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Nonstandard Functional Interpretations and
Categorical Models

Amar Hadzihasanovic and Benno van den Berg

Abstract  Recently, the second author, Briseid, and Safarik introduced non-
standard Dialectica, a functional interpretation capable of eliminating instances
of familiar principles of nonstandard arithmetic—including overspill, underspill,
and generalizations to higher types—from proofs. We show that the proper-
ties of this interpretation are mirrored by first-order logic in a constructive sheaf
model of nonstandard arithmetic due to Moerdijk, later developed by Palmgren,
and draw some new connections between nonstandard principles and principles
that are rejected by strict constructivism. Furthermore, we introduce a variant
of the Diller-Nahm interpretation with two different kinds of quantifiers, sim-
ilar to Hernest’s light Dialectica interpretation, and show that one can obtain
nonstandard Dialectica by weakening the computational content of the existen-
tial quantifiers—a process called herbrandization. We also define a constructive
sheaf model mirroring this new functional interpretation, and show that the pro-
cess of herbrandization has a clear meaning in terms of these sheaf models.

1 Introduction

The focus of this article stands at the confluence of two quite different paths in math-
ematical logic.

On one end, there is nonstandard arithmetic and analysis: a subject that has
been an upshot of classical model theory, and even after it was recognized as being
amenable to a syntactic treatment, as in Nelson’s internal set theory (see [17]), it
mostly remained within the boundaries of classical set theory. On the other end,
there is the markedly proof-theoretic topic of functional interpretations, stemming
from Godel’s Dialectica interpretation (see [6]); and, in particular, its recent revival
by Kohlenbach and Oliva [1 1] through the program of proof mining.
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Where these ends meet, is in a general inclination toward the constructivization
of mathematics. The first explicit model of nonstandard analysis, due to Schmieden
and Laugwitz [26], was actually fully constructive, but had a quite weak transfer
property. On the other hand, Robinson’s model of nonstandard arithmetic in [25],
and subsequent ones which were elementary extensions of the standard model, were
built from nonconstructive objects, such as nonprincipal ultrafilters of sets. Even in
the syntactic approach, it soon became apparent that many useful principles led to
instances of the excluded middle. But did nonstandard analysis really have nothing
to offer to constructive analysts?

Not everyone was convinced, including, notably, P. Martin-Lo6f, who pushed the
question in the early 1990s. First, Palmgren [20] succeeded in building a model with
arestricted, yet useful transfer principle. Then, in 1995, Moerdijk [16] described the
first constructive model of nonstandard arithmetic with a full transfer principle—a
topos of sheaves over a category of filters. Later, by working in this topos, Palmgren
[21]-[24] provided simplified, nonstandard proofs of several theorems of construc-
tive analysis, thereby demonstrating the usefulness of this model.

But if nonstandard proofs do provide some constructive information, we might
as well try to extract it in an automated fashion. In 2012, the second author, Bri-
seid, and Safarik [30] succeeded in defining a functional interpretation, nonstandard
Dialectica, which could eliminate nonstandard principles from proofs of intuitionis-
tic arithmetic in all finite types, enriched, a la Nelson, with a predicate sty (x), “x is
standard,” for all types o, also yielding a proof of conservativity of these principles
over the base system. Section 2 is a review.

Now, some of the principles validated by nonstandard Dialectica were known to
hold in Moerdijk’s topos—including a form of Nelson’s idealization axiom, an under-
spill principle, and the undecidability of the standardness predicate. Our first aim was
to investigate how deep this connection would go.

And a deep connection it is: with the exception of the principle called HAC™ (her-
brandized axiom of choice), which requires some form of the axiom of choice in the
metatheory, all the characteristic principles of nonstandard Dialectica are true in the
topos model, for free. Section 3 is devoted to showing this. During this investigation,
we also chanced upon two new principles, sequence overspill and sequence under-
spill, which appear to be more natural equivalents of principles that have been taken
into consideration, earlier, in the context of proof-theoretic nonstandard arithmetic.
We map their relation to other familiar principles from nonstandard and constructive
analysis in Section 2.

Several characteristic principles of nonstandard Dialectica have a peculiarity: they
are herbrandized. This is explained in more detail in Section 4; in short, where “tra-
ditional” functional interpretations would produce a single witness of an existential
statement, these principles produce a finite sequence of potential witnesses, of which
at least one is an actual witness. This property destroys the computational meaning of
intuitionistic disjunction, yet seems unavoidable in the interpretation of nonstandard
arithmetic.

The categorical analysis of nonstandard Dialectica supplied a very convenient way
of “de-herbrandizing,” through a simple change in the Grothendieck topology, down
from finite covers to singleton covers. Full transfer is lost—in the new topos, disjunc-
tion is stronger than in the metatheory—as is the link to nonstandard arithmetic; but
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the de-herbrandized principles induce a new functional interpretation, which we call
uniform Diller—Nahm, and this is the main focus of Section 4.

Uniform Diller—Nahm can be seen as an extension of the Diller-Nahm variant
of the Dialectica interpretation (see Diller and Nahm [5]), and has some striking
similarities to light Dialectica, a variant of Dialectica with two different kinds of
quantifiers—computational and noncomputational—introduced in 2005 by Hernest
[7], for the purpose of more efficient program extraction from formal proofs. Yet,
irrespective of its technical value, the characteristic proof system of uniform Diller—
Nahm might have a dignity of its own.

In 1985, Lifschitz [13] proposed a simple extension of Heyting arithmetic, where
a distinction could be made between calculable and noncalculable natural numbers—
a synthesis of classical and intuitionistic arithmetic. Under the interpretation of the
predicate st(x) as “x is calculable,” the proof system of uniform Diller-Nahm seems
to be well suited for Lifschitz’s intended calculus. This is also discussed in Section 4.

Finally, in Section 5, we survey some open questions.

Note This work is based on research done by the first author, under the supervi-
sion of the second author, in partial fulfillment of the requirements for the degree of
Laurea Magistrale in Mathematics at the University of Pavia.

2 The Nonstandard Dialectica Interpretation

We start by briefly recalling the definition of the system E-HA®*, as introduced in

st 2
[30]; we refer to the original article for a detailed presentation.

2.1 The system E-HAS™® We take E-HA®* to be an extension of the system called
“E-HA{” by Troelstra [27], with additional types and constants for handling finite
sequences. More precisely, the collection of types T* is generated by the inductive
clauses

> 0isin T*;
> if o, T are in T*, then 0 — 7 and o* are in T*;

and, for all types o,7 in T*, we have constants (), : o (empty sequence),
C :0 — o* — o* (prepending operator), and Ly; : 0 — (0 > 7 = 0) —
(t* — o) (list recursor), with defining axioms

SA: Vs:o*(s={(oVvIx:03':0" (s = Cxs)),

Locxy()r =¢ X, . . o %
X:0,y:0>1—0,z:71,'s:1%,
Lo,cxy(Czs) =¢ y(Lo,cxys)(z),
where (z) is the “singleton” Cz ().
Notation We use s,¢,u, v (and s’,7’,...) as variables of sequence type.
This system has an extensionality axiom
Vig:0>1(f =g VXx:0 fx =;gx)

for all types o, t.

Using the projectors and combinators from the language of E-HAY, it is possible,
already in the latter system, to introduce a coding of finite sequences of elements of
any type, as in Kohlenbach [10, p. 59]; therefore, E-HA®* is a definitional, hence
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conservative, extension of E-HAJ . However, finite sequences seem to be quite ubig-
uitous in arguments of nonstandard arithmetic, mostly due to the expanded notion of
“finiteness” in a nonstandard model; so it seems preferable to have them built into
our syntax.
Since every type is provably inhabited, we can conservatively add for every type
o a constant @,. Using the list recursor, one can define all the basic operations on
finite sequences one needs in practice as follows:
(i) alength function |- | : * — 0, satisfying
0o] =0.  |Cas| =S]s|.
fors:o* a:o;
(ii) a projection function (s,i) + s; of type 6* — 0 — 0, satisfying
((>‘7)i =0, foralli,
(Cas)o = a,
(Cas)si = si:
(iii) a concatenation operation - : ¢* — o™ — ¢*, such that
(o -t =t, Cas-t =Ca(s-t);
as expected, concatenation is provably associative, so we will iterate it with-
out bothering with brackets.
The following easy properties are all established in [30].

Lemma 2.1 ([3, Lemma 2.15]) We have
(a) E-HA®* E Vs :a* (Is| =0 < s = ()o),
(b) EEHA®* EVn :0Vs:o*(Is| =Sn < 3x : 03t : 0* (s = Cxt Alt] = n)).

Proof Lets : o*. By the sequence axiom SA, either s = ()y or s = Cxt for
some x : 0,1t : c* If |s] = 0, then the latter case leads to a contradiction, for
|s] = S|t| > 0.

If |s| = Sn, then the former case leads to a contradiction, and we have proved the
left-to-right directions. The converses are immediate. O

Proposition 2.2 ([3, Proposition 2.6]) The extension E-HA®* proves the induction
schema for sequences

IA*: (p(()s) AVX:0Vs:0™ (p(s) > @(Cxs))) = Vs : 0¥ ¢(s).

Proof  Suppose that ({)s) and Vx : 0 Vs : 0* (¢(s) — ¢(Cxs)). By the previous
lemma,

Vs :o* (Is] =0 — @(s)).
Fix n : 0, and assume that Vs : 6* (|s| = n — ¢(s)). Let s be of length Sn. Again
by the previous lemma, s = Cxt for some x : 0, and ¢t : 6* of length n, and ¢(¢)
holds by hypothesis. Therefore, 9(Cxt) = ¢(s) holds as well, and we have proved

Vs:o*(Is| =n— @(s)) > Vs : 0" (Is| = Sn — ¢(s)).
By ordinary induction, it follows that Vn : 0,5 : 6* (|s| = n — ¢(s)). O

Definition 2.3 Lets,t : 0*. We say that s and ¢ are extensionally equal and write
s =, tif
Is| = [t[ AV <|s|(si =1;).
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Corollary 2.4 ([3, Proposition 2.18]) We have E-HA®* | Vs,t 1 0% (s =, t —
s =1).

Proof  This is by induction for sequences. Suppose that s =, ¢. If s = (), then
|s| = |t| = 0,s0,by Lemma 2.1, ¢t = ()s-.

