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Abstract. The notion of Szegö-type properties of positive Borel measures
is well known and widely exploited. In this paper, we consider a class of or-
thogonal decompositions of isometries on Hilbert spaces which correspond to
Szegö-type properties of their elementary measures. Our decompositions are
closely connected with some special families of invariant subspaces. It is shown
that this connection holds for the decomposition constructed in the paper. We
illustrate our results with several examples. We also give a short proof of Mlak’s
theorem on the elementary measures of completely nonunitary contractions.

1. Introduction and preliminaries

Let B(H) denote the algebra of all bounded linear operators on a complex
Hilbert space H. For a given isometry V ∈ B(H), denote by H = Hu ⊕ Hs

its Wold decomposition and by E the spectral measure of its minimal unitary
extension. For every x ∈ H the mapping µx : B(T) 3 ω 7→ 〈E(ω)x, x〉 is a
positive Borel measure, where B(T) denotes the σ-algebra of all Borel subsets of
the unit circle T. The measure µx is called the elementary measure of x (and V ).

Recall that a unitary operator U ∈ B(K) is called a unitary dilation of a
contraction T ∈ B(H) if

T n = PHU
n|H for n ∈ N,
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where P |H is the orthogonal projection onto H ⊂ K. Each contraction has a
minimal unitary dilation (see [13]). We can extend the definition of elementary
measures to contractions. Indeed, if E is a spectral measure for U , then the
elementary measure of x ∈ H is the positive Borel measure µx : B(T) 3 ω 7→
〈E(ω)x, x〉.

Let µ be a nonnegative regular Borel measure on T. We say that µ is a Szegö
measure if for any ω ∈ B(T) the inclusion χωL

2(µ) ⊂ H2(µ) implies µ(ω) = 0,
where H2(µ) denotes the closure in L2(µ) of the algebra of all analytic polyno-
mials, and χω denotes the characteristic function of the set ω.

We have the following (see [5], [6]).

Proposition 1.1. A measure µ on T is a Szegö measure if and only if

(1) µ is absolutely continuous with respect to the Lebesgue measure m on T,
(2) log

dµ

dm
is Lebesgue summable.

We say that µ is Szegö-singular if H2(µ) = L2(µ). Denote by A the algebra of
all analytic polynomials and by A0 the subalgebra of those members of A which
vanish at 0. Observe the following.

Remark 1.2. µ is Szegö-singular if and only if infp∈A0

∫
|1− p|2 dµ = 0.

By the Szegö theorem (see [6, p. 49]), for µ absolutely continuous with respect
to m, we have the formula

inf
p∈A0

∫
|1− p|2 dµ = exp

(∫
log

dµ

dm
dm

)
. (1.1)

Each Borel regular measure µ on T has a unique decomposition

µ = χωµ+ χT\ωµ,

where ω is a µ-essentially unique Borel set, χωµ is a Szegö measure, and χT\ωµ
is Szegö-singular. The above decomposition is a special case of a more general
result shown for natural representations in [5].

Recall that a decomposition of an operator T ∈ B(H) means T = T1⊕T2 where
T1 ∈ B(H1), T2 ∈ B(H2), and H = H1 ⊕ H2. This implies that Ti = T |Hi

and
Hi is reducing for T (invariant for T and T ∗) for i = 1, 2. In known examples
of decomposition like Wold decomposition or Lebesgue decomposition, one com-
ponent has some additional property (e.g., is unitary or its spectral measure is
absolutely continuous with respect to the Lebesgue measure) while the second
component completely fails to have that property. The aforementioned decompo-
sitions are unique because the considered properties are hereditary (which means
that the property is inherited by the restriction of the operator to any reducing
subspace). In the case considered in this paper, the relevant property of an isom-
etry V ∈ B(H) is that H is spanned by vectors whose elementary measures are
Szegö. This property is not hereditary (see Example 2.5). Therefore, we do not
obtain a unique decomposition with respect to this property but a family of such
decompositions. We call them Szegö-type decompositions (see Definition 2.7).

We study two natural Szegö-type decompositions. The first was introduced
in [4] and used there in the context of two commuting isometries. The second
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decomposition is based on unilateral and bilateral shift parts of a given isometry.
Both decompositions are based on so-called wandering vectors.

Definition 1.3. Let V ∈ B(H) be an isometry. A vector w ∈ H is called wandering
for V if

〈V nw,w〉 = 0

for all n ∈ N+.

In Section 3, we give a characterization of the aforementioned decompositions
using intersections of some special families of invariant subspaces. In Section 4,
closely connected with the results of [4], we give a comparison of our decompo-
sitions and the Lebesgue decomposition. In Section 5, we give a simpler proof of
Mlak’s theorem of [10]. In Section 6, we show connections between the subject of
our paper and the invariant subspace problem. We conclude with Problem 7.4,
which is important for the construction in Section 7 (see Example 7.1).

2. Szegö-type decompositions for isometries

In this section, we introduce decompositions of isometries which are connected
with Szegö measures. First we show connections between wandering vectors and
Szegö measures.

