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Abstract. In this article, we construct a function U ∈ L1[0, 1) with strictly
decreasing Fourier–Walsh coefficients {ck(U)} ↘, and having a universal and
strong (L1, L∞)-property with respect to the Walsh system.

1. Introduction and preliminaries

Let Lp[0, 1), p > 0 be the class of all measurable functions f on [0,1) satisfying
the condition ∫ 1

0

∣∣f(x)∣∣p dx < ∞. (1.1)

By L∞[0, 1), we denote the space of all bounded measurable functions on [0, 1)
with the norm

‖ · ‖∞ = sup
x∈[0,1)

{
| · |

}
. (1.2)

Let Φ = {ϕk(x)} be the Walsh system, and let f ∈ Lp[0, 1), p ≥ 1. We denote by
ck(f) the Fourier–Walsh coefficients of f , that is,

ck(f) =

∫ 1

0

f(x)ϕk(x) dx, (1.3)
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and we denote by Sn(x, f) the nth partial sum of the Fourier–Walsh series of
functions f , that is,

Sn(x, f) =
n∑

k=0

ck(f)ϕk(x). (1.4)

The spectrum of f(x) (denoted by spec(f)) is the support of ck(f), that is, the
set of integers where ck(f) is nonzero, that is,

spec(f) =
{
k ∈ N, ck(f) 6= 0

}
. (1.5)

Let |E| be the Lebesgue measure of a measurable set E ⊂ [0, 1), and let χE(x)
be its characteristic function, that is,

χE(x) =

{
1, if x ∈ E,

0, if x /∈ E.

Definition 1.1. We say that a function U ∈ L1[0, 1) has a universal and strong
(L1, L∞)-property with respect to the Walsh system if for each number ε ∈ (0, 1)
and for every almost everywhere finite and measurable function f on [0, 1] one
can find a function g ∈ L∞[0, 1), |{x ∈ [0, 1); g(x) 6= f(x)}| < ε, such that
|ck(g)| = ck(U), ∀k ∈ spec(g) and the Fourier–Walsh series of g(x) converges
uniformly on [0, 1).

The above-mentioned definition, while not presented in its most general form,
is given at the level of generality in which it will be applied in this article.

In the present article, we construct a function U ∈ L1[0, 1) with strictly decreas-
ing Fourier–Walsh coefficients {ck(U)} ↘, and having a universal and strong
(L1, L∞)-property with respect to the Walsh system. This is a continuation of
the author’s previous work in [7], [6], and [8] (with Galoyan) on the convergence
of Fourier series and on the behavior of Fourier coefficients in classical systems.
Underlying the author’s studies in this area is the so-called Luzin’s C-property of
measurable functions, which reads as follows: for every measurable, almost every-
where finite function f on [0, 1] and every ε > 0, there exists a measurable set
E ⊂ [0, 1] with |E| > 1− ε and a continuous function g which coincides with f(x)
on E. This famous result of Luzin [13, Theoerm 1] dates back to 1912. Luzin’s
idea of a modification of a function improving its properties was substantially
developed later on.

In 1939 Menchoff [14] proved the following fundamental theorem.

Theorem (Menchoff’s C-strong property). For every measurable, almost every-
where finite function f on [0, 2π] and every ε > 0, there is a continuous function
fε such that |{x ∈ [0, 2π] : fε(x) 6= f(x)}| < ε and the Fourier series of the
function fε converges uniformly in [0, 2π].

In 1988 we were able to show that the trigonometric system possesses the
L-strong property for integrable functions; that is, for each ε > 0 there exists
a (measurable) set E ⊂ [0, 2π] of measure |E| > 2π − ε such that for each
function f ∈ L1[0, 2π] there exists a function g ∈ L1[0, 2π] equal to f(x) on
E and with Fourier series with respect to the trigonometric system convergent
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to g(x) in the L1[0, 2π]-norm (see [5]). After Menchoff’s proof of the C-strong
property, many “correction” type theorems were proved for different systems (see
[1], [2], [8], [9], [15], [17], [18], [20]; we refrain from providing a complete survey
of all research done in this area). A number of papers (see [7], [5], [16]) have
been devoted to correction theorems in which the absolute values of nonzero
Fourier coefficients (by the Haar and Walsh systems) of the corrected function
are monotonically decreasing.

Here we present results having a direct bearing on the present article. In [6,
Theorem 2] we proved the following.

