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Abstract. In this article we determine that an operator-valued measure
(OVM) for Banach spaces is actually a weak* measure, and then we show
that an OVM can be represented as an operator-valued function if and only if
it has σ-finite variation. By the means of direct integrals of Hilbert spaces, we
introduce and investigate continuous generalized frames (continuous operator-
valued frames, or simply CG frames) for general Hilbert spaces. It is shown that
there exists an intrinsic connection between CG frames and positive OVMs.
As a byproduct, we show that a Riesz-type CG frame does not exist unless the
associated measure space is purely atomic. Also, a dilation theorem for dual
pairs of CG frames is given.

1. Introduction

Throughout, the scalar field K can be either the real numbers R or the complex
numbers C. Denote by (Ω,Σ) the measurable space associated with a σ-algebra
Σ of a set Ω; in the present paper we also call it a σ-algebra. A (scalar-valued)
measure space, or a measure, is denoted by (Ω,Σ, µ), or (Ω, µ), or just µ for short.
For 1 ≤ p ≤ ∞, the notation Lp(Ω, µ)—or simply, Lp(µ) or Lp—will denote
the usual function spaces, and lp the usual sequence spaces. For convenience,
the term “µ-almost everywhere” is commonly abbreviated to “µ-a.e.” and we will
use the notation “

⊔
” to denote the union of mutually disjoint measurable sets.
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The restricted subspace of a measure space (Ω, µ) on a measurable set E ⊆ Ω
will be denoted by (E, µ). If X is a Banach space, the action of x in X and ϕ
in the Banach dual X∗ will be denoted by ϕ(x) or 〈x, ϕ〉 or 〈ϕ, x〉. For Banach
spaces X,Y , we use B(X,Y ) to denote the space of all bounded linear operators
from X to Y , and we write B(X) = B(X,X).

A spectral measure is a self-adjoint projection-valued function on a σ-algebra.
The theory of spectral measure is an important topic in the theory of operator
algebras. As a generalization, positive operator-valued functions on a σ-algebra
(i.e., positive operator-valued measures, or POVMs), play an important role in
quantum theory. Recently, Han et al. in [9] developed a general dilation theory
for OVMs as a generalization of the well-known Naimark’s dilation theorem, which
states that a POVM can be dilated to a spectral measure.

The representability of an additive function on a σ-algebra, named the Radon–
Nikodym property, is also important in the theory of vector measures. It
studies when a vector measure can be represented by a function. The terminol-
ogy “Radon–Nikodym Property” comes from the following well-known Radon–
Nikodym theorem (see [17, Appendix C]).

Theorem 1.1. Let ν, µ be two finite scalar measure on a σ-algebra (Ω,Σ). If µ is
positive and ν is µ-continuous (i.e., µ(E) = 0 implies that ν(E) = 0), then there
exists a function f ∈ L1(Ω,Σ, µ) such that

ν(E) =

∫
E

f(ω) dµ(ω)

for all E ∈ Σ.

In the present paper, we focus first on the following problem.

Problem 1.2. Let (Ω,Σ) be a σ-algebra and let X,Y be Banach spaces (or let
X = Y be Hilbert spaces). When can an OVM (or a POVM) ν : Σ → B(X,Y )
be represented as a function F : Ω → B(X,Y ) in some way?

Of course, there have been some answers to this problem; for example, see
[2], [3], [12], [15]. We think that the present article provides some other answers,
which will be used in the other topic we address here.

The second topic of this paper is devoted to the study of continuous generalized
frames. The frame theory was first proposed by Duffin and Schaeffer in 1952 to
study some deep problems in nonharmonic Fourier series [5]. Generally speaking,
a frame is a linear representation from a abstract linear space into a concrete
linear space having a special form. We list three types of frames here.

(1) A sequence {xi}∞i=1 in an abstract Hilbert space H is regarded as a frame
if x 7→ {〈x, xi〉}∞i=1 is an isomorphism from H onto a closed subspace of
the space l2.

(2) Let H be a Hilbert space and let (Ω, µ) be a σ-finite, positive measure
space. A weakly measurable function F : Ω → H is called a continuous
frame for H if x 7→ 〈x, f(·)〉 is an isomorphism from H onto a closed
subspace of L2(Ω, µ) (see [7], [8]).
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(3) Let H, {Hi}∞i=1 be Hilbert spaces. A sequence {Ti}∞i=1 of linear operators,
where Ti : H → Hi is bounded for each i, is called a generalized frame
(or an operator-valued frame) if x 7→

⊕∞
i=1 Tix is an isomorphism from H

onto a closed subspace of
⊕∞

i=1Hi (see [11], [18], [19]).

By combining (2) and (3) above, one can naturally think about the concept of a
“continuous generalized frame” as an “operator-valued function.” Abdollahpour
and Faroughi [1] introduced such a concept, but the “synthesis/concrete space” in
it is unknown in general. Robinson developed this concept with some elaborations
in his Ph.D. thesis [16] and figured out that the “synthesis space” is in fact a
direct integral of Hilbert spaces. However, the Hilbert spaces considered in [16]
are separable. This does not contain the following simple example.

Example 1.3. Let (Ω,Σ, µ) be any positive measure space satisfying µ(Ω) = 1, let
H be a nonseparable Hilbert space, and let I ∈ B(H) be the identity operator.
Define F : Ω → B(H) by ω 7→ I for every ω ∈ Ω. Then F is a continuous
generalized frame for H.

Our paper is organized as follows. In Section 2, we mainly study Problem 1.2.
We figure out that an OVM for Banach spaces is actually a weak* measure,
and then obtain several Radon–Nikodym theorems for OVMs (or POVMs). In
Section 3, by the means of Radon–Nikodym theorems and direct integrals for
Hilbert spaces, we introduce and study continuous generalized frames (continu-
ous operator-valued frames, or CG frames) for Hilbert spaces, where the separa-
bility of the Hilbert spaces is assumed. One main result shows that there is an
intrinsic connection between CG frames and POVMs. As a byproduct, we show
that a Riesz-type CG frame does not exist unless the associated measure space
is purely atomic. Also, a dilation theorem for dual pairs of CG frames is given,
which generalizes the corresponding result for continuous vector frames in [8],
and essentially presents a dilation result for pairs of bounded operators.

2. Operator-valued measures and Radon–Nikodym theorems

Let (Ω,Σ, µ) be a positive measure space and let X be a Banach space. A func-
tion G : Ω → X is called simple if there exist x1, . . . , xn in X and E1, . . . , En
in Σ such that G =

∑n
i=1 xiχEi

, where χEi
(ω) = 1 if ω ∈ Ei and χEi

(ω) = 0 if
ω /∈ Ei. A function G : Ω → X is called µ-measurable, if there exists a sequence
{Gn}∞n=1 of simple functions with limn ‖G(ω) − Gn(ω)‖ = 0 on Ω µ-a.e. These
concepts include the case X = K. Let Γ ⊆ X∗. A function G : Ω → X is called
Γ-µ-measurable if 〈ϕ,G〉 : ω 7→ 〈ϕ,G(ω)〉 is µ-measurable for every ϕ ∈ Γ. We
consider X as a subspace of X∗∗ such that the X-µ-measurability of a function
G : Ω → X∗ is well defined.

Lemma 2.1 (Pettis measurability theorem [4, Theorem II.2]). Let X be a Banach
space, and let (Ω, µ) be a σ-finite, positive measure space. The followings are
equivalent for a function G : Ω → X:

(1) G is µ-measurable,
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(2) function 〈ϕ,G〉 is µ-measurable for every ϕ ∈ X∗ and G is µ-essentially
separably valued (i.e., there exists a measurable set E with µ(E) = 0 such
that the set {G(ω) : ω ∈ Ω\E} lies in a separable subspace of X).

