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Abstract. In this article, we establish the Cameron–Martin translation theo-
rems for the analytic Fourier–Feynman transform of functionals on the product
function space C2

a,b[0, T ]. The function space Ca,b[0, T ] is induced by the gener-

alized Brownian motion process associated with continuous functions a(t) and
b(t) on the time interval [0, T ]. The process used here is nonstationary in time
and is subject to a drift a(t). To study our translation theorem, we introduce

a Fresnel-type class Fa,b
A1,A2

of functionals on C2
a,b[0, T ], which is a generaliza-

tion of the Kallianpur and Bromley–Fresnel class FA1,A2
. We then proceed to

establish the translation theorems for the functionals in Fa,b
A1,A2

.

1. Introduction

Let H be a real separable Hilbert space with inner product 〈·, ·〉, and let M(H)
be the space of all complex-valued Borel measures on H. The Fourier transform
of σ in M(H) is defined by

f(σ)(h′) ≡ σ̂(h′) =

∫
H

exp
{
i〈h, h′〉

}
dσ(h), h′ ∈ H. (1.1)

The set of all functionals of the form (1.1) is denoted by F(H) and is called the
Fresnel class of H. Let (B,H, ν) be an abstract Wiener space. It is known (see
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[20], [21]) that each functional of the form (1.1) can be extended to B uniquely
by

σ̂∼(x) =

∫
H

exp
{
i(h, x)∼

}
dσ(h), x ∈ B, (1.2)

where (·, ·)∼ is the stochastic inner product between H and B given by

(h, x)∼ =

{
limn→∞

∑n
j=1〈h, ej〉(x, ej) if the limit exists,

0 otherwise,

and where {en} is a complete orthonormal system in H such that the en’s are
in B∗, the dual of B, and (·, ·) denotes the natural dual pairing (in the sense of
the Riesz theorem) between B and B∗. The Fresnel class F(B) of B is the space
of (equivalence classes of) all functionals of the form (1.2). (For an elementary
introduction to the classes F(B) and F(H), see [19, Chapter 20].)

It is well known that both the analytic Wiener integral and the Feynman
integral exist for all functionals in the Fresnel class F(B) (see Kallianpur and
Bromley [20] (as mentioned in [7]) for a successful treatment of certain physical
problems by means of a Feynman integral; e.g., the anharmonic oscillator of
[1]—they introduced a class FA1,A2 larger than the Fresnel class F(B) and showed
the existence of the analytic Feynman integral of functionals in FA1,A2). The
Fresnel class FA1,A2 of B2 is the space of (equivalence classes of) all functionals
on B2 of the form

F (x1, x2) =

∫
H

exp
{ 2∑

j=1

i(A
1/2
j h, xj)

∼
}
dσ(h),

where A1 and A2 are bounded, nonnegative, and self-adjoint operators on H and
σ ∈ M(H).

Let A be a nonnegative self-adjoint operator on H, and let σ be any complex
Borel measure on H. Then the functional

F (x) =

∫
H

exp
{
i(A1/2h, x)∼

}
dσ(h) (1.3)

belongs to the Fresnel class F(B) on B because it can be rewritten as∫
H

exp
{
i(h, x)∼

}
dσA(h)

for σA = σ ◦ (A1/2)−1. For the functional F given by (1.3), the analytic Feynman

integral
∫ anf1
B

F (x) dν(x) with parameter q = 1 (based on the connection with
the Fresnel integral of F in F(H) by Albeverio and Høegh-Krohn [1], the most
important value of the parameter q is q = 1) on B exists and is given by∫ anf1

B

F (x) dν(x) =

∫
H

exp
{
− i

2
〈Ah, h〉

}
dσ(h). (1.4)

If we choose A to be the identity operator on H, then (1.4) is equal to “the
Fresnel integral F(f)” of f(σ) studied in [1]. The concept of the Fresnel integral
is not based on the technique of analytic continuation but rather is derived from
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solutions of important problems in quantum mechanics and quantum field theory;
to achieve this, Kallianpur and Bromley [20] suggested the general Fresnel class
FA1,A2 .

Let A be a bounded self-adjoint operator on H. Then we may write

A = A+ − A−,

where A+ and A− are each bounded, nonnegative, and self-adjoint. Take A1 = A+

and A2 = A− in the definition of FA1,A2 above. For any F in FA+,A− , the analytic
Feynman integral of F with parameter (1,−1) is given by∫ anf(1,−1)

B2

F (x1, x2) d(ν × ν)(x1, x2) =

∫
H

exp
{
− i

2
〈Ah, h〉

}
dσ(h). (1.5)

Kallianpur and Bromley, using this idea, studied relationships between Albeverio
and Høegh–Krohn’s Fresnel integral with respect to a symmetric bilinear form ∆
on H (see [1, Chapter 4]) and the analytic Feynman integral given by (1.5).

Let (C0[0, T ],mw) denote a 1-parameter Wiener space, where C0[0, T ] is the
space of all real-valued continuous functions x on the compact interval [0, T ] with
x(0) = 0 and where mw is the Gaussian measure on C0[0, T ] with mean zero
and covariance function r(s, t) = min{s, t}. It is well known that there is no
quasi-invariant measure on infinite-dimensional linear spaces. Thus, the Wiener
measures mw and the abstract Wiener measure ν are not quasi-invariant. Based
on this circumstance, numerous constructions and applications of the Cameron–
Martin translation theorem for integrals on infinite-dimensional spaces have been
studied in various research fields, including mathematics and physics. Most of the
results in the literature are concentrated on the Wiener space C0[0, T ]. Transla-
tion theorems for Wiener integrals were given by Cameron and Martin in [3] and
by Cameron and Graves in [2]. Translation theorems for analytic Feynman inte-
grals were given by Cameron and Storvick in [4] and [6], and translation theorems
for analytic Feynman integrals on abstract Wiener and Hilbert spaces were given
by Chung and Kang in [17].

On the other hand, the translation theorem for the function space integral and
the generalized analytic Fourier–Feynman transform (GFFT) have been devel-
oped for the functionals on the very general function space Ca,b[0, T ] in [9], [10],
and [13]. The function space Ca,b[0, T ], induced by the generalized Brownian
motion process (GBMP), was introduced by Yeh [24], [25] and used extensively
in [8], [12]–[16], and [23] (for the precise definition of GBMP, see [24] and [25]).

The purpose of this article is to establish a more general translation theorem
for the GFFT of functionals on the product function space C2

a,b[0, T ]. To do this,

we first introduce the class Fa,b
A1,A2

of functionals on C2
a,b[0, T ], which is a gener-

alization of the Kallianpur and Bromley–Fresnel class FA1,A2 . We next illustrate

the existence of the GFFT of functionals in Fa,b
A1,A2

. We then proceed to establish

a general translation theorem on the product function space C2
a,b[0, T ].

The Wiener process used in [2]–[7], [17], [18], [20], and [21] is stationary in time
and free of drift, while the stochastic process used in this article, as well as in
[8]–[16], [23], and [24], is nonstationary in time, subject to a drift a(t), and can
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be used to explain the position of the Ornstein–Uhlenbeck process in an external
force field (see [22]).

2. Definitions and preliminaries

Let (Ω,W , P ) be a probability measure space, and let T > 0 be a positive
real number. A real-valued stochastic process Y on (Ω,W , P ) and the compact
interval [0, T ] is called a GBMP if Y (0, ω) = 0 almost everywhere and for 0 =
t1 < t2 < · · · < tn ≤ T , the n-dimensional random vector (Y (t1, ω), . . . , Y (tn, ω))
is normally distributed with density function

Kn(~t, ~u) =
( n∏
j=1

2π
(
b(tj)− b(tj−1)

))−1/2

× exp
{
−1

2

n∑
j=1

[(uj − a(tj))− (uj−1 − a(tj−1))]
2

b(tj)− b(tj−1)

}
,

where ~u = (u1, . . . , un), u0 = 0, ~t = (t1, . . . , tn), a(t) is an absolutely continuous
real-valued function on [0, T ] with a(0) = 0, a′(t) ∈ L2[0, T ], and b(t) is a strictly
increasing, continuously differentiable real-valued function with b(0) = 0 and
b′(t) > 0 for each t ∈ [0, T ].