Theorem 1.2. For any 0 < ε < 1 and each function f ∈ L∞[0, 1] one can find
a function g ∈ L∞[0, 1), |{x ∈ [0, 1); g(x) 6= f(x)}| < ε, such that a sequence
{|ck(g)|, k ∈ spec(g)} is monotonically decreasing.

In the present article, we prove the following theorem.

Theorem 1.3. There exists a function U ∈ L1[0, 1) with strictly decreasing
Fourier–Walsh coefficients {ck(U)} ↘ such that, for every almost everywhere
finite measurable function f on [0, 1], one can find a function g ∈ L∞[0, 1) with
|{x ∈ [0, 1) : g(x) 6= f(x)}| < ε such that |ck(g)| = ck(U), ∀k ∈ spec(g).

Theorems 1.2 and 1.3 follow from the more general Theorem 1.4.

Theorem 1.4. There exists a function U ∈ L1[0, 1) with strictly decreasing
Fourier–Walsh coefficients {ck(U)} ↘ such that, for every almost everywhere
finite measurable function f on [0, 1], one can find a function g ∈ L∞[0, 1) with
|{x ∈ [0, 1) : g(x) 6= f(x)}| < δ such that |ck(g)| = ck(U), ∀k ∈ spec(g) and the
Fourier–Walsh series of g converges uniformly on [0, 1).

The following corollary is derived from this theorem.

Corollary 1.5. There exist a function U ∈ L1[0, 1) and numbers (signs) δk = ±1,
k ∈ N, such that, for every almost everywhere finite measurable function f on
[0, 1], one can find a function g ∈ L∞[0, 1) with |{x ∈ [0, 1); g(x) 6= f(x)}| < ε
such that the greedy algorithm of function g with respect to the Walsh system
converges uniformly on [0, 1) and for some {Nm}∞m=1 ↗

Gm(x, g) = SNm(x, g), x ∈ [0, 1),m = 0, 1, 2, . . . ,

ck(g) = δkck(U), ∀k ∈ spec(g).

Recall that Gm(x, g) is the mth greedy approximant of f with regard to the
Walsh system, that is,

Gm(f) :=
m∑

n=1

cσ(n)(f)ϕσ(n)(x), m = 1, 2, . . . ,

where {σ(n)}∞n=1− is a decreasing permutation of nonnegative integers such that∣∣cσ(n)(f)∣∣ ≥ ∣∣cσ(n+1)(f)
∣∣, n = 1, 2, . . . .

This nonlinear method of approximation is known as a greedy algorithm (see [11]).
The above-mentioned definitions, while not presented in their most general form,
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are given at the level of generality in which they will be applied in this article.
Greedy algorithms in Banach spaces with respect to normalized bases have been
considered in [3], [10]–[12], and [22].

The following problems remain open.

Question 1. Is it possible to construct the (universal) function U in Theorem 1.4
such that U ∈ Lp[0, 1) for some p > 1?

Question 2. Is it possible to choose a modified function g in Theorem 1.4 such
that g ∈ C[0, 1)?

Question 3. Is Theorem 1.4 (or Theorems 1.2 and 1.3) true for the trigonometric
system?

2. Proofs of main lemmas

The Walsh system (see [21]), an extension of the Rademacher system, may be
obtained in the following manner. Let r be the periodic function, of least period
1, defined on [0, 1) by

r = χ[0,1/2) − χ[1/2,1).

The Rademacher system, R = rn : n = 0, 1, . . . , is defined by the conditions

rn(x) = r(2nx), ∀x ∈ R, n = 0, 1, . . . ,

and, in the ordering employed by Paley (see [4], [19], [21]), the nth element of the
Walsh system {ϕn} is given by

ϕn =
∞∏
k=0

rnk
k , (2.1)

where
∑∞

k=0 nk2
k is the unique binary expansion of n, with each nk either 0 or 1.

It is known that for the Walsh system {ϕn} (see [19]) and for each natural number
m, the following equation is true:∫ 1

0

∣∣∣2m−1∑
k=0

ϕk(x)
∣∣∣ dx = 1. (2.2)

By ∆ = ∆
(k)
m , we denote the dyadic intervals of the form

∆(k)
m =

[k − 1

2m
,
k

2m

)
, k ∈ [1, 2m].

We use the following lemma, previously proved in [6, Lemma 1].

