strong-D2P and that X/Y is strongly regular.
Let C :=

∑n
i=1 λiS(BY , y

∗
i , ε) =

∑n
i=1 λiSi be a convex combination of slices of

BY . Let us prove that diam(C) = 2. To this aim, pick an arbitrary 0 < δ < 1.
Let π : X −→ X/Y be the quotient map. Again, there is no loss of generality

by the Hahn–Banach theorem if we assume that y∗i ∈ X∗ for each i ∈ {1, . . . , n}.
For each i ∈ {1, . . . , n} consider Ai := π(S(BX , y

∗
i , ε)), which is a convex subset

of BX/Y containing 0. By [9, Proposition III.6], Ai is equal to the closure of the
set of its strongly regular points. As a consequence, for each i ∈ {1, . . . , n}, there
exists a strongly regular point ai of Ai such that

‖ai‖ <
δ

32
. (2.5)

For every i ∈ {1, . . . , n} we can find ni ∈ N, µi
1, . . . , µ

i
ni

∈ (0, 1] such that∑ni

j=1 µ
i
j = 1 and (ai1)

∗, . . . , (aini
)∗ ∈ S(X/Y )∗ , η

i
j ∈ R+ satisfying

ai ∈
ni∑
j=1

µi
j

(
S
(
BX/Y , (a

i
j)

∗, ηij
)
∩ Ai

)
and also satisfying

diam
( ni∑

j=1

µi
j

(
S
(
BX/Y , (a

i
j)

∗, ηij
)
∩ Ai

))
<

δ

32
. (2.6)



SUBSPACES OF BANACH SPACES WITH BIG SLICES 777

It is clear that, for i ∈ {1, . . . , n} and j ∈ {1, . . . , ni}, one has

S
(
BX/Y , (a

i
j)

∗, ηij
)
∩ Ai 6= ∅ ⇒ S

(
BX , π

∗((aij)∗), ηij) ∩ S(BX , y
∗
i , ε) 6= ∅.

Now
∑n

i=1 λi

∑ni

j=1 µ
i
j(S(BX , π

∗((aij)
∗), ηi)∩S(BX , y

∗
i , ε)) is a convex combination

of nonempty relatively weakly open subsets of BX . The last set contains a convex
combination of slices of BX (see [9, Lemma 5.3]), and, as a consequence, the
last set has diameter two. Hence we can find, for each i ∈ {1, . . . , n} and j ∈
{1, . . . , ni}, elements xi

j, z
i
j ∈ S(BX , π

∗((aij)
∗), ηi) ∩ S(BX , y

∗
i , ε) satisfying∥∥∥ n∑

i=1

λi

ni∑
j=1

µi
jx

i
j −

n∑
i=1

λi

ni∑
j=1

µi
jz

i
j

∥∥∥ > 2− δ

16
. (2.7)

On the one hand, given i ∈ {1, . . . , n}, one has

ni∑
j=1

µi
jx

i
j ∈

ni∑
j=1

µi
jS

(
BX , π

∗((aij)∗), ηij) ∩ S(BX , y
∗
i , ε)

⇒ π
( ni∑

j=1

µi
jx

i
j

)
∈

ni∑
j=1

µi
jS

(
SX/Y , (a

i
j)

∗, ηij
)
∩ Ai;

thus, since (2.5) and (2.6), we have∥∥∥π( ni∑
j=1

µi
jx

i
j

)∥∥∥ ≤
∥∥∥ ni∑
j=1

µi
jai

∥∥∥+ diam
( ni∑

j=1

µi
j

(
S
(
SX/Y , (a

i
j)

∗, ηij
)
∩ Ai

))
<

δ

16
.

Hence, from similar computations to (ii), we conclude that, for each i ∈ {1, . . . , n},
there exists ai ∈ BY such that∥∥∥ai − ni∑

j=1

µi
jx

i
j

∥∥∥ <
δ

4
. (2.8)

By a similar argument we can find, for every i ∈ {1, . . . , n}, an element bi ∈ BY

satisfying ∥∥∥bi − ni∑
j=1

µi
jz

i
j

∥∥∥ <
δ

4
. (2.9)

Thus, given i ∈ {1, . . . , n}, we deduce, in view of (2.8),

y∗i (ai) = y∗i

( ni∑
j=1

µi
jx

i
j

)
+ y∗i

(
ai −

ni∑
j=1

µi
jx

i
j

)
> 1− ε− δ

4
.