As explained in [25, pp. 18–20], Y induces a probability measure µ on the
measurable space (R[0,T ],B[0,T ]), where R[0,T ] is the space of all real-valued func-
tions x(t), t ∈ [0, T ], and B[0,T ] is the smallest σ-algebra of subsets of R[0,T ] with
respect to which all the coordinate evaluation maps et(x) = x(t) defined on R[0,T ]

are measurable. The triple (R[0,T ],B[0,T ], µ) is a probability measure space. This
measure space is called the function space induced by the GBMP Y determined
by a(·) and b(·).

Yeh [25] showed that the GBMP Y determined by a(·) and b(·) is a Gaussian
process with mean function a(t) and covariance function r(s, t) = min{b(s), b(t)}.
By [25, Theorem 14.2, p. 187], the probability measure µ induced by Y , tak-
ing a separable version, is supported by Ca,b[0, T ] (which is equivalent to the
Banach space of continuous functions x on [0, T ] with x(0) = 0 under the sup
norm). Hence, (Ca,b[0, T ],B(Ca,b[0, T ]), µ) is the function space induced by Y ,
where B(Ca,b[0, T ]) is the Borel σ-algebra of Ca,b[0, T ]. To make a long story
short, the function space Ca,b[0, T ] can be considered as a space of continuous
sample paths of the process Y . We then complete this function space to obtain
(Ca,b[0, T ],W(Ca,b[0, T ]), µ), where W(Ca,b[0, T ]) is the set of all Wiener mea-
surable subsets of Ca,b[0, T ]. We note that the coordinate process defined by
et(x) = x(t) on Ca,b[0, T ]× [0, T ] is also the GBMP determined by a(t) and b(t);
that is, for each t ∈ [0, T ], et(x) ∼ N(a(t), b(t)), and the process {et : 0 ≤ t ≤ T}
has nonstationary and independent increments.

Recall that the process {et : 0 ≤ t ≤ T} on Ca,b[0, T ] is a continuous process.
Thus the function space Ca,b[0, T ] reduces to the classical Wiener space C0[0, T ]
(considered in [2]–[6], [18]) if and only if a(t) ≡ 0 and b(t) = t for all t ∈ [0, T ].
Let L2

a,b[0, T ] be the set of functions on [0, T ] which are Lebesgue-measurable
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and square-integrable with respect to the Lebesgue–Stieltjes measure on [0, T ]
induced by a(·) and b(·); that is,

L2
a,b[0, T ] =

{
v :

∫ T

0

v2(s) db(s) <∞ and

∫ T

0

v2(s) d|a|(s) <∞
}
,

where |a|(·) is the total variation function of a(·). Then L2
a,b[0, T ] is a separable

Hilbert space with inner product defined by

(u, v)a,b =

∫ T

0

u(s)v(s) dm|a|,b(s) ≡
∫ T

0

u(s)v(s) d
[
b(s) + |a|(s)

]
,

where m|a|,b denotes the Lebesgue–Stieltjes measure induced by the increasing

function |a|(·) + b(·) on [0, T ]. In particular, note that ‖u‖a,b ≡
√
(u, u)a,b = 0 if

and only if u(t) = 0 a.e. on [0, T ].

Remark 2.1. Recall that above, as well as in [12], [14], [15], and [23], we require
that a : [0, T ] → R be an absolutely continuous function with a(0) = 0 and with∫ T

0
|a′(t)|2 dt <∞. Now throughout this paper, we add the requirement that∫ T

0

∣∣a′(t)∣∣2 d|a|(t) <∞. (2.1)

Remark 2.2. Note that the function a(t) = t2/3, 0 ≤ t ≤ T , does not satisfy
condition (2.1) even though its derivative is an element of L2[0, T ].

Remark 2.3. The function a : [0, T ] → R satisfies the requirements in Remark 2.1
if and only if the function a′ is an element of L2

a,b[0, T ].

The following subspace of Ca,b[0, T ] plays an important role throughout this
article. Let

C ′
a,b[0, T ] =

{
w ∈ Ca,b[0, T ] : w(t) =

∫ t

0

z(s) db(s) for some z ∈ L2
a,b[0, T ]

}
.

For w ∈ C ′
a,b[0, T ], with w(t) =

∫ t

0
z(s)db(s) for t ∈ [0, T ], let D : C ′

a,b[0, T ] →
L2
a,b[0, T ] be defined by

Dw(t) = z(t) =
w′(t)

b′(t)
. (2.2)

Then C ′
a,b ≡ C ′

a,b[0, T ] with inner product

(w1, w2)C′
a,b

=

∫ T

0

Dw1(t)Dw2(t) db(t) =

∫ T

0

z1(t)z2(t) db(t)

is a separable Hilbert space.
Note that the two separable Hilbert spaces L2

a,b[0, T ] and C
′
a,b[0, T ] are (topo-

logically) homeomorphic under the linear operator given by (2.2). In fact, the
inverse operator D−1 : L2

a,b[0, T ] → C ′
a,b[0, T ] is given by

D−1z =

∫ t

0

z(s) db(s).
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It is easy to show that D−1 is a bounded operator since

‖D−1z‖C′
a,b

=
∥∥∥∫ t

0

z(s) db(s)
∥∥∥
C′

a,b

=
(∫ T

0

z2(t) db(t)
)1/2

≤
(∫ T

0

z2(t) d
[
b(t) + |a|(t)

])1/2

= ‖z‖a,b.

Applying the open-mapping theorem, we see that D is also bounded and there
exist positive real numbers α and β such that α‖w‖C′

a,b
≤ ‖Dw‖a,b ≤ β‖w‖C′

a,b

for all w ∈ C ′
a,b[0, T ].

Remark 2.4. Our conditions on b : [0, T ] → R imply that 0 < δ < b′(t) < M for
some positive real numbers δ and M , and all t ∈ [0, T ].

The following lemma follows quite easily from Remarks 2.1, 2.3, and 2.4 above

and the fact that a(t) =
∫ t

0
a′(s)
b′(s)

db(s) on [0, T ].

Lemma 2.5. The function a : [0, T ] → R satisfies the conditions in Remark 2.1
if and only if a is an element of C ′

a,b[0, T ].

For each w ∈ C ′
a,b[0, T ], the Paley–Wiener–Zygmund (PWZ) stochastic integral

(w, x)∼ is given by the formula

(w, x)∼ = lim
n→∞

∫ T

0

n∑
j=1

(w, gj)C′
a,b
Dgj(t)dx(t)

for µ-a.e. x ∈ Ca,b[0, T ], where {gj}∞j=1 is a complete orthonormal set of functions
in C ′

a,b[0, T ] such that, for each j ∈ N, Dgj is of bounded variation on [0, T ].
We will emphasize the following fundamental facts.

(i) The limit defining the PWZ stochastic integral (w, x)∼ is essentially inde-
pendent of the choice of the complete orthonormal set {gj}∞j=1.

(ii) For each w ∈ C ′
a,b[0, T ], the PWZ stochastic integral (w, x)∼ exists for

scale-invariant almost everywhere (s-a.e.) x ∈ Ca,b[0, T ]. (For the pre-
cise definition of the concept of scale-invariant almost everywhere on the
function space Ca,b[0, T ], see [8].)

(iii) If Dw = z ∈ L2
a,b[0, T ] is of bounded variation on [0, T ], then the PWZ sto-

chastic integral (w, x)∼ equals the Riemann–Stieltjes integral
∫ T

0
z(t) dx(t).

(iv) For each w ∈ C ′
a,b[0, T ], the random variable x 7→ (w, x)∼ is Gaussian with

mean (w, a)C′
a,b

and variance ‖w‖2C′
a,b
.

(v) We have that (w,αx)∼ = (αw, x)∼ = α(w, x)∼ for any real number α,
w ∈ C ′

a,b[0, T ] and x ∈ Ca,b[0, T ].
(vi) Note that for all w1, w2 ∈ C ′

a,b[0, T ],∫
Ca,b[0,T ]

(w1, x)
∼(w2, x)

∼ dµ(x) = (w1, w2)C′
a,b

+ (w1, a)C′
a,b
(w2, a)C′

a,b
.