Lemma 2.1. Let dyadic interval ∆ = ∆
(k)
m , k ∈ [1, 2m] and numbers N0 ∈ N,

γ 6= 0, ε ∈ (0, 1) be given. Then there exist a measurable set E ⊂ ∆ and a
polynomial Q(x) with respect to the Walsh system {ϕk(x)} of the following form

Q =
N∑

k=N0

akϕk,

which satisfy the following conditions:
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(1) the coefficients {ak}Nk=N0
are 0 or ±γ|∆|,

(2) |E| > (1− ε)|∆| ,

(3) Q(x) =

{
γ, if x ∈ E,

0, if x /∈ ∆,

(4) maxN0≤M≤N ‖
∑M

k=N0
akϕk‖∞ ≤ 3|γ|ε−1.

The main building block in the proof of Theorem 1.4 is Lemma 2.3, which will
be proved with the help of Lemma 2.2.

Lemma 2.2. Let dyadic interval ∆ and numbers m0 ∈ N, γ 6= 0, δ ∈ (0, 1), 0 <

θ < |γ|
δ

be given. Then there exist a function g(x), a measurable set E ⊂ ∆, and
polynomials H(x), Q(x) with respect to the Walsh system {ϕk} of the following
form

H(x) =
2m∑

k=2m0−1

bkϕk(x),

Q(x) =
2m−1∑
k=2m0

εkbkϕk(x),

which satisfy the following conditions:

(1) 0 < bk+1 < bk < θ, ∀k ∈ [2m0 , 2m),
(2) εk = 0,±1, ∀k ∈ [2m0 , 2m),

(3)
∫ 1

0
|H(x)| dx < θ,

(4) |E| > (1− δ)|∆|,

(5) g(x) =

{
γ, if x ∈ E,

0, if x /∈ ∆,

(6) ‖g(x)−Q(x)‖∞ < θ,

(7) max2m0−1≤n<2m ‖
∑n

k=2m0 εkbkϕk(x)‖∞ < 7|γ|
δ
.

Proof. We choose a natural number ν0 > 1 such that

2−ν0|γ| < θ

4
, (2.3)

and we present the interval ∆ in the form of the union of dyadic intervals

∆ =
2ν0⋃
ν=1

∆ν , (2.4)

with

|∆ν |= 2−ν0|∆|. (2.5)

By successively applying Lemma 1, we determine some sets Eν ⊂ ∆ν , ν =
1, 2, . . . , 2ν0 and polynomials

Qν(x) =
2mν−1∑

j=2mν−1

ajϕj(x), aj = 0 or ± γ|∆j|, if j ∈ [2mν−1 , 2mν ), (2.6)
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which satisfy the following conditions:

|Eν | > (1− ε)|∆ν |, (2.7)

Qν(x) =

{
γ, if x ∈ Eν ,

0, if x /∈ ∆ν ,
(2.8)

max
2mν−1≤m<2mν

∥∥∥ m∑
j=2mν−1

ajϕj(x)
∥∥∥
∞

<
3|γ|
δ

. (2.9)

We define

E =

ν0⋃
ν=1

Eν , (2.10)

bk =
|γ|
2ν0

|∆|+ θ

22k
, k ∈ [2m0 , 2m),m = mν0 − 1, (2.11)

H(x) =
2m−1∑
k=2m0

bkϕk(x), m = mν0 − 1, (2.12)

g(x) =

ν0∑
ν=1

Qν(x) =

ν0∑
ν=1

2mν−1∑
j=2mν−1

ajϕj(x) =
2m−1∑
j=2m0

ajϕj(x), (2.13)

Q(x) =
2m−1∑
k=2m0

εkbkϕk(x), (2.14)

where

εk = sign(ak), ∀k ∈ [2m0 , 2m). (2.15)

It immediately follows from (2.4), (2.6), (2.7), (2.10), (2.11), and (2.13)–(2.15)
that

|E| > (1− δ)|∆|,
0 < bk+1 < bk < θ, εk = ±1, 0,∀k ∈ [2m0 , 2m),

g(x) =

{
γ, if x ∈ E,

0, if x /∈ ∆,∥∥g(x)−Q(x)
∥∥
∞ < θ.

By (2.11) and (2.12), we obtain

H(x) =
|γ|
2ν0

|∆|
( 2m−1∑

j=0

ϕj(x)−
2m0−1∑
j=0

ϕj(x)
)
+θ

2m−1∑
j=2m0

1

22j
ϕj(x).