Otherwise, s = Cxs’ for some x,s’. Then |s| = |t| = Sn for n = |s’|; again, by
Lemma 2.1, t = Cyt’ for some y,#’. But x = 59 = tp = y, and s’ =, t’; by the
inductive hypothesis, s = ¢’. Therefore, s = Cxs’ = Cyt’ =1t. O

Since finite sequences will be used as a replacement for finite sets, we will borrow
some set-theoretic notation.
Definition 2.5 Leta : o, s,s’ : o*. We define the abbreviations

(1) a €g s :=3i <|s|(a =¢ s;) (a is an element of s);

(ii) ' Co s :=Vx:0(x € 5" — x €, 5) (s is contained in s).
We will drop subscripts in most instances. We also extend the relation S to
sequence-valued functionals, pointwise: for s’,s : T — o*,

(iii) ' Cs:=Vx:1(s'x C4 sX).
The relation C determines a preorder, provably in E-HA®*.
In the definition of the nonstandard Dialectica translation, one needs a form of appli-

cation for finite sequences—and an associated form of A-abstraction—that is mono-
tone in the first component with respect to the preorder we just defined.

Definition 2.6 (Finite sequence application and abstraction)  Lets : (6 — t*)%,
a:o,t:t*. Then
sla] := (soa) - ...- (sgj—1a) : %,
Ax:01:=C(Ax:0.1){): (0 = t¥)*.

The new application and abstraction are interdefinable with the usual ones. In fact,
we have the following easy compatibility result.

Proposition 2.7 The extension E-HA®* proves that, for all s = t, a : o,
(Ax :0.5)[a] = (Ax : 0.5)a = sla/x].
Lemma 2.8 The extension E-HA®* proves that, for all s,s’ : (60 — t™)*,a : o,
s C s’ — s[a] C 5'[a).
Proof See [30, Lemma 2.22]. O

Since we do not have product types, we will often work with tuples of types and of
terms, for which we follow the conventions of [10], as briefly summarized below.

Notation We write 0 := 01,...,0,, X : 0 := Xg : 0¢,...,Xn : 0y for tuples of

types and terms. A pair of single square brackets [] stands for the empty tuple. We
write

fx:=(..(fxo)x1)..)Xn,
with the appropriate types; while, if f = fo,..., fm, then fx stands for
foxX. ..., fmx. We will have, correspondingly,

Ax.f = Ax fo, ..o AX. fim,

and the same for finite sequence application.
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Relations distribute as expected: for instance, if y := Yy, ..., y,, with the same
length and types as x, then

n
x=¢y:=\x =0 ¥i:
i=0
andif s := 59 : 0. ..., S, : 0, is a tuple of sequences, then

n
X €g § 1= /\Xi €o; Si-
i=0

Most of the results we have listed so far are easily extended to tuples of terms, in
particular, those concerning finite sequence application and abstraction.

We now lay the syntactic groundwork for doing nonstandard arithmetic in our
system.

Definition 2.9 The system E-HA™ is an extension of E-HA“*, whose language
includes a (unary) predicate sty (x), x : o, for all types o of T*, and the external
quantifiers Y¥'x : o, Px : 0.

Notation Following Nelson, so-called internal formulae—those in the language
of E-HA®*—are always denoted with small Greek letters, and generic, external for-
mulae are denoted with capital Greek letters.
The following axioms are added to those of E-HA®*:

(1) the defining axioms of the external quantifiers:

Vix 0 ®(x) < Vx : 0 (sty(x) — D(x)),
F'x 1 0 O(x) < Ix : 0 (ste(x) A D(x));
(2) axioms for the standardness predicate:

Ste (X)) A X =4 ¥ — stg(y),
sty (a) for all closed a : o,

Sto—z(f) A ste(x) = stz (fx);
(3) the external induction schema:
A (D(0) A VX : 0 (D(x) = D(Sx))) — V¥'x : 0 D(x).
Since it is part of E-HA®*, the system E-HA%* also contains, besides the external

induction schema, an “internal” induction schema |A, which is assumed to hold for
internal formulae only.

So far, there is nothing inherently nonstandard about the system we have defined. In
fact, one could interpret st (x) as x =4 x, and all the new axioms would be provable
in E-HA®*. This simple fact also implies that E-HA%* is a conservative extension
of E-HA®*.

However, there are some simple results, of the kind we would expect from a “stan-
dardness property,” that can already be proved.

Proposition 2.10 ([3, Lemma 2.3]) For every formula ®(x), E-HAS* proves
PxX)Ax =y = D(y).

Proof The proof is by easy induction on the logical structure of ®, utilizing the
fact that the standardness predicate is extensional. O



Nonstandard Functional Interpretations and Categorical Models 349

Proposition 2.11 ([3, Lemma 2.4]) We have E-HAS™ = Vn,m : 0(sto(n) Am <
n — sto(m)).

Proof  Apply external induction to the formula ®(n) := Vm : O(m < n —
sto(m)). O

Basically anything one can get from standard sequences is standard.

Lemma 2.12 We have

(a) E-HAY* = Vs : o™ (st(s) — st(]s])),

(b) E-HAS* = Vs : 0™ (st(s) — Vi < |s]st(s;)),

(¢c) E-HAZ* F Vs :0* Vx 10 (st(s) A x €5 5 = st(x)),

(d) E-HAS* = Vs,t 1 0" (st(s) Ast(t) — st(s - 1)),

() EHAS* =V f:0— 0" Vn:0(st(f) Ast(n) — st(f0-...- fn)).
Proof  Everything follows from the standardness axioms, coupled with the fact that
the list recursor is standard. O

A simple consequence of the lemma is that the operations of sequence application
and abstraction, as defined in the previous section, preserve standardness.

Corollary 2.13 ([3, Lemma 2.23]) We have
(a) EEHAY* = Vs : (0 — t*)* Vx : 0 (st(s) A st(x) — st(s[x])),
(b) E-HAS™ = Vs 1 v* (st(s) — st(Ax.s)).

Finally, we prove that finite sequences of standard elements are standard; the converse
is already a consequence of Lemma 2.12(a)—(b).

Lemma 2.14 ([3, Corollary 2.19]) The system E-HAZ* proves that
Vs o™ (st(|s]) A Vi < |sst(s;) = st(s)).

Proof  Suppose that s : ¢ is finite, and that, for all i < |s|, s; is standard. By an
iteration of Lemma 2.12(d), 5" := s - ... - S|gj—1 is also standard. Clearly, s and s’
are extensionally equal; by Corollary 2.4, s = 5. Thus, s is standard. O

This, in turn, is used to prove an external induction schema for sequences.

Proposition 2.15 ([3, Corollary 2.20]) The system E-HAZ* proves the external
induction schema for sequences

A (D(()o) A VX 10 Vs 0™ (B(s) > P(Cxs))) — Vs 1 0™ D(s).
Proof From the previous lemma, one obtains that if s = Cxt and s is standard,

then x and ¢ are also standard. Then one argues precisely as in Proposition 2.2,
applying external instead of ordinary induction. O

The linguistic blocks are in place for the definition of the nonstandard Dialectica
interpretation.

2.2 The Dg-translation

Definition 2.16  To every formula ®(a) of the language of E-HAZ*, with free
variables a, we associate inductively its nonstandard Dialectica translation

CI)@DS[ — aSt£ vslz(st‘@’ X»Q)v
where ¢p,, is internal, and all the variables in s are of sequence type:
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> @(a)Ps = ¢p,(a) := ¢(a), for ¢ internal atomic;

> sty (x)Ps 1= s 0% (x € 5).
Let ®(a)P = F's ¥y gp (s, y, @), ¥(B)P+ = It V' yp, (1,0, b):
(®(a) A W(b)P+ :=F's,1 ¥y, v (¢p,(s.y.a@) A Y, (L.v.b));
(®(a) v W(b)P+ :=F's,1 ¥y, v (¢p, (s, y. @) V ¥p, (L. v.b));
(@@ — WB)Ps = FPT.Y Vs 0(Vy € Ys.vlep,(s.y.a) —
Vo, (L[s], v, b));
(3z @(z.@))P+ ;= F's V132 Vy € tgp, (x.y.z.a);
(Vz ®(z.a)P = s Vy Vzgp, (5. y.2.0);
'z ®(z,a))P == Fu, sV 3z €uVy € Lop,(s.y.2.a);
(V2 ®(z.@)Ps 1= F'S V. 20, (S[z].y. 2.0).

The idea is that, in the Dg-interpretation, realizers should be finite sequences of
potential realizers, of which at least one is an actual realizer. Hence, if s is a valid
realizer, then any s” with s C s’ should work as well. That this is the case is guaran-
teed by the following proposition.

vV vV V

vV V vV V

Definition 2.17 A formula ®(s) is upward closed in s : o* if
D) As S5 — D(s).

Proposition 2.18  Let ®(a) be a formula of B-HA®L*, ®(a)Ps = I V¥ o(s,
y.a). Then E-HA®* proves that ¢ is upward closed in s:

E-HA®" - ¢(s,y,a) As C 5" — (s, y,a).

Proof  The proof is by induction on the logical structure of ®(a), using Lemma 2.8
in the clauses for — and V*z. O

In [30], the nonstandard Dialectica interpretation was given a characterization in
terms of five principles. We provide here an alternative characterization, which keeps
the following three principles from the former.

(1) The herbrandized axiom of choice:
HACY : V%% :0 3%y :1®(x,y)
= 3If:0—>1tH)*Vx:03Ty € fx]P(x,y).
(2) The herbrandized independence of premise principle:
HIPY :  (V'x:op(x) - Iy 1 T W(y))
— It (VX top(x) > Ty € 1 W(y)).

(3) The principle called nonclassical realization in [30]—which, as we will see
in Section 4, could also be called herbrandized nonstandard uniformity:

NCR: Vy:tF'x:0®(x,y) > F's:0*Vy:t3Ix € s D(x,y).
In addition to these, the former characterization had idealization
I: V¥ :0*qy:tVxesox,y)—Iy:tVix:op(x,y),
whose dual

R: Vy:t¥x:09(x,y)—Fs:0*Vy:rIx €s5s¢(x,y)
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is clearly a consequence of NCR, and the herbrandized generalized Markov'’s princi-
ple

HGMP* :  (Y¥x:0¢(x) > ¢) = F's: 0™ (Vx € sp(x) — ¥).
We will replace them as follows.

Definition 2.19 Lets : o*. We say that s is a hyperfinite enumeration of the type
o if
Vi o (x €59).
We define, for all types o, a predicate
hyper(s) := Yx : 0 (x € 5),

as well as quantifiers ranging over hyperfinite enumerations, with defining axioms

VP s o @(s) := Vs : 0™ (hyper,(s) — ®(s)),

IPs: 0* @(s) :=Ts : 0™ (hyper, (s) A D(s)).

