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Abstract. We introduce the notion of ~s -numbers for operators in Banach
couples. We investigate variants of the approximation, Gelfand, and
Kolmogorov numbers. In particular, we derive upper estimates of these num-
bers for operators between spaces generated by interpolation functors on Banach
couples satisfying interpolation variants of approximation properties. We also
study two-sided interpolation of entropy numbers.

1. Introduction

The problem of the behavior of s-numbers and entropy numbers of operators
between interpolation spaces has received considerable attention in recent years.
This problem has a long history and some related problems in the area are still
open. We note that these numbers are used in various areas of analysis including
the theory of asymptotic geometric analysis (see [21]) and spectral theory of oper-
ators. In particular, these numbers are useful tools in the study of the eigenvalues
of operators in Banach spaces (see [10], [20]).

The main aim of this article is to study interpolation variants of some important
s-numbers and show applications to the above-mentioned problem. For motiva-
tion, we list some known remarkable results. We start with some fundamental
notation and definitions. Fix Banach spaces X and Y . In the space of all real
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sequences modeled on the set of positive integers N, we consider sequences of
numbers associated with an operator T : X → Y . Particularly important are the
approximation numbers an(T ), Gelfand numbers cn(T ), Kolmogorov numbers
dn(T ), and entropy numbers εn(T ) defined, for each n ∈ N, by the formulas

an(T ) := inf
{
‖T − S‖;S ∈ L(X,Y ), rank(S) < n

}
,

cn(T ) := inf
{
‖T |G‖;G ⊂ X, codim(G) < n

}
,

dn(T ) := inf
{
‖QY

NT‖X→Y/N ;N ⊂ Y, dim(N) < n
}
,

where QN : T → Y/N is the quotient map, and

εn(T ) = inf
{
ε > 0;T (BX) ⊂

n⋃
i=1

(yi + εBY ) for some y1, . . . , yn ∈ Y
}
.

The approximation numbers, Gelfand numbers, and Kolmogorov numbers are
special cases of the so-called s-numbers of operators introduced by Pietsch. (For
basic properties of these numbers, more background, and applications, we refer to
the monographs [3], [19]–[21].) It was mentioned that these numbers are powerful
tools for estimating eigenvalues of operators in Banach spaces (see [10], [20]).
We recall that when T : X → X is a Riesz (in particular, a compact) operator
acting on a complex Banach space X, then we denote by (λn(T )) the sequence
of eigenvalues of X rearranged according to their algebraic multiplicity and so
that (|λn(T )|) is a nonincreasing sequence. If T has only finitely many nonzero
eigenvalues λ1, . . . , λk, then we set, by convention, λn = 0 for each n > k.

Let us quote two famous formulas that hold for every Riesz operator T acting
on a complex Banach space X. The König formula (see [4]) states that, for any
s-number sequence,

lim
k→∞

sn(T k)1/k =
∣∣λn(T )

∣∣, n ∈ N.

Another formula due to Carl and Triebel [4] gives an estimate of eigenvalues by
single entropy numbers( n∏

i=1

∣∣λi(T )
∣∣)1/n

≤ k
1
2n εk(T ), k, n ∈ N.

The entropy numbers or s-numbers of some specific operator T are usually rather
difficult to calculate, or even to estimate. Various methods are required, with
interpolation methods playing a particularly significant role. It should be pointed
out that resolution of the behavior of entropy numbers or a given s-number
under interpolation, when nontrivial couples of Banach spaces are involved at
each endpoint, is a difficult problem. Note that some results for the interpola-
tion of Gelfand and Kolmogorov numbers are available when one endpoint is
formed by a trivial couple (see [19, pp. 150, 152]). However, when both endpoints
can vary this is not true in general, as the following example of Carl shows.
Consider finite-dimensional complex Banach couples (A0, A1) := (`3n1 , `

3n
1 ) and

(B0, B1) = (`3n1 , `
3n
∞ ). Then for the complex interpolation spaces with θ = 1/2,

we have A := [A0, A1]θ ∼= `3n1 and B := [B0, B1]θ ∼= `3n2 isometrically. Since the
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Kolmogorov numbers satisfy dn(id : A0 → B0) = 1, dn(id : A1 → B1) � 1/
√
n

(see [9]), and d2n−1(id : A → B) � 1/
√

3 (see [19, Lemma 11.11.8]), it follows
that there is no C > 0 independent of n such that

d2n−1(id : A→ B) ≤ Cdn(id : A0 → B0)
1−θdn(id : A1 → B1)

θ � n− 1
4 .

We note that it is shown in [23] that, in contrast to the situation in Banach spaces,
the s-numbers of operators do interpolate well between Hilbert spaces at least in
the case of the complex method. Those results suggest posing the problem on the
two-sided interpolation of s-numbers as the problem of finding conditions on the
Banach couples ~X = (X0, X1), ~Y = (Y0, Y1) and the interpolation functor F of
exponent θ ∈ (0, 1) under which there exists a function ϕ : N×N → (0,∞) (that

may depend on F , ~X, and ~Y ) such that, for an operator T : ~X → ~Y and each m,
n ∈ N, the estimate

sm+n−1(T : X → Y ) ≤ ϕ(m,n)sm(T : X0 → Y0)
1−θsn(T : X1 → Y1)

θ

is valid for a given s-number with X := F( ~X) and Y := F(~Y ) generated by an
interpolation functor F . We note that the aforementioned Carl example shows
that, with m = n, the factor ϕ(m,n), which appears on the right-hand side of

the above estimate, must grow at least like n
1
4 .

It is interesting to point out a recent result of Edmunds and Netrusov [6] who
showed (this result solved a long-standing question) that there is no positive
constant C = C(θ) such that an inequality

em+n−1

(
T : (X0, X1)θ,q → (Y0, Y1)θ,q

)
≤ Cem(T : X0 → Y0)

1−θen(T : X1 → Y1)
θ, m, n ∈ N

is true for every operator T : (X0, X0) → (Y0, Y1). Here (en) is the sequence of
dyadic entropy numbers of an operator between Banach spaces given by en :=
ε2n−1 for each n ∈ N, and (·)θ,q denotes the real method of interpolation with
θ ∈ (0, 1), q ∈ [1,∞]. This fact motivates a similar problem for entropy num-

bers instead of s-numbers: namely, how the numbers of an operator T : ~X → ~Y
between nontrivial couples of Banach spaces behave under interpolation. It is
still not completely clear under which general conditions two-sided interpolation
problems have positive answers. Motivated by applications, our aim in the present
article is to study the above-mentioned problems and some of their variants.

Let us now describe the paper and its contents. In Section 2, we introduce the
new notion of the ~s = (~sn)-number sequence defined on a class of all operators
between Banach couples. The restriction ~s to a subclass of all trivial couples
(i.e., a given couple is formed by the same Banach space) induces the classical
s-number sequence in the sense of Pietsch for operators in Banach spaces. For an
operator T : (X0, X1) → (Y0, Y1) and each positive integer n, we define the nth
approximation number ~an(T ), Gelfand number ~cn(T ), and Kolmogorov number
~dn(T ). We examine the relations between ~sn(T ) and s-numbers sn(Ti : Xi → Yi)
for i = 0, 1. The main question we consider is: Under which conditions for Banach
couples ~X and ~Y can we find reasonable functions g : N → N and ϕ : R+×R+ →
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R+ such that

~sg(m+n−1)(T : ~X → ~Y ) ≤ ϕ
(
sm(T : X0 → Y0), sn(T : X1 → Y1)

)
for each m,n ∈ N and every operator T : ~X → ~Y ? The main results related to

this question concern the sequences (~an), (~cn), and (~dn) and involve the variants
of approximation properties for Banach couples. We discuss these approximation
properties and show connections with the notion of ~s-numbers for operators in
Banach couples.