Let (Ω,Σ) be a σ-algebra and let X be a Banach space. The variation of a
function ν : Σ → X on E ∈ Σ is defined by

|ν|(E) = sup
{ n∑
i=1

∥∥ν(Ei)∥∥ : E =
n⊔
i=1

Ei, {Ei}ni=1 ⊆ Σ
}
.

Clearly, |ν| : Σ → [0,+∞] is countably additive if ν is countably additive. The
notation ca(Ω,Σ) will denote the Banach space consisting of all scalar valued
measures on (Ω,Σ) equipped with the variation norm

‖µ‖ = |µ|(Ω)

for µ ∈ ca(Ω,Σ) (see [6]). A function ν : Σ → X∗ is called a weak* measure if
〈x, ν(·)〉 ∈ ca(Ω,Σ) for every x ∈ X.

The following lemma describes the weak* Radon–Nikodym Property for con-
jugate Banach spaces, which is important for our purposes here. In this lemma,
statement (1) comes directly from Theorem 9.1 in [13] and statement (2) can be
found at Remark 3.9 in [13].

Lemma 2.2. Let X be a Banach space and let (Ω,Σ, µ) be a σ-finite, positive
measure space.

(1) Suppose that ν : Σ → X∗ is a weak* measure. Then |ν| is a positive
measure. If |ν| is σ-finite and µ-continuous (i.e., µ(E) = 0 implies that
|ν|(E) = 0), then there exists an X-µ-measurable function f : Ω → X∗

such that {
f(ω) : ω ∈ Ω

}
⊆ conv∗Aν(Ω)

and 〈
x, ν(E)

〉
=

∫
E

〈x, f〉 dµ

for all x ∈ X and E ∈ Σ. Here conv∗Aν(Ω) denotes the weak* closed
convex hull of the set

Aν(Ω) =
{ν(F )
µ(F )

: µ(F ) > 0, F ∈ Σ
}
.

(2) Suppose that f : Ω → X∗ is an X-µ-measurable function. If∫
Ω

〈x, f〉 dµ

is well-defined for each x ∈ X, then ν : Σ → X∗ defined by〈
x, ν(E)

〉
=

∫
E

〈x, f〉 dµ

is a weak* measure such that |ν| is a µ-continuous, σ-finite, positive mea-
sure.
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Definition 2.3. Let (Ω,Σ) be a σ-algebra, letX,Y be Banach spaces, and let
ν : Σ → B(X,Y ) be a function. If νx,ψ : Σ → K defined by E 7→ 〈ν(E)x, ψ〉
is in ca(Ω,Σ) for every x ∈ X and ψ ∈ Y ∗, then ν is considered an OVM. In
particular, if X = Y is a Hilbert space and that ν takes values in the positive
operators, then ν is considered a POVM.

Let X,Y be two Banach spaces with x ∈ X,ψ ∈ Y ∗. The symbol x ⊗ ψ is
denoted by the bounded linear functional T 7→ ψ(Tx) on B(X,Y ). We denote
X⊗̂πY

∗ by the closed linear span of such functionals in the Banach dual B(X,Y )∗.
Here, the space X ⊗̂π Y

∗ is clearly equivalent to the projective tensor product of
X and Y ∗ defined in [17]. In the following, we write B(X×Y ∗, Z) for the Banach
space of all bounded bilinear mappings from the Cartesian product X × Y ∗ into
Z, where the norm is given by

‖ξ‖ = sup
{∥∥ξ(x, ψ)∥∥ : ‖x‖ ≤ 1, ‖ψ‖ ≤ 1

}
for ξ ∈ B(X × Y ∗, Z).

Lemma 2.4. Let (Ω,Σ) be a σ-algebra, let X,Y, Z be Banach spaces, and let
ν : Σ → B(X,Y ) be an OVM. Then the following hold:

(1) if ξ ∈ B(X × Y ∗, Z), then there exists a unique bounded linear operator
Tξ : X ⊗̂π Y

∗ → Z such that Tξ(x ⊗ ψ) = ξ(x, ψ) holds for every x ∈
X,ψ ∈ Y ∗, and the correspondence ξ ↔ Tξ is an isometric isomorphism
between the Banach spaces B(X × Y ∗, Z) and B(X ⊗̂π Y

∗, Z);

(2) there is an isometric isomorphism between (X ⊗̂π Y
∗)∗ and B(X,Y ∗∗),

so we have an identification B(X,Y ∗∗) = (X ⊗̂π Y
∗)∗ through which the

action of an operator T ∈ B(X,Y ∗∗) as a linear functional on X ⊗̂π Y
∗

is given by 〈x⊗ ψ, T 〉 = 〈ψ, Tx〉;
(3) the bilinear mapping ξν : X × Y ∗ → ca(Ω,Σ) defined by (x, ψ) 7→ νx,ψ is

bounded, where νx,ψ(E) = 〈ν(E)x, ψ〉 for E ∈ Σ;
(4) the OVM ν is a weak* measure if we look on B(X,Y ) as a subspace of

B(X,Y ∗∗) and X ⊗̂ Y ∗ as the predual of B(X,Y ∗∗).

Proof. (1) This is Theorem 2.9 in [17].
(2) Let ξ ∈ B(X × Y ∗,K). Define a linear operator Sξ : X → Y ∗∗ by

〈ψ, Sξx〉 = ξ(x, ψ) for x ∈ X,ψ ∈ Y ∗.

It is easily seen that Sξ is bounded and that the correspondence ξ ↔ Sξ is an
isometric isomorphism between B(X × Y ∗,K) and B(X,Y ∗∗). Then the result
follows by taking Z = K in (1).

(3) Let ψ0 ∈ Y ∗. Take {xn}∞n=1 in X such that xn → x0 in X and νxn,ψ0 → µ0

in ca(Ω,Σ). For every E ∈ Σ, we have∣∣νxn,ψ0(E)− µ0(E)
∣∣ = ∣∣(νxn,y0 − µ0)(E)

∣∣
≤ |νxn,ψ0 − µ0|(E)
≤ |νxn,ψ0 − µ0|(Ω)
= ‖νxn,ψ0 − µ0‖
→ 0.
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This means that {νxn,ψ0(E)}∞n=1 converges to µ0(E). On the other hand,

νxn,ψ0(E) =
〈
ν(E)xn, ψ0

〉
→

〈
ν(E)x0, ψ0

〉
by the continuity. So we have µ0(E) = νx0,ψ0(E). By the arbitrariness of E ∈ Σ,
we know that µ0 = νx0,ψ0 . The closed graph theorem says that the linear mapping

X → ca(Ω,Σ), x 7→ νx,ψ0

is bounded for every ψ0 ∈ Y ∗. The same argument shows that the linear mapping

Y ∗ → ca(Ω,Σ), ψ 7→ νx0,ψ

is bounded for every x0 ∈ X. Now we define a linear operator

T : Y ∗ → B
(
X, ca(Ω,Σ)

)
by (T ψ)x = νx,ψ.

Suppose that ψn → ψ0 in Y ∗ and that T ψn → S in B(X, ca(Ω,Σ)). Then, much
as was shown above, we can prove that T ψn converges to T ψ0 in B(X, ca(Ω,Σ))
under the strong operator topology, and so S = T ψ0. Applying the closed graph
theorem again, we have that T is bounded. So∥∥ξν(x, ψ)∥∥ = ‖νx,ψ‖ =

∥∥(T ψ)(x)∥∥ ≤ ‖T ‖‖x‖‖ψ‖
for every x ∈ X,ψ ∈ Y ∗, which means that ξν is bounded.