Hence, if {w1, . . . , wn} is an orthonormal set in C ′
a,b[0, T ], then the random

variables (wi, x)
∼ are independent.
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(vii) It follows from the definition of the PWZ stochastic integral and from
Parseval’s equality that if w ∈ C ′

a,b[0, T ] and x ∈ C ′
a,b[0, T ], then (w, x)∼

exists and we have (w, x)∼ = (w, x)C′
a,b
.

Pierce and Skoug [23] used the inner product (·, ·)a,b on L2
a,b[0, T ] rather than

the inner product (·, ·)C′
a,b

on C ′
a,b[0, T ] to study the PWZ stochastic integral and

the related integration formula on the function space Ca,b[0, T ]. We denote the
function space integral of a W(Ca,b[0, T ])-measurable functional F by

E[F ] ≡ Ex

[
F (x)

]
=

∫
Ca,b[0,T ]

F (x) dµ(x)

whenever the integral exists.

3. The GFFT of functionals in a Banach algebra Fa,b
A1,A2

Let M(C ′
a,b[0, T ]) be the space of complex-valued, countably additive (and

hence finite) Borel measures on C ′
a,b[0, T ]. The space M(C ′

a,b[0, T ]) is a Banach
algebra under the total variation norm and with convolution as multiplication.
We define the Fresnel-type class F(Ca,b[0, T ]) of functionals on Ca,b[0, T ] as the
space of all stochastic Fourier transforms of elements of M(C ′

a,b[0, T ]); that is,
F ∈ F(Ca,b[0, T ]) if and only if there exists a measure f in M(C ′

a,b[0, T ]) such
that

F (x) =

∫
C′

a,b[0,T ]

exp
{
i(w, x)∼

}
df(w) (3.1)

for x ∈ Ca,b[0, T ] s-a.e. More precisely, since we will identify functionals which
coincide scale-invariant almost everywhere on Ca,b[0, T ], F(Ca,b[0, T ]) can be
regarded as the space of all s-equivalence classes of functionals of the form (3.1).

The Fresnel-type class F(Ca,b[0, T ]) is a Banach algebra with norm

‖F‖ = ‖f‖ =

∫
C′

a,b[0,T ]

d|f |(w).

In fact, the correspondence f 7→ F is injective, carries convolution into pointwise
multiplication, and is a Banach algebra isomorphism where f and F are related
by (3.1).

Remark 3.1. The Banach algebra F(Ca,b[0, T ]) contains several interesting func-
tions which arise naturally in quantum mechanics. Let M(R) be the class of
C-valued countably additive measures on B(R), the Borel class of R. For ν ∈
M(R), the Fourier transform ν̂ of ν is a complex-valued function defined on R
by the formula

ν̂(u) =

∫
R
exp{iuv} dν(v).

Let G be the set of all complex-valued functions on [0, T ]×R of the form θ(s, u) =
σ̂s(u), where {σs : 0 ≤ s ≤ T} is a family from M(R) satisfying the following
two conditions:

(i) for every E ∈ B(R), σs(E) is Borel-measurable in s,
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(ii)
∫ T

0
‖σs‖ db(s) < +∞.

Let θ ∈ G, and let H be given by

H(x) = exp
{∫ T

0

θ
(
t, x(t)

)
dt
}

for x ∈ Ca,b[0, T ] s-a.e. It was shown in [11] that the function θ(t, u) is

Borel-measurable and that θ(t, x(t)),
∫ T

0
θ(t, x(t)) dt, and H(x) are elements of

F(Ca,b[0, T ]). This fact is relevant to quantum mechanics, where exponential func-
tions play a prominent role. (For more details, see [11].)

Let A be a nonnegative self-adjoint operator on C ′
a,b[0, T ], and let f be any

complex measure on C ′
a,b[0, T ]. Then the functional

F (x) =

∫
C′

a,b[0,T ]

exp
{
i(A1/2w, x)∼

}
df(w) (3.2)

belongs to F(Ca,b[0, T ]) because it can be rewritten as∫
C′

a,b[0,T ]

exp
{
i(w, x)∼

}
dfA(w)

for fA = f ◦ (A1/2)−1. Let A be self-adjoint but not nonnegative. Then A has the
form

A = A+ − A−,

where both A+ and A− are bounded, nonnegative self-adjoint operators.
In this section, we will extend the ideas of [20] to obtain expressions of the

generalized analytic Feynman integral and the GFFT of functionals of the form
(3.2) when A is no longer required to be nonnegative. To do this, we will introduce
definitions and notation analogous to those in [15] and [12].

Let W(C2
a,b[0, T ]) denote the class of all Wiener measurable subsets of the

product function space Ca,b[0, T ]×Ca,b[0, T ] ≡ C2
a,b[0, T ]. A subset B of C2

a,b[0, T ]
is said to be scale-invariant measurable provided {(ρ1x1, ρ2x2) : (x1, x2) ∈ B}
is W(C2

a,b[0, T ])-measurable for every ρ1 > 0 and ρ2 > 0, and a scale-invariant

measurable subset N of C2
a,b[0, T ] is considered scale-invariant null provided that

(µ×µ)({(ρ1x1, ρ2x2) : (x1, x2) ∈ N}) = 0 for every ρ1 > 0 and ρ2 > 0. A property
that holds except on a scale-invariant null set is considered to hold scale-invariant
almost everywhere (s-a.e.) on C2

a,b[0, T ]. A functional F on C2
a,b[0, T ] is consid-

ered scale-invariant measurable provided that F is defined on a scale-invariant
measurable set and F (ρ1·, ρ2·) is W(C2

a,b[0, T ])-measurable for every ρ1 > 0 and

ρ2 > 0. If two functionals F and G defined on C2
a,b[0, T ] are equal scale-invariant

almost everywhere, then we write F ≈ G. (For more details, see [7], [20].)
We denote the product function space integral of a W(C2

a,b[0, T ])-measurable
functional F by

E[F ] ≡ E~x

[
F (x1, x2)

]
=

∫
C2

a,b[0,T ]

F (x1, x2) d(µ× µ)(x1, x2)
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whenever the integral exists. Throughout this article, let C, C+, and C̃+ denote
the complex numbers, the complex numbers with positive real part, and the
nonzero complex numbers with nonnegative real part, respectively. Furthermore,

for all λ ∈ C̃+, λ
−1/2 (or λ1/2) is always chosen to have positive real part. We also

assume that every functional F on C2
a,b[0, T ] we consider is scale-invariant almost

everywhere defined and scale-invariant measurable.

Definition 3.2. Let C2
+ = {~λ = (λ1, λ2) ∈ C2 : Re(λj) > 0 for j = 1, 2}, and

let C̃2
+ = {~λ = (λ1, λ2) ∈ C2 : λj 6= 0 and Re(λj) ≥ 0 for j = 1, 2}. Let F :

C2
a,b[0, T ] → C be a scale-invariant measurable functional such that the function

space integral

J(λ1, λ2) =

∫
C2

a,b[0,T ]

F (λ
−1/2
1 x1, λ

−1/2
2 x2) d(µ× µ)(x1, x2)

exists and is finite for each λ1 > 0 and λ2 > 0. If there exists a function J∗(λ1, λ2)
analytic in C2

+ such that J∗(λ1, λ2) = J(λ1, λ2) for all λ1 > 0 and λ2 > 0, then
J∗(λ1, λ2) is defined to be the analytic function space integral of F over C2

a,b[0, T ]

with parameter ~λ = (λ1, λ2), and for ~λ ∈ C2
+ we write

Ean~λ [F ] ≡ E
an~λ
~x

[
F (x1, x2)

]
≡ E

an(λ1,λ2)
x1,x2

[
F (x1, x2)

]
= J∗(λ1, λ2). (3.3)

Let q1 and q2 be nonzero real numbers. Let F be a functional such that Ean~λ [F ]

exists for all ~λ ∈ C2
+. If the following limit exists, we call it the generalized analytic

Feynman integral of F with parameter ~q = (q1, q2), and we write

Eanf~q [F ] ≡ E
anf~q
~x

[
F (x1, x2)

]
≡ E

anf(q1,q2)
x1,x2

[
F (x1, x2)

]
= lim

~λ→−i~q
Ean~λ [F ], (3.4)

where ~λ = (λ1, λ2) → −i~q = (−iq1,−iq2) through values in C2
+.