The most basic nonstandard principles are, arguably, overspill and underspill in the
type of natural numbers:

0So: V1 :0¢(n) — 3n:0(=st(n) A p(n)),

USo: Vn:0(=st(n) — ¢(n)) — I'n: 0¢(n).
These principles are almost invariably used with formulae of the form Vk < n ¢(k),
stating that a certain property holds up to a number n. From the assumption
V¥ Yk < n @(k), which says that ¢ holds up to any standard natural number, OSq
allows one to derive that ¢ holds up to some nonstandard (infinite) number 7.

From n, one can obtain a hyperfinite enumeration s := (0, ..., n) of the natural
numbers, so that Vk < n¢(k) <> Vk € s@(k); and, in a way, it is this fact—that
n induces a hyperfinite enumeration—that is relevant to the argument, rather than
n being nonstandard. This suggests the following generalization of overspill and

underspill to all finite types.
We introduce the principle of sequence overspill

0S*: Vs :0*p(s) — Is : 0* ¢(s),
and its dual, sequence underspill

US*: Vs :o*g(s) — I : 0% 0(s).
Proposition 2.20  We have E-HA®* - | <> OS™.

Proof Assume |, and suppose that Vs : 0* ¢(s). Let ¢ : (6*)* be a standard
sequence of sequences; then s := #o - ... - f;j—; is again standard, so ¢(s) holds.
Furthermore, by construction, for all i < |¢|, ; C s; in other words,

Vi (0%) 30"V et (I S5 Ap(s)).
By idealization, we obtain
s 10"V 0¥ (1 S5 A g(s)).

It remains to prove that V't : ¢* (t C s) < hyper(s), an easy consequence of
Lemma 2.12.
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Conversely, assume OS™, and suppose that ¥*'s : 6*3y : T Vx € s¢(x,y). By

sequence overspill, it follows that
Iy rIVP5 0% Vx € sp(x, y),
which implies that
Jy V% 10" o(x, y).

This concludes the proof. O
Several consequences of | are listed in [22] and in [30], which, by the previous propo-
sition, are also consequences of OS*. For us, it is particularly relevant that OS*
implies an external version of the lesser limited principle of omniscience, a noncon-

structive principle well known in the area of reverse mathematics (see, e.g., [8]);
namely,

LLPO™ :  Vx,y 10 (p(x) VY (»)) = (V'x 1o p(x) Vv V'x 10 ¥(x)).
Proposition 2.21  We have E-HA2* + OS* I~ LLPO*.

Proof  Suppose that V¥'x,y : o (p(x) Vv ¥(y)). We prove by external sequence
induction that
V¥ 0" (Vx € sp(x) vV Vx € s¥(x)). (1)
Fors = ()g, VX € s 9(x) vV Vx € s ¥ (x) is vacuously true. Suppose that it is true
for some arbitrary, standard s, and pick any standard a : 0. We want to show that
Vx € Cas¢(x)vVx e Casy(x).
Suppose that Vx € s ¢(x) (the case where Vx € s v (x) is true is similar). Since
Vix,y to (p(x) vV v(p),
we have
Vb € Cas (¢(a) v ¥ (b));
since Cas is a finite sequence, we can run through all b € Cas and see whether ¢(a)
holds. If so, then Vx € Cas ¢(x) holds and we are done; otherwise, we will get
that ¥ () holds for all b € Cas and we again achieve the desired disjunction. Now,
applying sequence overspill to (1) gives
IPs:0* (Vx € s(x) V Vx € s ¢ (x)).
which implies LLPO™. O
Note that OSg alone would have sufficed to prove the restriction of LLPO™ to type 0.

Since | is equivalent to OS™, it would make sense if R were equivalent to US*; yet
things are not so simple. In fact, only one implication seems to hold.

Proposition 2.22  We have E-HA2* + US* - R.
Proof  Suppose that Vy : 7 3%x : 0 ¢(x, y). Then
VP o* Yyt tdx € sp(x, y),
which, by sequence underspill, implies I*s : 6* Vy : t3x € s o(x, y). O

What is missing, to obtain an equivalence, is precisely the last characteristic princi-
ple.

Proposition 2.23  We have E-HA®* 4+ US* = HGMP*.
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Proof  Suppose that V*'x : 0 ¢(x) — V. Then
IYPs: 0* Vx € s p(x) = ¥,
which is intuitionistically equivalent to
VPP o* (Vx € s p(x) — ¥).
An application of sequence underspill leads to the conclusion. O
We now complete the characterization of US™.

Proposition 2.24  We have E-HA®* + HGMP* + R | US™.

Proof  Suppose that V™Ps : o* ¢(s); that is,

Vs:o® (Vix o (x €5) = ¢(s)).
By the herbrandized generalized Markov’s principle, this is equivalent to

Vs:o* I 0™ (1 S5 — 0(s)).
which, by realization and intuitionistic logic, implies

P (0*) Vs 0* (Vi €t (i’ C5) = ¢(s)).
Take a standard # : (0*)* asin (2.2), and pick s := fp-...#7—1. By Lemma 2.12,
s is standard, and for all ¢’ € ¢, ¢’ C s; therefore, it holds that ¢(s). We thus prove
I 0™ @(s)

and the sequence overspill principle. O
Replacing ¥ with a contradiction, for example, 0 =¢ 1, and choosing a negated ¢(x),

we see that HGMP¥—hence, US* as well—implies an external version of Markov’s
principle, another noted principle that is rejected by strict constructivism:

MPY: (V¥ :0 (p(x) V=p(x)) A==F'x 0 ¢(x)) > F'x : 0 ¢(x).
This is another instance of a principle whose nature appears markedly nonstandard,

forcing a nonconstructive mode of reasoning.

Theorem 2.25 (Soundness of the nonstandard Dialectica interpretation) Suppose
that

E-HAZ* + OS* 4+ US™ + NCR + HAC*" + HIPY, 4+ A F ®(a),

where Ay is a set of internal sentences. Let ®(a)Ps = 3%s V*'y op_(s,y,a). Then
from the proof we can extract a tuple of closed terms t such that

E-HA®* + A VX(stt (. X’Q)

Proof  This is [30, Theorem 5.5], coupled with the fact that OS*™ + US™ is equiv-
alent to | + R + HGMP* over E-HA®*. We provide explicit realizers for the new
principles.

The interpretation of OS™ is

PSSV (Vs € S[s']@(s) = 3s (5" S 5 A @(s))).

and we can take S := As’.(s').
The interpretation of US™ is

PT V" (Vs3s' €5 (s S5 — @(s)) = Tt € T[s"]o(1)):
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since Vs 3s” € s” (s" © 5 — ¢(s)) implies ¢(sg - ...+ 5[ _,), unless s” is the empty
sequence (in which case, the premise is false anyway), we can take

T— AS//-(S(/)/""'Sl/;NI—I)' O

Corollary 2.26  The system
H:= E-HAY™ + 0S* + US™ + NCR + HAC™ + HIPY
is a conservative extension of E-HA®*, hence of E-HA®.

Proof  This follows from the soundness theorem, noting that internal formulae are
D-interpreted as themselves. O

Theorem 2.27 (Characterization of nonstandard Dialectica) Let ® be a formula
in the language of E-HAZ™.

(a) We have HF ® < &P
(b) If for all formulae WV of the language of B-HA®*, with WPs = 3g VY (s,
Y.

H+oHW

implies that there exist closed terms t such that
E-HA®* = Vy y(t,y)
holds, then HF @.

Proof  See [30, Theorem 5.8]. O

Again, we refer to [30] for proofs of other consequences of the soundness and char-
acterization theorems, including the closure of H under the transfer rules

o VX 1o p(x)
TRy : Vx:op(x)’

o Ax:oe(x)
TRa: Py o p(x)”

In summary, the Dg-interpretation is characterized by two reasonable nonstan-
dard principles and three principles which share the attribute herbrandized—some-
thing we will later explain in detail. In the next section, we will show that, under the
right interpretation of a first-order language, these principles are true in Moerdijk’s
topos of filters.

3 The Filter Topos &

For this section, we assume some basic knowledge about Grothendieck topoi, what
it means to interpret a first-order language in a Heyting category, and forcing seman-
tics; van Oosten [31, Chapter 4] and Mac Lane and Moerdijk [ 14, Chapter 6] can be
used as a reference.
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3.1 The filter construction Blass [3] introduced a category of filters of sets and
“continuous” maps between them; rediscovered by Moerdijk, it was used as the
underlying category of a site, whose sheaves provided a model of nonstandard arith-
metic.

This category arises from Set as a special case of a general construction—the filter
construction—whose properties and functoriality were studied by Butz [4]. When
applied on arbitrary categories with finite limits, it can be considered as a completion
of the subobject posets under arbitrary meets. We will briefly discuss the general
construction, following Butz, before specializing to the case of Set.

We start by recalling the definition of filter on a A-semilattice, that is, on a poset
with all finite meets.

Definition 3.1 Let S be a A-semilattice. A filter on S is an inhabited, upwards
closed subset of S that is closed under binary meets.

We say that a filter is proper if it does not coincide with S'; otherwise, it is non-
proper.

Following Palmgren, we would rather work with filter bases, indexed by a set 1.

Definition 3.2 A filter base ¥ on § is an inhabited set {F; };<; of elements of S
such that, for all i, j € I, there exists k € I such that ¥, < F; A F;.

A filter base generates a filter as follows: A belongs to the filter if and only if there
exists i € I such that ; < A.

Note that a filter base generates a nonproper filter if and only if it contains the bottom
element.

In every category C with finite limits, the subobject posets are in fact A-semilatti-
ces; it is therefore possible to speak of filters of subobjects. That is sufficient to
perform the filter construction.

Definition 3.3 Let C be a finitely complete category. The filter category &C over
C is described by the following data.

e Objects are pairs (C, F7), where C is an object of C, and F7 is an [ -indexed
filter base on Sub(C).

We will usually write ¥ for (C, ¥7), when the underlying object and indexing set
are not relevant, and just call it a filter. We say that the ¥;,i € I, are the base objects
of the filter.

e Morphisms are “germs of continuous morphisms.” A continuous morphism
a: (C,¥r) — (D, §y) is a partial morphism

F
/N
C D

in C, defined on some base object ¥;, such that for all j € J, there exists
i’ € I such that ¥ < «*§; in Sub(C).
We declare two such morphisms « : ; — D, o’ : ¥; — D equivalent

if there exists k € I such that ¥ < #; A ¥} and a|3,k = a/}fk; that is, the
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following pullback square commutes:

Fr —— F;

[k

.KF/L)D

We have an embedding of C into FC, where an object C of C is identified with the
“simple” filter (C, {C}). We will usually still denote the latter with C.