(4) The bounded bilinear mapping ξν in (3) corresponds to a bounded linear
operator Tξ : X ⊗̂ Y ∗ → ca(Ω,Σ) by (1). The result follows. �

Theorem 2.5. Let X,Y be Banach spaces and let (Ω,Σ, µ) be a σ-finite, positive
measure space. Then the following hold:

(1) if ν : Σ → B(X,Y ) is an OVM, then |ν| is a positive measure, and further-
more, if |ν| is σ-finite and µ-continuous, then there exits an (X,Y ∗)-µ-
measurable function F : Ω → B(X,Y ∗∗), which means that 〈F (·)x, ψ〉 is
µ-measurable for every x ∈ X,ψ ∈ Y ∗, such that〈

ν(E)x, ψ
〉
=

∫
E

〈
F (ω)x, ψ

〉
dµ

for all E ∈ Σ, x ∈ X,ψ ∈ Y ∗;
(2) let F : Ω → B(X,Y ∗∗) be a function such that 〈F (·)x, ψ〉 ∈ L1(Ω, µ) for

x ∈ X,ψ ∈ Y ∗, and then〈
ν(E)x, ψ

〉
=

∫
E

〈
F (ω)x, ψ

〉
dµ

defines a function ν : Σ → B(X,Y ∗∗) such that 〈ν(·)x, ψ〉 ∈ ca(Ω,Σ) for
x ∈ X,ψ ∈ Y ∗, and that |ν| is a µ-continuous σ-finite measure.

Proof. (1) Lemma 2.4(4) shows that ν is a weak* measure if we consider B(X,Y )
as a subspace of B(X,Y ∗∗) and if we considerX⊗̂πY

∗ as the predual of B(X,Y ∗∗).
So by the weak* Radon–Nikodym Property for Banach dual space (i.e., Lemma
2.2(1)), we know that there exists an X ⊗̂π Y

∗-µ-measurable function F : Ω →
B(X,Y ∗∗) such that 〈

ν(E), u
〉
=

∫
E

〈
F (ω), u

〉
dµ
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for every u ∈ X ⊗̂π Y
∗, E ∈ Σ. By letting u = x⊗ ψ for x ∈ X and ψ ∈ Y ∗, the

result follows.
(2) By the closed graph theorem, it is not hard to show that

b2 : X × Y ∗ → L1(Ω, µ), (x, ψ) 7→
〈
F (·)x, ψ

〉
is a bounded bilinear mappings. By Lemma 2.4(1), we know that b2 can be lin-
earized to a bounded linear operator T ∈ B(X ⊗̂π Y

∗, L1(Ω, µ)).
Under the identification B(X,Y ∗∗) = (X ⊗̂π Y

∗)∗ in Lemma 2.4(2), we claim
that Tu = 〈F (·), u〉 for every u ∈ X ⊗̂πY

∗. In fact, for any u0 ∈ X ⊗̂πY
∗, suppose

that un → u0 in X ⊗̂π Y
∗, where un =

∑kn
i=1 x

(n)
i ⊗ ψ

(n)
i . For every x ∈ X and

ψ ∈ Y ∗, we then have

T (x⊗ ψ) = b2(x, ψ) =
〈
F (·)x, ψ

〉
=

〈
F (·), x⊗ ψ

〉
,

which implies that Tun = 〈F (·), un〉 for each n. Since T is bounded, the sequence
{〈F (·), un〉}∞n=1 converges to Tu0 in L1(Ω, µ). Hence there exists a subsequence
{〈F (·), unk

〉}∞k=1 that converges to Tu0 µ-a.e. On the other hand, this subsequence
also converges to 〈F (·), u0〉 µ-a.e. So 〈F (·), u0〉 = Tu0 in L1(Ω, µ).

Now Lemma 2.2(2) shows that ν : Σ → B(X,Y ∗∗) defined by〈
ν(E), u

〉
=

∫
E

〈
F (ω), u

〉
dµ

has all we need, completing the proof. �

Recall that the Radon–Nikodym property of a Banach space X states that if
(Ω,Σ, µ) is a finite, positive measure space, ν : Σ → X is a vector measure which
has bounded variation (i.e., |ν|(Ω) <∞) and is µ-continuous, then there exists a
µ-Bochner integrable function f : Ω → X (i.e., ω 7→ ‖f(ω)‖ is in L1(Ω, µ)), such
that 〈

ν(E), ϕ
〉
=

∫
E

〈
f(ω), ϕ

〉
dµ

for every E ∈ Σ, ϕ ∈ X∗. (For this property, we refer the readers to [17].)
Especially, every Hilbert space has Radon–Nikodym property.

In the rest of this article, for Banach spacesX,Y and a measure space (Ω,Σ, µ),
we say that an operator-valued function F : Ω → B(X,Y ) is X-µ-measurable
(resp., X-µ-Bochner integrable) if F (·)x : Ω → Y is µ-measurable (resp., µ-
Bochner integrable) for every x ∈ X.

Theorem 3.1 in [2] presents a result similar to Theorem 2.5(1), in which the
associated measure space is finite and positive. We now give a σ-finite version of
this result, which we will use in the next section.

Theorem 2.6. Let X,Y be Banach spaces, let (Ω,Σ, µ) be a σ-finite, positive
measure space, and let ν : Σ → B(X,Y ) be an OVM. Suppose that

(1) |ν| is σ-finite,
(2) |ν| is µ-continuous,
(3) Y has the Radon–Nikodym Property.
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Then there exits an X-µ-measurable function F : Ω → B(X,Y ) such that〈
ν(E)x, ψ

〉
=

∫
E

〈
F (ω)x, ψ

〉
dµ

for every E ∈ Σ, x ∈ X,ψ ∈ Y ∗.

Proof. Suppose that Ω =
⊔
j∈J Ωj satisfying µ(Ωj) <∞ and |ν|(Ωj) <∞ for each

j, where J is a countable index set. By Theorem 3.1 in [2], for every j ∈ J there
is a function

Fj : Ωj → B(X,Y )

which is X-µ-measurable and〈
ν(E)x, ψ

〉
=

∫
E

〈
Fj(ω)x, ψ

〉
dµ

for every x ∈ X,ψ ∈ Y ∗ and E ∈ {E ′ : E ′ ∈ Σ, E ′ ⊆ Ωj}. Define a function

F : Ω → B(X,Y ) by F (ω) = Fj(ω), ω ∈ Ωj.

Then clearly, F is X-µ-measurable. Since ν is an OVM, we have〈
ν(E)x, ψ

〉
=
∑
j∈J

〈
ν(E ∩ Ωj)x, ψ

〉
=
∑
j∈J

∫
E∩Ωj

〈
Fj(ω)x, ψ

〉
dµ

=

∫
E

〈
F (ω)x, ψ

〉
dµ

for all E ∈ Σ, x ∈ X,ψ ∈ Y ∗, as required. �

Theorem 2.7. Let H be a Hilbert space, let (Ω,Σ, µ) be a σ-finite positive mea-
sure space, and let ν : Σ → B(H) be a POVM. Suppose that |ν| is σ-finite
and µ-continuous. Then there exists a positive operator-valued function Q : Ω →
B(H) which is weakly µ-measurable (i.e., 〈Q(·)x, y〉 is µ-measurable for all x, y ∈
H) and 〈

ν(E)x, y
〉
=

∫
E

〈
Q(ω)x, y

〉
dµ

for all E ∈ Σ and x, y ∈ H.