Proposition 2.1. Let V ∈ B(H) be an isometry. If 0 6= w ∈ H is a wandering
vector for V , then its elementary measure µw is a Szegö measure.

Proof. Isometry V restricted to the smallest invariant subspace containing w is a
unilateral shift with one-dimensional wandering subspace generated by w. Hence
µw is equal to the Lebesgue measure, and consequently is a Szegö measure. �

Theorem 2.2. Let S be a unilateral shift on a Hilbert space H. Then all elemen-
tary measures of S and S∗ are Szegö.

Proof. For x ∈ H denote by µx (resp., νx) the elementary measure of S (resp.,
of S∗) corresponding to x. It is well known that this measure is absolutely con-
tinuous. First let us assume that µx is Szegö-singular for some x ∈ H. Then, by
Remark 1.2,

0 = inf
p∈A0

∫
|1− p|2 dµx = inf

p∈A0

∫
|z̄|2|1− p|2 dµx

= inf
p∈A

∫
|z̄ − p|2 dµx = inf

p∈A

∥∥Ŝ∗x− p(S)x
∥∥2
,

where Ŝ is the bilateral shift extending S. By the above equality, the minimal S
invariant subspace containing x reduces S to a unitary operator, which leads to a
contradiction. As a consequence, there is no Szegö-singular elementary measure.

The measure µx, as an elementary measure of a unilateral shift, is absolutely
continuous with respect to the Lebesgue measure. Therefore, by (1.1), Proposi-
tion 1.1, and Remark 1.2, µx is a Szeg̈o measure.

By elementary calculation (see [9, proof of Lemma 2.1]), we can show that νx
is Szegö if and only if µx is Szegö. �
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Corollary 2.3. Let {µx : x ∈ H} be the set of elementary measures of a bilateral
shift U on a Hilbert space H. Then the set {x ∈ H : µx is Szegö} is dense in H.

Proof. We have H =
⊕∞

n=−∞ UnL, where L is a wandering subspace for U . The
operator U restricted to every subspace

⊕∞
n=k U

nL (k ∈ Z) is a unilateral shift.

Hence, by Theorem 2.2, every subspace
⊕∞

n=k U
nL consists of vectors with Szegö

elementary measures. Consequently, the set
⋃−∞

k=0(
⊕∞

n=k U
nL) which is dense in

H has the same property. �

On the other hand, we have a nice characterization of spaces which consist of
vectors having Szegö-singular elementary measures.

Proposition 2.4. Let V ∈ B(H) be an isometry.

• Let x ∈ H. Then x ∈
∨
{V nx : n ≥ 1} if and only if elementary measure

µx is Szegö-singular.
• Let L ⊂ H be a V -reducing subspace. Then each V -invariant subspace of
L is V -reducing if and only if elementary measures for all vectors in L
are Szegö-singular.

Proof. The first assertion is a consequence of the equality infp∈A0 ‖x−p(V )x‖2 =
infp∈A0

∫
|1− p|2 dµx and Remark 1.2.

For the proof of the second assertion, assume that w is an arbitrary Laurent
polynomial of z. Then for a minimal unitary extension U of V and x ∈ L we have∥∥w(U)x− p(V )x

∥∥2
=

∫
|w − p|2 dµx (2.1)

for every analytic polynomial p. Since every V -invariant subspace of L is reducing,
the infimum of the left-hand side in (2.1) taken over all analytic polynomials p
is 0. Consequently, w ∈ H2(µx). Since w was arbitrary, we have H2(µx) = L2(µx),
which means that µx is Szegö-singular.

Conversely, assume that for each x ∈ L the measure µx is Szegö-singular. If
M is a V -invariant subspace of L, then every vector x ∈ M 	 VM is wandering.
Hence, by Proposition 2.1, we have x = 0, and consequently M = VM , which
finishes the proof. �

Now, let us consider an example where the set of all vectors whose elementary
measures are Szegö-singular cannot be a linear space.

Example 2.5. Let H = L2(m), where m is the normalized Lebesgue measure on T
and S ∈ B(H) is the operator of multiplication by z. Each vector can be approxi-
mated by a linear combination of wandering vectors (whose elementary measures
are Szegö by Proposition 2.1). On the other hand, if we take a measurable set
α ⊂ T such thatm(α) < 1, then by Proposition 2.4 the subspace χαL

2(m) consists
of vectors whose elementary measures are Szegö-singular. Hence any vector f ∈ H
is a sum of two singular elements χT+f, χT−f , where T+ := {z ∈ T : =z ≥ 0} and
T− := {z ∈ T : =z < 0}.

We denote by F the set of all vectors ∈ H whose elementary measures are
Szegö-singular.



SZEGÖ-TYPE DECOMPOSITIONS FOR ISOMETRIES 597

Remark 2.6. The set F may not be a linear subspace.

In light of the above example, we introduce the following definition.

Definition 2.7. We call an isometry V ∈ B(H) a Szegö isometry if H is spanned
by vectors whose elementary measures are Szegö. We call an isometry V ∈ B(H)
Szegö-singular if the elementary measure of any vector is Szegö-singular.