We will not be overly pedantic about distinguishing between morphisms and their
germs and will write both in the same style.

Lemma 3.4 The category §C is finitely complete.

Proof 1t is sufficient that §C has a terminal object, binary products, and equaliz-
ers. We give their construction, and omit the proof of the universal properties.

The terminal object is the filter (1, {1}). The product of (C, ¥7) and of (D, §;)
is the filter (C x D,(F x §)rxy), where (¥ x §) jy := F; x §;, foralli € I,
jelJ.

The equalizer of two morphisms o, 8 : (C,¥;) — (D, §;), represented by
o: ¥ — Dand B :F; — D,is the inclusion (C', (¥ A C)y) = (C, 1), where
C’ is the equalizer of @ and 8 in C, and (¥ A C’); := F; AC' foralli € I. O

Lemma 3.5 A morphisma : ¥ — § of §C, defined on a base object F;, is a
monomorphism if and only if there exists a base object ¥; < F; such that o i 7, isa
J

monomorphism in C.
Proof See [4, Lemma 2.2]. O

Proposition 3.6 For all filters ¥ in §C, Sub(F) is a meet-complete semilattice,
and, for all a : ¥ — G, the change of base functor a* preserves all meets.

Proof By the previous lemma, if & : (C, ¥7) >> (D, §y) is a monomorphism,
there is some base object F; such that a| 7 Fi > D is a monomorphism in C.
Then (C, ¥7) is isomorphic to the filter (D, (§ A F;) ). It follows that subobjects
of (D, §y) are in one-to-one correspondence to objects (D, §7,), such that the base
9, generates a filter larger than §;.

Given an arbitrary family of subobjects {(D, ﬁ;’&))}ie 1, let K be the filter gener-
ated by finite meets of the form

@i1) (@in)
Giin N NG G

for (i1, ...,in) an arbitrary finite sequence in /, and j&) e J) k = 1,...,n.
Then _

N\ (D900 = (D.3).

iel
That this is preserved by change of base can be easily verified by the explicit con-
struction of pullbacks in §C. O

An important feature of the filter construction is that it preserves some of the addi-
tional properties that C may have.

Proposition 3.7 Let C be a finitely complete category.
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(a) If C is regular, then §C is also regular.
(b) If C is coherent, then §C is also coherent.

Proof  See [4, Proposition 3.1] and [4, Proposition 3.2], respectively. O

Moreover, if C has all finite coproducts, then §C has them too. In this case, the initial
object of FC is the simple filter (0, {0}); this is isomorphic to any nonproper filter
(C, F1), where ¥; = 0 for some i € I. Given two filters (C, ¥7) and (D, §;), their
coproduct in FC is the filter (C + D, (¥ +§)1xs), where (¥ +8),j) := F + §;,
foralliel,jelJ.

It is not, however, the case that FC is necessarily a Heyting category, when C
is: binary meets do not, in general, distribute over infinite joins in the (complete)
subobject lattices of ¥C, as shown in [4, Example 1.6]. But this is not a problem,
since we really only need #Set to be a coherent category.

As it happens, coherent categories admit a “natural” Grothendieck topology,
sometimes called the precanonical topology: for all objects C of C, a K-cover of C
is a finite family { f; : C; — C}7_, such that the union of the images of the f; is the
whole of C.

As shown in [9, Example C2.1.12(d)], K is subcanonical; that is, representable
presheaves, of the form yC, for C an object of C, are K-sheaves.

Explicitly, for a filter category FC, that {By : G — F}}_, is a K-cover means
that, for all choices of base objects gy j, of &, k = 1,...,n, there exists a base
object F; of ¥ such that

% =< ,Blgl,jl VeV ﬂngn,jn'

Definition 3.8 We will denote the topos Sh(FSet, K) by N, for a nonstandard
universe.

As for all Grothendieck topoi, the global sections functor
I': N — Set,

sending a sheaf F to the set Hom(1, F), has a left adjoint A : Set — N called
the constant objects functor. This can be explicitly characterized as follows: for all
sets S, at all filters ¥ of & Set,

(AS)F ={a:F — S| « takes a finite number of values}.

Here, S is identified with the simple filter (S, {S'}). It follows that the Yoneda embed-
ding preserves all coproducts of a finite number of copies of 1, but not the natural
numbers object.

Let £ be a many-sorted first-order language, and suppose that we have fixed an
interpretation of &£ in Set. We call formulae of £ internal, and denote them with
small Greek letters. We also want the types of £ to be closed under the clause

> if S is a type, then S* is a type,
where S* is meant to denote the type of finite sequences of elements of type S. We
will borrow all the notation from the first section in handling finite sequences.

We will identify types and function and relation symbols of £ with their inter-
pretation in Set, and use the standard double square bracket notation for the derived
interpretations that we are now going to define. We will take advantage of this seman-
tic overload, and say, for instance, that the type S is inhabited, or that it is infinite, if
its interpretation in Set is; also a formula ¢ is true if its interpretation is true in Set.
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Let £ be the extension of &£ with a unary predicate symbol sts € S for each
type S. We denote formulae of £ with capital Greek letters. We will use abbrevia-
tions

Vix 1S ®(x) 1= VxS (stg(x) > P(x)),
Fla: S O(x) :=3x : S (sts(x) A D(x)),
as well as the defined predicate
hyperg(s) := V¥x : S (x € s),
for s : S*, with the relative quantifiers
VP 0 S* (s) := Vs : S* (hyperg(s) — ®(s)),
IWPs : §* P(s) := s : S* (hyperg(s) A D(s)).

We will often drop the subscript and just write st(x) or hyper(s).

We define an interpretation of £ in N as follows (y denotes the Yoneda embed-
ding):

(i) for each type S, JSK:=yS;

(ii) for each constantc : S,JcK:=yc:1 —>yS;

(iii) for each function symbol f : S;,...,S, — S, JfK:=yf : y(S; x---

X Sy) = yS;
(iv) for each relation symbol R € Sy,...,S, of £, JRK := yR > y(S; x ---
X Sn);

(v) foreach type S, JstgK := AS.
In particular, JstyK is the natural numbers object in N, and the larger sheaf JNK is a
nonstandard model of arithmetic.

The following, fundamental theorem connects the forcing semantics of internal

formulae in N with truth in the metatheory. It is found as [22, Theorem 1] and is an
extension of [16, Lemma 2.1].

Theorem 3.9 Let ¢(x) be an internal formula, with free variable x of type S, and
let (C, F7) be a filter. For alla € JSKF,

F I+ o(a)
if and only if there exists i € I such that, for all u € ¥;, it holds that ¢(a(u)).

Corollary 3.10 (Transfer theorem)  Let ¢ be an internal sentence. Then @ is true
if and only if I ¢.
Theorem 3.9 says everything there is to know about internal formulae; we move on

to the semantics of the standardness predicate.

Lemma 3.11 Let ¥ be a filter, let S be a type of £, and let o € JSKF . Then,
F I sts(a) if and only if there exist a K-cover {By : G — F}j_,, and elements
X1,...,Xn € S such that the diagrams
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Proof  This follows immediately from the interpretation chosen for the standard-
ness predicate and the description of AS. O

Lemma 3.12 Let ®(x, y) be an external formula, with free variables x : S and
y: T, let ¥ be afilter, and let @ € JSKF . Then
(a) FI=Vy : T ®(a,y) ifand only if, forally € T, ¥ I+ O(a, y!);
(b) F I+ Iy . T ®(a,y) if and only if there exist a K-cover {Br : § —
37}221, and elements y1, ..., y, € T such that
gk I~ (D(Olﬁk,yk!), k:l,...,n,
or, equivalently, there existst € T* such that ¥ |+ 3y € t! O(w, y).
Proof See[21, Lemma 3.3]. O

With these lemmas, we are able to prove that the simple axioms that we imposed
on the standardness predicate in the system E-HAZ* hold in . That the predicate
respects equality is immediate; that closed terms are standard, in this context, is due
to the fact that, for all types S and elements « € JSKI,

I sts (),
as any morphism ¢« : 1 — § is obviously constant.
Proposition 3.13 For all types S, T, the following statement is true in N :
VUf S = T V% Sstr(f(x)).

Proof ByLemma3.12,IF VS f :S — T Vsx: Ssty(f(x)) if and only if, for all
fe(S—>T)andx €S,

= stz (f1(x1)).
But J f!1(x!)K = J f(x)K, and the latter is clearly standard. O

Proposition 3.14 The external induction schema |A* holds in N

Proof Let ®(x,n) be an external formula, with x : S and n : N, let ¥ be a filter,
and let @ € JSKF . Suppose that

F Ik ®(a,0) A V9 : N(P(a,n) - D(a, Sn)).
Then, by Lemma 3.12, we have that ¥ |+ ®(«,0!) and that, for all n € N,
F I+ ®(a, n!) implies ¥ I ®(, Sn!). By induction in the metatheory, we obtain

that, forall n € N,
F |+ O(a,n!),

s0, again by the semantics of the external quantifiers, ¥ |- V*n : N ®(«, n). O
Lemma 3.12 also has the following easy consequence.

Corollary 3.15  Let ¢ be an internal formula. Then |- V¥x : S Py : T ¢(x, y) if

and only if it is true that Vx € S Ay € T ¢(x, y). Equivalently, the rule
Vx:o3dy:te(x,y)

Viix o'y ite(x,y)

TRV§| .

holds in N.

We have, by now, a good picture of the semantics of first-order logic in the filter
topos V. In the next section, we will deal with the characteristic principles of non-
standard Dialectica.
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3.2 Characteristic principles For the results in this section, we cannot take much
credit, since a characterization of first-order logic in the topoi Sh(%C, K), with C
coherent, has already been provided by Butz [4, Proposition 4.5], albeit with a dif-
ferent aim and formalism. The choice of principles, however, is different, due to our
focus on nonstandard arithmetic; moreover, it will allow us to see herbrandization
“in action,” once we decide to “de-herbrandise” in the following section.

We start from the truly nonstandard principles: sequence overspill and underspill.

Proposition 3.16  The principle OS™ holds in N.

Proof Let ¢(y,s) be an internal formula, with variables y : 7 and s : S*, let
(C, 1) be an arbitrary filter, let « € JTKF, and assume that

F = Vs 8% o(a,s).

By Lemma 3.12, for all s € S*, ¥ I+ ¢(«a,s!); by transfer (Theorem 3.9), for all
s € S*, there exists i € I such that, for all u € F;,

w(a(u),s).
Define a filter (C x S*, §7xs*) as follows: foralli € I,¢ € S*,
G = {(u,s) lue FintCs /\qo(ot(u),s)}.