In a similar way, using (2.9), we get

y∗i (bi) > 1− ε− δ

4
.

Summarizing,

ai, bi ∈ S
(
BY , y

∗
i , ε+

δ

4

)
.
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On the other hand, in view of (2.7), we deduce that

diam
( n∑

i=1

λiS
(
BY , y

∗
i , ε+

δ

4

))
≥

∥∥∥ n∑
i=1

λiai −
n∑

i=1

λibi

∥∥∥
≥

∥∥∥ n∑
i=1

λi

ni∑
j=1

µi
jx

i
j −

n∑
i=1

λi

ni∑
j=1

µi
jz

i
j

∥∥∥
−

∥∥∥ n∑
i=1

λiai −
ni∑
j=1

µi
jx

i
j

∥∥∥−
∥∥∥bi − ni∑

j=1

µi
jz

i
j

∥∥∥
> 2− δ.

As 0 < δ < 1 was arbitrary, we conclude that diam(C) = 2, as desired. �

Remark 2.3. Consider X := c0 ⊕∞ `2 and consider Y := 0 ⊕ `2 ⊆ X. Although
X has the strong-D2P, Y fails to have the slice-D2P. This shows that the above
theorem is false if we delete the assumptions on X/Y .

Note that the proof of Theorem 2.2 can be adapted in order to get a similar
result related to dual versions of diameter 2 properties.

Proposition 2.4. Let X be a Banach space, and let Y ⊆ X be a subspace.

(i) If X∗ has the w∗-slice-D2P, Y is finite-dimensional, and there exists a
norm 1 linear and continuous projection π : X −→ Y , then Y ◦ has the
w∗-slice-D2P.

(ii) If X∗ has the w∗-D2P and Y is finite-dimensional, then Y ◦ has the
w∗-D2P.

(iii) If X∗ has the w∗-SD2P and Y is reflexive, then Y ◦ has the w∗-SD2P.

Proof. (i) If we define Z = ker(π), then we get that Z◦ is finite-dimensional since
Y is also finite-dimensional. From the w∗ version of part (i) in Theorem 2.2, it is
enough to see that there is a norm 1 projection fromX∗ onto Y ◦ with ker(p) = Z◦.
Consider the inclusion i of Y into X. Letting p = π∗ ◦ i∗, we obtain the desired
projection.

(ii) Consider a weak-star open subset W of Y ◦ = (X/Y )∗ such that

W ∩BY ◦ 6= ∅.

Now we can extend W to a weak-star open subset of X∗, say U , as it is done in
Theorem 2.2(ii) satisfying U ∩BX∗ 6= ∅.

Let p : X∗ −→ X∗/Y ◦ be the quotient map, which is a w∗ − w∗ open map.
Then p(U) is a weak-star open set of X∗/Y ◦ that meets with BX∗/Y ◦ .

If we define A := p(U)∩BX∗/Y ◦ , then we have that A is a relatively weak-star
open and convex subset of BX∗/Y ◦ that contains 0.

As X∗/Y ◦ = Y ∗ is finite-dimensional, we can find a weak-star open subset V
of X∗/Y ◦, in fact a ball centered at zero, such that V ⊂ A and whose diameter
is as close to zero as desired.

From here, it is straightforward to check that computations of Theorem 2.2(ii)
work, and this allows us to conclude that diam(W ∩BY ◦) = 2.
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(iii) Consider C :=
∑n

i=1 λiS(BY ◦ , xi, α), a convex combination of weak-star
slices in BY ◦ ; let us prove that diam(C) = 2.

Define Si := S(BX∗ , xi, α) for each i ∈ {1, . . . , n}. Let π : X∗ −→ X∗/Y ◦ be
the quotient map, and define Ai := π(Si).

As X∗/Y ◦ = Y ∗ is reflexive, X∗/Y ◦ is strongly regular, and so we can find for
each i ∈ {1, . . . , n} a strongly regular point ai of Ai whose norm is as close to zero
as desired. Given i ∈ {1, . . . , n}, as ai is a point of strong regularity, we can find
convex combinations of slices containing ai and whose diameters are as small as
desired. In addition, from the reflexivity of X∗/Y ◦, convex combinations of slices
are indeed convex combinations of weak-star slices, and so we can actually find
convex combinations of weak-star slices containing ai and whose diameters are as
close to zero as desired for each i ∈ {1, . . . , n}.