Proof. By Theorem 2.5, there exists a weakly µ-measurable operator-valued func-
tion Q : Ω → B(H) such that the required equality in the theorem holds. On the
other hand, denote C1(H) by the space of trace class operators and by tr(·) the
trace of a trace class operator. It is well known that B(H) can be identified with
the dual of C1(H) via the pairing 〈T, S〉 = tr(TS) for S ∈ B(H), T ∈ C1(H).
Then in this identification, ν : Σ → B(H) is a weak* measure, and it follows
from Lemma 2.2 that we can assume that {Q(ω) : ω ∈ Ω} ⊆ conv∗Aν(Ω), where

Aν(Ω) =
{ν(F )
µ(F )

: µ(F ) > 0, F ∈ Σ
}
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is a set of positive operators. Since all of the positive operators in B(H) are weak*
closed, we know that Q takes positive values. �

We note that in Theorem 2.7 the separability of the Hilbert space H is not
assumed. In the separable case, Robinson got this result (see Theorem 3.3.2 in
[16]). However, without the help of Lemma 2.2, we can give a simple proof which
is different from that in [16]. In fact, let Q : Ω → B(H) be the function found in
the preceding proof. Take a countable dense subset {xi}∞i=1 in H, and let

Ei =
{
ω ∈ Ω :

〈
Q(ω)xi, xi

〉
� 0

}
for each i. Denoting by E0 =

⋃∞
i=1Ei, then µ(E0) = 0. It is easy to derive that

〈Q(ω)x, x〉 ≥ 0 for x ∈ H and ω ∈ Ω − E0. This means that Q is of positive
operator values µ-a.e.

3. Continuous generalized frames

In this section, we detailedly discuss continuous generalized frames. The direct
integrals of Hilbert spaces will play a key role.

Let (Ω,Σ, µ) be a positive measure space, let X be a Banach space, and let
1 ≤ p <∞. Denote by Lp(Ω, µ,X) the Banach space of all (equivalence classes of)
X-valued Bochner integrable functions F defined on Ω with

∫
Ω
‖F (ω)‖p dµ <∞

(see [4]). If p = 2 and if X is a Hilbert space, then L2(Ω, µ,X) is a Hilbert space
under the inner product

〈F,G〉 =
∫
Ω

〈
F (ω), G(ω)

〉
dµ, F,G ∈ L2(Ω, µ,X).

The concept of direct integrals of separable Hilbert spaces was first introduced
in 1949 by von Neumann in one paper in his “On Rings of Operators” series. The
nonseparable case was first presented by Wils in 1970 (see [21]). The terminologies
of direct integrals in this paper can be mostly found in [14]. We note that in the
definitions below, the measure space need not be σ-finite.

For a Hilbert space H, the notation dimH is the cardinal number of one of its
orthonormal basis. For each cardinal number γ, we can fix a set Cγ such that Cγ
has cardinal number γ. We write l2(γ) for the Hilbert space of absolutely square
summable (scalar valued) families indexed by Cγ, where “sum” means “unordered
sum”.

Let (Ω,Σ, µ) be a positive measure space. A field of Hilbert spaces H on Ω
is a Hilbert space-valued function on Ω (i.e., a rule which assigns each point in
Ω to a Hilbert space). Elements in

∏
ω∈ΩH(ω) are called vector fields over H.

A coherence α for H is a choice, for each point ω ∈ Ω, of a linear isometry α(ω)
of H(ω) onto l2(dimH(ω)). Denote

Γ0 =
{
dimH(ω) : ω ∈ Ω

}
and for γ ∈ Γ0, let

Ωγ =
{
ω ∈ Ω : dimH(ω) = γ

}
.
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Note that Γ0 is a set of cardinal numbers and, moreover, let

Γ =
{
γ ∈ Γ0 : µ(Ωγ) > 0

}
,

Ω0 =
{
ω ∈ Ω : dimH(ω) ∈ Γ0 \ Γ

}
.

We say that H is a µ-measurable field of Hilbert spaces if Ω0 ∈ Σ, µ(Ω0) = 0 and
Ωγ ∈ Σ for every γ ∈ Γ. Furthermore, an (α, µ)-measurable vector field over H is a
vector field v over H such that, for each γ ∈ Γ, the map ω 7→ α(ω)v(ω) from Ωγ to

l2(γ) is µ-measurable. The set L̃2(Ω, µ;H, α), consisting of all (α, µ)-measurable
vector fields v over H for which ‖v(·)‖ belongs to L2(µ), is a semi-inner product
space with respect to the pointwise linear operations and the semi-inner product

〈v, w〉 =
∫
Ω

〈
v(ω), w(ω)

〉
dµ.

The symbol L2(Ω, µ;H, α) or
∫ ⊕
Ω
H dµ (if α is clear) will be used to denote the

associated inner-product space.
It can be proved that the operator

Φ : L2(Ω, µ;H, α) →
⊕
γ∈Γ

L2

(
Ωγ, µ, l2(γ)

)
,

v 7→
⊕
γ∈Γ

vγ

is an isometric isomorphism between L2(Ω, µ;H, α) and
⊕

γ∈Γ L2(Ωγ, µ, l2(γ)).
Here vγ is defined by

vγ : Ωγ → l2(γ),

ω 7→ α(ω)v(ω).

Hence L2(Ω, µ;H, α) is a Hilbert space.

The Hilbert space L2(Ω, µ;H, α) (interchangeably,
∫ ⊕
Ω
H dµ) will be called the

direct integral Hilbert space of H with respect to µ and α, or more generally, direct
integral of Hilbert spaces. Note that in the separable case,this concept is usually
defined by a sequence of vector fields but not a coherence (see [10], [16], [20]).

Let L2(Ω, µ;H, α) be a direct integral Hilbert space and let H be a fixed
Hilbert space. Elements in

∏
ω∈ΩB(H,Hω) (interchangeably, {B(H,Hω)}ω∈Ω)

are called operator fields, where Hω means H(ω). An operator field F is called
(α, µ)-measurable if ω 7→ α(ω)F(ω) is µ-measurable on each Ωγ, and H-(α, µ)-
measurable if the vector field

Fx ,
{
F(ω)x

}
ω∈Ω

is (α, µ)-measurable for each x ∈ H.

Lemma 3.1. Let L2(Ω, µ;H, α) be a direct integral Hilbert space. Suppose that
H is another Hilbert space and that F ∈

∏
ω∈ΩB(H,Hω) is an operator field. If

the vector field Fx is in L2(Ω, µ;H, α) for every x ∈ H, then

T : H → L2(Ω, µ;H, α), x 7→ Fx
is a bounded linear operator.
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Proof. Obviously T is linear. We will use the closed graph theorem to prove that
T is bounded. Let {xn}∞n=1 be a sequence in H that converges to x0 ∈ H and
Txn → f0 in L2(Ω, µ;H, α). Then we have∫

Ω

∥∥F(ω)xn − f0(ω)
∥∥2
dµ→ 0.

By the property of L2-spaces, we know that there is a subsequence {xnj
}∞j=1 such

that {F(·)xnj
}∞j=1 converges to f0 on Ω µ-a.e. On the other hand, {F(·)xnj

}∞j=1

converges to F(·)x0 pointwise on Ω. So we have f0 = Fx in L2(Ω, µ;H, α), which
means that T is bounded. �

Definition 3.2. Let L2(Ω, µ;H, α) be a direct integral Hilbert space. Suppose that
H is another Hilbert space and that F ∈

∏
ω∈ΩB(H,Hω) is an operator field.