In Section 3, we present some applications of our previous results. We derive
upper estimates of the approximation and Kolmogorov numbers of operators
between spaces generated by interpolation functors on Banach couples satisfy-
ing interpolation variants of approximation properties. Finally, in Section 4, we
prove some upper estimates for entropy numbers of operators between interpola-
tion spaces.

2. ~s -numbers for operators in Banach couples

The axiomatic approach to s-numbers was developed by Pietsch in [18]. The
concept of s-numbers generalizes the notion of singular numbers in Hilbert spaces
to the Banach space setting. Following Pietsch’s idea in the case of operators
between Banach spaces, we introduce the notion of ~s-numbers for operators acting
between Banach couples.

Let ~B be the class of all Banach couples. Following the standard notation in
interpolation theory, for given Banach couples ~X = (X0, X1) and ~Y = (Y0, Y1),

we define an operator T : ~X → ~Y to be a linear mapping T : X0 +X1 → Y0 + Y1
such that restrictions T |Xi

are bounded operators from Xi to Yi for each i = 0, 1.

The space L( ~X, ~Y ) of all operators T : ~X → ~Y is a Banach space equipped with
the norm ‖T‖ ~X→~Y = maxi=0,1 ‖T |Xi

‖Xi→Yi
(see [1]). In what follows, the class⋃

~X,~Y ∈ ~B L( ~X, ~Y ) of all operators defined between Banach couples is denoted by
~L. A rule ~s = (~sn) : ~L → [0,∞)N assigning to every operator T ∈ ~L a nonnegative
scalar sequence (~sn(T )) is called an ~s-number sequence if the following conditions
are satisfied for each positive integers m and n:

(i) Monotonicity : ‖T‖ ≥ ~s1(T ) ≥ ~s2(T ) ≥ · · · ≥ 0 for all T ∈ L( ~X, ~Y ).

(ii) Additivity : ~sm+n−1(S + T ) ≤ ~sm(S) + ~sn(T ) for all S, T ∈ L( ~X, ~Y ).

(iii) Ideal property : ~sn(STR) ≤ ‖S‖~sn(T )‖R‖ for all R ∈ L(~Z, ~X), T ∈
L( ~X, ~Y ), and S ∈ L(~Y , ~W ).

(iv) Rank property : if rank(T ) < n, then ~sn(T ) = 0.
(v) Norming property : ~sn(id : (`n2 , `

n
2 ) → (`n2 , `

n
2 )) = 1, where id denotes the

identity operator on the n-dimensional Hilbert space `n2 .

As in the linear case, the nth number sn(T ) of an operator T : ~X → ~Y between

Banach spaces is also denoted by ~sn(T : ~X → ~Y ).

If for every S ∈ L( ~X, ~Y ) and T ∈ L(~Y , ~Z),

~sm+n−1(TS) ≤ ~sm(T )~sn(S),
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then the ~s -number sequence ~s = (~sn) is said to be multiplicative. Following impor-
tant examples for s-number sequences, we introduce variants of these numbers in
the setting of operators between Banach couples. The nth approximation number
~an(T ) of an operator T : ~X → ~Y between Banach couples is defined by

~an(T ) := inf
{
‖T − S‖ ~X→~Y ; rank(S) < n

}
.

As in the classical case of s-numbers, we show (see [2, p. 469]) that, for an
arbitrary ~s-number sequence ~s = (~sn), the mixing multiplicativity property holds:

for S ∈ L( ~X, ~Y ) and T ∈ L(~Y , ~Z),

~sm+n−1(TS) ≤ ~sm(T )~an(S) and ~sm+n−1(TS) ≤ ~am(T )~sn(S).

In particular, the approximation number sequence ~a = (~an) is multiplicative.
To define a variant of Kolmogorov numbers in the setting of operators between

Banach couples, we note that if ~X = (X0, X1) is a Banach couple and N ⊂
X0 ∩ X1 is a closed subspace in X0 and X1, then it can be easily shown that
~X/N := (X0/N,X1/N) forms a Banach couple if and only if N is closed in

X0 + X1 (see, e.g., [8]). Moreover, if Q
Xj

N denotes the canonical surjection from
the Banach space Xi onto the quotient space Xi/N for i = 0, 1, then the linear

map Q
~X
N : X0 +X1 → X0/N +X1/N given by

~Q
~X
N(x) := QX0

N (x0) +QX1
N (x1), x = x0 + x1 ∈ X0 +X1,

is well defined, and is independent of the decomposition x = x0 + x1 ∈ X0 + X1

with x0 ∈ X0 and x1 ∈ X1. Obviously, ~Q
~X
N : (X0, X1) → (X0/N,X1/N) with

‖ ~QN‖ ~X→ ~X/N = 1.

Now we are ready to give the definitions of the nth Gelfand number ~cn(T ) and

Kolmogorov number ~dn(T ) of an operator T : ~X → ~Y between Banach couples:

~cn(T ) := inf
{
‖T |M‖ ~M→~Y ;M ⊂ X0 ∩X1, codim(M) < n

}
and

~dn(T ) := inf
{
‖Q~Y

NT‖ ~X→~Y /N ;N ⊂ Y0 ∩ Y1, dim(N) < n
}
,

where ~M = (M0,M1) with Mi := (M, ‖ · ‖Xi
) for i = 0, 1.

We note that in the case when T : X → Y is an operator between Banach
spaces, then for the trivial Banach couples (X,X) and (Y, Y ), we have T : (X,
X) → (Y, Y ) and

~sn
(
T : (X,X) → (Y, Y )

)
= sn(T : X → Y ),

where (sn) is a sequence of s-numbers in the setting of Banach spaces. In partic-
ular, we have

~an
(
T : (X,X) → (Y, Y )

)
= an(T : X → Y ),

~cn
(
T : (X,X) → (Y, Y )

)
= cn(T : X → Y )

and
~dn
(
T : (X,X) → (Y, Y )

)
= dn(T : X → Y ),
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where (an), (cn), and (dn) are sequences of the classical approximation, Gelfand
numbers, and Kolmogorov numbers, respectively.

It is natural to ask about the relationships between ~s-number sequences and
the classical s-number sequences. Let ~s be an ~s-number sequence for operators
in Banach couples, and let s be the induced s-number sequence for operators
in Banach spaces (restricting ~s to all trivial couples). The main question we are

interested in here is the following: Under what conditions on Banach couples ~X
and ~Y can we find reasonable functions g : N → N and ϕ : R+ × R+ → R+ such

that, for each m,n ∈ N and every operator T : ~X → ~Y , we have

~sg(m+n−1)(T : ~X → ~Y ) ≤ ϕ
(
sm(T : X0 → Y0), sn(T : X1 → Y1)

)
?

We are interested in the case when ~s ∈ {~a,~c, ~d }, which involves certain variants
of approximation properties for Banach couples. Before we state and prove our
main results, we need to discuss these properties.

We recall that a Banach space X has the bounded approximation property if
there exists λ ≥ 1 such that, for every ε > 0 and every compact set K ⊂ X, there
exists a finite-rank operator satisfying ‖T‖ ≤ λ, and

‖Tx− x‖X ≤ ε‖x‖X , x ∈ K.

It is easily seen that in this definition we may replace compact sets by finite sets
F in X. We also note that it is well known that the above property is equivalent
to the following. There is a λ ≥ 1 such that, for every finite-dimensional subspace
E of X, there is a finite-dimensional operator T : X → X for which ‖T‖ ≤ λ and
Tx = x for all x ∈ E.