We say that a decomposition V = V1 ⊕ V2 is a Szegö-type decomposition if V1

is Szegö-singular and V2 is a Szegö isometry.

Proposition 2.4 implies the following characterization.

Remark 2.8. An isometry is Szegö-singular if and only if it does not contain any
nontrivial wandering vector.

Note that Szegö-singular isometries are unitary operators, but not all unitary
isometries are Szegö-singular. A unilateral shift is a Szegö isometry.

Now let us consider another example (see [4]).

Example 2.9. Denote α := {z ∈ T : arg z ∈ [2
3
π, 4

3
π]}. Then α ∪ α2 = T. Let H =

L2(α)⊕ L2(α2)⊕ L2(α) and U ∈ B(H) be multiplication by z. Set H1 := L2(α),
and set H2 := L2(α) ⊕ L2(α2). Then H = H1 ⊕H2 is a reducing decomposition
such that H1 ⊂ F and H2 is spanned by vectors whose elementary measures are
Szegö. Unfortunately, such a decomposition is not unique.

The above example shows that, generally, we cannot define a unique Szegö-type
decomposition.

Now, for a given isometry V ∈ B(H), we introduce two subspaces which natu-
rally generate Szegö-type decompositions.

First, let us consider the reducing subspace H0 := H 	 Hw, where Hw is
the subspace spanned by all wandering vectors for V . In [4], we gave a precise
description of Hw and H0. From the definition of Hw and Proposition 2.1 we con-
clude that H = H0 ⊕Hw is a Szegö-type decomposition. Moreover, the subspace
spanned by all vectors whose elementary measures are Szegö is maximal. Such a
decomposition will be called a Szegö-type I decomposition.

Second, if we consider the decomposition H = H1 ⊕H2 such that H2 reduces
V to a direct sum of unilateral and bilateral shifts, and H1 does not contain any
wandering vector, then H = H1⊕H2 generates a Szegö-type decomposition of V .
Such a decomposition is not unique. Thus we define the subspace

Hns :=
⋂

{H1 : H⊥
1 reduces V to a direct sum

of unilateral and bilateral shifts}.

For the orthogonal complement we have

H⊥
ns =

∨
{H2 : H2 reduces V to a direct sum of unilateral and bilateral shifts}.

Hence, by Propositions 2.1 and 2.4, the decomposition H = Hns ⊕ (Hns)
⊥ is a

Szegö-type decomposition of V . It will be called a Szegö-type II decomposition.
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3. Relations between Szegö-type decompositions

In this section, we consider two families of subspaces defined for a given isom-
etry V ∈ B(H):

M̂ :=
{
M ⊂ H : V (M) ⊂ M,

∨
n≥0

V̂ ∗n(M) = Ĥ
}
,

where V̂ ∈ B(Ĥ) is the minimal unitary extension of V , and

M :=
{
M ⊂ H : V (M) ⊂ M,

∨
n≥0

V ∗n(M) = H
}
.

These families generate two subspaces
⋂

M̂ :=
⋂
{M : M ∈ M̂} and

⋂
M :=⋂

{M : M ∈ M}. Note that the subspaces Mn = Hu ⊕
⊕

k≥n V
k(kerV ∗) belong

to M̂ and M. On the other hand,
⋂

n≥0Mn = Hu. It follows that
⋂
M̂ and

⋂
M

are subspaces of Hu.

Theorem 3.1. Let V ∈ B(H) be an isometry. Then

H0 =
⋂

M.

Proof. First we show that
⋂

M ⊂ H0. We may assume that H0 6= H. Fix a
wandering vector v ∈ H. Take M := H	{v, V ∗v, V 2∗v, V 3∗v, . . . }. Since H	M
is invariant for V ∗, the subspace M is invariant for V . Moreover, V v ∈ M because
v is wandering. Hence V ∗kv = V ∗(k+1)V v ∈ V ∗(k+1)(M). Thus

∨
k≥0 V

∗k(M) = H.
Consequently, M ∈ M and v⊥M . Therefore,

⋂
M is orthogonal to all wandering

vectors for V , and consequently
⋂

M ⊂ H0.
Now we show that H0 ⊂

⋂
M. Fix M ∈ M. Denote by V |Mu ⊕V |Ms the Wold

decomposition of the isometry V |M . Since V |Mu is unitary, for every x ∈ Mu

we have ‖x‖ = ‖(V |M)∗x‖ = ‖PMV ∗x‖ ≤ ‖V ∗x‖ ≤ ‖x‖. Hence PMV ∗x =
V ∗x. On the other hand, PMV ∗x = (V |M)∗x. Consequently, (V |M)∗|Mu = V ∗|Mu

and since Mu reduces V |M , it reduces V as well. Thus H =
∨

n≥0 V
∗nM =

Mu ⊕
∨

n≥0 V
∗nMs. The isometry V |Ms is a unilateral shift. As a consequence,∨

n≥0 V
∗nMs is spanned by wandering vectors for V . Hence H0 ⊂ Mu ⊂ M . �

Theorem 3.2. Let V ∈ B(H) be an isometry. The subspace
⋂

M̂ is reducing for
V and generates a Szegö-type decomposition.