We say that F is an L2(Ω, µ;H, α)-frame (continuous operator-valued frame,
continuous generalized frame, or simply, a cg-frame) for H, if

(1) the vector field Fx ∈ L2(Ω, µ;H, α) for every x ∈ H,
(2) there exist constants A,B > 0, such that

A‖x‖ ≤ ‖Fx‖ ≤ B‖x‖

holds for every x ∈ H.

If the inequality holds only in the right side, F is called an L2(Ω, µ;H, α)-Bessel
operator field for H.

For the case of Bessel operator fields, the condition (2) in the definition is
redundant since Lemma 3.1 guarantees the existence of the upper bound. By
definition, if F is an L2(Ω, µ;H, α)-Bessel operator field for H, we then can define
a bounded linear operator TF : H → L2(Ω, µ;H, α) by

(TFx)(ω) = F(ω)x, ω ∈ Ω.

This operator is called the analysis operator for F . An L2(Ω, µ;H, α)-frame is said
to be of Riesz-type if its analysis operator is surjective. Following the open map-
ping theorem, an L2(Ω, µ;H, α)-Bessel operator field F is an L2(Ω, µ;H, α)-frame
if and only if its analysis operator has a bounded inverse on its range or, equiva-
lently, if its analysis operator is injective and has closed range.

Let F ,G be two L2(Ω, µ;H, α)-frames. Then G is called a dual frame of F if

〈x, y〉 =
∫
Ω

〈
F(ω)x,G(ω)y

〉
dµ

holds for every x, y ∈ H. Let T be the analysis operator for F . Obviously T ∗T is
invertible. The L2(Ω, µ;H, α)-frame

F(T ∗T )−1 , F(·)(T ∗T )−1

is called the canonical dual frame of F . The analysis operator of this cg-frame is
clearly T (T ∗T )−1.

Given a Hilbert space H, denote by H̄ the associated conjugate Hilbert space
(see [10]). Note that there is obviously a linear or conjugate-linear, isometric
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bijection between every pair of H, H̄, and the Banach dual H∗. In particular, we
have identifications H∗ = H̄ and H∗∗ = H.

Proposition 3.3. Let (Ω,Σ, µ) be a σ-finite, positive measure space, and let
H1, H2 be Hilbert spaces. Denote by PE the orthogonal projection from L2(Ω, µ,H2)
onto the closed subspace L2(E, µ,H2) for E ∈ Σ.

(1) Suppose that T : H1 → L2(Ω, µ,H2) is a bounded linear operator and
that ν : Σ → B(H1) defined by E 7→ T ∗PET is a POVM satisfying that
|ν| is σ-finite. Then there exists an H1-µ-measurable function F : Ω →
B(H1, H2) such that, for every x ∈ H1, we have (Tx)(·) = F (·)x on Ω
µ-a.e.

(2) Conversely, let F : Ω → B(H1, H2) be a H1-µ-measurable function such
that the operator T : H1 → L2(Ω, µ,H2) given by x 7→ F (·)x is well
defined. Then ν : Σ → B(H1) defined by E 7→ T ∗PET is a POVM satis-
fying that |ν| is σ-finite.

Proof. (1) Fix g ∈ L2(Ω, µ). Then by the Hölder’s inequality, the bilinear mapping

ξg : H1 × H̄2 → L1(Ω, µ) by (x, y) 7→
〈
(Tx)(·)g(·), y

〉
is clearly bounded. So by Lemma 2.4(1), there is a corresponding bounded oper-
ator Sg : H1 ⊗̂ H̄2 → L1(Ω, µ) such that Sg(x ⊗ y) = ξg(x, y) for x ∈ H1, y ∈
H̄2. Keeping Lemma 2.4(2) in mind, we have the identification (H1 ⊗̂ H̄2)

∗ =
B(H1, H2), in which the action of an operator R ∈ B(H1, H2) as a linear func-
tional on H1 ⊗̂ H̄2 is given by 〈x⊗ y,R〉 = 〈Rx, y〉. Consider the bounded adjoint
operator S∗

g : L∞(Ω, µ) → B(H1, H2) and define

λg : Σ → B(H1, H2) by E 7→ S∗
gχE.

Then clearly, λg is a weak* measure and we have∥∥λg(E)∥∥ = sup
‖x‖≤1,‖y‖≤1

∣∣〈(S∗
gχE)x, y

〉∣∣
= sup

‖x‖≤1,‖y‖≤1

∣∣〈ξg(x, y), χE〉∣∣
= sup

‖x‖≤1,‖y‖≤1

∣∣∣∫
E

〈
(Tx)(ω)g(ω), y

〉
dµ

∣∣∣
≤ sup

‖x‖≤1

∫
E

∥∥(Tx)(ω)∥∥ ·
∣∣g(ω)∣∣ dµ

≤ 1

2
sup
‖x‖≤1

∫
E

(∥∥(Tx)(ω)∥∥2
+
∣∣g(ω)∣∣2) dµ

=
1

2

(
‖PET‖2 + ‖gχE‖2

)
=

1

2

(∥∥ν(E)∥∥+ ‖gχE‖2
)

for every E ∈ Σ, where x ∈ H1, y ∈ H̄2. So the σ-finiteness of |ν| provides the
σ-finiteness of |λg|, and we can easily see that |λg| is µ-continuous from the above
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inequalities. Hence by Theorem 2.6, there exists an H1-µ-measurable function
Fg : Ω → B(H1, H2) such that∫

E

〈
Fg(ω)x, y

〉
dµ =

〈
λg(E)x, y

〉
=

∫
E

〈
(Tx)(ω)g(ω), y

〉
dµ (3.1)

hold for E ∈ Σ, x ∈ H1, y ∈ H2.
By the σ-finiteness of µ, we can suppose that the partition Ω =

⊔∞
j=1Ωj with

µ(Ωj) <∞ for each j. Let g0 ∈ L2(Ω, µ) given by

g0(ω) =

{
1

j
√
µ(Ωj)

, µ(Ωj) 6= 0,

1, µ(Ωj) = 0
when ω ∈ Ωj.

Then define a function F : Ω → B(H1, H2) by

F (ω) =
Fg0(ω)

g0(ω)
.

Clearly, F is also H1-µ-measurable. Replacing g with g0 in (3.1), and then per the
arbitrariness of E ∈ Σ, we infer that for x ∈ H1, y ∈ H2, 〈F (·)x, y〉 = 〈(Tx)(·), y〉
on Ω µ-a.e. For every x ∈ H1, since (Tx)(·) and F (·)x are µ-measurable, it follows
from the Pettis measurability theorem (Lemma 2.1) that (Tx)(·) and F (·)x are
µ-essentially separably valued and so, (Tx)(·) = F (·)x on Ω µ-a.e.

(2) Define Q : Ω → B(H1) by Q(ω) = F (ω)∗F (ω). Then we have〈
ν(E)x1, x2

〉
= 〈T ∗PETx1, x2〉
= 〈PETx1, PETx2〉

=

∫
E

〈
F (ω)x1, F (ω)x2

〉
dµ

=

∫
E

〈
F (ω)∗F (ω)x1, x2

〉
dµ

=

∫
E

〈
Q(ω)x1, x2

〉
dµ

for E ∈ Σ, x1, x2 ∈ H1. Therefore, by Theorem 2.5(2), it is easy to show that ν is
a POVM and that |ν| is σ-finite. The proof is complete. �

We are now ready to prove one main result which can show that there is an
intrinsic connection between CG frames (or Bessel operator fields) and POVMs.