The bounded approximation property allows the rank of an operator T to vary
with the choice of a finite set F even if ε > 0 and card(F ) remain fixed. A stronger
quantitative version of the bounded approximation property is called the uniform
approximation property (UAP for short). This property imposes an upper bound
on the rank of T that depends on ε and card(F ) but not on the specific choice
of F . More precisely, a Banach space X has the UAP if there exists λ ≥ 1 such
that, for every ε > 0 and each n ∈ N, there exists f(ε, n) such that for every
finite set {x1, . . . , xn} in X there exists a linear operator T : X → X satisfying
‖T‖ ≤ λ, rankT ≤ f(ε, n), and

‖Txi − xi‖X ≤ ε‖xi‖X , 1 ≤ i ≤ n.

It can be shown that this property is connected with the property introduced by
Pe lczyński and Rosenthal [16]. Let λ ≥ 1. A Banach space X has the λ-uniform
approximation property (λ-UAP for short) if for every λ′ > λ there is a function
φλ′ : N → N such that, and for every n-dimensional subspace E of X, there
is an operator T : X → X such that ‖T‖ < λ′, Te = e for all e ∈ E, and
rankT < φλ′(n). A Banach space X has the UAP if X has the λ-UAP for some
λ ≥ 1.

It should be pointed out that to check whether a given Banach space has the
UAP is a subtle problem. We note that Szankowski [22] proved that the existence
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of an unconditional or even symmetric basis in a Banach space does not ensure
that it has the UAP.

In the study of interpolation properties of compact operators, natural variants
of approximation properties have appeared in the setting of Banach couples. We
mention here that Lions [12] showed that for a wide class of Banach couples
~X = (X0, X1) there exists a sequence (Pn) of operators Pn : X0 +X1 → X0 ∩X1

such that Pnx → x in Xi as n → ∞ for each x ∈ Xi (i = 0, 1). We will use the
special type approximation properties (H0) (resp., (H)) in the setting of Banach
couples, which to the best our knowledge appeared for the first time in [17] (resp.,
[24]) in the study of compactness (resp., the measure of noncompactness) of linear
operators under interpolation.

A Banach couple ~X = (X0, X1) is said to have the (bounded) approximation
property (H0) (resp., (H)) if there exists a positive constant c such that for every
ε > 0 and any finite set F ⊂ X0 (resp., all finite sets Fi ⊂ Xi for i = 0, 1), there

exists a map P : ~X → ~X with P (Xi) ⊂ X0 ∩X1, ‖P‖ ~X→ ~X ≤ c, and

‖Px− x‖Xi
< ε, x ∈ F (resp., x ∈ Fi, i = 0, 1).

Following the classical definitions for Banach spaces, we define variants of the
UAP in the setting of Banach couples. Let ~X = (X0, X1) be a Banach couple,

and let λ ≥ 1. The couple ~X = (X0, X1) is said to have the λ-UAP if there
exists a function k ~X : (λ,∞) × N → [1,∞) such that, for every λ′ > λ and every
n-dimensional space E of X0 ∩X1, there is an operator u : X0 + X1 → X0 ∩X1

such that ‖u‖ ~X→ ~X ≤ λ′, ux = x, for all x ∈ E, and ranku < k ~X(λ′, n). The

function k ~X is called the uniformity function of ~X. A Banach couple ~X has the

UAP if ~X has the λ-UAP for some λ ≥ 1.
We start with the following observation, where in what follows I is the identity

map.

Lemma 2.1. Let ~X = (X0, X1) be a Banach couple, and let λ ≥ 1. Suppose that
there exists a function φ : (0,∞)×N → [1,∞) such that, for every n-dimensional
subspace E of X0 ∩X1 and every ε > 0, there is a finite-rank operator T : X0 +
X1 → X0∩X1 such that ‖T‖ ~X→ ~X < λ, rankT < φ(ε, n), and ‖Tx−x‖Xi

≤ ε‖x‖Xi

for i = 0, 1 and for all x ∈ E. Then, for every λ′ > λ and every E ⊂ X0∩X1 with
dim(E) = n < ∞, there exist η = η(λ′, E) > 0 and an operator S : X0 + X1 →
X0 ∩X1 such that S|E = IE, rankS < φ(η, n) + n, and ‖S‖ ~X→ ~X < λ′.

Proof. Fix ε > 0, λ′ > λ, and a subspace E ⊂ X0∩X1 with n = dim(E) <∞. Let
P : X0+X1 → X0+X1 be a bounded linear projection such that P (X0+X1) = E.

Clearly, P : X0+X1 → X0∩X1, and so P : ~X → ~X. For η = (λ′−λ)/‖P‖ ~X→ ~X , we
can find a finite-rank operator T : X0+X1 → X0∩X1 such that rankT < φ(η, n),
‖T‖ ~X→ ~X < λ, and

‖Tx− x‖Xi
≤ η‖x‖Xi

, x ∈ E, i = 0, 1.

We show that the operator S given by

S := T + P − TP = T + (I − T )P
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satisfies the required conditions. To see this, observe that S : X0 +X1 → X0∩X1

with rankS ≤ rankT + rankP < φ(η, n) + n, Sx = x for all x ∈ E. Since

‖S‖ ~X→ ~X ≤ ‖T‖ ~X→ ~X + η‖P‖ ~X→ ~X < λ′,

this completes the proof. �

We provide an example of a Banach couple that has the approximation prop-
erty (H0). We will need the following simple fact (see [11, p. 286]). Let E be a
k-dimensional subspace of a Banach space X, and let {e1, . . . , ek} be an Auerbach
basis in E—that is, ‖ei‖X = 1 for each 1 ≤ i ≤ k and∥∥∥ k∑

i=1

aiei

∥∥∥
X
≥ max

1≤i≤k
|ai|

for all choices of scalars {a1, . . . , ak}. If for given η > 0 there are x1, . . . , xk ∈ X

such that ‖ei − xi‖X ≤ η for each 1 ≤ i ≤ k, then for every e =
∑k

i=1 aiei there

exists x ∈ span{x1, . . . , xk} (e.g., we can take x =
∑k

i=1 aixi) such that

‖e− x‖X ≤ kη.

In what follows, we consider couples (X0, X1) of Banach lattices; that is, both
X0 and X1 are Banach lattices which can be embedded as lattice ideals in some
L0(Ω,A, µ), where (Ω,A, µ) is a measure space. The set of all simple functions∑n

i=1 aiχΩi
with n ∈ N, ai ∈ R and pairwise disjoint sets Ωi ∈ A such that

µ(Ωi) < ∞ for each 1 ≤ i ≤ n is denoted by S. We will consider the Banach
couple (L1(µ), L∞(µ)) defined on any measure space (Ω,A, µ). The closure of
L1(µ) ∩ L∞(µ) in L∞(µ) is denoted by L0

∞(µ).

Theorem 2.2. Let (Ω,A, µ) be any measure space, and let X be an exact inter-

polation space between L1(µ) and L∞(µ). Then ~X := (L0
∞(µ), X) has the approx-

imation property (H0) with f ~X(ε, n) ≤ [4n
ε

]n for every ε > 0 and for each n ∈ N.