The filter condition is easily checked: given § sy, §(; ), pick k € I such that
Fr € Fi N Fj,and t" :=t-t'; then, G,y S 86, NGy

The projections 711 : & — F and 7, : § — S* are clearly continuous. We now
check

§ |- hyper(m,).

By definition, this means § |- V%x : S (x € m,); equivalently, for all x € S,
9 I+ x! € mp. By transfer, it suffices to prove that, for all x € S, there exists
(i,t) € I x S* such that, forallu € F; and s D ¢, it holds that x € s; so we can take
t := (x)and i € I arbitrary.

Furthermore, § |- ¢(amq, ) holds by construction. Hence, to derive that

F I 3s : §* (hyper(s) A @(a. 5)),

it remains to show that 7y is covering. Let §; ;) be an arbitrary base set of §. By
the assumption, we can find j € [ such that, for all u € ¥}, ¢(a(u), t); then, if we
choose k € I such that F; C F; N F;, we have that

Fr Sm 8.

This concludes the proof. O

Lemma 3.17  Let ®(x) be an external formula, x : S, such that
I-3x : S ®(x). 2

Then
Vy T (Vx: S (0(x) = ¢(y.x)) = Fx: Sp(y.x))

holds in N for all internal formulae .
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Proof Let ¥ be any filter, let ¢(y, x) be an internal formula, with a variable y : T,
and let @ € JTKF . Suppose ¥ |- Vx : S (®(x) — ¢(«, x)); equivalently,

F xS I ®(mp) = p(amy, m2). 3)

Assume (2). Then, there exist a cover {§ — 1}}_, and elements oy € JSKG,
k =1,...,n, such that

S - ®(ox), k=1,....n.

By our interpretation of the type S, the o} ’s correspond to morphisms oy : § — S
in §Set; by the monotonicity of the forcing relation, we obtain

F x gk |- @(Okn’z),
which, by the commutativity of the diagrams

Fx G 2 G,

lid X Of lﬁk
Fxs-T2,8
fork =1,...,n,is the same as & x & I+ O (72 (id x op)).
Therefore, from (3), it follows, by monotonicity, that

F x G, I+ p(amy, oxma);

by transfer, for all k = 1,...,n, there exist base sets F;, of ¥, G, j. of G, such
that, for all u € ;, and v € §; j, , it holds that ¢ (a(u), ok (v)).

Now, since the §j’s cover 1, there exists some x € 01§ ;, U---U 0,8, ;,. For
such an x, taking ¥; € ¥;, N --- N F;, and using transfer, we have

FIF (o, x);
hence ¥ I 3x : S ¢(«, x), which was to be proved. O
Proposition 3.18  The principle US™ holds in N.

Proof This follows from Lemma 3.17, by taking ®(s) := hyper(s), and using for
condition (2) the fact that, by sequence overspill, hyperfinite enumerations of any
type exist in N . O

Given sequence overspill and underspill, one can adapt the proofs of the first section
to show that other principles, including idealization and the herbrandized generalized
Markov’s principle, hold in &'. However, one should pay attention to the fact that,
while finite types were all inhabited and actually had infinitely many elements, in
this context a type S can be finite or even empty. So, for instance, the implication
0S* — OS only holds for types with infinitely many elements: by the definition of
standardness, a finite set has only standard elements.

Next, we deal with two characteristic principles of nonstandard Dialectica, whose
validity in the filter topoi is independent of the metatheory.

Proposition 3.19 The principle NCR holds in N.

Proof Let ¥ be any filter, let ®(z, x, y) be an external formula, with x : S,y : T,
z : U, and let o € JUKF. Assume that F |- Vy : T3Fx : § ®(a, x, y), or,
equivalently,

FxTIFF%: S O(ar, x, m).
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By the semantics of the 3* quantifier in V, this means that there exists s € S* such
that

FxTIF3x €s!Oamy, x, m2);
equivalently, since s! = slmy, ¥ |- Vy : T Ix € s! O(a, x, y). Therefore,

FIETFs:S*Vy: T3ax € 5! P(a, x, ). O

The next proof is a variant of [4, Lemma 5.6(vi)]. It utilizes the following general
result about Grothendieck topoi. Here, a is the sheafification functor.

Lemma 3.20  Let (C, J) be a site. A set{f; : C; — C}ier of morphisms of C is
J-covering if and only if the set {ay f; : ayC; — ayC };cy is jointly epimorphic in
Sh(C, J).

Proof See [14, Corollary I11.7.7]. L]
Proposition 3.21 The principle HIPY, holds in N

Proof Let ¥ be any filter, let ¢(z, x) be an internal formula, let W(z, y) be an
external formula, with x : S,y : T,z : U, and let « € JUKF . Suppose

FIEVY%: S x) — Fy: TY(a,y).

By the semantics of first-order logic in a Heyting category, this is equivalent to
a*IVix o(z, x)K < a*JF'y : T W(z, y)K

in Sub(y). By the semantics of the V* predicate, we can write

a*IVix p(z, x)K = o* /\Jga(z,x!)K,
x€S

and, by the suitable transfer theorem, for all x € S,
Jo(z, xH)K = y{z eU | oz, x)}.
Since the Yoneda embedding preserves and reflects all limits, we obtain

a*IVSix o(z, x)K = y(oc* /\ {zeU| <p(z,x)}) = yH.

xeS

For the consequence, we have, by the semantics of 3% in N, that

a*JF'y T Y(z, y)K=a* \/ JAy e 1 W(z, y)K =

teT*
= \/ «* 3y eV k= \/ F,
teT* teT*

where we also used that unions are stable under pullback. Thus, there is a monomor-
phismm : yH >—> \/,cr+ Fy.

Leti; : Fy >> \/,cp« Fy be the inclusions of the F; in their union, forall € T*,
and consider the pullback diagrams

m*F,— F,

! [

yH s \/,ers Fr
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Now, we use the fact that each m™* F; can be covered with a family of representable
sheaves, to obtain a family { f; : y§; — yJ}:er* of morphisms, such that each m f;
factors through a single F;.

Moreover, since the {1; : F; >> \/,cp« Fi}yer jointly cover \/,cp« Fy, and in
a Heyting pretopos all epimorphisms are stable under pullback (see [14, Proposi-
tion IV.7.3]), the family { f; : y§; — yJ };er=* is jointly epimorphic over y# .

By the previous lemma, we can extract a family of the form {yf; : y% —
yH i —y» where { B : G — JH}}_, is a K-coverin FSet. Let? := 11 -...- 1y, such
that yBy factors through F; ,k =1,...,n. Then,

yH = a* IV 'x oz, x)K < o™ \n/JHy e\ V(z, y)K=a*J3y € 1! ¥(z, y)K.
k=1
Translating back to forcing semantics, this is precisely the statement that
FIEVS%: So(a x)— Ay ct!¥(a,y),
from which it follows that

FIEFr T (V' S, x) > Py er ¥(a, y)). O

So far, we have used no principles whose constructive status is controversial, neither
in the construction of the model, nor in our proofs. However, for our last pair of
characteristic principles to hold, we must require that the axiom of choice holds in
the metatheory.

Proposition 3.22 Suppose that the axiom of choice holds in the metatheory. Then
the principle HAC* holds in N

Proof Let ¥ be any filter, let ®(z, x, y) be an external formula, with x : S,y : T,
z:U,andleta € JUKF . Assume that

FlEvix:SFy: T (o, x,y):
by Lemma 3.12, this means in N that, for all x € S, there exists t € T such that
FIE3y e t! d(a, x!, y).

With the axiom of choice, we can find a function f € S — T* such that, for all
x €S,
F -3y e f(x)! P(a, x!, ).
Since J f(x)!K = J f1(x DK, it follows that
FIEFf:8 > T*V%: 53y € f(x) P, x, ). O

In fact, a herbrandized version of the axiom of choice would suffice; but that would
be a strange axiom to have in one’s metatheory. The condition is necessary to a
certain extent, for HAC™ implies a herbrandized axiom of choice—call it HAC—in
Set. Suppose that

Vx e Sy e T p(x,y).
By Corollary 3.15, it follows that |- Vs'x : S Ity : T o(x, y). If HAC® holds in N,
we can deduce

=34 F 8 — T*Vix: Sy € f(x)p(x, y);
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applying the transfer theorem again, we obtain
df eSS —>T*Vxe Sy e f(x)o(x,y)

in Set.
In the same way, the transfer rules can be used to rule out the unconstrained valid-
ity of other principles in N, as in the following example.

Example 3.23 Let 7T'(s) be a binary tree, that is, an internal formula on binary
sequences such that

(1) T(()) holds, and
(2) Vn,m € NVs € 2N(T'(sm) An < m) — T(5n), where 5n = (so,...,
Sn—1)-
The fan theorem is the statement that for any such 7, if, for all sequences s € 2N,
there exists n € N such that — T'(5n), then there exists some n € N such that = T'(5n)
holds for all s € 2N,
We consider the following, external version of the fan theorem:
FANS : V% : 2N  N=T(Gn) — 3% : NV : 2N = T'(5n).
We claim that, if FAN® holds in .V, then the fan theorem holds in the metatheory.
For suppose that, for all s € 2N there exists n € N such that — T (sn). By transfer,
I Vsts : 2N 3 N = T'(5n);
if FAN® holds, we deduce
I- 3t N Vs : 2N = T (Gn).
This means that there exists a finite sequence ¢ of natural numbers such that
I-3n et Vs : 2N =T (3n).
By condition 2 on binary trees, we have that, if =7 (sn) and m > n, then also
— T'(sm); therefore, picking 71 := max{fo, ..., -1}, we are sure that
I- v 2N = T (3aY).

By transfer, for all s € 2V, — T'(571), and we have proved the fan theorem.

4 The Uniform Diller-Nahm Interpretation

In this section, we take a step back, forgetting about nonstandard arithmetic for
a while; a reconsideration of ideas from Lifschitz, Berger, and Hernest leads us
to a new functional interpretation—uniform Diller-Nahm—of which nonstandard
Dialectica can be seen a posteriori as a herbrandized version.

4.1 Calculability and herbrandization In [13], Lifschitz made the suggestion to see
constructive mathematics as an extension of classical mathematics.