Moreover, H0 ⊂
⋂

M̂.

Proof. For every M ∈ M̂ we have VM ∈ M̂ and VM ⊂ M . Hence
⋂

M̂ ⊂⋂
M∈M̂ VM ⊂

⋂
M̂. Consequently, V (

⋂
M̂) =

⋂
M∈M̂ VM =

⋂
M̂ since V is

injective. Thus
⋂

M̂ is reducing for V .

Now we show that each subspace of
⋂

M̂ which is invariant for V is reducing

for V . Since
⋂

M̂ ⊂
⋂

n∈N V
nM for M ∈ M̂, it follows that

⋂
M̂ reduces V to a

unitary operator. Take an invariant subspace L ⊂
⋂

M̂ and a vector x ∈ L	V L.
Consider the space Lx :=

∨
n∈Z{V nx}, where V n = V ∗|n| for n < 0. Then Lx

reduces V . Since all vectors in L 	 V L are wandering, V |Lx is a bilateral shift.
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Let Mn := (H	Lx)⊕
∨

k∈N{V n+kx} ∈ M̂. Then x ∈
⋂
M̂ ⊂

⋂
n∈N Mn = H	Lx,

and so x = 0. Hence L	 V L = {0}. Finally, the subspace L is reducing for V .

Before we prove that
⋂

M̂ generates a Szegö-type decomposition, we will show

that H0 ⊂
⋂
M̂. Pick x ∈ H0 and consider the invariant subspace L+

x :=∨
n∈N{V nx}. We have L+

x ⊂ H0. Since each invariant subspace of H0 is re-

ducing, L+
x is reducing for V . Moreover, for M ∈ M̂ consider the subspace

HM :=
⋂

n∈N V
nM ⊂ M . Since V (HM) = HM , the subspace HM is reducing

for V . Thus, denoting by V̂ ∈ B(Ĥ) the minimal unitary extension of V , and
applying Wold decomposition for V |M , we have

V̂ ∗k(M) = HM ⊕
⊕
n∈N

V̂ n
(
M 	 V̂ (M)

)
⊕

⊕
0≤n≤k

V̂ ∗n(M 	 V̂ (M)
)

for all k ∈ N. Note that L+
x ⊂ Ĥ =

∨
k≥0 V̂

∗k(M). From [4, Theorem 3.10]
we know that each vector which is orthogonal to all wandering vectors for V is

also orthogonal to all wandering vectors for V̂ . Thus the subspace L+
x ⊂ H0 is

orthogonal to
⊕

n∈N V̂
n(M	 V̂ (M))⊕

⊕
0≤n≤k V̂

∗n(M	 V̂ (M)). Hence x ∈ L+
x ⊂

HM ⊂ M . But M ∈ M̂ was arbitrary, and so x ∈
⋂
M̂. Finally, H0 ⊂

⋂
M̂.

As a consequence, (
⋂

M̂)⊥ ⊂ Hw. Thus, by Propositions 2.1 and 2.4, we con-

clude that H =
⋂

M̂ ⊕ (
⋂

M̂)⊥ is a Szegö-type decomposition. �

Let us describe relations between H0 and
⋂
M̂ more precisely.

Theorem 3.3. Let V ∈ B(H) be an isometry.
If there are wandering vectors for the unitary part V |Hu, then⋂

M̂ = H0.

If there is no nontrivial wandering vector for V |Hu and dimN (V ∗) < ∞, then⋂
M̂ = Hu.

Proof. First assume that there exists a wandering vector v ∈ Hu. Thus the sub-
space M := (H	{. . . , V ∗2v, V ∗v, v, V v, V 2v, . . . })⊕

∨
{V nv : n ∈ N+} belongs to

M̂ and v⊥M . Since Hs⊥
⋂

M̂, by [4, Theorem 3.10] we have Hw⊥
⋂

M̂. Hence⋂
M̂ ⊂ H0. By Theorem 3.2 we get the first statement.
Now, assume that V does not have any wandering vector in Hu, and the uni-

lateral shift V |Hs has a finite multiplicity. Choose M ∈ M̂ and consider two
Wold decompositions: V = U ⊕ S and V |M = U ′ ⊕ S ′, where U,U ′ are unitary
operators and S, S ′ are unilateral shifts. The subspace which reduces an isome-
try V |M to a unitary operator U ′ also reduces V . Thus U = U ′ ⊕ U ′′ for some

unitary operator U ′′. By the definition of M̂ we know that the minimal unitary

extension of V , denoted as V̂ , is also the minimal unitary extension of V |M . Thus

U ⊕ Ŝ = V̂ = V̂ |M = U ′ ⊕ Ŝ ′, where Ŝ, Ŝ ′ are minimal bilateral shifts which

extend the unilateral shifts S and S ′. Hence U ′′ ⊕ Ŝ = Ŝ ′. The unilateral shifts
S and S ′ have finite multiplicities. Thus the spectral multiplicity functions of Ŝ
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and Ŝ ′ are constant on the unit circle. The difference of these two functions is the
spectral multiplicity function of U ′′. Thus the spectral multiplicity function of U ′′

is constant on the unit circle. Hence U ′′ is a bilateral shift or the zero operator
(see [11]). Since Hu does not contain any wandering vector, we cannot reduce U

to a bilateral shift. Hence U ′′ = 0. As a consequence, Hu ⊂ M for each M ∈ M̂.