Using the previous ideas, the result can be concluded following word by word
the proof of Theorem 2.2(iii). �

As we said in the Introduction, the three weak-star diameter 2 properties are
dual properties of different kinds of octahedrality of the norm (see [10], [7, Propo-
sition I.1.11], and [4] for details). From these facts we conclude the following.

Theorem 2.5. Let X be a Banach space, and let Y be a subspace of X.

(i) If X has a 2-rough norm, Y is a finite-dimensional subspace of X, and
π : X → Y is a norm 1 projection, then X/Y has a 2-rough norm.

(ii) If X has a weakly octahedral norm and Y is finite-dimensional, then X/Y
has a weakly octahedral norm.

(iii) If X has an octahedral norm and Y is reflexive, then X/Y has an octa-
hedral norm.

Now, using the identification Y ◦ = (X/Y )∗, we get the following.

Corollary 2.6. Let X be a Banach space such that X∗ has the SD2P, and let Y
be a subspace of X. If Y does not contain any copy of `1, then Y ◦ has the SD2P.

Proof. Assume that Y does not contain any isomorphic copy of `1. Then Y ∗ =
X∗/Y ◦ is strongly regular (see [9]). By Theorem 2.2(iii), we deduce that Y ◦ =
(X/Y )∗ has the SD2P. �

Note that, taking into account the duality between SD2P and octahedrality, we
deduce from Corollary 2.6 that the norm on (X/Y )∗∗ = X∗∗/Y ◦◦ is octahedral
whenever the norm on X∗∗ is octahedral and Y does not contain isomorphic
copies of `1.

Corollary 2.7. Let X be a Banach space satisfying the SD2P, and let Y be a
subspace of X. If Y ◦ does not contain isomorphic copies of `1, then Y satisfies
the SD2P.

Proof. As Y ◦ does not contain isomorphic copies of `1, we deduce that (Y ◦)∗ is
strongly regular, and so X/Y is also strongly regular as a subspace of (Y ◦)∗. Now
Theorem 2.2 applies. �

Note that, again taking into account the duality between the SD2P and octa-
hedrality, we deduce from the above corollary that the norm on Y ∗ is octahedral
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whenever the norm on X∗ is octahedral and Y ◦ does not contain isomorphic
copies of `1.

Corollary 2.8. Let X be a Banach space with the SD2P, and let Y be a subspace
of X. If X/Y does not contain `n1 uniformly, then Y has the SD2P.

Note that, taking into account the duality between SD2P and octahedrality, we
deduce from the preceding corollary that the norm on Y ∗ is octahedral whenever
the norm on X∗ is octahedral and Y ◦ does not contain `n1 uniformly.

3. Some remarks and open questions

From the results of Section 2, the following questions remain open.

Problem 3.1. Let X be a Banach space, and let Y be a closed subspace of X.

(i) If X has the slice-D2P and X/Y is finite-dimensional, then does Y have
the slice-D2P?

(ii) If X has the D2P and X/Y is reflexive (or has the RNP), then does Y
have the D2P?

Note that, from Theorem 2.2, the answer to question (i) above is positive for the
case of the diameter 2 property. Hence, if there were a Banach space X answering
question (i) above negatively, then X would have to satisfy the slice-D2P but fail
the D2P. The existence of such Banach spaces is known, but it is highly nontrivial
(see [5]). Hence, although we think that the answer to problem (i) above has to
be negative, finding a concrete example seems quite difficult. Similarly, if there
were a Banach space X answering question (ii) above negatively, then X would
have to satisfy the D2P but fail the strong-D2P, since the answer to question (ii)
above is positive for Banach spaces having the SD2P according to Theorem 2.2.
Hence, if there were a Banach space that provides a negative answer to question
(ii), then its construction would be quite complicated.

In a very recent paper (see [1]), new stability results about octahedral norms
and the SD2P have appeared. Indeed, we have the following.

Theorem 3.2 ([1, Theorem 3.9]). Let X be a Banach space. The following asser-
tions are equivalent.

(i) The norm on X is octahedral.
(ii) Each closed subspace Y ⊆ X such that X/Y does not contain any iso-

morphic copy of `1 and has an octahedral norm.

Note that the previous stability result complements the information of those
above. For instance, while Theorem 2.5 provides stability of octahedrality to
quotients with hypotheses on subspaces, the above result proves inheritance of
octahedrality to subspaces with hypotheses on quotients.

In order to summarize the known results of inheritance of the SD2P and octa-
hedrality, we formulate the following theorem.

Theorem 3.3. Let X be a Banach space, and let Y ⊆ X be a closed subspace.