From this and (2.1) and (2.2), we have∫ 1

0

∣∣H(x)
∣∣ dx ≤ |γ|

2ν0
|∆|+ θ

2
≤ θ.
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Let ∀n ∈ [2m0 , 2m). Then for some ν ∈ [1, 2−ν0 ], we have n ∈ [2mν−1 , 2mν )

n∑
j=2m0

εjbjϕj(x) =
ν−1∑
ν=1

2mk−1∑
j=2mk−1

εjbjϕj(x) +
n∑

j=2mν−1

εjbjϕj(x)

=
ν−1∑
k=1

Qk(x) +
n∑

j=2mν−1

ajϕj(x) + θ

n∑
j=2m0

1

22j
εjϕj(x).

Thus, from (2.1), (2.6), (2.9), and (2.15), it follows that∣∣∣ n∑
k=2m0

εkbkϕk(x)
∣∣∣ ≤ 6|γ|

δ
+ θ <

7|γ|
δ

.

Thus Lemma 2.2 is proved. �

Lemma 2.3. Let number m0 > 1, θ, δ ∈ (0, 1) and polynomial f(x) with respect
to the Walsh system be given. Then there exist a function g(x), a measurable set
E ⊂ ∆, and polynomials H(x), Q(x) with respect to the Walsh system {ϕk} of
the following form

H(x) =
2m−1∑
k=2m0

bkϕk(x),

Q(x) =
2m−1∑
k=2m0

εkbkϕk(x),

which satisfy the following conditions:

(1) 0 < bk+1 < bk < θ, ∀k ∈ [2m0 , 2m),
(2) εk = 0,±1, ∀k ∈ [2m0 , 2m),
(3) |E| > (1− δ)|∆|,
(4)

∫ 1

0
|H(x)| dx < θ,

(5) g(x) = f(x), for all x ∈ E,

(6) ‖g(x)‖∞ <
16‖f‖∞

δ
,

(7) ‖g(x)−Q(x)‖∞ < θ,

(8) max2m0−1≤n<2m ‖
∑n

k=2m0 εkbkϕk(x)‖∞ <
15‖f‖∞

δ
.

Proof. By presenting the function f(x) in the form

f(x) =

ν0∑
ν=1

γνχ∆ν (x), (2.16)

where γν 6= 0, 1 ≤ ν ≤ ν0 and {∆ν}ν0ν=1 are disjoint dyadic subintervals of the
section [0, 1), and by successively applying Lemma 2.1 for each subinterval ∆ν ,
1 ≤ ν ≤ ν0, we can find some sets Eν ⊂ ∆ν , functions gν(x), and polynomi-
als
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Hν(x) =
2mν−1∑

k=2mν−1

bkϕk(x), 1 ≤ ν ≤ ν0, (2.17)

Qν(x) =
2mν−1∑

k=2mν−1

εkbkϕk(x), 1 ≤ ν ≤ ν0, (2.18)

which for all ν ∈ [1, ν0] satisfy the following conditions:

0 < bk+1 < bk < θ, ∀k ∈ [2mν−1 , 2mν ), (2.19)

εk = 0,±1, ∀k ∈ [2mν−1 , 2mν ), (2.20)∫ 1

0

∣∣Hν(x)
∣∣ dx <

θ

2ν
, (2.21)

|Eν | > (1− δ)|∆ν |, (2.22)

gν(x) =

{
γν , if x ∈ Eν ,

0, if x /∈ ∆ν ,
(2.23)

∥∥gν(x)−Qν(x)
∥∥
∞ <

min {θ,‖f‖∞}
2ν−1

, (2.24)

max
2mν−1≤n<2mν

∥∥∥ n∑
k=2mν−1

εkbkϕk(x)
∥∥∥
∞

<
7|γν |
δ

. (2.25)

We define

g(x) =

ν0∑
ν=1

gν(x), (2.26)

H(x) =

ν0∑
ν=1

Hν(x) =

ν0∑
ν=1

2mν−1∑
k=2mν−1

bkϕk(x) =
2m−1∑
k=2m0

bkϕk(x), m = mν0 , (2.27)

Q(x) =

ν0∑
ν=1

Qν(x) =

ν0∑
ν=1

2mν−1∑
k=2mν−1

εkbkϕk(x) =
2m−1∑
k=2m0

εkbkϕk(x), (2.28)

E =

ν0⋃
ν=1

Eν . (2.29)

By (2.19)–(2.24), we obtain

g(x) = f(x) for x ∈ E,

|E| > 1− δ,

0 < bk+1 < bk < θ, εk = 0,±1,∀k ∈ [2m0 , 2m).