Proof. We consider the family P of all finite-dimensional average operator (i.e.,
all operators P given by

Pf :=
N∑
i=1

( 1

µ(Ωi)

∫
Ωi

f dµ
)
χΩi

, f ∈ L1(µ) + L∞(µ),

where {Ω1, . . . ,ΩN} is any finite collection of pairwise disjoint measurable sets of
finite measure). Obviously, for any P ∈ P , we have P : L1(µ) +L∞(µ) → L1(µ)∩
L0
∞(µ) with ‖P‖L1(µ)→L1(µ) = 1 and ‖P‖L0

∞(µ)→L0
∞(µ) = 1. Since X is an exact

interpolation space between L1(µ) and L∞(µ), P : X → X with ‖P‖X→X ≤ 1.
Let E be an n-dimensional subspace of L0

∞(µ)∩X. We choose an Auerbach basis
{e1, . . . , en} in E equipped with the induced norm from L0

∞(µ). Since |ej| ≤ 1
µ-a.e., for each 1 ≤ j ≤ n, we can choose m = [4n

ε
] pairwise disjoint sets with

finite measure Aj
1, . . . , A

j
m in A and finite sets of scalars {aj1, . . . , ajm} such that∥∥∥ej − m∑

i=1

ajiχAj
i

∥∥∥
∞
<

ε

2k
, 1 ≤ j ≤ n.
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By a standard argument, we can construct pairwise disjoint measurable sets
{Ω1, . . . ,ΩN} with finite measure and simple functions f1, . . . , fn such that each
one is a linear combination of characteristic functions χΩ1 , . . . , χΩN

. Let P ∈ P be
an average operator generated by the family {Ω1, . . . ,ΩN}. Then, as mentioned
in the paragraph preceding Theorem 2.2, it follows that, for every e ∈ L0

∞ with
‖e‖∞ = 1, there exists a simple function f ∈ span{f1, . . . , fN} such that

‖e− f‖∞ ≤ ε/2.

Combining these estimates, we conclude that P : X0 + X1 → L1(µ) ∩ L∞(µ) ↪→
X0 ∩ X1 (with continuous inclusion) and ‖P‖ ~X→ ~X ≤ 1, Pf = f . This implies
that

‖Pe− e‖∞ ≤
∥∥P (e− f)

∥∥
∞ + ‖e− f‖∞ ≤ ε.

Since dimP ≤ N ≤ [4n
ε

]n, the proof is complete. �

The following lemma yields a characterization of the UAP of a Banach couple
in terms of ~s-approximation and Kolmogorov ~s-numbers.

Lemma 2.3. Let f : N → N be a function such that f(n) ≥ n. Suppose that

a Banach couple ~X = (X0, X1) has the λ-UAP for some λ ≥ 1. Then the following
conditions are equivalent.

(i) There exists a uniformity function k ~X : [λ,∞) × N → [1,∞) such that
k ~X(λ, n) = O(f(n)).

(ii) There exists c > 0 such that, for every Banach couple ~Y and every operator

S : ~Y → ~X,

~a[c(f(n−1)]+1(S) ≤ λ~dn(S), n ∈ N.

Proof. (i) ⇒ (ii). Let M ⊂ X0 ∩X1 be a subspace with dim(M) < n. For a given

Banach couple ~Y = (Y0, Y1), let S : ~Y → ~X be any operator. Our hypothesis
k ~X(λ, n) ≤ cf(n) for some c > 0 and all n ∈ N implies that there exists an

operator T : ~X → ~X such that ‖T‖ ~X→ ~X < λ, Tx = x, for all x ∈ M and
rank(T ) < cf(n− 1). By definition of the approximation numbers in the setting
of Banach couples, we get that

~a[cf(n−1)]+1(S) ≤ ‖S − TS‖~Y→ ~X =
∥∥(I − T )S

∥∥
~Y→ ~X

.

We define a linear map U : (X0 +X1)/M → X0 +X1 by setting

U [x] := x− Tx, [x] ∈ (X0 +X1)/M = X0/M +X1/M.

Since M ⊂ ker(I − T ), U is well defined. Clearly, U : (X0/M,X1/M) → (X0, X1)
with ‖U‖ ~X/M→ ~X ≤ ‖I − T‖ ~X→ ~X ≤ 1 + λ; moreover, we have

I − T = UQ
~X
M .

In consequence,

~a[c(f(n−1)]+1(S) ≤
∥∥(I − T )S

∥∥
~Y→ ~X

= ‖UQ ~X
MS‖~Y→ ~X

≤ (1 + λ)‖Q ~X
MS‖~Y→ ~X/M .
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Since M ⊂ X0∩X1 with dim(M) < n was arbitrary, the desired estimate follows.
(ii) ⇒ (i). Let M ⊂ X0 ∩ X1 with dim(M) = n, and let P : X0 + X1 →

X0 + X1 be any bounded linear projection such that P (X0 + X1) = E. Clearly,

P : X0 +X1 → X0 ∩X1 and so P : ~X → ~X. Since M = ker(I −P ), we can define
an operator V : (X0/M,X1/M) → (X0, X1) by

V [x] = x− Px, [x] ∈ (X0 +X1)/M = X0/M +X1/M,

which satisfy

I − P = V Q
~X
M , Q

~X
MV = IX0/M+X1/M .

Combining with (i), we get that there is an operator R : (X0/M,X1/M) →
(X0, X1) with rank(R) ≤ cf(n) such that for some λ ≥ 1,

‖V −R‖ ~X/M→ ~X/M ≤ λdn+1(V ) ≤ λ‖Q ~X
MV ‖ ~X/M→ ~X/M = λ.

Let us observe that now it is clear that an operator T : ~X → ~X given by T :=

P +RQ
~X
M satisfies Tx = x for all x ∈ E and

‖T‖ ~X→ ~X =
∥∥I − (V −R)Q

~X
M

∥∥
~X→ ~X

≤ 1 + ‖V −R‖ ~X/M→ ~X/M ≤ 1 + λ.

This completes the proof. �

In what follows, we show the relationship between ~s-number sequences and
classical s-number sequences. We will use the following lemma.

Lemma 2.4. Let ~X = (X0, X1), ~Y = (Y0, Y1) be Banach couples, and let T : ~X →
~Y . Suppose that ~Y has the approximation property (H). Then, for every ε > 0
and any finite-dimensional space Ni ⊂ Yi with dim(Ni) < ki, i = 0, 1, there exists
a finite-dimensional subspace M ⊂ Y0 ∩ Y1 with dim(M) < k0 + k1 − 1 such that

‖QYi
MT‖Xi→Yi/M ≤ ‖QYi

Ni
T‖Xi→Yi/Ni

+ ε‖T‖Xi→Yi
, i = 0, 1.

Proof. Note that if both N0 and N1 are trivial, then the inequality is obvious.
Thus we may suppose that Ni 6= {0} for i = 0 or i = 1. If Ni 6= {0}, then we let
Bi := {yi1, . . . , eini

} with ni < ki be a normalized basis of Ni, i = 0, 1. Then there
is a constant c > 0 such that for all scalars λ1, . . . , λni

,∥∥∥ ni∑
j=1

λjy
i
j

∥∥∥
Yi

≥ c

ni∑
j=1

|λj|.

Let δ = ε/(2 + ε). Since ~Y has the approximation property (H), there exists an
operator P : Y0 + Y1 → Y0 ∩ Y1 such that

‖Pyij − yij‖Yi
≤ cδ, 1 ≤ j ≤ ni, i = 0, 1.

Combining the above inequalities, we conclude that for any y =
∑ni

j=1 λjy
i
j,

‖Py − y‖Yi
=

∥∥∥ ni∑
j=1

λj(Py
i
j − yij)

∥∥∥
Yi

< δ‖y‖Yi
, i = 0, 1
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and hence

‖Py‖Yi
≥ ‖y‖Y0 − ‖Py − y‖Y0 ≥ (1 − δ)‖y‖Y0 .