Definition 3.3. Let q1 and q2 be nonzero real numbers, and let F be a scale-

invariant measurable functional on C2
a,b[0, T ] such that, for ~λ = (λ1, λ2) ∈ C2

+ and

(y1, y2) ∈ C2
a,b[0, T ], the following analytic function space integral exists:

T~λ(F )(y1, y2) ≡ T(λ1,λ2)(F )(y1, y2) = E
an~λ
~x

[
F (y1 + x1, y2 + x2)

]
.

For p ∈ (1, 2], we define the Lp analytic GFFT, T
(p)
~q (F ) of F , by the formula

T
(p)
~q (F )(y1, y2) ≡ T

(p)
(q1,q2)

(F )(y1, y2) = lim
~λ→−i~q
~λ∈C2

+

T~λ(F )(y1, y2)

if it exists; that is, for each ρ1 > 0 and ρ2 > 0,

lim
~λ→−i~q
~λ∈C2

+

∫
C2

a,b[0,T ]

∣∣T~λ(F )(ρ1y1, ρ2y2)− T
(p)
~q (F )(ρ1y1, ρ2y2)

∣∣p′ d(µ× µ)(y1, y2) = 0,

(3.5)
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where 1/p+1/p′ = 1. We also define the L1 analytic GFFT, T
(1)
~q (F ) of F , by the

formula

T
(1)
~q (F )(y1, y2) ≡ T

(1)
(q1,q2)

(F )(y1, y2)

= lim
~λ→−i~q
~λ∈C2

+

T~λ(F )(y1, y2) = E
anf~q
~x

[
F (y1 + x1, y2 + x2)

]
(3.6)

for ~y = (y1, y2) ∈ C2
a,b[0, T ] s-a.e., whenever this limit exists.

For p ∈ [1, 2], we note that T
(p)
~q (F ) is defined only scale-invariant almost every-

where. We also note that if T
(p)
~q (F ) exists and if F ≈ G, then T

(p)
~q (G) exists and

T
(p)
~q (G) ≈ T

(p)
~q (F ). Moreover, from equations (3.3), (3.4), and (3.6), it follows

that for q1, q2 ∈ R \ {0},

E
anf~q
~x

[
F (x1, x2)

]
= T

(1)
~q (F )(0, 0). (3.7)

Next we give the definition of the generalized Fresnel-type class Fa,b
A1,A2

.

Definition 3.4. Let A1 and A2 be bounded, nonnegative self-adjoint operators on
C ′

a,b[0, T ]. The generalized Fresnel-type class Fa,b
A1,A2

of functionals on C2
a,b[0, T ] is

defined as the space of all functionals F on C2
a,b[0, T ] of the form

F (x1, x2) =

∫
C′

a,b[0,T ]

exp
{ 2∑

j=1

i(A
1/2
j w, xj)

∼
}
df(w) (3.8)

for some f ∈ M(C ′
a,b[0, T ]). More precisely, since we identify functionals which

coincide scale-invariant almost everywhere on C2
a,b[0, T ], F

a,b
A1,A2

can be regarded
as the space of all s-equivalence classes of functionals of the form (3.8).

Remark 3.5. (1) In Definition 3.4 above, let A1 be the identity operator on

C ′
a,b[0, T ], and let A2 ≡ 0. Then Fa,b

A1,A2
is essentially the Fresnel-type class

F(Ca,b[0, T ]) and for p ∈ [1, 2] and nonzero real numbers q1 and q2,

T
(1)
(q1,q2)

(F )(y1, y2) = T (1)
q1

(F0)(y1),

if it exists, where F0(x1) = F (x1, x2) for all (x1, x2) ∈ C2
a,b[0, T ] and T

(1)
q1 (F0)(y)

means the Lp analytic GFFT on Ca,b[0, T ] (see [12], [15]). Of course, if we choose
a(t) ≡ 0, b(t) = t, A1 = I (identity operator), and A2 = 0 (zero operator), then
the function space Ca,b[0, T ] reduces to the classical Wiener space C0[0, T ] and

the generalized Fresnel-type class Fa,b
A1,A2

reduces to the Fresnel class F(C0[0, T ]).
It is known (see [18]) that F(C0[0, T ]) forms a Banach algebra over the complex
field and that F(C0[0, T ]), F(H), and S(L2[0, T ]) are isometrically isomorphic,
where S(L2[0, T ]) is the Cameron–Storvick Banach algebra of analytic Feynman
integrable functionals on C0[0, T ] (see [5]).

(2) The map f 7→ F defined by (3.8) sets up an algebra isomorphism between

M(C ′
a,b[0, T ]) and Fa,b

A1,A2
if Ran(A1 + A2) is dense in C ′

a,b[0, T ], where Ran indi-

cates the range of an operator. In this case, Fa,b
A1,A2

becomes a Banach algebra
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under the norm ‖F‖ = ‖f‖. (For more details, see [20].)

Let

k(q0; ~A;w) = exp
{ 2∑

j=1

(2q0)
−1/2‖A1/2

j ‖o‖w‖C′
a,b
‖a‖C′

a,b

}
, (3.9)

where ‖A1/2
j ‖o means the operator norm of A

1/2
j for j ∈ {1, 2}. For the existence

of the GFFT of F , we define a subclass F q0
A1,A2

of Fa,b
A1,A2

by F ∈ F q0
A1,A2

if and
only if ∫

C′
a,b[0,T ]

k(q0; ~A;w) d|f |(w) < +∞,

where f and F are related by (3.8) and k is given by (3.9).

Remark 3.6. Note that in the case in which a(t) ≡ 0 and b(t) = t on [0, T ],
the function space Ca,b[0, T ] reduces to the classical Wiener space C0[0, T ] and

(w, a)C′
a,b

= 0 for all w ∈ C ′
a,b[0, T ] = C ′

0[0, T ]. Hence for all
~λ ∈ C̃2

+, |ψ(~λ; ~A;w)| ≤
1 and for any positive real number q0, F q0

A1,A2
= FA1,A2 , the Kallianpur and

Bromley class introduced in Section 1.

The following theorem is due to Choi, Skoug, and Chang [16].

Theorem 3.7. Let q0 be a positive real number, and let F be an element of

F q0
A1,A2

. Then for each p ∈ [1, 2], the Lp analytic GFFT of F , T
(p)
~q (F ) exists for

all nonzero real numbers q1 and q2 with |qj| > q0, j ∈ {1, 2}, belongs to F q0
A1,A2

,
and is given by the formula

T
(p)
~q (F )(y1, y2) =

∫
C′

a,b[0,T ]

exp
{ 2∑

j=1

i(A
1/2
j w, yj)

∼
}
df

~A
~q (w) (3.10)

for (y1, y2) ∈ C2
a,b[0, T ] s-a.e., where f

~A
~q is a complex measure on B(Ca,b[0, T ]),

the Borel σ-algebra of C ′
a,b[0, T ], given by

f
~A
~q (B) =

∫
B

ψ(−i~q; ~A;w) df(w), B ∈ B
(
C ′

a,b[0, T ]
)

(3.11)

and where ψ(−i~q; ~A;w) is given by

ψ(−i~q; ~A;w) = exp
{ 2∑

j=1

[
−
i(Ajw,w)C′

a,b

2qj
+ i(−iqj)−1/2(A

1/2
j w, a)C′

a,b

]}
. (3.12)

The following theorem follows from (3.7) and (3.10).