Finally,
⋂

M̂ = Hu. �

Proposition 3.4. Let V ∈ B(H) be an isometry. Then⋂
M̂ ⊂ Hns.

Proof. Let H = H1 ⊕ H2 be a decomposition such that V |H2 is a direct sum
of a unilateral and a bilateral shift. Set H2 := (H2)s ⊕

⊕
n≥0 V

n(W ), where
(H2)s is the unilateral shift subspace of V |H2 and W is a wandering subspace

of the remaining bilateral shift. Then Mn := H1 ⊕ V n(H2) belongs to M̂. Thus⋂
M̂ ⊂

⋂
n∈N Mn = H1. This shows that

⋂
M̂ ⊂ Hns. �

From Theorem 3.2 and Proposition 3.4 we get the following.

Corollary 3.5. Let V ∈ B(H) be an isometry. Then

H0 ⊂
⋂

M̂ ⊂ Hns.

Remark 3.6. If the isometry V is unitary, then M̂ = M. Moreover, Szegö-type I

and II decompositions are equal; that is, H0 =
⋂

M̂ = Hns.

In some cases the family M̂ defines Szegö-type II decomposition. Indeed, by
Theorem 3.3 and Proposition 3.4, we get the following.

Corollary 3.7. For any isometry V such that dimN (V ∗) < ∞ we have⋂
M̂ = Hns.

4. Szegö-type I and II decompositions via Lebesgue decomposition

Any isometry V acting on a Hilbert space H has Lebesgue decomposition,
which combined with Wold decomposition gives us the following decomposition:

H = Hs ⊕Hac ⊕Hsing , (4.1)

where the subspaces Hs, Hac, Hsing reduce V , the operator V |Hs is a unilateral
shift, the operator V |Hsing is unitary singular (i.e., its spectral measure is singular
to the Lebesgue measure on the unit circle), and V |Hac is unitary absolutely
continuous (i.e., its spectral measure is absolutely continuous with respect to the
Lebesgue measure on the unit circle).

As a direct consequence of [4, Theorem 3.10], we can compare a Szegö-type I
decomposition with decomposition (4.1).

Theorem 4.1. For any isometry V ∈ B(H) we have the following:

• if V has no wandering vectors, then H0 = H = Hac ⊕Hsing ;
• if V has wandering vectors, then H0 = Hsing , Hw = Hac ⊕Hs.
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Comparison of a Szegö-type II decomposition and decomposition (4.1) is as
follows.

Theorem 4.2. Let V ∈ B(H) be an isometry. We have the following:

• if Hu contains no wandering vector, then Hns = Hu = Hac ⊕Hsing ;
• if Hu contains a wandering vector, then Hns = H0 = Hsing .

Proof. Assume that Hu does not contain any wandering vector. Consider a de-
composition H = H1 ⊕H2 such that H2 reduces V to a direct sum of unilateral
and bilateral shifts. Actually,H2 reduces V to a unilateral shift. HenceHu ⊂ Hns.
Thus Hns = Hu.

Now we consider the second case: Hu contains a wandering vector. For the

unitary operator U := V |Hu , by Remark 3.6 we have
⋂
M̂U =

⋂
MU , where

M̂U and MU denote the corresponding families of subspaces for U . If we take

MU ∈ M̂U , then Mn := MU ⊕ V nHs ∈ M̂ and
⋂

n∈N Mn = MU . Thus, by
Theorem 4.1, for U we get⋂

M̂ ⊂
⋂

MU∈M̂U

⋂
n∈N

MU ⊕ V nHs =
⋂

M̂U =
⋂

MU = Hsing .

On the other hand, again by Theorem 4.1 and Corollary 3.5, we have Hsing =
H0 ⊂ Hns. Finally, Hns = Hsing . �

The above theorems have an immediate consequence.

Corollary 4.3. For a nonunitary isometry V the subspaces Hns and H0 are
different if and only if the unitary part of V is not singular and it does not have
any wandering vectors.

The above corollary can be illustrated by the following example.

Example 4.4. Denote T+ := {z ∈ T : =z ≥ 0} and µ the Lebesgue measure on T+.
Let H = L2(µ)⊕H2(µ), and denote by V ∈ B(H) the operator of multiplication
by z. Then it is easy to see that Hns = L2(µ). By Theorem 4.1 we get Hw = H
and H0 = {0}.

5. A simpler proof of Mlak’s theorem

Now we give a simpler proof of Mlak’s theorem of [10].

Theorem 5.1. Let T be a completely nonunitary contraction on a Hilbert
space H. Then for each x ∈ H its elementary measure µx is Szegö.