From (2.23)–(2.24), for all ν ∈ [1, ν0], it follows that∣∣Qν(x)
∣∣ ≤ ‖f‖∞

2ν−1
, x /∈ ∆ν. (2.30)
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By (2.24)–(2.27), we obtain∫ 1

0

∣∣H(x)
∣∣ dx ≤

ν0∑
ν=1

∫ 1

0

∣∣Hν(x)
∣∣ dx <

ν0∑
ν=1

θ

2ν
≤ θ,

∥∥g(x)−Q(x)
∥∥
∞ <

ν0∑
ν=1

∥∥gν(x)−Qν(x)
∥∥
∞ ≤ min

{
θ,‖f‖∞

}
.

(2.31)

Let n ∈ [2m0 , 2m). and let x ∈ [0, 1). Then for some ν ∈ [1, ν0] we have n ∈
[2mν−1 , 2mν ), and for some ν ′ ∈ [1, ν0] we have x ∈ ∆ν′ . Then taking into account
(2.18) and (2.28), we get

n∑
k=2m0

εkbkϕk(x) =
ν−1∑
j=1

Qj(x) +
n∑

j=2mν−1

εkbkϕk(x)

and ∣∣∣ n∑
k=2m0

εkbkϕk(x)
∣∣∣ ≤ ν0∑

j=1

∣∣Qj(x)
∣∣χ∆ν′

(x) +

ν0∑
j=1

∣∣Qj(x)
∣∣χ[0,1)\∆ν′

(x)

+
∣∣∣ n∑
k=2mν−1

εkbkϕk(x)
∣∣∣

<
7

δ
‖f‖∞ +

ν0∑
ν=1

‖f‖∞
2ν−1

+
7

δ
‖f‖∞ ≤ 15

δ
‖f‖∞.

From this and (2.28) and (2.31), it follows that∥∥g(x)∥∥∞ <
16‖f‖∞

δ
.

Thus Lemma 2.3 is proved. �

3. Proof of Theorem 1.4

By numbering polynomials with respect to the Walsh system having rational
coefficients, we can present them as a sequence{

fn(x)
}∞
n=1

. (3.1)

By consecutively applying Lemma 3, one can find a sequence of functions

{g(j)n (x)}nj=1; n ≥ 1, sets {E(j)
n }nj=1; n ≥ 1, and polynomials of the form

H(j)
n (x) =

M
(j)
n −1∑

k=M
(j−1)
n

b
(n,j)
k Wk(x), 1 ≤ j ≤ n, n ∈ [1,∞), b

(n,j)
k ↘ 0, (3.2)

Q(j)
n (x) =

M
(j)
n −1∑

k=M
(j−1)
n

ε
(n,j)
k b

(n,j)
k Wk(x), 1 ≤ j ≤ n, n ∈ [1,∞), (3.3)
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where

ε
(n,j)
k = ±1, 0, k ∈ [M (j−1)

n ,M (j)
n ), 1 ≤ j ≤ n, n = 1, 2, . . . ,

M (j)
n = 2m

(j)
n ,

0 ≤ M
(0)
1 < M

(1)
1 = M

(0)
2 < M

(1)
2 < M

(2)
2

< M
(n−1)
n−1 = M (0)

n < M (1)
n < · · · < M (n)

n = M
(0)
n+1 < M

(1)
n+1 . . . ,

(3.4)

which satisfy the following conditions:

g(j)n (x) = fn(x), x ∈ E(j)
n , (3.5)

|E(j)
n | = 1− 2−j, (3.6)∥∥g(j)n (x)−Q(j)

n (x)
∥∥
∞ < 2−4n, 1 ≤ j ≤ n, (3.7)∥∥g(j)n (x)

∥∥
∞ < 16 · 2j‖fn‖∞, 1 ≤ j ≤ n, (3.8)

max
M

(j−1)
n ≤l<M

(j)
n

∥∥∥ l∑
k=M

(j−1)
n

ε
(n,j)
k b

(n,j)
k Wk(x)

∥∥∥
∞

< 15 · 2j‖fn‖∞, 1 ≤ j ≤ n, (3.9)

(∫ 1

0

∣∣H(j)
n (x)