This shows that P : Ni →Mi is an isomorphism with

‖P−1‖Mi→Ni
≤ (1 − δ)−1,

where Mi := (P (Ni), ‖ · ‖Yi
). In particular, dim(Mi) = dim(Ni) for each i = 0, 1.

We claim that the finite-dimensional space M := M0 + M1 ⊂ Y0 ∩ Y1 satisfies
the desired conditions. Obviously, dim(M) < k0 + k1 − 1. To prove the required
estimate, for i = 0, 1 we fix x ∈ BXi

. Then we have

‖QYi
Mi
Tx‖Yi/Mi

= inf
y∈Ni

‖Tx− Py‖Yi
, i = 0, 1.

If for i = 0, 1 we let Ai = {y ∈ Ni; ‖Py‖Yi
≤ 2‖T‖Xi→Yi

}, then it is easy to see
(by ‖Tx‖Yi

≤ ‖T‖Xi→Yi
and y = 0 ∈Mi) that

‖QYi
Mi
Tx‖Yi/Mi

= inf
y∈Ai

‖Tx− Py‖Yi
.

Since ‖P−1‖Mi→Ni
≤ (1 − δ)−1,

‖y‖Ni
≤ 2(1 − δ)−1‖T‖Xi→Yi

, y ∈ Ai, i = 0, 1.

By combining this estimate with the above inequality ‖Py − y‖Yi
< δ‖y‖Yi

(i =
0, 1) applied for y =

∑nj

j=1 λjy
i
j, we get

‖QYi
Mi
Tx‖Yi/Mi

= inf
y∈Ai

‖Tx− Py‖Yi
≤ inf

y∈Ai

[
‖Tx− y‖Yi

+ ‖Py − y‖Yi

]
≤ inf

y∈Ai

‖Tx− y‖Yi
+

2δ

1 − δ
‖T‖Xi→Yi

= inf
y∈Ai

‖Tx− y‖Yi
+ ε‖T‖Xi→Yi

.

Now note that, due to Ai ⊂ {y ∈ Ni; ‖y‖Yi
≤ 2‖T‖Xi→Yi

} for i = 0, 1, we have

‖QYi
Ni
Tx‖Yi/Ni

= inf
{
‖Tx− y‖Yi

; y ∈ Ni, ‖y‖Yi
≤ 2‖T‖Xi→Yi

}
= inf

y∈Ai

‖Tx− y‖Yi
.

Since Mi ⊂M for each i = 0, 1,

‖QYi
MT‖Xi→Yi/M ≤ ‖QYi

Mi
T‖Xi→Yi/Mi

≤ ‖QYi
Ni
T‖Xi→Yi/Ni

+ ε‖T‖Xi→Yi
.

This proves the claim and so the proof is complete. �

Theorem 2.5. Let ~X = (X0, X1), ~Y = (Y0, Y1) be Banach couples, and let

T : ~X → ~Y be an operator. Suppose that ~Y has the approximation property (H).
Then for positive integers k0, k1,

~dk0+k1−1(T : ~X → ~Y ) ≤ max
{
dk0(T : X0 → Y0), dk1(T : X1 → Y1)

}
.
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Proof. For a given ε ∈ (0, 1), we may find a finite-dimensional subspace Ni of Yi
with dim(Ni) < ki, such that

‖QNi
T‖Xi→Yi/Ni

≤ (1 + ε)dki(Xi → Yi), i = 0, 1.

From Lemma 2.4, it follows that for any ε > 0 there exists a subspace M ⊂ Y0∩Y1
with dim(M) < k0 + k1 − 1 such that

‖QYi
MT‖Xi→Yi/M ≤ ‖QYi

Ni
T‖Xi→Yi/Ni

+ ε‖T‖Xi→Yi
, i = 0, 1.

This implies that

~dk0+k1−1(T : ~X → ~Y ) ≤ max
i=0,1

‖QYi
Mi
T‖Xi→Yi/M

≤ (1 + ε) max
i=0,1

dki(T : Xi → Yi) + ε‖T‖Xi→Yi
.

Letting ε→ 0, we obtain the required estimate. �

In the case of the one-sided approximation property, the above proof gives the

following corollary where (~d◦n) is defined, for every T : (X0, X1) → (Y0, Y1) and
for each n ∈ N by

~d◦n(T ) := max
{

inf
{
‖QY0

MT‖X0→Y0/M ;M ⊂ Y0 ∩ Y1, dim(M) < n
}
, ‖T‖X1→Y1

}
.

Corollary 2.6. Let ~X = (X0, X1), ~Y = (Y0, Y1) be Banach couples, and let

T : ~X → ~Y be an operator. Suppose that ~Y has the approximation property (H0).
Then for each positive integer k, there exists a finite-dimensional subspace M of
Y0 ∩ Y1, such that

dk(T : X0 → Y0) = inf
{
‖QY0

MT‖X0→Y0/M ;M ⊂ Y0 ∩ Y1, dim(M) < k
}
.

In particular,

~d◦k(T ) = max
{
dk(T : X0 → Y0), ‖T‖X1→Y1

}
.

3. Interpolation of the approximation and Kolmogorov numbers

We give applications of the above results to interpolation estimates of some
approximation numbers of operators between interpolation spaces. We recall that
a mapping F from the category of all couples of Banach spaces into the category of
Banach spaces is said to be an interpolation functor (or an interpolation method)

if for any couple ~A, F( ~A) is a Banach space intermediate with respect to ~A and

T maps F( ~A) into F( ~B) for all T : ~A → ~B. If, additionally, there is a constant
C > 0 such that

‖T‖F( ~A)→F( ~B) ≤ C‖T‖ ~A→ ~B

for every T : ~A→ ~B, then F is called bounded (and exact if C = 1).
All interpolation functors considered in this article will be exact. For any such

functor F , we define a fundamental function ϕF by

ϕF(s, t) := sup ‖T‖F( ~A)→F( ~B), s, t ≥ 0,
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where the supremum is taken over all ~A, ~B ∈ ~B and all operators T : ~A→ ~B such
that ‖T‖A0→B0 ≤ s and ‖T‖A1→B1 ≤ t. We remark that it follows immediately
that

‖T‖F( ~A)→F( ~B) ≤ ϕF
(
‖T‖A0→B0 , ‖T‖A1→B1

)
for all Banach couples ~A = (A0, A1) and ~B = (B0, B1) and all T : ~A→ ~B.

An exact interpolation functor F is said to be of exponent θ with θ ∈ (0, 1)
whenever ϕF(s, t) ≤ s1−θtθ for all s, t > 0. It is well known that the real method
of interpolation (·)θ,q with θ ∈ (0, 1) and 1 ≤ q ≤ ∞ is exact of exponent θ.

Now we state and prove a result on interpolation estimates of approximation
numbers of interpolated operators with the range couple satisfying interpolation
variants of approximation properties.

Theorem 3.1. Let F be an interpolation functor with fundamental function ϕ.
Let ~X = (X0, X1) and ~Y = (Y0, Y1) be Banach couples. Suppose that ~Y has both
the approximation property (H) and the λ-UAP with k~Y (λ, n) ≤ g(n) for each n,

where g : N → N with g(n) ≥ n. Then for every operator T : ~X → ~Y and for each
positive integer k0 and k1,

ag(k0+k1−1)+1

(
T : F( ~X) → F(~Y )

)
≤ ϕ

(
dk0(T0), dk1(T1)

)
.