Proof. By [8] we can construct a superspace K = M ⊕ N and a contractive

extension T̃ of T such that H ⊂ K, M and N reduce T̃ , T̃ |M is an isometry, and

T̃ |N is a C0· contraction. It is well known that a C0· contraction can be extended
to a backward shift (see, e.g., [2], [13]), and so we can assume that, from the start,

K is constructed in such a way that T̃ |N is a backward shift.
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Take x ∈ H, and denote by y its projection onM and denote by z its projection
on N . Then∫

p dµx =
〈
p(T )x, x

〉
=

〈
p(T̃ )x, x

〉
=

〈
p(T̃ )y, y

〉
+
〈
p(T̃ )z, z

〉
=

∫
p dµy +

∫
p dµz,

where p is an arbitrary analytic polynomial and µx, µy, µz are the elementary
measures of the vectors x, y, z respectively. Hence the measure µx − µy − µz

annihilates the disk algebra. Since the disk algebra is Dirichlet, this real measure
must be 0, and so µx = µy+µz. Since T is completely nonunitary, µx is absolutely
continuous with respect to the Lebesgue measure, and so is µz as an elementary
measure of a backward shift. Hence µy is also absolutely continuous. We have

dµx

dm
=

dµy

dm
+

dµz

dm
,

wherem denotes the Lebesgue measure on the unit circle. Since µy is nonnegative,

and consequently
dµy

dm
≥ 0, by Theorem 2.2 and Proposition 1.1, we get∫

log
(dµx

dm

)
dm =

∫
log

(dµy

dm
+

dµz

dm

)
dm ≥

∫
log

(dµz

dm

)
dm > −∞,

which means that µx is a Szegö measure. �

6. Connection with the invariant subspace problem

One of the motivations for considering Szegö-type decompositions is their con-
nection with the invariant subspace problem.

Problem 6.1 (Invariant subspace problem). If T ∈ B(H) is a bounded linear
operator, then does it have a nontrivial closed invariant subspace?

This question is interesting only for operators on infinite-dimensional separable
Hilbert spaces. It is easy to see that answering this question for contractions solves
the problem. Moreover, for any contraction T the subspaces {x ∈ H : T nx → 0}
and H 	 {x ∈ H : (T ∗)nx → 0} are closed and invariant for T . Hence Problem
6.1 is interesting only if these subspaces are trivial. A contraction T such that
{x ∈ H : T nx → 0} = H and {x ∈ H : (T ∗)nx → 0} = H (called a C11

contraction) has a nontrivial closed invariant subspace because it is quasi-similar
to a unitary operator (see [13]). The roles of T and T ∗ are symmetric, and so the
only two interesting cases are C00 operators (when {x ∈ H : T nx → 0} = {0} and
{x ∈ H : (T ∗)nx → 0} = {0}) and C10 operators (when {x ∈ H : T nx → 0} = H
and {x ∈ H : (T ∗)nx → 0} = {0}).

Before we show how the idea of Szegö-type decomposition (and wandering
vectors) can be used to reduce the invariant subspace problem in the case of C10

operators, we have to recall the idea of isometric asymptote that comes from
Sz.-Nagy [12].
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For a given contraction T ∈ B(H), {T ∗nT n}∞n=1 is a decreasing sequence of
positive operators. Thus it has a strong limit A which satisfies

T ∗AT = A.

Hence ‖A 1
2Tx‖ = ‖A 1

2x‖ for x ∈ H. Therefore, there exists an isometry V such
that

A
1
2T = V A

1
2 .

That isometry is called the isometric asymptote of T .

Theorem 6.2. Let T ∈ B(H) be a C10 contraction class. If the isometric asymp-
tote of T is not Szegö-singular, then T has a nontrivial invariant subspace.

Proof. Denote by V the isometric asymptote of T . Every C10 contraction is a
completely nonunitary operator. Hence, by [1, Proposition XII.2.1], the singular
part of V has to be zero.

Assume that V is not Szegö-singular. Then, by Proposition 2.4, T has a wander-
ing vector. The isometry V contains a unilateral shift or it is a unitary operator.
If V is a unitary operator, then any wandering vector w generates a subspace∨
{V n : n ∈ Z} which reduces V to a bilateral shift. Hence V contains a unilat-

eral or bilateral shift. As a consequence, T ⊂ σ(V ). By [7, Theorem 4] we get
σ(V ) ⊂ σ(T ). Since every contraction whose spectrum contains the unit circle
has a nontrivial closed invariant subspace (see [2], [3]), the proof is finished. �

7. Questions and final remarks

Theorem 4.1 shows that, for any nonunitary isometry such that Hac 6= {0},
there are wandering vectors which do not belong to Hs.

Below we show an explicit method of constructing a wandering vector whose
projections onto Hu and Hs are both nontrivial.

Example 7.1. Let T+ := {z ∈ C : |z| = 1,=z ≥ 0}, and denote by µ the Lebesgue
measure on T+. Consider the space H := L2(µ) ⊕

⊕∞
n=0 l

2 and the isometry
V := U ⊕

⊕∞
n=0 S, where S is a unilateral shift on l2, and U ∈ B(L2(T+, µ)) is

the unitary operator of multiplication by z.
For a fixed k ∈ N+ set fk(z) := 1− 1

k
(z2+ z4+ · · ·+ z2k). We are going to show

that

ckn := 〈Unfk, fk〉 =
∫
T+

zn
∣∣∣1− 1

k
(z2 + z4 + · · ·+ z2k)

∣∣∣2 dz = O
( 1

n3

)
.