∣∣ dx) < 4−(n+j), 1 ≤ j ≤ n. (3.10)

We define a function U in the following way:

U(x) =
∞∑
n=1

n∑
j=1

H(j)
n (x) =

∞∑
n=1

n∑
j=1

( M
(j)
n −1∑

k=M
(j−1)
n

b
(n,j)
k Wk(x)

)

=
∞∑
k=0

bkWk(x),

where bk := b
(n,j)
k , k ∈ [M (j−1)

n ,M (j)
n ), 1 ≤ j ≤ n, n = 1, 2, . . . . (3.11)

It is clear that ∫ 1

0

∣∣U(x)
∣∣ dx ≤

∞∑
n=1

n∑
j=1

(∫ 1

0

∣∣H(j)
n (x)

∣∣ dx)
<

∞∑
n=1

n∑
j=1

4−(n+j) < 1, bk ↘ 0. (3.12)

From this and (3.10) and (3.11), we have∫ 1

0

∣∣∣M(n)
n∑

k=0

bkWk(x)− U(x)
∣∣∣ dx ≤ 2−n → 0;

therefore,

bk = ck(U), k = 0, 1, 2, . . . . (3.13)

Let δ be an arbitrary number δ ∈ (0, 1), and let f be an almost everywhere
finite measurable function on [0, 1). Taking into account Luzin’s theorem (see



708 M. G. GRIGORYAN

[13]), one may assume without loss of generality that f ∈ C[0, 1). It is easy to
see that one can choose a sequence {fkn}∞n=1 from the sequence (3.1) such that

lim
N→∞

∥∥∥ N∑
n=1

fkn(x)− f(x)
∥∥∥
∞

= 0, (3.14)∥∥fkn(x)∥∥∞ ≤ 4−2n, n ≥ 2, (3.15)

where

k1 > j0 = [log 1
2
δ] + 1. (3.16)

(We have that [a]- is the integer part of the real number a.)
We put

Q1(x) = Q
(j0+1)
k1

(x), E1 = E
(j0+1)
k1

, g1 = g
(j0+1)
k1

.

Suppose that the natural numbers k1 = ν1 < · · · < νq−1, the functions fνn(x),
gn(x), 1 ≤ n ≤ q − 1, the sets En, 1 ≤ n ≤ q − 1, and the polynomials

Qn(x) = Q(n+j0)
νn (x) =

M
(n+j0)
νn −1∑

k=M
(n+j0−1)
νn

ε
(νn,n+j0)
k bkWk(x)

are already defined and which for all 1 ≤ n ≤ q−1 satisfy the following conditions:

gn(x) = fkn(x), x ∈ En,∥∥∥ n∑
k=1

[
Qk(x)− gk(x)

]∥∥∥
∞

< 4−(n−1),

|En| > 1− δ2−n,∥∥gn(x)∥∥∞ < 5δ−12−(n−8),

max
M

(n+j0−1)
νn ≤l<M

(n+j0)
νn

∥∥∥ l∑
k=M

(n+j0−1)
νn

ε
(νn,n+j0)
k bkWk(x)

∥∥∥
∞

< 2−n.

(3.17)

It is easy to see that one can choose a function fνq(x) (νq > νq−1) from the
sequence (3.1) such that∥∥∥fνq(x)− (

fkq(x)−
q−1∑
i=1

[
Qi(x)− gi(x)

])∥∥∥
∞

< δ4−2q. (3.18)

By virtue of (3.15), (3.17), and (3.18), we have

‖fνq‖∞ ≤
∥∥∥fνq(x)− (

fkq(x)−
q−1∑
i=1

[
Qi(x)− gi(x)

])∥∥∥
∞

+ ‖fkq‖∞ +
∥∥∥ q−1∑

i=1

[
Qi(x)− gi(x)

]∥∥∥
∞

< δ4−(q−3). (3.19)
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We put

gq(x) = fkq(x) +
[
g(q+j0)
νq (x)− fνq(x)

]
, (3.20)

Qq(x) = Q(q+j0)
νq (x) =

M
(q+j0)
νq −1∑

k=M
(q+j0−1)
νq

ε
(νq ,n+j0)
k bkWk(x), (3.21)

Eq(x) = E(q+j0)
νq . (3.22)

Taking into account (3.5) and (3.20), we get

gq(x) = fkq(x), x ∈ Eq, |Eq| > 1− δ2−q. (3.23)