Lifschitz’s proposal is to enrich the language of Heyting arithmetic with a predi-
cate K(n), “n is calculable,” and then extend Kleene’s recursive realizability relation,
written it xrg @, with the clause

> xrgK(n) if and only if x = n,

all the while interpreting quantifiers uniformly:
> xrgVn ¢(n) if and only if Vn (xrge(n)),
> xrg3In ¢(n) if and only if In (xrge(n)).
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In this definition, quantifiers are, by themselves, completely void of any compu-
tational meaning; it is by invoking quantifiers restricted to calculable numbers,
Vn (K(n) — --+) and 3n (K(n) A ...), that one restores it.

A couple of decades later, Lifschitz’s demand was rediscovered, from a com-
pletely different perspective, in the area of proof mining. Rather than the founda-
tional issue of injecting a certain “modular constructiveness” into classical reason-
ing, it was the practical problem of more efficient program extraction from proofs
that was addressed.

Even in fully intuitionistic proofs, a fine-grained analysis reveals instances of for-
mulae with quantifiers that are computationally redundant; that is, the constructive
content that is encoded in the quantifiers is never used in the program extracted with
the aid of a functional interpretation.

One would want a way to flag such quantifiers, telling the extraction program to
just “pass through” them. This is the function performed by Berger’s uniform quan-
tifiers in [2] and by Hernest’s quantifiers without computational meaning in [7]. But,
realizability being a rudimentary functional interpretation—this is clear, in particu-
lar, for Kreisel’s modified brand (see [18])—this is also what Lifschitz’s calculability
predicate achieved!

One possibly unexpected consequence of Lifschitz’s ideas is that there will be two
types of disjunction as well. One is a computationally empty disjunction Vv, with

PVIY-Iz:0(z=0>DPA—-z=0—>V),
while there is also a computationally relevant disjunction Vi, with
PV V- Iz:0KE)Az=0—>DPA—-z=0— V).

These are not equivalent: in fact, only the second computationally relevant disjunc-
tion will act as a disjunction with respect to all the formulae in the language; the
computationally empty disjunction only acts as a disjunction with respect to “inter-
nal” formulae (i.e., those not containing the K-predicate).

Herbrandization can be seen as a way of repairing this schism. The idea is to
weaken the computational meaning of the K-predicate and define instead

> xrgK(n) if and only if x codes a sequence and # is one of the components of
the sequence coded by x.
This is reminiscent of Herbrand disjunctions in classical logic—whence the name.
There are some technical difficulties to overcome and this idea works especially well
in the context of modified realizability, leading to Herbrand realizability as intro-
duced in [30].
This process of herbrandization is reflected in many of the characteristic principles
of Herbrand realizability. While the axiom of choice for finite types

AC: Vx:03dy:1®(x,y) > 3If:0 >1tVx:0D(x, fx)

is a characteristic principle of modified realizability, the herbrandized axiom of
choice

HACY: V¥ :03'y:1d(x,y)
- If (0 —> )V 0Ty € fx] D(x,y)

(writing st again instead of K) is a characteristic principle of Herbrand realizabil-
ity. It seems natural to regard many of the characteristic principles of nonstandard
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Dialectica as herbrandizations of other, unherbrandized, principles, suggesting that
also nonstandard Dialectica can be obtained by a process of herbrandization from a
functional interpretation which incorporates many of Lifschitz’s ideas. The aim of
this section is to show that this is indeed the case.

Remark 4.1 Note that it is an immediate consequence of herbrandization that
disjunction loses any constructive meaning. In fact, a good way to think about her-
brandization is as a way of weakening the computational meaning of the K-predicate
in such a way that Vg collapses to the ordinary, computationally empty, disjunction.
Something like this is presumably unavoidable when one wants to interpret non-

standard systems: indeed, there seems to be a clash between the computational mean-
ing of disjunction and nonstandard arithmetic. One way in which this manifests itself
is that systems for nonstandard arithmetic often do not have the disjunction property:
for example, E-HAS* + OS, does not have the disjunction property, as proved in
Avigad and Helzner [1]. Another manifestation is the incompatibility of Church’s
thesis for disjunctions

Vx:0 (p(x)vVi(x)) —3f :0— 0(f is computable A

Vx:0(f(x) =0—@(x) A f(x) #0—>9(x)))
with the existence of nonstandard models for arithmetic (see [15]), showing, for
instance, that there are no nonstandard models of arithmetic in the effective topos.

This should be compared with the Herbrand topos from van den Berg [29], where
nonstandard models of arithmetic do exist.

Before defining our new functional interpretation, we should first “de-herbrandize”
our system. By the previous discussion, we can already guess that “internal formula”
has to be replaced by the next best thing—*"internal and V-free formula.”

Notation If P is an axiom schema where certain schematic variables range over

internal formulae of E-HA2Z*, we write P\, for the same axiom schema, where “inter-

nal” is replaced by “internal and Vv-free.”

Our tentative characteristic system is then E-HA2Y, that is, the system E-HA%* with
IA, in place of IA, plus the characteristic principles OS?,, US”V‘, ACH,

Py, (Yx:iop(x) > Py t¥(y) - Fy o (Vix:oex) > ¥(y)),
NU: Vy:tPFx:0®(x,y) »> F'x:0Vy:1d(x,y).

Since the restriction to V-free formulae also applies to the internal induction schema
IA, we do not get a proper system of arithmetic. This would actually be inconsistent
with the nonstandard uniformity principle NU.

Proposition 4.2 In E-HAZY, the principle NU implies
=Vn:0n=0v—-n=0).
Proof  Suppose Vn : 0(n = 0V —n = 0). This is equivalent to
Vn:03z:0z=0—>n=0A-z=0— —n=0),
which, by nonstandard uniformity, implies
Fz:0Vn:0z=0—->n=0A—-2z=0——n=0),

the statement that all natural numbers are zero, or all are nonzero, which is a contra-
diction. O
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With the interpretation of st(n) as “n is calculable,” this is not unexpected; for how

could we know whether a noncalculable number is zero or nonzero? Notice that

V¥n : 0(n = 0v —n = 0) is still provable, thanks to the external induction schema.
The reason why we called NU a uniformity principle is the similarity of

Vs:0"Fn :00(s,n) — F'n:0Vs:0* ®(s,n)
to Troelstra’s uniformity principle (see [28, Proposition 8.217])
UP: VSCNaIneN®S,n)—>IneNVS CND(S,n),

a second-order principle that is validated by higher-order versions of recursive real-
izability, and which also has nonclassical consequences.

We can now define our de-herbrandized functional interpretation, prove that it is
sound, and show that it is characterized by the desired proof system.

4.2 The U -translation

Definition 4.3  To every formula ®(a) of the language of E-HAZY), with
free variables a, we associate inductively its uniform Diller—Nahm translation

®(a)V = Fx V¥y ¢u(x, y,a), where gy is internal and V-free:

> @(@)V := gy(a) := ¢(a), for ¢ internal atomic;
> ste(X)Y =Py o (y = x).

Let ®(a)V = F'x ¥y oy (x.y.a), ¥(B)Y = F'u Vv Yy (u.v.b):

> (®@) AVD)Y =T u Yy, v ey (x, y,a) A Yo @, v,b));

> (P@V¥(B)Y =372 0,x,uV"y,v(z =0 gy(x y.a)Amz=0—
Yu(u,v,b));

> (P(a) — ¥(B)Y = T, Y Vix,v(¥y € Yxvoy(x,y,a) - yuUx,
v, b));

> 3z ®(z,a)¥ :=FxVy3AzVy € you(x. )y z,a);

> (V2 0(z,a)V = Fx Yy Vzgp(x,y.z.a);

> (32 P(z.a)Y = Fz.x VY oy (x.y.z.a);

> (V2 0(z,a)V = IX YV, zgy(Xz.p.2.a).

Remark 4.4 In the Dgy-translation, finite sequence application and abstraction
were used to obtain upward closed formulas, which is useful—but not essential—for
the soundness proof. Since this is no longer required in the U -translation, we revert
to the usual application and abstraction. There is, however, no substantial difference
between the two choices, for the two versions of HAC® with the different kinds of
application are equivalent.

The first thing to notice is that, if this interpretation is restricted to formulae that con-
tain only external quantifiers—or, if you prefer, everything is declared standard—it
is the same as the usual Diller—Nahm translation. In fact, except for a minor change
in the interpretation of the uniform existential quantifier, it is to the Diller-Nahm
variant precisely what Hernest’s light Dialectica interpretation is to Dialectica.
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Second, the interpretation is idempotent: formulae of the form

Fx vy o(x.y.a)
with ¢ internal and V-free are interpreted as themselves, as shown by an easy induc-
tion on their structure. This is a feature that the Dg-translation lacked, due to the
clause for the 3 quantifier.

We will now prove the soundness of the interpretation. We will not handle
everything explicitly, though: except those concerning the quantifiers, all the logical
axioms and rules admit the same realizers as those for the Diller—Nahm interpreta-
tion.

We write E-HAQ™* for the system E-HA®* with IA,, in place of IA.

Theorem 4.5 (Soundness of uniform Diller-Nahm) Suppose that

E-HAZS + OS + US{, + NU + ACY + IPY ,, + Ay F ®(a),
where A\ is a set of internal, \/-free sentences. Let ®(a)V = I'x VS‘X pu(x.y.a).
Then, from the proof we can extract a tuple of closed terms t such that

E-HAY" + Ay EVYyu(t,y.a).

Proof = We proceed by induction on the length of the derivation.

(1) The logical axioms and rules of intuitionistic first-order predicate logic. We
consider the quantifier axioms and rules, and give another couple of examples, refer-
ring again to [27, Theorem 3.5.4] for the rest.