Indeed,∫
T+

zn
∣∣∣1− 1

k
(z2+z4+· · ·+z2k)

∣∣∣2 dz =

∫
T+

zn
(
1+

1

k
−

k∑
j=1

j

k2
(z2j+z2j)

)
dz. (7.1)

Since ∫
T+

zn dz =

{
− 2

1+n
for even n,

0 for odd n,
(7.2)
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we see that ckn = 0 for odd n and

ckn =
−2(1 + 1

k
)

1 + 2m
+

k∑
j=1

j

k2

( 2

1 + 2(m− j)
+

2

1 + 2(m+ j)

)
for n = 2m, where m ∈ N. Further, we calculate that

ck2m =
k∑

j=1

j

k2

( 2

1 + 2(m− j)
+

2

1 + 2(m+ j)
− 4

1 + 2m

)
,

and, finally,

ck2m =
k∑

j=1

j

k2

16j2

(1 + 2(2m− j))(1 + 2(2m+ j))(1 + 4m)
= O

( 1

m3

)
= O

( 1

n3

)
.

Thus
∑

n∈N |ckn| < ∞. As a consequence, the following vector is well defined:

bk :=


√

ck1 −
√

ck1 0 0 · · ·√
ck2 0 −

√
ck2 0 · · ·√

ck3 0 0 −
√

ck3 · · ·
...

...
...

...
. . .

 ∈
∞⊕
n=0

l2.

Moreover, we can easily compute the mth moment 〈
⊕∞

n=0 S
m(bk), bk〉 of bk:

〈
m︷ ︸︸ ︷

0 . . . 0
√

ck1 −
√

ck1 0 · · ·
0 . . . 0

√
ck2 0 −

√
ck2 · · ·

...
...

...
...

. . .

 ,


√
ck1 −

√
ck1 0 · · ·√

ck2 0 −
√
ck2 · · ·

...
...

...
. . .

〉 = −ckm.

Hence, the vector v := fk ⊕ bk is wandering and has a nontrivial decomposition
corresponding to the Wold decomposition of V .

Moreover, the vector v := znfk ⊕ bk is wandering for any n, k ∈ N. Using (7.2),
we can compute

‖1− fk‖2 =
∫
T+

(1
k
+

k−1∑
j=1

(z2j + z2j)
k − j

k2

)
dz = −2

k
+ 4

k−1∑
j=1

k − j

k2

1

4j2 − 1
.

Thus fk → 1 in L2(T+). Hence znfk → zn (k → ∞). Consequently, the set of all
projections of wandering vectors onto Hu is linearly dense in Hu. �

Using the previous construction, we can show the following result.

Proposition 7.2. Let U ∈ B(H) be a singular unitary operator. Then

∞∑
n=0

∣∣〈Unx, x〉
∣∣ = ∞

for all x ∈ H.
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Proof. Assume that, on the contrary, there is a vector f ∈ H such that∑∞
n=0 |cn| < ∞, where cn := 〈Unf, f〉 for n ∈ N+. As in the previous exam-

ple we define

b :=


√
c1 −√

c1 0 0 · · ·√
c2 0 −√

c2 0 · · ·√
c3 0 0 −√

c3 · · ·
...

...
...

...
. . .

 ∈
∞⊕
n=0

l2.

Then the vector v := f + b ∈ H ⊕
⊕∞

n=1 l
2 is wandering for V = U ⊕

⊕∞
n=1 S,

where S is a unilateral shift of multiplicity 1.

The minimal unitary extension V̂ of V can be decomposed as V̂ = U⊕
⊕∞

n=1 Ŝ,

where U is the singular part of V̂ , and Ŝ is a bilateral shift extending S. Thus,

by Theorem 4.1, all wandering vectors of V̂ are orthogonal to H. In particular,
v ∈

⊕∞
n=1 l

2, and so f = 0, which leads to the contradiction. �

By Theorem 4.1 it is clear that the set of wandering vectors for an isometry
with an absolutely continuous unitary part is dense or trivial. If the answer to
the question below is affirmative, then we will be able to prove this fact (and
Theorem 4.1) in the elementary way (using construction from Example 7.1).

Problem 7.3. Let U ∈ B(H) be an absolutely continuous unitary operator. Is the
set {x ∈ H :

∑∞
n=0 |〈Unx, x〉| < ∞} dense?

The set FU := {x ∈ H :
∑+∞

n=1 |〈Unx, x〉| < ∞} is U reducing, and so the space
H	FU reduces U to an absolutely continuous unitary operator. Hence, to answer
Problem 7.3, it is enough to show that H	FU = {0}. Thus Problem 7.3 reduces
to the following.

Problem 7.4. Let U ∈ B(H) be an absolutely continuous unitary operator. Is it
true that FU 6= {0}?