Theorem 3.8. Let q0 and F be as in Theorem 3.7. Then for all real numbers
q1 and q2 with |qj| > q0, j ∈ {1, 2}, the generalized analytic Feynman integral
Eanf~q [F ] of F exists and is given by the formula

Eanf~q [F ] =

∫
C′

a,b[0,T ]

ψ(−i~q; ~A;w) df(w),

where ψ(−i~q; ~A;w) is given by (3.12).
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For a positive real number q0, let

Γq0 =
{
~λ = (λ1, λ2) ∈ C̃2

+ :
∣∣Im(λ

−1/2
j )

∣∣ = √
|λj| − Re(λj)

2|λj|2
<

1√
2q0

, j = 1, 2
}
.

Then it follows that for all ~λ = (λ1, λ2) ∈ Γq0 ,

∣∣ψ(~λ; ~A;w)∣∣ ≤ exp
{ 2∑

j=1

∣∣Im(λ
−1/2
j )

∣∣‖A1/2
j w‖C′

a,b
‖a‖C′

a,b

}
< exp

{ 2∑
j=1

(2q0)
−1/2‖A1/2

j w‖C′
a,b
‖a‖C′

a,b

}
≤ k(q0; ~A;w).

We note that for all real qj with |qj| > q0, j ∈ {1, 2},

(−iqj)−1/2 =
1√
|2qj|

+ sign(qj)
i√
|2qj|

and so (−iq1,−iq2) ∈ Γq0 . In fact, Γq0 is a connected open neighborhood of −iq
in C̃+. From these we can obtain the existence of the Lp analytic GFFT T

(p)
~q (F )

and the generalized analytic Feynman integral Eanf~q [F ] of F . (For more details,
see [16].)

4. Translation theorems for the GFFT of functionals in Fa,b
A1,A2

Cameron and Storvick [6] derived a translation theorem for the analytic Feyn-
man integral of functionals in the Banach algebra S(L2[0, T ]) on classical Wiener
space, and Chang and Chung [13] derived a translation theorem for the function
space integral of functionals on Ca,b[0, T ]. Chang and Chung’s translation theo-
rem in [13], using the notation of this paper, states that if x0 ∈ C ′

a,b[0, T ] and if
G is a µ-integrable functional on Ca,b[0, T ], then

E
[
G(x+ x0)

]
= exp

{
−1

2
‖x0‖2C′

a,b
− (x0, a)C′

a,b

}
E
[
G(x) exp

{
(x0, x)

∼}]. (4.1)

4.1. Special case. In [6], Cameron and Storvick established a translation the-
orem for the analytic Feynman integral of functionals in the Banach algebra
S(L2[0, T ]) using the concept of the Radon–Nikodym derivative and a direct cal-
culation. In our next theorem, using the techniques similar to those used in [6], we
derive a translation theorem for the GFFT of functionals F in the class F q0

A1,A2
.

Theorem 4.1. Let q0 and F be as in Theorem 3.7. Let g be a function in
C ′

a,b[0, T ]. Then for all p ∈ [1, 2] and all real numbers q1 and q2 with |qj| > q0,
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j ∈ {1, 2},

T
(p)
~q (F )

(
y1 +

1

q1
A

1/2
1 g, y2 +

1

q2
A

1/2
2 g

)
= exp

{ 2∑
j=1

[ i

2qj
(Ajg, g)C′

a,b
+ i(−iqj)−1/2(A

1/2
j g, a)C′

a,b

]}
× exp

{ 2∑
j=1

i(A
1/2
j g, yj)

∼
}
T

(p)
~q (FRa,b

(g,g))(y1, y2) (4.2)

for (y1, y2) ∈ C2
a,b[0, T ] s-a.e., where

R(g,g)(x1, x2) = exp
{ 2∑

j=1

[
−i(A1/2

j g, xj)
∼]}. (4.3)

Proof. First, using (3.8), it follows that for (y1, y2) ∈ C2
a,b[0, T ] s-a.e.,

F (y1, y2)R(g,g)(y1, y2) = F (y1, y2) exp
{ 2∑

j=1

[
−i(A1/2

j g, yj)
∼]}

=

∫
C′

a,b[0,T ]

exp
{
i

2∑
j=1

(
A

1/2
j (w − g), yj

)∼}
df(w)

=

∫
C′

a,b[0,T ]

exp
{
i

2∑
j=1

(A
1/2
j z, yj)

∼
}
df g(z),

where f g is the complex measure in M(C ′
a,b[0, T ]) such that f g(B) = f(B + g)

for B ∈ B(C ′
a,b[0, T ]). Using the Minkowski inequality, we observe that∫

C′
a,b[0,T ]

exp
{ 2∑

j=1

(2q0)
−1/2‖A1/2

j ‖o‖z‖C′
a,b
‖a‖C′

a,b

}
d|f g|(z)

=

∫
C′

a,b[0,T ]

exp
{ 2∑

j=1

(2q0)
−1/2‖A1/2

j ‖o‖w − g‖C′
a,b
‖a‖C′

a,b

}
d|f |(w)

≤ exp
{ 2∑

j=1

(2q0)
−1/2‖A1/2

j ‖o‖g‖C′
a,b
‖a‖C′

a,b

}
×

∫
C′

a,b[0,T ]

exp
{ 2∑

j=1

(2q0)
−1/2‖A1/2

j ‖o‖w‖C′
a,b
‖a‖C′

a,b

}
d|f |(w)

≤ exp
{ 2∑

j=1

(2q0)
−1/2‖A1/2

j ‖o‖g‖C′
a,b
‖a‖C′

a,b

}∫
C′

a,b[0,T ]

k(q0; ~A;w) d|f |(w)

< +∞
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and so that the functional F (y1, y2)R(g,g)(y1, y2) is an element of F q0
A1,A2

. Thus, by

Theorem 3.7, the Lp analytic GFFT T
(p)
~q (FR(g,g)) of FR(g,g) exists. Next, using

(3.10) together with (3.11) with f replaced by f g, and (3.12), it follows that

T
(p)
~q (FR(g,g))(y1, y2)

=

∫
C′

a,b[0,T ]

exp
{ 2∑

j=1

i(A
1/2
j z, yj)

∼
}
ψ(−i~q; ~A; z) df g(z)

=

∫
C′

a,b[0,T ]

exp
{ 2∑

j=1

i(A
1/2
j z, yj)

∼
}

× exp
{ 2∑

j=1

[
−
i(Ajz, z)C′

a,b

2qj
+ i(−iqj)−1/2(A

1/2
j z, a)C′

a,b

]}
df g(z)

= exp
{ 2∑

j=1

[
−i(A1/2

j g, yj)
∼ − i

2qj
(Ajg, g)C′

a,b
− i(−iqj)−1/2(A

1/2
j g, a)C′

a,b

]}
×

∫
C′

a,b[0,T ]

exp
{ 2∑

j=1

i(A
1/2
j z, yj + q−1

j A
1/2
j g)∼

}
ψ(−i~q; ~A; z) df(z)

= exp
{ 2∑

j=1

[
−i(A1/2

j g, yj)
∼ − i

2qj
(Ajg, g)C′

a,b
− i(−iqj)−1/2(A

1/2
j g, a)C′

a,b

]}
× T

(p)
~q (F )(y1 + q−1

1 A
1/2
1 g, y2 + q−1

2 A
1/2
2 g).

This yields (4.2). �

By Remark 3.5(1) and Theorem 4.1 above, we have the following corollary.

Corollary 4.2. Let F(Ca,b[0, T ]) be the Fresnel-type class of functionals F given
by (3.1). Given a positive real number q0, let F ∈ F(Ca,b[0, T ]) satisfy the condi-
tion ∫

C′
a,b[0,T ]

exp
{
(2q0)

−1/2‖w‖C′
a,b
‖a‖C′

a,b

}
d|f |(w) < +∞,

where f and F are related by (3.1). Then for each g ∈ C ′
a,b[0, T ] and any real

number q with |q| > q0, it follows that

T (p)
q (F )(y+g) = exp

{
i(g, y)∼+

iq

2
‖g‖2C′

a,b
−(−iq)1/2(g, a)C′

a,b

}
T (p)
q (FRg)(y) (4.4)

for y ∈ Ca,b[0, T ] s-a.e., where T
(p)
q (F ) denotes the Lp analytic GFFT on Ca,b[0, T ]

(see Remark 3.5) and

Rg(x) = exp
{
−i(g, x)∼

}
.