Theorem 3.4. Let H be a Hilbert space, let (Ω,Σ, µ) be a σ-finite, positive
measure space, and let L2(Ω, µ;H, α) be a direct integral Hilbert space. Denote
by PE the orthogonal projection from L2(Ω, µ;H, α) onto the closed subspace
L2(E, µ;H, α) for E ∈ Σ. Then following statements are true.

(1) Let T : H → L2(Ω, µ;H, α) be a bounded linear operator and also let
ν : Σ → B(H) defined by E 7→ T ∗PET be a POVM satisfying that |ν| is
σ-finite. Then there exists an operator field F ∈ {B(H,Hω)}ω∈Ω such that
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for each x ∈ H, (Tx)(·) = F(·)x on Ω µ-a.e. This means that F is an
L2(Ω, µ;H, α)-Bessel operator field for H with analysis operator T .

(2) Conversely, let F ∈ {B(H,Hω)}ω∈Ω be an H-(α, µ)-measurable L2(Ω, µ;
H, α)-Bessel operator field for H and let T be its analysis operator. Then
we have that ν : Σ → B(H) defined by E 7→ T ∗PET is a POVM satisfying
that |ν| is σ-finite.

Proof. (1) By the σ-finiteness of µ, we have the identification

L2(Ω, µ;H, α) =
⊕
j∈J

L2(Ωj, µ,Hj)

for some countable index set J and Hilbert spaces {Hj}j∈J, in which the isometric
isomorphism is as follows:

Φ : L2(Ω, µ;H, α) →
⊕
j∈J

L2(Ωj, µ,Hj),

v 7→
⊕
j∈J

vj,

where vj : Ωj → Hj is defined by ω 7→ α(ω)v(ω) and where α(ω) is an isometry
of Hω onto Hj. (In fact, we can choose J = Γ and Hj = l2(j) for j ∈ Γ.) Denote

by P̂j the orthogonal projection from
⊕

j∈J L2(Ωj, µ,Hj) onto L2(Ωj, µ,Hj) for

j ∈ J. Without loss of generality, we can further assume that Ω =
⊔
j∈J Ωj.

Fix j ∈ J. We already know that the operator P̂jΦT : H → L2(Ωj, µ,Hj)
is bounded. Denote by (Ωj,Σj) the restriction of the σ-algebra (Ω,Σ) on Ωj,

and denote by P
(j)
E the orthogonal projection from L2(Ωj, µ,Hj) onto the closed

subspace L2(E, µ,Hj) for E ∈ Σj. Then clearly, νj : Σj → B(H) defined by

νj(E) = (P̂jΦT )
∗P

(j)
E (P̂jΦT )

is a POVM on Σj. The σ-finiteness of |ν| provides the σ-finiteness of |νj|. More-
over, it follows from Proposition 3.3(1) that there exists an H-µ-measurable func-

tion Fj : Ωj → B(H,Hj) such that for every x ∈ H, (P̂jΦTx)(·) = Fj(·)x in
L2(Ωj, µ,Hj).

We now define an operator field F ∈ {B(H,Hω)}ω∈Ω by

F(ω) = α(ω)−1Fj(ω) for ω ∈ Ωj, j ∈ J.

Since (P̂jΦTx)(·) = Fj(·)x in L2(Ωj, µ,Hj) for j ∈ J, x ∈ H, we get (Tx)(·) =
F(·)x in L2(Ω, µ;H, α) for x ∈ H. And by Definition 3.2, F is clearly a L2(Ω, µ;
H, α)-Bessel operator field for H with analysis operator T .

(2) Consider the function Q : Ω → B(H) given by Q(ω) = F(ω)∗F(ω). Then
similar to the proof of Proposition 3.3(2), for all E ∈ Σ, x, y ∈ H we have
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ν(E)x, y

〉
= 〈PETx, PETy〉

=

∫
E

〈
F(ω)x,F(ω)y

〉
dµ

=

∫
E

〈
F(ω)∗F(ω)x, y

〉
dµ

=

∫
E

〈
Q(ω)x, y

〉
dµ.

By Theorem 2.5(2), it is easily seen that ν is a POVM and that |ν| is σ-finite.
We are done. �

Let (Ω,Σ, µ) be a σ-finite, positive measure space. Recall that A ∈ Σ is an
atom if 0 < µ(A) < ∞ and for each measurable set B ⊂ A, either µ(B) = 0 or
µ(B) = µ(A). The space (Ω,Σ, µ) is called purely atomic, if the set Ω −

⋃
{A ∈

Σ : A is an atom} has measure zero. Since atoms are essentially disjoint and µ is
countable additive and σ-finite, Ω only contain at most countably many atoms.

Corollary 3.5. Let (Ω, µ) be a σ-finite, positive measure space, and let L2(Ω, µ;
H, α) be a direct integral Hilbert space. Then there exists a Riesz-type L2(Ω, µ;
H, α)-frame if and only if (Ω, µ) is purely atomic.

Proof. If (Ω, µ) is purely atomic, then clearly a Riesz-type L2(Ω, µ;H, α)-frame
exists by the discrete case (see [11], [18]). Conversely, suppose that F is a Riesz-
type L2(Ω, µ;H, α)-frame and that T is its analysis operator. By Theorem 3.4 we
know ν : E 7→ T ∗PET is a POVM satisfying that |ν| is σ-finite. On the other
hand, since F is Riesz-type we have that T is invertible. For arbitrary E0 ∈ Σ
and µ(E0) > 0, the relations

1 = ‖PE0‖ = ‖PE0TT
−1‖ ≤ ‖PE0T‖‖T−1‖

show that ‖PE0T‖ ≥ 1
‖T−1‖ , which implies that |ν|(E0) ≥ ‖ν(E0)‖ ≥ 1

‖T−1‖2 . So

the σ-finiteness of |ν| guarantees that (Ω, µ) is purely atomic. �

Remark 3.6. Corollary 3.5 is a generalization of [9, Theorem 3.20]. Suppose that
the space L2(Ω, µ;H, α) degenerates into L2(Ω, µ). From the proof of Corol-
lary 3.5, we can see that the POVM ν satisfies that

inf
{∥∥ν(E)∥∥ :

∥∥ν(E)∥∥ 6= 0, E ∈ Σ
}
≥ 1

‖T−1‖2
> 0.

It follows directly from [9, Theorem 3.20] that (Ω, µ) is purely atomic. It should
be mentioned that the proof of Corollary 3.5 use the σ-finiteness of |ν| explicitly,
while Theorem 3.20 in [9] use this property implicitly.

Remark 3.7. Let H be a Hilbert space, (Ω,Σ) be a σ-algebra and let ν : Σ →
B(H) be a POVM. The classical Naimark’s dilation theorem (see [9, Theo-
rem 3.4]) says that there are a Hilbert space K, a bounded linear operator
T : H → K, and a spectral measure (i.e., orthogonal projection valued POVM)
ν2 : Σ → B(K) such that

ν(E) = T ∗ν2(E)T
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for every E ∈ Σ. If K is a direct integral Hilbert space L2(Ω, µ;H, α), T is the
analysis operator for some L2(Ω, µ;H, α)-Bessel operator field, and ν2(E) is the
orthogonal projection from L2(Ω, µ;H, α) onto L2(E, µ;H, α) for E ∈ Σ, then
we will call (K,T, ν2) a frame dilation. If µ is σ-finite further, then we will call
(K,T, ν2) a σ-frame dilation.