In particular,

dg(k0+k1−1)+1

(
T : F( ~X) → F(~Y )

)
≤ ϕ

(
dk0(T0), dk1(T1)

)
.

Proof. We may assume without loss of generality that ‖T‖ ~X→~Y ≤ 1. We let
dki(Ti) := dki(T : Xi → Yi). For a given ε > 0, we may find a finite-dimensional
subspace Ni of Yi with dim(Ni) < ki such that

‖QNi
T‖Xi→Yi/Ni

≤ (1 + ε)dki(Ti), i = 0, 1.

Since ~Y has the approximation property (H), it follows from Lemma 2.4 that
there exists a subspace M ⊂ Y0 ∩ Y1 with dim(M) < k0 + k1 − 1 such that

‖QYi
MT‖Xi→Yi/M ≤ (1 + ε)dki(Ti) + ε, i = 0, 1.

Our hypothesis k ~X(λ, n) ≤ g(n) yields that there exists an operator P : ~X → ~X
such that ‖P‖ ~X→ ~X ≤ λ, Px = x for all x ∈ M , and rank(P ) ≤ f(k0 + k1 − 1).
This implies that

af(k0+k1−1)+1

(
T : F( ~X) → F(~Y )

)
≤ ϕ

(
‖T − PT‖X0→Y0 , ‖T − PT‖X1→Y1

)
= ϕ

(∥∥(I − P )T
∥∥
X0→Y0

,
∥∥(I − P )T

∥∥
X1→Y1

)
.

We define a linear map L : (Y0 + Y1)/M → Y0 + Y1 by setting

L[y] := y − Py, [y] ∈ (Y0 + Y1)/M = Y0/M + Y1/M.

Since M ⊂ ker(I − P ), L is well defined. Obviously,

L : (Y0/M, Y1/M) → (Y0, Y1)
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with ‖L‖~Y /M→~Y ≤ ‖I − P‖~Y→~Y ≤ 1 + λ, and moreover, we have

I − P = LQ
~Y
M .

Combining these together yields, with C = 1 + λ,

af(k0+k1−1)+1

(
T : F( ~X) → F(~Y )

)
≤ ϕ

(
‖LQY0

MT‖X0→Y0 , ‖LQY1
MT‖X1→Y1

)
≤ Cϕ

(
‖QY0

MT‖X0→Y0/M , ‖Q
Y1
MT‖X1→Y1/M

)
≤ Cϕ

(
(1 + ε)dk0(T0) + ε, (1 + ε)dk1(T1) + ε

)
.

Since ϕ is continuous, letting ε→ 0 yields the required estimate. �

4. Entropy estimates in interpolation spaces

We recall that the nth dyadic entropy number of an operator T : X → Y
between Banach spaces is given by en(T ) := ε2n−1(T ) for each n ∈ N. We remark
that in the setting of trivial Banach couples the sequence of entropy numbers (εn)
satisfies properties (i)–(iii) and (v) in the definition of (~sn)-number sequence (see
Section 2) with (~sn) replaced by (εn); however, it does not satisfy property (iv).
According to Pietsch [19], the sequence (εn) forms the so-called pseudo-s-number
sequence.

From the point of view of the theory of operators on Banach spaces as well
as applications, it is useful to identify other important properties that behave
well under interpolation by some method. We note that for many years it was
an open question whether entropy numbers behave well under real interpolation.
More precisely, does there exist a constant C depending only on θ ∈ (0, 1) and
q ∈ [1,∞] such that the entropy estimate

em+n−1

(
T : (X0, X1)θ,q → (Y0, Y1)θ,q

)
≤ Cem(T : X0 → Y0)

1−θen(T : X1 → Y1)
θ

is true for every operator T : (X0, X1) → (Y0, Y1) and each m, n ∈ N? Edmunds
and Netrusov [6] answered this question negatively. Let us remark that by using
simple interpolation tricks it is possible to generate a counterexample with (X0,
X1) = (Y0, Y1) (see [14]).

The goal of this section is to derive some interpolation estimates for entropy
numbers of operators between interpolation spaces. We begin by recalling some
known results, which will be used in this section. Before we state these results,
we need to introduce some definitions. We recall that a Banach space X is of
(Gaussian) type 2 provided that there is C > 0 such that for every finite sequence
{x1, . . . , xn} in X, (

E
∥∥∥ n∑

i=1

gixi

∥∥∥2)1/2

≤ C
( n∑

i=1

‖xi‖2
)1/2

,

where E denotes the expectation, and (gn)n∈N is a sequence of independent stan-
dard Gaussian variables on some probability space; that is, each gn has the density
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function

(2π)−1/2 exp(−t2/2).

The best type 2 constant C is denoted by T2(X).
For the reader’s convenience, we collect below two known results, which will

be used in this section. An application of Maurey’s extension theorem yields the
following result (see [7, Lemma 1.4]).

Lemma 4.1. Let X and Y be Banach spaces such that X and Y ∗ are of type 2.
Then for any operator T : X → Y and b := T2(X)T2(Y

∗),

cn(T ) ≤ an(T ) ≤ bcn(T ), dn(T ) ≤ an(T ) ≤ bdn(T ), n ∈ N.

This lemma may be combined with Carl’s result stating that there exists an
absolute constant a > 0 that, under the same assumptions of type 2 for Banach
spaces X and Y ∗, satisfies for any operator T : X → Y ,( n∏

i=1

∣∣ci(T )
∣∣)1/n

≤ aT2(X)T2(Y
∗)en(T ).

The combination immediately implies the following corollary (see [7, Corollary
1.6]).

Corollary 4.2. Let X and Y be Banach Spaces such that X and Y ∗ are of type 2.
Then for any operator T : X → Y , we have

an(T ) ≤ den(T ),

where d = a(T2(X)T2(Y
∗))2 and a is the absolute constant from the Carl inequality

above.

We will use the well-known entropy estimate true for any real n-dimensional
Banach space X (see [3]):

ek(Id : X → X) ≤ 4 · 2− k−1
n , k ∈ N.

To simplify notation, we will continue to write Ti instead of T : Xi → Yi (i = 0, 1)

for an operator T : ~X → ~Y .

Theorem 4.3. Let F be an exact interpolation functor with fundamental function
ϕ. Let ~X = (X0, X1) and ~Y = (Y0, Y1) be Banach couples. Suppose that ~Y has
both the approximation properties (H) and UAP with k~Y (λ, n) ≤ g(n), where

g : N → N is such that g(n) ≥ n. Then for any operator T : ~X → ~Y and for each
positive integer m,n, we have with C = 1 + λ,

em
(
T : F( ~X) → F(~Y )

)
≤ Cϕ

(
dn(T0), dn(T1)

)
+ 4λ2− m−1

g(2n−1)‖T‖ ~X→~Y .

If in addition Xi and Y
∗
i are of type 2 for i = 0, 1, then

em
(
T : F( ~X) → F(~Y )

)
≤ C̃ϕ

(
en(T0), en(T1)

)
+ 4λ2− m−1

g(2n−1)‖T‖ ~X→~Y ,

where C̃ depends on the type 2 constants and λ.
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Proof. We follow the proof of Theorem 3.1. We may assume without loss of gen-
erality that ‖T‖ ~X→~Y ≤ 1. For a given ε > 0 and m ∈ N, we may find a finite-
dimensional subspace Ni of Yi with dim(Ni) < n such that

‖QNi
T‖Xi→Yi/Ni

≤ (1 + ε)dn(Ti), i = 0, 1.

Since ~Y has the approximation property (H), it follows from Lemma 2.4 that
there exists a subspace M ⊂ Y0 ∩ Y1 with dim(M) < 2n− 1 such that

‖QYi
MT‖Xi→Yi/M ≤ (1 + ε)dn(Ti) + ε, i = 0, 1.