By virtue of (3.6) and (3.19)–(3.21), we obtain∥∥∥ q∑
j=1

[
Qj(x)− gj(x)

]∥∥∥
∞

=
∥∥∥ q−1∑
j=1

[
Qj(x)− gj(x)

]
+Qq(x)− gq(x)

∥∥∥
∞

≤
∥∥∥fνq(x)− (

fkq(x)−
q−1∑
i=1

[
Qi(x)− gi(x)

])∥∥∥
∞

+ ‖g(q+j0)
νq −Q(q+j0)

νq ‖∞
< 4−(q−1). (3.24)

Obviously (see (3.9), (3.16), (3.19), (3.21)),

max
M

(q+j0−1)
νq ≤l<M

(q+j0)
νq

∥∥∥ l∑
k=M

(q+j0−1)
νq

ε
(νq ,q+j0)
k bkWk(x)

∥∥∥
∞

< 2−q. (3.25)

From (3.8) and (3.17)–(3.19), it follows that

∥∥gq(x)∥∥∞ ≤
∥∥∥fνq(x)− (

fkq(x)−
q−1∑
i=1

[
Qi(x)− gi(x)

])∥∥∥
∞

+
∥∥∥ q−1∑
j=1

[
Qj(x)− gj(x)

]∥∥∥
∞
+ ‖g(q+j0)

νq ‖∞

< 4−2q + 4−q+2 + 2q+j0
∥∥fνq(x)∥∥∞ < 2−q+8. (3.26)

It is clear that by using an induction, one can determine a sequence of functions
{gq(x)}∞q=1, sets {Eq}∞q=1, and polynomials {Qq(x)} which satisfy the conditions
(3.23)–(3.26) for all q ≥ 1.

We put

E =
∞⋂
q=1

Eq. (3.27)

From (3.23) and (3.27), it follows that

|E| > 1− δ.
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Furthermore, according to (3.26), we have∥∥∥ ∞∑
q=1

gq(x)
∥∥∥
∞

≤
∞∑
q=1

∥∥gq(x)∥∥∞ < ∞. (3.28)

We define the function f̃(x) and the sequence of numbers {εk} in the following
way:

f̃(x) =
∞∑
q=1

gq(x), (3.29)

εk =

{
ε
(νq ,q+j0)
k , k ∈ [M

(q+j0−1)
νq ,M

(q+j0)
νq ), q = 1, 2, . . . ,

0, k /∈
⋃∞

q=1[M
(q+j0−1)
νq ,M

(q+j0)
νq ).

(3.30)

From (3.14), (3.23), (3.27), and (3.29), it follows that

f̃(x) ∈ L∞[0, 1], f̃(x) = f(x), x ∈ E.

It is easy to note (see (3.4), (3.21), (3.25)) that

max
M

(0)
νq ≤l<M

(0)
νq+1

∥∥∥ l∑
k=M

(q+j0−1)
νq

ε
(νq ,q+j0)
k bkWk(x)

∥∥∥
∞

= max
M

(q+j0−1)
νq ≤l<M

(q+j0)
νq

∥∥∥ l∑
k=M

(q+j0−1)
νq

ε
(νq ,q+j0)
k bkWk(x)

∥∥∥
∞

< 2−q. (3.31)

Taking into consideration (3.26), (3.29), and (3.30), we get

∥∥∥M
(q+j0−1)
νq −1∑

k=0

εkbkϕk(x)− f̃(x)
∥∥∥

=
∥∥∥ q−1∑
n=1

( M
(n+j0)
νn −1∑

k=M
(n+j0−1)
νn

ε
(νn,n+j0)
k bkϕk(x)

)
− f̃(x)

∥∥∥
∞

=
∥∥∥ q−1∑
n=1

Qn(x)− f̃(x)
∥∥∥
∞

≤
∥∥∥ q−1∑
n=1

(
Qn(x)− gn(x)

)∥∥∥
∞
+

∞∑
n=q

‖gn(x)‖∞ ≤ 5 · 2−(q−10).

From this and from (3.31), it follows that the series
∑∞

k=0 εkbkϕk(x) converges to

the function f̃(x) uniformly on [0, 1), and therefore (see (3.13))

ck(f̃) =

∫ 1

0

f̃(x)ϕk(x) dx = εkbk = εkck(U), k = 0, 1, 2, . . . .

Thus Theorem 1.4 is proved. �
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