If a POVM ν has a σ-frame dilation, then clearly ν has σ-finite variation (i.e.,
|ν| is σ-finite) by Theorem 3.4. Conversely, an alternative result of [16] shows that
if H is separable and ν : Σ → B(H) has σ-finite variation, then ν has a σ-frame
dilation. For general case, we give the following conjecture.

Conjecture 3.8. A POVM has a σ-frame dilation if and only it has σ-finite
variation.

Next, we will give a dilation theorem for dual pairs of CG frames, which gener-
alizes Theorem 1.1 in [8]. For an operator T , denote R(T ) by the range of T , and
R1 	 R2 by the space R1 ∩ R⊥

2 if R1, R2 are closed subspace in a Hilbert space
with R2 ⊆ R1.

Theorem 3.9. Let L2(Ω, µ;H, α) be a direct integral of Hilbert spaces and let
H1, H2 be other Hilbert spaces. Suppose that

(1) F is an L2(Ω, µ;H, α)-frame for H1,
(2) G is a dual of F ,
(3) F0 is an L2(Ω, µ;H, α)-frame for H2,
(4) T1, T2 and S are analysis operators of F ,G, and F0, respectively,
(5) R(T1) ∪R(T2) ⊆ R(S).

Then there are a Hilbert space K0 and an L2(Ω, µ;H, α)-frame F1 for H1 ⊕K0,
such that F(ω)x = F1(ω)(x ⊕ 0),G(ω)x = G1(ω)(x ⊕ 0) µ-a.e. on Ω and such
that the ranges of the analysis operators of F1,F0 are the same. Here G1 is the
canonical dual of F1.

Proof. Denote Ho = L2(Ω, µ;H, α), R1 = R(T1), R2 = R(T2), and R3 = R(S).
Since G is a dual of F , we clearly have that T ∗

2 T1 = I and that T1T
∗
2 is an oblique

projection onto R1. Symmetrically, T ∗
1 T2 = I and T2T

∗
1 is an oblique projection

onto R2.
We claim that there exists an isomorphism ψ : R3 	 R1 → R3 	 R2. In fact,

P0 : R3 → R3 defined by P0 = (T1T
∗
2 )|R3 is obviously an oblique projection with

the range R1. Applying the first isomorphism theorem for Banach spaces to the
operator I3 − P0, where I3 is the identity operator on R3, we have

R3 	R2 = R(I3 − P0) ∼= R3/ker(I3 − P0) = R3/R1
∼= R3 	R1,

as required.
Denote K0 by the space R3 	R1 and define

φ : H1 ⊕K0 → H2 by x⊕ y 7→ (S∗S)−1S∗(T1x+ ψy).

We will verify that K0, φ satisfy

T1x = Sφ(x⊕ 0) (3.2)
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and

T2x = Sφ
(
(Sφ)∗Sφ

)−1
(x⊕ 0). (3.3)

for x ∈ H1.
In fact, φ is clearly a linear bijection between H1 ⊕ K0 and H2. It is easy to

check that Sφ(x ⊕ 0) = S(S∗S)−1S∗T1x = T1x. So (3.2) holds. We next verify
(3.3). For z ∈ H2, x⊕ y ∈ H1 ⊕K0, we have

〈φ∗z, x⊕ y〉 =
〈
z, (S∗S)−1S∗(T1x+ ψy)

〉
=

〈
S(S∗S)−1z, T1T

∗
2 T1x+ ψy

〉
=

〈
T ∗
1S(S

∗S)−1z, x
〉
+
〈
S(S∗S)−1z, ψy

〉
.

Noting that S∗|R3 is an isomorphism from R3 onto H2, we derive that〈
φ∗(S∗|R3)T2x, x̄⊕ ȳ

〉
=

〈
T ∗
1S(S

∗S)−1(S∗|R3)T2x, x̄
〉
+
〈
S(S∗S)−1(S∗|R3)T2x, ψȳ

〉
= 〈T ∗

1 T2x, x̄〉+ 〈T2x, ψȳ〉
= 〈x, x̄〉 = 〈x⊕ 0, x̄⊕ ȳ〉

for every x, x̄ ∈ H1 and ȳ ∈ K0. So for x ∈ H1, we have

φ∗(S∗|R3)T2x = x⊕ 0

=⇒ (S∗|R3)
−1(φ∗)−1(x⊕ 0) = T2x

=⇒ S(S∗S)−1S∗(S∗|R3)
−1(φ∗)−1(x⊕ 0) = S(S∗S)−1S∗T2x

=⇒ S(S∗S)−1(φ∗)−1(x⊕ 0) = T2x

=⇒ (Sφ)
(
(Sφ)∗(Sφ)

)−1
(x⊕ 0) = T2x.

So (3.3) holds.
Now consider the vector field F1 ∈ {B(H1 ⊕K0, Hω)}ω∈Ω defined by F1(ω) =

F0(ω)φ for ω ∈ Ω. Clearly, the analysis operator of F0 is Sφ, which gives that
the ranges of the analysis operators of F1,F0 are the same. Equations (3.2) and
(3.3) show that F(ω)x = F1(ω)(x ⊕ 0) and G(ω)x = G1(ω)(x ⊕ 0) µ-a.e. on Ω.
This completes the proof. �

From the proof of Theorem 3.9, we can show the following dilation result for
dual pairs of operators.

Proposition 3.10. Let H1, H2, Ho be Hilbert spaces, T1, T2 ∈ B(H1, Ho), S ∈
B(H2, Ho). Suppose that T1, T2, S have bounded inverses on their ranges and that
R(T1) ∪ R(T2) ⊆ R(S). If T ∗

2 T1 = I, then there exit a Hilbert space K0 and an
isomorphism φ : H1 ⊕K0 → H2 such that

T1x = Sφ(x⊕ 0)

and

T2x = Sφ
(
(Sφ)∗Sφ

)−1
(x⊕ 0).

for x ∈ H1.



380 F. LI and P. LI

Acknowledgments. The authors would like to thank the referees for their very
thorough reading and many helpful comments.

P. Li’s work was partially supported by National Natural Science Foundation
of China (NSFC) grants 11171151 and 11571247. F. Li’s work was partially sup-
ported by Jiangsu Province of China graduate research and innovation project
KYZZ 0086.

References

1. M. R. Abdollahpour and M. H. Faroughi, Continuous g-frames in Hilbert spaces, Southeast
Asian Bull. Math. 32 (2008), no. 2, 1–19. Zbl 1199.42132. MR2385096. 365

2. N. Ahmed, A note on Radon–Nikodym theorem for operator valued measures and its applica-
tions, Commun. Korean Math. Soc. 28 (2013), no. 2, 285–295. Zbl 1276.28021. MR3054037.
DOI 10.4134/CKMS.2013.28.2.285. 364, 369, 370

3. J. A. de Araya, A Radon–Nikodym theorem for vector and operator valued measures, Pacific
J. Math. 29 (1969), 1–10. Zbl 0179.46801. MR0245753. DOI 10.2140/pjm.1969.29.1. 364

4. J. Diestel and J. J. Uhl, Vector Measures, Math. Surveys Monogr. 15, Amer. Math. Soc.,
Providence, 1977. Zbl 0369.46039. MR0453964. 365, 371

5. R. J. Duffin and A. C. Schaeffer, A class of nonharmonic Fourier series, Trans. Amer.
Math. Soc. 72 (1952), 341–366. Zbl 0049.32401. MR0047179. DOI 10.2307/1990760. 364