By our hypothesis k ~X(λ, n) ≤ g(n), it follows that there exists an operator

P : ~X → ~X such that ‖P‖ ~X→ ~X ≤ λ, Px = x for all x ∈ M and rank(P ) ≤
g(2n− 1).

By the definition of ϕ, we have

‖T − PT‖F( ~X)→F(~Y ) ≤ ϕ
(∥∥(I − P )T

∥∥
X0→Y0

,
∥∥(I − P )T

∥∥
X1→Y1

)
.

As in the proof of Theorem 3.1, we have

I − P = LQ
~Y
M ,

where L : (Y0/M, Y1/M) → (Y0, Y1) with ‖L‖~Y /M→~Y ≤ C = 1 + λ.
We combine the above estimates to obtain

‖T − PT‖F( ~X)→F(~Y ) ≤ ϕ
(
‖LQY0

MT‖X0→Y0 , ‖LQY1
MT‖X1→Y1

)
≤ Cϕ

(
‖QY0

MT‖X0→Y0/M , ‖Q
Y1
MT‖X1→Y1/M

)
≤ Cϕ

(
(1 + ε)dn(T0) + ε, (1 + ε)dn(T1) + ε

)
.

By the additivity and monotonicity of entropy numbers, we have

em
(
T : F( ~X) → F(~Y )

)
≤ ‖T − PT‖F( ~X)→F(~Y )

+ em
(
PT : F( ~X) → F(~Y )

)
.

Since rank(PT ) ≤ rankP ≤ g(2n− 1),

em
(
PT : F( ~X) → F(~Y )

)
≤ 4 · 2− m−1

g(2n−1)‖PT‖F( ~X)→F(~Y )

≤ 4λ2− m−1
g(2n−1)‖T‖ ~X→~Y .

Combining the above estimates yields

em
(
T : F( ~X) → F(~Y )

)
≤ Cϕ

(
(1 + ε)dn(T0) + ε, (1 + ε)dn(T1) + ε

)
≤ 4λ2− m−1

g(2n−1)‖T‖ ~X→~Y .

Since ϕ is continuous, letting ε → 0 yields the desired estimate. This estimate
combined with Corollary 4.2 concludes the proof. �

In the last part of this section we will prove a kind of two-sided estimation of
entropy numbers of interpolated operators under weaker assumptions. In what
follows, we will consider a special type of functions from the class Φ consisting
of all functions ϕ : (0,∞) × (0,∞) → (0,∞) which are nondecreasing in each
variable and positively homogeneous (i.e., ϕ(λs, λt) = λϕ(s, t) for all λ, s, t > 0).
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For any ϕ ∈ Φ, we define an involution of ϕ by ϕ∗(s, t) := 1/ϕ(s−1, t−1) for all
s, t > 0, and ϕ given by

ϕ(s, t) := sup
{ϕ(su, tv)

ϕ(u, v)
;u, v > 0

}
, s, t > 0.

Note that the fundamental function ϕF of an exact interpolation functor F
belongs to Φ. Moreover, we have ϕF = ϕF by the easily verified fact that ϕF
is submultiplicative; that is, for all s, t, u, v > 0,

ϕF(su, tv) ≤ ϕF(s, t)ϕF(u, v).

Let ~X = (X0, X1) be a Banach couple. For every s, t > 0, we put

K(s, t, a; ~X) = inf
{
s‖x0‖X0 + t‖x1‖X1 ;x = x0 + x1

}
, x ∈ X0 +X1.

Let X be an intermediate Banach space with respect to ~X. For each s, t > 0, set

ψ(s, t) = ψX(s, t; ~X) := sup
{
K(s, t, x; ~X); ‖x‖X = 1

}
and in the case X0 ∩X1 6= {0},

φ(s, t) = φX(s, t; ~X) := sup
{
‖x‖X ;x ∈ X0 ∩X1, ‖x‖X0 ≤ s, ‖x‖X1 ≤ t

}
.

To show some general examples of functions in Φ generated by interpolation
functors, we recall, following [15], that the function ϕ, which corresponds to an
exact interpolation functor F by the equality

F(sR, tR) = ϕ(s, t)R, s, t > 0

is called the characteristic function of the functor F . Here αR denotes R equipped
with the norm ‖ · ‖αR = α| · | for α > 0.

We note that, for any exact interpolation functor F (see [15, p. 372]) and for

any Banach couple ~X = (X0, X1), we have

‖x‖F( ~X) ≤ ϕ
(
‖x‖X0 , ‖x‖X1

)
, x ∈ X0 ∩X1;

moreover, by [15, Lemma 7.7.1], for all s, t > 0,

K(s, t, x; ~X) ≤ ϕ∗(s, t)‖x‖F( ~X), x ∈ F( ~X),

where ϕ∗(s, t) := 1/ϕ(s−1, t−1). Hence, for a Banach space X := F ( ~X),

ϕX(s, t) ≤ ϕ(s, t), ψX(s, t) ≤ ϕ∗(s, t), s, t > 0.

We will use the following one-sided estimate (see [13]).

Proposition 4.4. Let (A0, A1) be a Banach couple, let A be a Banach space such
that A ↪→ A0 +A1, and let B be any Banach space. Then following estimate holds
for any operator T : (A0, A1) → (B,B) and each m,n ∈ N

em+n−1(T : A→ B) ≤ ψB

(
em(T : A0 → B), en(T : A1 → B)

)
.



444 M. MASTY LO and R. SZWEDEK

Proposition 4.5. Let (B0, B1) be a Banach couple, let B be an intermediate
Banach space between B0 and B1, and let A be any Banach space. The following
estimate holds for any operator T : (A,A) → (B0, B1) and each m,n ∈ N

em+n−1(T : A→ B) ≤ 2CφY

(
em(T : A→ B0), en(T : A→ B1)

)
.

Theorem 4.6. Let X and Y be intermediate Banach spaces with respect to
Banach couples ~X = (X0, X1) and ~Y = (Y0, Y1), respectively. Then for any oper-

ators T : ~X → ~Y and S : ~Y → ~Y with S : Y0 + Y1 → Y0 ∩ Y1, we have

e2m+2n−3(ST : X → Y ) ≤ f(S)ψX

(
em(T0), en(T1)

)
,

where f(S) = ψX(φY (‖S‖Y0→Y0 , ‖S‖Y0→Y1), φY (‖S‖Y1→Y0 , ‖S‖Y1→Y1).

Proof. For simplicity of notation, we put Tj = T |Xj
: Xj → Yj for j ∈ {0, 1}. By

the closed graph theorem, it follows that S : Y0 + Y1 → Y0 ∩ Y1 is bounded and
so the restrictions S : Y0 → Y1 and S : Y1 → Y0 are bounded operators. Thus we
have that ST : X0 +X1 → Y0 ∩ Y1 is bounded and so

ST : (X0, X0) → (Y0, Y1) and ST : (X1, X1) → (Y0, Y1).

This implies that

em(ST : X0 → Y0) ≤ em(T0)‖S‖Y0→Y0 ,

em(ST : X0 → Y1) ≤ em(T0)‖S‖Y0→Y1 .

Then from Proposition 4.5, we obtain the following estimate:

e2m−1(ST : X0 → Y ) ≤ φY

(
‖S‖Y0→Y0 , ‖S‖Y0→Y1

)
em(T0)).