(i) Example—weakening : A — AV B.
Suppose that AV = Fx Yy o(x, y, a), BY = Fu Vv y(u,v,b).
Then

(A—>AvB)Y =3"Z X' U.SV'x.y . v(¥y € Sxy'vo(x.y.a) —

(Zx=0—o(X'x.y'.a) N\=Zx =0 — ¥(Ux,v.b))).
and we can take
Z:=2x.0, X' :=Axx,
U arbitrary, S := Ax, )", v.(y’).
(i) Vz A — A[b/z].
Suppose that AV = I'x vy ¢(x,y,z,a). Then

(VzA— Ap/z)Y =X, 8 Vix, y/

X,
(Vy e Sxy'Vzo(x,y,2,a) = ¢(X'x, ', b, a)),
so we can take
X' i=2dxx, S:=2ix,).(y)
(iii) A[b/z] — 3z A.
Suppose that AV = I'x V¥y ¢(x, y,z,a). Then
(A[b/z] — 3z A)U =YX, SVix,¢t
(Vy € Sxto(x,y,b,a) - 3zVy' eto(X'x,y', z,0)),
and we can take

X' =Ax.x, S:=2Ax,t.tl.
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(iv) Example—modus ponens.
Suppose that AY = Fx V*'y ¢(x, y,a), BV = F'u V*'v ¢ (u, v.b) and
that we have terms ¢, realizing the interpretation of AV and T,, T, realizing
the interpretation of (4 — B)Y.
This means that we have

E-HAY® + Ay F Vyo(t,.y,a),
and
E-HAU" + Ay FVx, v (Vy € Thxvg(x, y,a) = ¥(Thx,v,b)).
Taking ¢, := T ,,, we obtain

E-HAY* + Ay F Vv (ty,v,b),

as desired.
B— A

) B—>VzA°
Suppose that AV = Fx Vi o(x,y,2,a), BY = Fu Vv y(u,v,b),
where z is not free in v, and that we have terms T';, T, realizing (B — AY.
Then,

E-HAY" + Ay FVu,y (Yv € Touy ¢ (u,v,b) = ¢(T1u, y,2,a)).
ThenT 5 :=T, and T, := T, realize the interpretation of B — Vz A.
i) A— B
W3 A B
Suppose that AV = F'x V'y ¢(x,y,2z.0), BY = Fuvivyu v.b),
where 7 is not free in ¥, and that we have terms T';, T, realizing (4 — B)V.
Then,
E-HAY" + Ay FVx,v (Vy € Toxvo(x, y,z,a) = ¥(T,x,0,b)).
We have
(3zA— B)Y =3U, S V¥x, v
(Vs € Sxv3zVy €sp(x.y.z.a) > ¥ (Ux, v.b)):
sowecantake 75 := T, and T, := Ax,v.(T,xv) to obtain

E-HAQ™ + Ay FVx,v (Vs € Tyxv3zVy € s9(x, y,z,a) = ¥ (T3x, v, b)).

(2) The nonlogical axioms of extensional Heyting arithmetic in all finite types
(with the restricted induction schema |A,,). These are all internal and V-free and,
hence, are realized by the empty tuple.

(3) The defining axioms of the external quantifiers. Let ®(x)V 1= Iu V¥'v ¢ (u,
v, x) here.

(i) V¥'x ®(x) < Vx (st(x) — D(x)).
The interpretation of V*'x ®(x) — Vx (st(x) — ®(x)) is

FUS. TV, y. v (Vx € SUyV' Vv e TUyV o(Ux, v, x) —
Vx(x =y = oU'Uy, v, x)));
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so we can take
U :=AU,y.Uy, S =AU,y v .{y),

On the other hand, the interpretation of Vx (st(x) — ®(x)) — V¥x &(x)
is
PU LS. TV U, v (Vy € SXUv'Vv € Tx'Uv'Vx
(x=y = oUy v.x)) = oU'Ux". v, X)),
and we can take
U =AU x"Ux', 8§:=x,U,v.(x),
T:=Ax" UV .(v).

(if) F'x P(x) < Fx (st(x) A D(x)).
The interpretation of I*x ®(x) — Ix (st(x) A O(x)) is

PY. U TV 5, u,s (Vv € Txusp(u, v, x) -
Ix' Vv’ Es(qu—x AU xu, v x)))

so we can take

U' = Ax,uu,

Ax,
Ax

I: IQ
e ><

[~ ’*<1
[0

g
The interpretation of its converse 3x (st(x) A ®(x)) — F'x O(x) is
FX,U.SV'y,u',v (Vs € Syuw'v Ix' Vo' es

(r=x"np v, x)) = eUyu', v, Xyu')),
and we can take
X :=2y,u'y, U=y,
S = Ay.u' v.((v)).
(4) The axioms for the standardness predicate.
@) st(x) Ax =y — st(y).
The interpretation of this axiom is
FY'VY (x=x'Ax=y >y =YX,
so we can take Y/ := Ax’.x’.
(ii) st(a) for all closed terms a.
We have (st(a))Y = F'x (¢ = x), so we can take x := a.
(iii) st(f) A st(x) — st(fx).
The interpretation of this axiom is
FYVYF X (f=fAx=x"— fx=Yf'X)
sowe cantake Y := Af’, x’. f/x'.
(5) The external induction schema.
As in [30], we consider the equivalent external induction rule

®0) V'n:0(®(n) > d(n + 1))
Vtn o 0 ®(n)

from which the external induction schema is obtained by taking
O(m) :=V(O) AV'n:0(¥(n) - ¥(n+ 1)) - ¥(m).

IR :
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So, suppose that (®(n))Y = Ix VS‘X @(x, y,n,a), and that we have realizers ¢,
and T',, T, for the premises; that is,

E-HAY* + Ay Vyo(ty,y,0,a),

and
E-HAQ" + Ay FVn,x,y' (Vy € Tanxy o(x, y.n,a) = ¢(Tynx, y'.n + 1,a)).
By taking T, := An.Rt;T,n, we obtain, by induction for Vv-free formulae in

E-HAQ™, that
E-HAY® + Ay b Vn.y o(Tyn.y.n.a).
which was to be proved.
(6) The principles OSY,, USY, NU, AC*, IPY |,
(i) OSy : V¥sg(s) — s (V¥'x (x € 5) A ¢(s)), with ¢ internal and V-free.
This is interpreted as
PSSV (Vs € Ss'@(s) — Is (5" S s A @(s))).
and we can take S := As’.(s").
(i) USy: Vs (V% (x €5) = ¢(s)) — Fs ¢(s), with ¢ internal and Vv-free.
The interpretation of this axiom schema is
PSSV (Vs (5" S5 = ¢(s)) > ¢(Ss));
so we can take S := As’.s’

For the principles NU, AC*, IPY, ,,, we can just observe that the premise and the con-
clusion have identical interpretations, so it is trivial to find realizers for the implica-
tion. We do the first as an example.

(iii) NU: VyI'x d(x,y) - F'xVy ®(x, y).
Let ®(x, y)Y := Fu Vv ¢(u, v, x, y). Both the premise and the con-
clusion are interpreted as

Fx, u vV v Vy o(u, v, x, y);
so the implication is interpreted as
FXLU S Vixu, v
(Vv € Sxuv' Vy o(u,v.x,y) = Vy o(U'xu. v, X'xu. y)).

and we can take

X' = Ax,u.x, U':=Ax,u.u,
S = Ax,u, v .(v).
This concludes the proof. O

As usual, the soundness of an interpretation leads to a conservation result.
Corollary 4.6 The system
E-HAZY 4+ OSY + USY + NU + ACY + IPY
is conservative with respect to v -free formulae of E-HA®*.
Proof  This follows immediately from the previous theorem. O

Now, let
H:= E-HA%} + OS + USY, + NU + AC* + IPY .
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Theorem 4.7 (Characterization of uniform Diller-Nahm) Let ® be a formula in
the language of E-HA®Y

stV
(a) We have HF @ < U,
(b) If for all formulae ¥ of the language of B-HA®Y, with WU = Ity vy ¥r(x,
)
H+oFW

implies that there exist closed terms t such that
E-HAJ" = Vy ¢ (t. y)
holds, then HE @

Proof = We prove (a) by induction on the logical structure of ®. For ® = ¢ internal
atomic, obviously H - ¢ < ¢V

Let ® = st(x). If x is standard, it follows that 3y (x = y), by taking y := x.
Conversely, if 3y (x = y), by the first axiom for the standardness predicate it
follows that x is standard. Hence,

HFE st(x) < Iy (x = ).

For the induction hypothesis, using an appropriate embedding of tuples of
types into higher types and a compatible coding of tuples of terms (see [27, Sec-
tion 1.6.17]), we can assume, given formulae ® and W, that there exist internal,
v-free formulae ¢, 1 such that

HF ®(x) < Fx V' o(x, y),
HEF W¥(x) < Fu V' y(u,v).
(i) For A, by intuitionistic logic,
FxVy o(x, y) AUVt (u, v)
is equivalent to
F'x,uvViy, v (qo(x,y) AV (u,v)).
(ii) For v,
Fx VY o(x, y) v Fu Vo (u, v)
is equivalent in H to
Fz:0(z=0—>FaVyex,y) A=z =0—>FuY'vyu,v)).
By IPY ,,, this is equivalent to
Pz 0(FaVy(z=0— o, ) ATUY Y (=2 =0 = Y(u,v))),

and we are back to the case of conjunction.
(iii) For —, we proceed as with the Diller-Nahm implication. By intuitionistic
logic and the principle IPY, .,

Fx VU p(x, y) = Iu V' ¥ (u, v)
is equivalent to

Vo U Vi (VY @(x, y) = YU, v)).
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Now, adapting Proposition 2.23, we see that E-HA%Y 4+ USY, = HGMPY, so
this is equivalent to

Vi Fu Vi I (Vy € so(x, y) = ¥ (u,v)).
Two applications of AC™ then lead to
U, S V'x, v (Vy € Sxve(x,y) = ¥ (Ux,v)).
(iv) For 3z, adapting Proposition 2.20, we see that E-HA%Y +OS, F |y/; therefore
Iz I x VY o(x, y,2)
is equivalent to
FxVisIzVy € sp(x,y,2).
(v) For Vz, we use that by NU
VzPxVy e(x, y,2)

is equivalent to
FxViy Vzo(x,y,z2).
(vi) For 3"z, nothing really needs to be done.
(vii) For V*z, we just use AC™ once to obtain that

Vi Z I x VY o(x, y,2)
is equivalent to

XV, ze(Xz,y,2).

This proves item (a).
For (b), suppose that ® satisfies the condition, and ®Y = F'x v+ Y e(x, y).
Then, from
H+oF O

it follows that there exist closed terms ¢ such that

E-HAJ" FVy o(t, y).

From this, we obtain E-HA®* |- v* Y ¢(t, y), whence

stV
E-HAQD = 3 x ¥y o(x, );
so HE 3x V*'y ¢(x, y) as well. But then, by the equivalence of (a),
HF &,

which was to be proved. O

We now show how the uniform Diller—-Nahm interpretation may be used to extract
programs from proofs, and eliminate instances of its characteristic principles.

Theorem 4.8 (Program extraction by the U-interpretation)  Ler V¥'x Iy ¢(x, y)

be a sentence of E—HAg‘t’\f, with ¢ internal and V-free, and let A\, be a set of internal,

V-free sentences. If
E-HAZY + OSY + USy + NU + ACY + 1Py, + Ay F VX 'y o(x, y),
then from the proof we can extract a closed term T such that

E-HA®Y® + Ay F Vx ¢(x, Tx).
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Proof The U-translation of V*'x 3%y ¢(x, y) is
I Vixe(x, fx),
so the thesis immediately follows from the soundness theorem. O

Finally, we derive a few properties of the system H, which follow from the properties
of the uniform Diller—-Nahm interpretation.