Proof. Simply choose q1 = q, A1 = I (identity operator), and A2 = 0 (zero
operator), and replace g with qg in (4.2). �
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Of course, if we choose a(t) ≡ 0, b(t) = t, then the function space Ca,b[0, T ]
reduces to the classical Wiener space C0[0, T ] and the generalized Fresnel-type

class Fa,b
A1,A2

reduces to the Kallianpur and Bromley–Fresnel class FA1,A2 , where
both A1 and A2 are bounded, nonnegative, self-adjoint operators on

C ′
0[0, T ] =

{
w ∈ C0[0, T ] : w(t) =

∫ t

0

z(s) ds for some z ∈ L2[0, T ]
}

=
{
w ∈ C0[0, T ] : w is absolutely continuous on [0, T ]

with w′ ∈ L2[0, T ]
}
.

In this case, as commented in Remark 3.6, it follows that F q0
A1,A2

= FA1,A2 for all
real q0 > 0. Thus we obtain the following corollary.

Corollary 4.3. Let FA1,A2 be the Kallianpur and Bromley–Fresnel class. Then
for each functional F ∈ FA1,A2, each g ∈ C ′

0[0, T ], and any nonzero real numbers
q1 and q2, it follows that

T
(p)
~q (F )

(
y1 +

1

q1
A

1/2
1 g, y2 +

1

q2
A

1/2
2 g

)
= exp

{ 2∑
j=1

i(A
1/2
j g, yj)

∼ +
2∑

j=1

i

2qj
(Ajg, g)C′

0

}
T

(p)
~q (FR(g,g))(y1, y2) (4.5)

for (y1, y2) ∈ C2
0 [0, T ] s-a.e., where R(g,g)(x1, x2) is given by the right-hand side

of (4.3) for (x1, x2) ∈ C2
0 [0, T ].

4.2. General case. In the left-hand side of (4.2), the translated functions A
1/2
1 g

and A
1/2
2 g both depend on the same function g. We will present a more general

translation theorem for functionals in Fa,b
A1,A2

. In our next theorem we establish
the general translation theorem for the L1 analytic GFFT.

Theorem 4.4. Let q0 and F be as in Theorem 3.7. Let g1 and g2 be functions in
C ′

a,b[0, T ]. Then for all real numbers q1 and q2 with |qj| > q0, j ∈ {1, 2} and for

(y1, y2) ∈ C2
a,b[0, T ] s-a.e.,

T
(1)
~q (F )(y1 + A

1/2
1 g1, y2 + A

1/2
2 g2)

= exp
{ 2∑

j=1

[iqj
2
(Ajgj, gj)C′

a,b
− (−iqj)1/2(A1/2

j gj, a)C′
a,b

]}
× exp

{ 2∑
j=1

iqj(A
1/2
j gj, yj)

∼
}
T

(1)
~q (FR~q,~g)(y1, y2), (4.6)

where

R~q,~g(x1, x2) ≡ R(q1,q2;g1,g2)(x1, x2) = exp
{ 2∑

j=1

[
−iqj(A1/2

j gj, xj)
∼]}. (4.7)
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Proof. By Theorem 3.7, the L1 analytic GFFT T
(1)
~q (F ) of F exists and is given

by the right-hand side of (3.10). Thus we only need to verify the equality in (4.6).
For λj > 0, j ∈ {1, 2} and w ∈ C ′

a,b[0, T ], let Gj(w; ·) be a functional on
Ca,b[0, T ] given by

Gj(w;xj) = exp
{
i(A

1/2
j w, λ

−1/2
j xj)

∼}, (4.8)

and let

x0,1 = λ
1/2
1 A

1/2
1 g1 and x0,2 = λ

1/2
2 A

1/2
2 g2. (4.9)

Then for j ∈ {1, 2},

‖x0,j‖2C′
a,b

= λj(Ajgj, gj)C′
a,b

and (x0,j, a)C′
a,b

= λ
1/2
j (A

1/2
j gj, a)C′

a,b
. (4.10)

Using (3.8), Fubini’s theorem, (4.9), (4.8), (4.1), and (4.10), we obtain that for
λ1 > 0 and λ2 > 0,

T~λ(F )(y1 + A
1/2
1 g1, y2 + A

1/2
2 g2)

=

∫
C′

a,b[0,T ]

exp
{ 2∑

j=1

i(A
1/2
j w, yj)

∼
}

×
( 2∏
j=1

Exj

[
exp

{
i(A

1/2
j w, λ

−1/2
j xj + A

1/2
j gj)

∼}]) df(w)
=

∫
C′

a,b[0,T ]

exp
{ 2∑

j=1

i(A
1/2
j w, yj)

∼
}( 2∏

j=1

Exj

[
Gj(w;xj + x0,j)

])
df(w)

=

∫
C′

a,b[0,T ]

exp
{ 2∑

j=1

i(A
1/2
j w, yj)

∼
}

× exp
{ 2∑

j=1

[
−λj

2
(Ajgj, gj)C′

a,b
− λ

1/2
j (A

1/2
j gj, a)C′

a,b

]}
×

( 2∏
j=1

Exj

[
exp

{
i(A

1/2
j w, λ

−1/2
j xj)

∼ + λ
1/2
j (A

1/2
j gj, xj)

∼}]) df(w)
= exp

{ 2∑
j=1

[
−λj

2
(Ajgj, gj)C′

a,b
− λ

1/2
j (A

1/2
j gj, a)C′

a,b

]}
× E~x

[∫
C′

a,b[0,T ]

exp
{ 2∑

j=1

[
i(A

1/2
j w, yj)

∼ + i(A
1/2
j w, λ

−1/2
j xj)

∼]} df(w)
× exp

{ 2∑
j=1

λ
1/2
j (A

1/2
j gj, xj)

∼
}]

= exp
{ 2∑

j=1

[
−λj

2
(Ajgj, gj)C′

a,b
− λ

1/2
j (A

1/2
j gj, a)C′

a,b
− λj(A

1/2
j gj, yj)

∼
]}
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× E~x

[
F (y1 + λ

−1/2
1 x1, y2 + λ

−1/2
2 x2)

× exp
{ 2∑

j=1

[
λj(A

1/2
j gj, yj)

∼ + λ
1/2
j (A

1/2
j gj, xj)

∼]}]. (4.11)

Now, letting (λ1, λ2) → (−iq1,−iq2), it follows that

T~q(F )(y1 + A
1/2
1 g1, y2 + A

1/2
2 g2)

= exp
{ 2∑

j=1

[iqj
2
(Ajgj, gj)C′

a,b
− (−iqj)1/2(A1/2

j gj, a)C′
a,b

+ iqj(A
1/2
j gj, yj)

∼
]}

× E
anf~q
~x

[
F (y1 + x1, y2 + x2) exp

{ 2∑
j=1

[
−iqj(A1/2

j gj, yj)
∼ + (A

1/2
j gj, xj)

∼]}]
= exp

{ 2∑
j=1

[iqj
2
(Ajgj, gj)C′

a,b
− (−iqj)1/2(A1/2

j gj, a)C′
a,b

+ iqj(A
1/2
j gj, yj)

∼
]}

× T
(1)
~q (FR~q,~g)(y1, y2)(y1, y2),

and the theorem is proved. �

The following corollary follows from equations (4.6) and (3.7) above.

Corollary 4.5. Let q0, F , g1, and g2 be as in Theorem 4.4. Then for all real
numbers q1 and q2 with |qj| > q0, j ∈ {1, 2},

E
anf~q
~x

[
F (x1 + A

1/2
1 g1, x2 + A

1/2
2 g2)

]
= T

(1)
~q (F )(0, 0)

= exp
{ 2∑

j=1

[iqj
2
(Ajgj, gj)C′

a,b
− (−iqj)1/2(A1/2

j gj, a)C′
a,b

]}
× E

anf~q
~x

[
F (x1, x2)R~q,~g(x1, x2)

]
, (4.12)

where R~q,~g is given by (4.7).

By Remark 3.5(1) and Corollary 4.5 above, we have the following corollary.