Similarly, we get that

en(ST : X1 → Y0) ≤ en(T1)‖S‖Y1→Y0 ,

en(ST : X1 → Y1) ≤ en(T1)‖S‖Y1→Y1

and so the second estimate follows as

e2n−1(ST : X1 → Y ) ≤ φY

(
‖S‖Y1→Y0 , ‖S‖Y1→Y1

)
en(T1).

These estimates combined with Proposition 4.4 yield that there exists a constant
C > 0 such that

e2m+2n−3(ST : X → Y )

≤ ψX

(
φY

(
‖S‖Y0→Y0 , ‖S‖Y0→Y1

)
em(T0), φY

(
‖S‖Y1→Y0 , ‖S‖Y1→Y1

)
en(T1)

)
≤ f(S)ψX

(
em(T0), en(T1)

)
,

and this completes the proof. �

As an application, we have the following corollary.
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Corollary 4.7. Let ~X = (X0, X1) and ~Y = (Y0, Y1) be Banach couples, and
let F be an interpolation functor of exponent θ with the characteristic function
ϕ(s, t) = s1−θtθ for all s, t > 0. Then for any operators T : ~X → ~Y and S : ~Y → ~Y
such that S : Y0 + Y1 → Y0 ∩ Y1 with ‖S‖~Y→~Y ≤ C, we have

e2m+2n−3

(
ST : F( ~X) → F(~Y )

)
≤ Cg(S)em(T0)

1−θen(T1)
θ,

where g(S) = (‖S‖Y0→Y1‖S‖Y1→Y0)
(1−θ)θ.

In the following lemma we will use the inner entropy numbers. Following Pietsch
[19, p. 169]), for each n ∈ N we denote by fn(T ) the (dyadic) inner entropy
number of an operator T : X → Y between Banach spaces, which is defined to be
the supremum of all those ε > 0 such that there are x1, . . . , x2n−1+1 in BX with
‖Txi − Txj‖Y ≥ 2ε whenever i, j are distinct points in {1, . . . , 2n−1 + 1}. Then
the entropy and inner entropy numbers are related by

fn(T ) ≤ en(T ) ≤ 2fn(T ), n ∈ N.

Lemma 4.8. Let F be an interpolation functor with fundamental function ϕ, and
let ~Y = (Y0, Y1) ∈ (H) be a Banach couple. Then there exists a constant C > 1
such that for each m,n ∈ N, any ε > 0, and T : (X0, X1) → (Y0, Y1), there exists
an operator P : Y0 + Y1 → Y0 ∩ Y1 such that

‖T − PT‖F( ~X)→F(~Y ) ≤ Cϕ
(
ε+ em(T : X0 → Y0), ε+ en(T : X1 → Y1)

)
.

Proof. For simplicity of notation, we put Tj := T |Xj
, for j ∈ {0, 1}. Given ε > 0

and m,n ∈ N, we can find sets {x(0)1 , . . . , x
(0)
p } ⊂ BX0 , {x

(1)
1 , . . . , x

(1)
q } ⊂ BX1 with

p ≤ 2m−1 and q ≤ 2n−1 such that for ρ0 = fm(T0) + ε/2 and ρ1 = fn(T1) + ε/2,
we have

T (BX0) ⊂
p⋃

i=1

{Tx(0)i + 2ρ0BY0},

T (BX1) ⊂
q⋃

k=1

{Tx(1)k + 2ρ1BY1}.

Moreover, for any x ∈ BX0 (resp., x ∈ BX1), there exists i ∈ {1, . . . , p} (resp.,
k ∈ {1, . . . , q}) such that

‖Tx− Tx
(0)
i ‖Y0 ≤ 2ρ0 resp., ‖Tx− Tx

(1)
k ‖Y0 ≤ 2ρ1.

Let δ = ε/2‖T‖ ~X→~Y . Then our hypothesis yields that there exist a universal
constant λ > 0 and an operator P : Y0 + Y1 → Y0 ∩ Y1 with ‖P‖~Y→~Y ≤ λ
satisfying ∥∥P (Tx

(0)
i ) − Tx

(0)
i

∥∥
Y0

≤ δ‖Tx(0)i ‖Y0 ≤ ε/2, 1 ≤ i ≤ p,∥∥P (Tx
(1)
k ) − Tx

(1)
k

∥∥
Y1

≤ δ‖Tx(1)i ‖Y1 ≤ ε/2, 1 ≤ k ≤ q.
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Combining the above estimates, we conclude that for a given x ∈ BX0 , there

exists i ∈ {1, . . . , p} such that Tx = Tx
(0)
i + 2ρ0y0 with y0 ∈ BY0 . This implies

(by fm(T0) ≤ em(T0)) for C = 2(1 + λ) that∥∥Tx− PT (x)
∥∥
Y0

≤
∥∥P (Tx

(0)
i ) − Tx

(0)
i

∥∥
Y0

+ 2ρ0
∥∥(P − I)y0

∥∥
Y0

≤ ε/2 + 2(1 + λ)ρ0 ≤ C
(
ε+ em(T0)

)
.

This implies that

‖T − PT‖X0→Y0 ≤ C
(
ε+ em(T0)

)
.

Similarly, we get that ‖T−PT‖X1→Y1 ≤ C(ε+en(T1)). Thus the required estimate
follows from the definition of ϕ. �

We will make an application of Theorem 4.6 to Banach couples satisfying the
approximation hypothesis used in [5]. A Banach couple ~Y = (Y0, Y1) satisfies the
approximation condition (AP) if there is a sequence {Pn}∞n=1 of linear operators
from Y0 + Y1 into Y0 ∩ Y1 and two other sequences {Q+

n } and {Q−
n }∞n=1 of linear

operators from Y0 + Y1 into Y0 + Y1 such that

(I) they are uniformly bounded in ~Y :

C := sup
n∈N

{
‖Pn‖~Y→~Y , ‖Q

+
n ‖~Y→~Y , ‖Q

−
n ‖~Y→~Y

}
<∞;

(II) the identity operator I on Y0 + Y1 can be written as

I = Pn +Q+
n +Q−

n , n ∈ N;

(III) for each n ∈ N, we have Q+ : Y0 → Y1 and Q−
n : Y1 → Y0 with

lim
n→∞

‖Q+
n ‖Y0→Y1 = lim

n→∞
‖Q−

n ‖Y1→Y0 = 0.

Corollary 4.9. Let ~X = (X0, X1) be a Banach couple, and assume that ~Y =
(Y0, Y1) satisfies the approximation condition (AP). If F is an interpolation func-

tor of exponent θ (0 < θ < 1), then for any operator T : ~X → ~Y ,

e4n−3

(
T : F( ~X) → F(~Y )

)
≤ C

(
‖Pn‖Y0→Y1‖Pn‖Y1→Y0

)(1−θ)θ
+ en(T0)

1−θen(T1)
θ

+ ‖Q−
nT‖1−θ

X0→Y0
‖Q−

nT‖θX1→Y1
+ ‖Q+

nT‖1−θ
X0→Y0

‖Q+
nT‖θX1→Y1

.

Proof. Combining T − PnT = (I − Pn)T = Q−
nT + Q+

n for each n ∈ N with our
hypothesis that F is of exponent θ, we get that

‖T − PnT‖F( ~X)→F(~Y )

≤ ‖Q−
nT‖F( ~X)→F(~Y ) + ‖Q+

nT‖F( ~X)→F(~Y )

≤ ‖Q−
nT‖1−θ

X0→Y0
‖Q−

nT‖θX1→Y1
+ ‖Q+

nT‖1−θ
X0→Y0

‖Q+
nT‖θX1→Y1

.

To conclude, it is enough to apply Corollary 4.7. �
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