Proposition4.9  The system E-HA%Y +OSy, + USY, + NU +AC™ + 1Py, is closed
under the restricted transfer rules

V¥ o (x)
TRW Vo)

o dx:oex)
TR S 5000

where @ ranges over internal V -free formulae.

Proof This is an adaptation of [30, Proposition 5.12]. Suppose
HF V¥ p(x).
By the soundness theorem, it follows that
E-HAY* F Vx ¢(x),

which, since H is an extension of E-HA%*, implies H F V*'x ¢(x).
Now, suppose that
HF 3x p(x);

by conservativity, this implies E-HAY*  3x ¢(x). Being a subsystem of E-HA®*,
E-HAY" inherits the existence property; so we can find a closed term ¢ such that

E-HAY* | ¢(1).
Since ¢ is provably standard in H, this implies H F 3%x ¢(x). O
Proposition 4.10  The system H := B-HA®Y + OS}, + US?, + NU + AC* + 1Py,

stV
has the following form of the existence property: if

HF 3x &(x),
then there exists a closed term t such that H - ®(¢).

Proof Let ®(x)V = Fu Vv (x,u,v). By the characterization theorem, H
proves that @ is equivalent to its U -translation; so, if H - 3%x ®(x), then

HE Fx,u V' o(x,u, ).
By the soundness of uniform Diller-Nahm, we can extract closed terms ¢, T such
that

E-HAU" VYo o(t, T, v),
which, by conservativity and weakening the quantifier, implies

HE Vi@, T,v).
Since the terms in T are provably standard in H, we obtain
HEFu i ot u,v),

which, again by the characterization theorem, implies H - (7). O
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Corollary 4.11  The system E-HAZY, + OSY, 4+ USY, + NU + AC™ + IPY, |, has the
disjunction property.

Proof  This follows from the validityof ® VW < Pz : 0(z =0 —> dA -z =
0 — W) in H and the previous proposition. O

4.3 De-herbrandization and the topos U Let us examine how de-herbrandization
is reflected in the topos-theoretic analysis. By looking at Lemma 3.12(b), we see
that herbrandization has a direct categorical analogue in the choice of finite families
as K-covers. The obvious choice for uniform Diller—Nahm, then, is to consider the
smaller topology Ki, where covers of an object C are single covering morphisms
{f : D — C}. A fortiori, K; is also subcanonical for coherent categories.

Definition 4.12 The Grothendieck topos Sh(FSet, K1) will be called U.

The constant objects functor A; of U is defined, for all sets S, at all filters ¥ of
&Set, by

(A1 S)F ={a:F — S| ais constant}.

We have A12 >~ 14+ 1 =: 2 in U, for A preserves coproducts; unlike in N, there
is a proper monomorphism m : 2 > y2. Moreover, since the sheafification functor
a of N is itself left adjoint to the inclusion of N in U, we have thataA;2 ~ y2. We
say that m is a K-dense morphism.

Indeed, this fact alone characterizes the topology of N with respect to U. We
recall a general result about elementary topoi.

Proposition 4.13 Let m : A > X be a monomorphism in a topos &. Then there
exists a smallest local operator j on & such that m is j-dense.

Proof See [9, Example A4.5.14(b)]. O
We can now provide a characterization of N as a subtopos of U.

Proposition 4.14 Let j be the smallest local operator on U such thatm : 2 > y2
is j-dense. Then shj(U) >~ N.

Proof  First, observe that the relevant definitions imply that the K-covering fami-
lies are precisely those finite families {§ — ¥ }}_, suchthaté + % +---+ G —
F is Kj-covering. From this description, it follows that K is the smallest
topology extending K; for which also families consisting of two sum inclusions
{F1 = F1 + F2, F» — F1 + F2} are covering.

So to prove the proposition, it suffices to show that, for any local operator for
which m : 2 >> y2 is j-dense, we must have that families consisting of two sum
inclusions {1 — F1 + #>, 2, — F1 + F,} are j-covering. To show this, consider
the pullback square

Yy +yF, —— 2

I Jm
y(F1+ F2) —— y2

where the map on the bottom of the square is obtained by applying the Yoneda
embedding to the coproduct of the maps ¥1 — 1 and ¥ — 1. So if m is
Jj-dense, then so must be the map on the left of the square. But then it follows from
Lemma 3.20 that {¥; — F1 + 52, F2 — F1 + F>} is j-covering. O]
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Let £ be a first-order language enriched with a standardness predicate, as in Sec-
tion 3; we interpret £ in U just as we did in N, except that we take

(V') for each type S, JstgK := Ay S,
so that JstyK is again the natural numbers object.

As we foretold, “internal” becomes “internal and Vv-free” in this larger topos. Let
IF1 be the forcing relation in U.

Theorem 4.15 Let ¢(x) be an internal, V-free formula, with free variable x of
type S, and let (C, ¥7) be a filter. For all @ € JSKF,

F k1 ()
if and only if there exists i € I such that, for all u € ¥;, it holds that ¢(a(u)).

Corollary 4.16 (Transfer theorem) Let ¢ be an internal and Vv -free sentence. Then
@ is true if and only if 1 @.

The standardness predicate, and consequently the existential quantifier, are de-
herbrandized, as we wished.

Lemma 4.17  Let ¥ be a filter, let S be a type of £, and let @ € ISKF . Then:

(a) ¥ &1 sts(a) if and only if there exist a covering map B : § — ¥, and an
element x € S such that aff = x! in FSet;

(b) F =y Y'Yy : T ®(a, y) ifand only if, forall y € T, F |1 ®(a, y!);

(c) F Iy 'y : T ®(a,y) if and only if there exists y € T such that
F -1 O(a, y)).

Proof This is an easy variation on the proof of Lemma 3.12. O

Proposition 4.18 The following principles all hold in U: OSY,, USY, IPY ., NU,
and, if the axiom of choice holds in the metatheory, AC™.

Proof  The proof is the same as for the corresponding principles in A, with only
minor adjustments required. Pick single covering maps instead of finite families. [

Before moving on to the conclusions, we want to remark that, irrespective of any
interest in nonstandard arithmetic and with the caveat about AC* and the axiom of
choice, U also provides a model for the logic of the “standard” Diller—Nahm trans-
lation, under the interpretation JOK, := AN, JO — 0K, := A;(N — N), and so
on. In this case, we obtain a weaker transfer theorem for Vv-free formulae whose
quantifiers are all bounded, that is, they range over some finite sequence.

5 Conclusions and Directions for Future Work

If we are to sum up what we believe are conceptually interesting points of this article,
it may come down to the following.

(1) Sequence overspill and underspill. These are two principles, which are dual
to each other, that not only seem to be useful and constructively acceptable
generalizations of overspill and underspill to higher types, but they are also
linked to well-known nonconstructive principles, the lesser limited principle
of omniscience, and Markov’s principle, suggesting that classical modes of
reasoning can be recovered in a constructive nonstandard calculus.
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(2) The significance of U. The filter topos U doubles as a model of the logic
of the Diller—-Nahm interpretation and as a cue to its extension with uniform
quantifiers—the uniform Diller—Nahm interpretation. This was previously
unknown, and might lead to an improved understanding of the underlying,
geometric structure of Diller—Nahm logic.

(3) A better view on herbrandization. The comparison of N with U provided a
categorical counterpart to herbrandization, and allowed for a refined analysis
of its effects. This includes the re-contextualization of NCR as a herbrandized
uniformity principle; on the contrary, the role of finite sequences in HGMP*
appeared to be a by-product of their role in US*, rather than the result of
herbrandization.

A final consideration: the introduction of the nonstandard Dialectica interpreta-
tion in [30] had nonstandard analysis as its main motivation; the benchmark to meet
was eliminating overspill and underspill from proofs, retrieving what computational
content they may have. But our analysis of uniform Diller—Nahm suggests an alter-
native route: one where we start with the Dialectica interpretation, and progressively
apply small “patches,” fixing whichever shortcomings might arise.

So Dialectica requires decidability of atomic formulae: we may be unhappy with
that, and turn to Diller-Nahm. Then we could add uniform quantifiers a la Hernest,
with optimization of program extraction in mind, which would lead us to uniform
Diller—-Nahm. Then, we notice that the system we obtain—E-HA%Y and character-
istic principles—is just one connective away from being a system of intuitionistic
arithmetic. Also, fixing that may require that we weaken the existence property;
in this way, we may come up with herbrandization, and obtain, in principle, the
D -interpretation, without ever actually thinking of nonstandard arithmetic.

In fact, we can take the “equation”

standardness =~ herbrandized calculability

as a definition of sorts; one that replaces the intuition of nonstandard natural numbers
as having a separate existence, lying, somewhere beyond reach, on a line together
with the finite ones, with an “operational” interpretation: a nonstandard number is
badly incalculable—so badly, that it cannot even be narrowed down to a finite selec-
tion of candidates.

We conclude with a review of new questions that our results raise.

Concerning the proof theory of nonstandard arithmetic, we would like to know
how independent the principles OS* and US™ are. We know that the Herbrand real-
izability interpretation vacuously accepts the former, yet does not have a realizer for
the latter (see [30]); so the Herbrand topos from van den Berg [29] provides a model
of nonstandard arithmetic with full transfer, but no underspill principle. We do not
know, however, of nonstandard models where overspill holds, and underspill does
not.

Moreover, we defined a new functional interpretation, but ignore, so far, how
useful it is for applications. Its similarity to light Dialectica is encouraging; on the
other hand, the use of functional interpretations has been most successful in program
extraction from classical proofs, and we have not investigated yet how well uniform
Diller—-Nahm composes with negative translations, such as Kuroda’s in [12].

In light of the results, Palmgren’s work on the topos N indicates that the charac-
teristic principles of nonstandard Dialectica lead to a useful calculus for nonstandard
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analysis. We conjectured that the characteristic principles of uniform Diller-Nahm
may be a good axiomatization of Lifschitz’s calculability arithmetic (see [13]); is this
correct, and could this also be a useful calculus by itself?

On a more speculative note, Oliva [19] provided a unified view of the Dialec-

tica,

Diller—Nahm, and modified realizability interpretations, through linear logic.

Is there an equivalent of herbrandization in linear logic—connected, perhaps, to the
bang (!) modalizer—such that nonstandard Dialectica and Herbrand realizability, too,
would be amenable to such a treatment?

We hope that these and related questions can be answered in future work.
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