Corollary 4.6. Given a positive real number q0, let F ∈ F(Ca,b[0, T ]) be given as
Corollary 4.2. Then for each g ∈ C ′

a,b[0, T ] and any real number q with |q| > q0,
it follows that

Eanfq
[
F (·+ g)

]
= exp

{iq
2
‖g‖2C′

a,b
− (−iq)1/2(g, a)C′

a,b

}
Eanfq [FRq,g], (4.13)

where Eanfq [F ] means the generalized analytic Feynman integral of F on Ca,b[0, T ]
(see [12], [15]), and

Rq,g(x) = exp
{
−iq(g, x)∼

}
.
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Remark 4.7. In Corollary 4.6, taking a(t) ≡ 0 and b(t) = t, the general function
space Ca,b[0, T ] reduces to the classical Wiener space C0[0, T ]. Also, we know that
(4.13) becomes∫ anfq

C0[0,T ]

F (x+ g0) dmw(x)

= exp
{iq
2
‖g′0‖22

}∫ anfq

C0[0,T ]

F (x) exp
{
−iq

∫ T

0

g′0(t) dx(t)
}
dmw(x),

where ‖ · ‖2 is the norm on L2[0, T ]. This result subsumes a similar known result
obtained by Cameron and Storvick [6].

In our next theorem we establish a translation theorem for the Lp analytic
GFFT with p ∈ (1, 2].

Theorem 4.8. Let q0 and F be as in Theorem 3.7. Let g1 and g2 be functions in
C ′

a,b[0, T ]. Then for all p ∈ [1, 2], and all real numbers q1 and q2 with |qj| > q0,

j ∈ {1, 2}, the Lp analytic GFFT T
(p)
~q (F )(y1+A

1/2
1 g1, y2+A

1/2
2 g2) is given by the

right-hand side of (4.6) for (y1, y2) ∈ C2
a,b[0, T ] s-a.e.

Proof. By Theorem 3.7, the Lp analytic GFFT T
(p)
~q (F ) of F exists for each p ∈

[1, 2] and is given by the right-hand side of equation (3.10). Thus we only need to

verify the equality in (4.6) with T
(1)
~q (F ) replaced with T

(p)
~q (F ), 1 < p ≤ 2. But,

in order to obtain (4.6) with T
(p)
~q (F ), 1 < p ≤ 2, we have to use the concept of

the scale-invariant limit (see (3.5) above) for the proof.
Let

Φ1(x1, x2) = F (x1, x2) exp
{ 2∑

j=1

[
λj(A

1/2
j gj, xj)

∼]}.
Then for λ1 > 0 and λ2 > 0, the last expression of (4.11) is represented by

exp
{ 2∑

j=1

[
−λj

2
(Ajgj, gj)C′

a,b
− λ

1/2
j (A

1/2
j gj, a)C′

a,b
− λj(A

1/2
j gj, yj)

∼
]}

× E~x

[
Φ1(y1 + λ

−1/2
1 x1, y2 + λ

−1/2
2 x2)

]
;

that is, it follows that

T~λ(F )(y1 + A
1/2
1 g1, y2 + A

1/2
2 g2)

= exp
{ 2∑

j=1

[
−λj

2
(Ajgj, gj)C′

a,b
− λ

1/2
j (A

1/2
j gj, a)C′

a,b
− λj(A

1/2
j gj, yj)

∼
]}

× E~x

[
Φ1(y1 + λ

−1/2
1 x1, y2 + λ

−1/2
2 x2)

]
.
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On the other hand, for λ1 > 0 and λ2 > 0, we see that

T~λ(FR~q,~g)(y1, y2)

= E~x

[
(FR~q,~g)(y1 + λ

−1/2
1 x1, y2 + λ

−1/2
2 x2)

]
= E~x

[
F (y1 + λ

−1/2
1 x1, y2 + λ

−1/2
2 x2)

× exp
{ 2∑

j=1

[
−iqj(A1/2

j gj, yj + λ
−1/2
j xj)

∼]}]
= E~x

[
F (y1 + λ

−1/2
1 x1, y2 + λ

−1/2
2 x2)

× exp
{ 2∑

j=1

[
−iqj(A1/2

j gj, yj)
∼ − iqjλ

−1/2
j (A

1/2
j gj, xj)

∼]}].
Next, using Hölder’s inequality with λ1 > 0 and λ2 > 0, it follows that

E~x

[∣∣(FR~q,~g)(y1 + λ
−1/2
1 x1, y2 + λ

−1/2
2 x2)− Φ1(y1 + λ

−1/2
1 x1, y2 + λ

−1/2
2 x2)

∣∣]
= E~x

[∣∣F (y1 + λ
−1/2
1 x1, y2 + λ

−1/2
2 x2)

∣∣
×
∣∣∣1− exp

{ 2∑
j=1

[
(iqj + λj)(A

1/2
j gj, yj)

∼

+ (iqjλ
−1/2
j + λ

1/2
j )(A

1/2
j gj, xj)

∼]}∣∣∣]
≤

(
E~x

[∣∣F (y1 + λ
−1/2
1 x1, y2 + λ

−1/2
2 x2)

∣∣p])1/p
×
(
E~x

[∣∣∣1− exp
{ 2∑

j=1

[
(iqj + λj)(A

1/2
j gj, yj)

∼

+ (iqjλ
−1/2
j + λ

1/2
j )(A

1/2
j gj, xj)

∼]}∣∣∣p′])1/p′

.

Note that each factor in the last expression has a limit as ~λ = (λ1, λ2) → −i~q =
(−iq1,−iq2) in C2

+, and that(
E~x

[∣∣∣1− exp
{ 2∑

j=1

[
(iqj + λj)(A

1/2
j gj, yj)

∼

+ (iqjλ
−1/2
j + λ

1/2
j )(A

1/2
j gj, xj)

∼]}∣∣∣p′])1/p′

→ 0

as ~λ = (λ1, λ2) → −i~q = (−iq1,−iq2) in C2
+. Hence we have

T
(p)
~q (F )(y1 + A

1/2
1 g1, y2 + A

1/2
2 g2)

= lim
~λ→−i~q
~λ∈C2

+

T~λ(F )(y1 + A
1/2
1 g1, y2 + A

1/2
2 g2)
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= lim
~λ→−i~q
~λ∈C2

+

exp
{ 2∑

j=1

[
−λj

2
(Ajgj, gj)C′

a,b
− λ

1/2
j (A

1/2
j gj, a)C′

a,b

− λj(A
1/2
j gj, yj)

∼
]}
E~x

[
Φ1(y1 + λ

−1/2
1 x1, y2 + λ

−1/2
2 x2)

]
= exp

{ 2∑
j=1

[iqj
2
(Ajgj, gj)C′

a,b
− (−iqj)1/2(A1/2

j gj, a)C′
a,b

+ iqj(A
1/2
j gj, yj)

∼
]}

× lim
~λ→−i~q
~λ∈C2

+

E~x

[
Φ1(y1 + λ

−1/2
1 x1, y2 + λ

−1/2
2 x2)

]

= exp
{ 2∑

j=1

[iqj
2
(Ajgj, gj)C′

a,b
− (−iqj)1/2(A1/2

j gj, a)C′
a,b

+ iqj(A
1/2
j gj, yj)

∼
]}

× lim
~λ→−i~q
~λ∈C2

+

T~λ(FR~q,~g)(y1, y2)

= exp
{ 2∑

j=1

[iqj
2
(Ajgj, gj)C′

a,b
− (−iqj)1/2(A1/2

j gj, a)C′
a,b

+ iqj(A
1/2
j gj, yj)

∼
]}

× T~q(FR~q,~g)(y1, y2).

This completes the proof. �

Remark 4.9. Given any function g in C ′
a,b[0, T ], setting g1 = q−1

1 g and g2 = q−1
2 g

in (4.6) yields (4.2). Also, choosing g1 = g, A1 = I, and A2 = 0 yields (4.4).