(i) If X has the SD2P and Y is an almost isometric ideal, then Y has the
SD2P.
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(ii) If X has the SD2P and X/Y is strongly regular, then Y has the SD2P.
(iii) If X∗ has the SD2P and Y does not contain an isomorphic copy of `1 (in

particular, if Y is strongly regular), then X◦ has the SD2P.
(iv) If X has an octahedral norm and Y is reflexive, then X/Y has an octa-

hedral norm.
(v) If X has an octahedral norm and X/Y does not contain any isomorphic

copy of `1 (resp., (X/Y )∗ = Y ◦ is strongly regular), then Y has an octa-
hedral norm.

Proof. The assertions (ii) and (iv) have been proved in Theorems 2.2 and 2.5,
respectively, whereas (i) is stated in [2, Proposition 3.3] and (v) is stated in
Theorem 3.2. Finally, (iii) follows from Corollary 2.6. �

In view of the results noted above, it seems natural to pose the following ques-
tion.

Problem 3.4. Let X be a Banach space, and let Y be a closed subspace.
If X has an octahedral norm and Y is strongly regular (or even Y ∗ does not

contain any isomorphic copy of `1), then does X/Y have an octahedral norm?

Finally, we could wonder whether we can improve Theorem 2.5(i)–(ii), in the
following sense.

Problem 3.5. Let X be a Banach space, and let Y be a closed subspace of X.

(i) If X has a 2-rough norm and Y is finite-dimensional (or has the RNP),
then does X/Y have a 2-rough norm?

(ii) If X has a weakly-octahedral norm and Y is reflexive (or has the RNP),
then does X/Y have a weakly octahedral norm?

On the one hand, as in Problem 3.1, observe that a negative answer to (i)
(resp., (ii)) would imply that X∗ has the w∗-slice-D2P (resp., the w∗-D2P) but
does not have the w∗-D2P (resp., the w∗-SD2P) by Theorem 2.5.

On the other hand, note that we can get from (i) that Y has a 1-rough norm
(see [7, Lemma III.1.1]).
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Departmento de Análisis Matemático, Universidad de Granada, 18071 Granada,
Spain.

E-mail address: juliobg@ugr.es; glopezp@ugr.es; arz0001@correo.ugr.es

http://www.emis.de/cgi-bin/MATH-item?1297.46011
http://www.ams.org/mathscinet-getitem?mr=3150166
http://dx.doi.org/10.1016/j.jfa.2013.09.004
http://www.emis.de/cgi-bin/MATH-item?pre06374143
http://www.ams.org/mathscinet-getitem?mr=3281132
http://dx.doi.org/10.1016/j.aim.2014.10.007
http://www.emis.de/cgi-bin/MATH-item?0501.46020
http://www.ams.org/mathscinet-getitem?mr=0670763
http://www.emis.de/cgi-bin/MATH-item?0782.46019
http://www.ams.org/mathscinet-getitem?mr=1211634
http://www.emis.de/cgi-bin/MATH-item?0542.46007
http://www.ams.org/mathscinet-getitem?mr=0737004
http://dx.doi.org/10.1007/978-1-4612-5200-9
http://www.emis.de/cgi-bin/MATH-item?0651.46017
http://www.ams.org/mathscinet-getitem?mr=0912637
http://dx.doi.org/10.1090/memo/0378
http://www.emis.de/cgi-bin/MATH-item?1337.46007
http://www.ams.org/mathscinet-getitem?mr=3346197
http://www.emis.de/cgi-bin/MATH-item?0986.46010
http://www.ams.org/mathscinet-getitem?mr=1853772
http://dx.doi.org/10.4064/sm147-3-5
http://www.emis.de/cgi-bin/MATH-item?0633.46023
http://www.ams.org/mathscinet-getitem?mr=0902791
http://dx.doi.org/10.2307/2000690
http://www.emis.de/cgi-bin/MATH-item?0686.46011
http://www.ams.org/mathscinet-getitem?mr=1005009
http://dx.doi.org/10.1007/BF02764863
http://www.emis.de/cgi-bin/MATH-item?0964.46006
http://www.ams.org/mathscinet-getitem?mr=1784413
http://dx.doi.org/10.1006/jfan.2000.3626
mailto:juliobg@ugr.es
mailto:glopezp@ugr.es
mailto:arz0001@correo.ugr.es

	1 Introduction
	2 Main results
	3 Some remarks and open questions
	Acknowledgments
	References
	Author's addresses