6. N. Dunford and J. T. Schwartz, Linear Operators, I: General Theory, Pure Appl. Math. 7,
Interscience, New York, 1958. Zbl 0084.10402. MR0117523. 366

7. M. Fornasier and H. Rauhut, Continuous frames, function spaces, and the discretization
problem, J. Fourier Anal. Appl. 11 (2005), no. 3, 245–287. Zbl 1093.42020. MR2167169.
DOI 10.1007/s00041-005-4053-6. 364

8. J.-P. Gabardo and D. Han, Frames associated with measurable spaces, Adv. Comput. Math.
18 (2003), no. 2–4, 127–147. Zbl 1033.42036. MR1968116. DOI 10.1023/A:1021312429186.
364, 365, 378

9. D. Han, D. R. Larson, B. Liu and R. Liu,Operator-valued measures, dilations, and the theory
of frames, Mem. Amer. Math. Soc. 229 (2014), no. 1075. Zbl 1323.46031. MR3186831. 364,
377

10. R. V. Kadison and J. R. Ringrose, Fundamentals of the Theory of Operator Algebras, Pure
Appl. Math. 100, New York, Academic Press, 1983. Zbl 0518.46046. MR0719020. 372, 373

11. V. Kaftal, D. R. Larson, and S. Zhang, Operator-valued frames, Trans. Amer. Math.
Soc. 361 (2009), no. 12, 6349–6385. Zbl 1185.42032. MR2538596. DOI 10.1090/
S0002-9947-09-04915-0. 365, 377

12. H. B. Maynard, A Radon–Nikodým theorem for operator-valued measures, Trans. Amer.
Math. Soc. 173 (1972), 449–463. Zbl 0263.28008. MR0310187. 364

13. K. Musial, “Pettis integral” in Handbook of Measure Theory, Vol. I, II, North-Holland,
Amsterdam, 2002, 531–586. Zbl 1043.28010. MR1954622. DOI 10.1016/B978-044450263-6/
50013-0. 366

14. O. A. Nielsen, Direct Integral Theory, Marcel Dekker, New York, 1980. Zbl 0482.46037.
MR0591683. 371

15. M. A. Rieffel, The Radon–Nikodym theorem for the Bochner integral, Trans. Amer. Math.
Soc. 131 (1968), 466–487. Zbl 0169.46803. MR0222245. DOI 10.2307/1994959. 364

16. B. Robinson, Operator-Valued Frames Associated with Measure Spaces, Ph.D. dissertation,
Arizona State University, Tempe, Arizona, 2014. 365, 371, 372, 378

17. R. A. Ryan, Introduction to Tensor Products of Banach Spaces, Springer Monogr. Math.,
Springer, London, 2002. Zbl 1090.46001. MR1888309. DOI 10.1007/978-1-4471-3903-4. 364,
367, 369

18. W. Sun, G-frames and g-Riesz bases, J. Math. Anal. Appl. 322 (2006), no. 1, 437–452.
Zbl 1129.42017. MR2239250. DOI 10.1016/j.jmaa.2005.09.039. 365, 377

http://www.emis.de/cgi-bin/MATH-item?1199.42132
http://www.ams.org/mathscinet-getitem?mr=2385096
http://www.emis.de/cgi-bin/MATH-item?1276.28021
http://www.ams.org/mathscinet-getitem?mr=3054037
http://dx.doi.org/10.4134/CKMS.2013.28.2.285
http://www.emis.de/cgi-bin/MATH-item?0179.46801
http://www.ams.org/mathscinet-getitem?mr=0245753
http://dx.doi.org/10.2140/pjm.1969.29.1
http://www.emis.de/cgi-bin/MATH-item?0369.46039
http://www.ams.org/mathscinet-getitem?mr=0453964
http://www.emis.de/cgi-bin/MATH-item?0049.32401
http://www.ams.org/mathscinet-getitem?mr=0047179
http://dx.doi.org/10.2307/1990760
http://www.emis.de/cgi-bin/MATH-item?0084.10402
http://www.ams.org/mathscinet-getitem?mr=0117523
http://www.emis.de/cgi-bin/MATH-item?1093.42020
http://www.ams.org/mathscinet-getitem?mr=2167169
http://dx.doi.org/10.1007/s00041-005-4053-6
http://www.emis.de/cgi-bin/MATH-item?1033.42036
http://www.ams.org/mathscinet-getitem?mr=1968116
http://dx.doi.org/10.1023/A:1021312429186
http://www.emis.de/cgi-bin/MATH-item?1323.46031
http://www.ams.org/mathscinet-getitem?mr=3186831
http://www.emis.de/cgi-bin/MATH-item?0518.46046
http://www.ams.org/mathscinet-getitem?mr=0719020
http://www.emis.de/cgi-bin/MATH-item?1185.42032
http://www.ams.org/mathscinet-getitem?mr=2538596
http://dx.doi.org/10.1090/S0002-9947-09-04915-0
http://dx.doi.org/10.1090/S0002-9947-09-04915-0
http://www.emis.de/cgi-bin/MATH-item?0263.28008
http://www.ams.org/mathscinet-getitem?mr=0310187
http://www.emis.de/cgi-bin/MATH-item?1043.28010
http://www.ams.org/mathscinet-getitem?mr=1954622
http://dx.doi.org/10.1016/B978-044450263-6/50013-0
http://dx.doi.org/10.1016/B978-044450263-6/50013-0
http://www.emis.de/cgi-bin/MATH-item?0482.46037
http://www.ams.org/mathscinet-getitem?mr=0591683
http://www.emis.de/cgi-bin/MATH-item?0169.46803
http://www.ams.org/mathscinet-getitem?mr=0222245
http://dx.doi.org/10.2307/1994959
http://www.emis.de/cgi-bin/MATH-item?1090.46001
http://www.ams.org/mathscinet-getitem?mr=1888309
http://dx.doi.org/10.1007/978-1-4471-3903-4
http://www.emis.de/cgi-bin/MATH-item?1129.42017
http://www.ams.org/mathscinet-getitem?mr=2239250
http://dx.doi.org/10.1016/j.jmaa.2005.09.039


RADON–NIKODYM THEOREMS AND CG-FRAMES 381

19. W. Sun, Stability of g-frames, J. Math. Anal. Appl. 326 (2007), no. 2, 858–868.
Zbl 1130.42307. MR2280948. DOI 10.1016/j.jmaa.2006.03.043. 365

20. M. Takesaki, Theory of Operator Algebras, I, Springer, New York, 1979. Zbl 0436.46043.
MR0548728. 372

21. W. Wils, Direct integrals of Hilbert space, I, Math. Scand. 26 (1970), 73–88. Zbl 0194.43504.
MR0264415. 371

Department of Mathematics, Nanjing University of Aeronautics and Astronau-
tics, Nanjing 210016, People’s Republic of China.

E-mail address: lfj 2@126.com; pengtongli@nuaa.edu.cn

http://www.emis.de/cgi-bin/MATH-item?1130.42307
http://www.ams.org/mathscinet-getitem?mr=2280948
http://dx.doi.org/10.1016/j.jmaa.2006.03.043
http://www.emis.de/cgi-bin/MATH-item?0436.46043
http://www.ams.org/mathscinet-getitem?mr=0548728
http://www.emis.de/cgi-bin/MATH-item?0194.43504
http://www.ams.org/mathscinet-getitem?mr=0264415
mailto:lfj_2@126.com
mailto:pengtongli@nuaa.edu.cn

	1 Introduction
	2 Operator-valued measures and Radon–Nikodym theorems
	3 Continuous generalized frames
	Acknowledgments
	References
	Author's addresses