Corollary 4.10. Let FA1,A2 be the Kallianpur and Bromley–Fresnel class. Then
for all p ∈ [1, 2], every functional F ∈ FA1,A2, each g ∈ C ′

0[0, T ], and any nonzero
real number q1 and q2, it follows that

T
(p)
~q (F )(y1 + A

1/2
1 g1, y2 + A

1/2
2 g2)

= exp
{ 2∑

j=1

iqj(A
1/2
j gj, yj)

∼ +
2∑

j=1

iqj
2
(Ajgj, gj)C′

0

}
T

(1)
~q (FR~q,~g)(y1, y2)

(4.14)

for (y1, y2) ∈ C2
0 [0, T ] s-a.e., and

E
anf~q
~x

[
F (x1 + A

1/2
1 g1, x2 + A

1/2
2 g2)

]
= exp

{ 2∑
j=1

iqj
2
(Ajgj, gj)C′

0

}
E

anf~q
~x

[
F (x1, x2)R~q,~g(x1, x2)

]
.

Remark 4.11. Given any function g in C ′
0[0, T ], setting g1 = q−1

1 g and g2 = q−1
2 g

in (4.14) yields (4.5).

5. Examples

We finish this article with meaningful examples to which our translation theo-
rems can be applied.
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Example 5.1. Given two self-adjoint operators A1 and A2, as commented in
Remark 3.5(2), the generalized Fresnel-type class Fa,b

A1,A2
is a Banach algebra if

Ran(A1 + A2) is dense in C ′
a,b[0, T ]. In this case, using (4.12) with F (x1, x2) ≡ 1

(we can use (4.12), because F ≡ 1 ∈ F q0
A1,A2

for all positive real numbers q0)
and (4.7), it follows that, for all q1, q2 ∈ R \ {0} and any functions g1 and g2 in
C ′

a,b[0, T ],

1 = exp
{ 2∑

j=1

[iqj
2
(Ajgj, gj)C′

a,b
− (−iqj)1/2(A1/2

j gj, a)C′
a,b

]}
× E

anf~q
~x

[
exp

{ 2∑
j=1

[
−iqj(A1/2

j gj, xj)
∼]}].

Using this, we immediately obtain the generalized analytic Feynman integration
formula on the product function space C ′

a,b[0, T ] as follows: for any ~q = (q1, q2)
with q1, q2 ∈ R \ {0},

E
anf~q
~x

[
exp

{ 2∑
j=1

[
−iqj(A1/2

j gj, xj)
∼]}]

= exp
{ 2∑

j=1

[
−iqj

2
(Ajgj, gj)C′

a,b
+ (−iqj)1/2(A1/2

j gj, a)C′
a,b

]}
. (5.1)

In fact, (5.1) holds even if Ran(A1 +A2) is not dense in C
′
a,b[0, T ]. But the direct

calculation for the formula is very complicated.

Let S : C ′
a,b[0, T ] → C ′

a,b[0, T ] be the linear operator defined by

Sw(t) =

∫ t

0

w(s) db(s).

Then we see that the adjoint operator S∗ of S is given by

S∗w(t) = w(T )b(t)−
∫ t

0

w(s) db(s) =

∫ t

0

[
w(T )− w(s)

]
db(s),

and the linear operator C = S∗S is given by

Cw(t) =

∫ T

0

min
{
b(s), b(t)

}
w(s) db(s).

Furthermore, we see that C is a self-adjoint operator on C ′
a,b[0, T ] and that

(w1, Cw2)C′
a,b

= (Sw1, Sw2)C′
a,b

=

∫ T

0

w1(s)w2(s) db(s)

for all w1, w2 ∈ C ′
a,b[0, T ]. Hence C is a positive definite operator; that is,

(w,Cw)C′
a,b

≥ 0 for all w ∈ C ′
a,b[0, T ].
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One can show that the orthonormal eigenfunctions {em} of C are given by

em(t) =

√
2b(T )

(m− 1
2
)π

sin
((m− 1

2
)π

b(T )
b(t)

)
(5.2)

with corresponding eigenvalues {βm} given by

βm =
( b(T )

(m− 1
2
)π

)2

. (5.3)

Furthermore, it can be shown that {em} is a basis of C ′
a,b[0, T ] and that C is a

trace class operator and so S is a Hilbert–Schmidt operator on C ′
a,b[0, T ]. In fact,

the trace of C is given by TrC = 1
2
b2(T ) =

∫ T

0
b(t) db(t).

Define a self-adjoint operator on C ′
a,b[0, T ] by

Aw =
∞∑

m=1

γm(w, em)C′
a,b
em (5.4)

where

γm =

{
βm m : even,

−βm m : odd.

Then

Aw =
∞∑

m=1

(−1)mβm(w, em)C′
a,b
em,

A
1/2
+ w =

∑
m : even

√
βm(w, em)C′

a,b
em,

(5.5)

and

A
1/2
− w =

∑
m : odd

√
βm(w, em)C′

a,b
em. (5.6)

In this case, we see that A+ and A− are the positive and the negative parts of A,

respectively. One can show that A
1/2
+ and A

1/2
− are trace class operators with

TrA
1/2
+ = b2(T )

8
and TrA

1/2
− = 3b2(T )

8
.

Example 5.2. Applying equations (5.1) through (5.6), it follows that for each
w ∈ C ′

a,b[0, T ],

E
anf(1,−1)

~x

[
exp

{
−i(A1/2

+ w, x1)
∼ + i(A

1/2
− w, x2)

∼}]
= exp

{
− i

2

∞∑
m=1

(−1)mβm(w, em)
2
C′

a,b

+ (−i)1/2
∑

m : even

√
βm(w, em)C′

a,b
(em, a)C′

a,b

+ (i)1/2
∑

m : odd

√
βm(w, em)C′

a,b
(em, a)C′

a,b

}
.
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From this, it follows that if m is an even number, then

Eanf1
x

[
exp

{
i

∫ T

0

cos
((m− 1/2)π

b(T )
b(t)

)
dx(t)

}]
= Eanf1

x

[
exp{i

( b(T )

(m− 1/2)π
sin

((m− 1/2)π

b(T )
b(t)

)
, x
)∼]

= Eanf1
x

[
exp{−i

(
A

1/2
+

(
−(m− 1/2)π√

2b(T )
em

)
, x
)∼]

= E
anf(1,−1)

~x

[
exp

{
−i

(
A

1/2
+

(
−(m− 1/2)π√

2b(T )
em

)
, x1

)∼

+ i
(
A

1/2
−

(
−(m− 1/2)π√

2b(T )
em

)
, x2

)∼}]
= exp

{
− i

2
βm

(
−(m− 1/2)π√

2b(T )
em, em

)2

C′
a,b

+ (−i)1/2
√
βm

(
−(m− 1/2)π√

2b(T )
em, em

)
C′

a,b

(em, a)C′
a,b

}
= exp

{
− i

4
b(T )− (−i)1/2

∫ T

0

cos
((m− 1/2)π

b(T )
b(t)

)
da(t)

}
, (5.7)

and if m is an odd number, then

Eanf−1
x

[
exp

{
i

∫ T

0

cos
((m− 1/2)π

b(T )
b(t)

)
dx(t)

}]
= Eanf−1

x

[
exp{i

( b(T )

(m− 1/2)π
sin

((m− 1/2)π

b(T )
b(t)

)
, x
)∼]

= Eanf−1
x

[
exp{i

(
A

1/2
−

((m− 1/2)π√
2b(T )

em

)
, x
)∼]

= E
anf(1,−1)

~x

[
exp

{
−i

(
A

1/2
+

((m− 1/2)π√
2b(T )

em

)
, x1

)∼

+ i
(
A

1/2
−

((m− 1/2)π√
2b(T )

em

)
, x2

)∼}]
= exp

{ i
2
βm

((m− 1/2)π√
2b(T )

em, em

)2

C′
a,b

+ (i)1/2
√
βm

((m− 1/2)π√
2b(T )

em, em

)
C′

a,b

(em, a)C′
a,b

}
= exp

{ i
4
b(T ) + (i)1/2

∫ T

0

cos
((m− 1/2)π

b(T )
b(t)

)
da(t)

}
. (5.8)

In (5.7) and (5.8) above, E
anfq
x [F (x)] indicates the generalized analytic Feynman

integral of F on Ca,b[0, T ] with parameter q.
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