In Section 3, we gave a relation between the spaces Hns and
⋂

M̂. In the
proof of Theorem 3.3 we used an additional assumption. Thus there is a natural
question.

Problem 7.5. Can we omit the assumption dimN (V ∗) < ∞ in Theorem 3.3?

For an isometry V without wandering vectors in its unitary part, the inclusion

Hns ⊂ M̂ is equivalent to Hu ⊂ M for all M ∈ M̂.

Using our previous considerations, we can show that Hu ⊂ M for all M ∈ M̂
such that M ∩Hs = {0}. We need the following lemma.

Lemma 7.6. Let V ∈ B(H) be an isometry, let N ⊂ H be a subspace reducing

V , and let M ∈ M̂. Then

• M ∨N ∈ M̂;

• if N ⊂ M , then M 	 N ∈ M̂H	N , where M̂H	N denotes the relevant
family for the operator V |H	N .
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Proof. Denote by U ∈ B(K) the minimal unitary extension of V .
The subspaceM∨N is V -invariant as a linear span of such subspaces. Obviously

K =
∨

n≥0 U
∗M ⊂

∨
n≥0 U

∗(M ∨ N) ⊂ K, which finishes the proof of the first
part.

For the second part, note that M 	N = (I − PN)M . Since N reduces V , PN

commutes with V . Therefore, M 	N is V -invariant by the following calculation:
V (M 	N) = V (I − PN)M = (I − PN)VM ⊂ (I − PN)M = M 	N .

It remains to show that K1 :=
∨

n≥0 U
∗n(M 	 N) is the domain of the mini-

mal unitary extension of V |H	N. Since M ∈ M̂, we have K = K1 ∨ K2, where
K2 :=

∨
n≥0 U

∗nN . Let us show that K1 is orthogonal to K2. Note that U∗kN =

U∗(k+1)UN ⊂ U∗(k+1)N , and similarly U∗k(M 	 N) ⊂ U∗(k+1)(M 	 N). Thus
for any integers k, l we have U∗kN ⊂ U∗max{k,l}N and U∗l(M 	 N) ⊂
U∗max{k,l}(M 	N). On the other hand, since U∗ is isometry, we have
U∗max{k,l}N ⊥ U∗max{k,l}(H 	 N). Thus U∗kN is orthogonal to U∗l(H 	 N)
for all k, l, and we get K = K1 ⊕K2.

Next, note that for every n ≥ 0 we have PH	NU
∗nN = PH	NPHU

∗nN =
PH	NV

∗nN ⊂ PH	NN = {0}. Hence H 	 N is orthogonal to K2. Consequently,
H	N ⊂ K	K2 = K1. Note thatK1 is a minimal U -reducing subspace containing
M 	 N . Thus, by the inclusions M 	 N ⊂ H 	 N ⊂ K1, it is also a minimal
U -reducing subspace containing H 	 N . In other words, U |K1 is the minimal
unitary extension of V |H	N , which finishes the proof. �

Proposition 7.7. Let V ∈ B(H) be an isometry without wandering vectors in

the unitary part, and let V = V |Hu ⊕V |Hs be its Wold decomposition. If M ∈ M̂
is a subspace such that M ∩Hs = {0}, then Hu ⊂ M .

Proof. Decompose Hs =
⊕

n≥0Hn, where V |Hn is a unilateral shift of multi-

plicity 1. For each M ∈ M̂ define Mk := M ∨
⊕

n≥k Hn for any k ≥ 0 and
M ′

k := Mk 	
⊕

n≥k Hn. Fix k. Note that M ′
k = PHu⊕

⊕k−1
n=0 Hn

M , which means

that M ′
k need not be a subspace of M . Let Mk ∈ M̂. By Lemma 7.6 we have

M ′
k ∈ M̂Hu⊕

⊕k−1
n=0 Hn

, where M̂Hu⊕
⊕k−1

n=0 Hn
is the relevant family for the operator

V |Hu⊕
⊕k−1

n=0 Hn
. It is important that Hu equals the unitary subspace of the re-

striction V |Hu⊕
⊕k−1

n=0 Hn
. Since for V |Hu⊕

⊕k−1
n=0 Hn

the unilateral shift part has finite

multiplicity, by Theorem 3.3 we get Hu ⊂ M ′
k. Since M ′

k ⊂ Mk, we get Hu ⊂ Mk

and, consequently, Hu ⊂
⋂

k≥0Mk. Obviously M ⊂
⋂

k≥0Mk. We will finish the

proof by showing that M =
⋂

k≥0Mk.
Let x ∈

⋂
k≥0Mk. Then for any k ≥ 0 there are xk ∈ M and yk ∈

⊕
n≥k Hn

such that x = xk + yk. Fix k, and consider an arbitrarily large l. From 0 =
x−x = xk −xl+ yk − yl we get Hs 3 yk − yl = xl−xk ∈ M . Since by assumption
M ∩Hs = {0}, it follows that yk = yl. Thus yk ∈

⊕
n≥l Hn for arbitrarily large l,

which means that yk = 0. Thus x = xk ∈ M . �
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