The Distributivity on Bi-Approximation Semantics

Tomoyuki Suzuki

Abstract

In this paper, we give a possible characterization of the distributivity on bi-approximation semantics. To this end, we introduce new notions of special elements on polarities and show that the distributivity is first-order definable on bi-approximation semantics. In addition, we investigate the dual representation of those structures and compare them with bi-approximation semantics for intuitionistic logic. We also discuss that two different methods to validate the distributivity-by the splitters and by the adjointness-can be explicated with the help of the axiom of choice as well.

1 Introduction

Bi -approximation semantics is a universal relational-type semantics for substructural and lattice-based logics, not necessarily including distributive substructural logics such as orthonormal logic or lattice-based modal logics (see Suzuki [11]). Unlike other relational semantics for nondistributive lattice-based logics (see, e.g., Goldblatt [7], Hartonas [8], Hartonas and Dunn [9], Gehrke [5]; see also Restall [10]), the novelty of bi-approximation semantics is to reason not only about formulas but also sequents, that is, logical consequences, based on polarities. As bi-approximation semantics was introduced to explicate Ghilardi and Meloni's [6] canonicity methodology via relational-type structures, we can enjoy the canonicity results of latticebased logics in Suzuki [12] (cf. residuated frames in Galatos and Jipsen [3]). In other words, we may say that bi-approximation semantics is a canonicity-friendly relational semantics for lattice-based logics. In addition, a Sahlqvist-type first-order definability for substructural logic was already shown in Suzuki [14]. Therefore, this completes the so-called Sahlqvist theorem for substructural and lattice-based logics.
theorem for substructural logic with distributive polarity frames. Finally, we give concluding remarks in Section 6.

2 Bi-Approximation Semantics: Reasoning with Logical Consequences on Polarities

Bi -approximation semantics is a universal relational-style semantics for lattice-based logics. A novelty of our semantics is to evaluate not only formulas but also logical consequences, that is, sequents, based on polarities. Here we briefly recall fundamental results for polarities (see, e.g., Davey and Priestley [2] for a polarity, and [11] for bi-approximation semantics).

A polarity is a triple $\mathbb{F}=\langle X, Y, B\rangle$ of two nonempty sets X and Y, which are not necessarily disjoint, ${ }^{1}$ and a binary relation B between them, that is, $B \subseteq X \times Y$. Given a polarity $\mathbb{F}=\langle X, Y, B\rangle$, the binary relation B can be naturally extended to a preorder \leq_{B} on $X \cup Y$ as follows: for all $x, x_{1}, x_{2} \in X$ and $y, y_{1}, y_{2} \in Y$, we let

1. $x_{1} \leq_{B} x_{2} \Longleftrightarrow$ for each $y^{\prime} \in Y$, if $x_{2} B y^{\prime}$, then $x_{1} B y^{\prime}$;
2. $y_{1} \leq_{B} y_{2} \Longleftrightarrow$ for each $x^{\prime} \in X$, if $x^{\prime} B y_{1}$, then $x^{\prime} B y_{2}$;
3. $x \leq_{B} y \Longleftrightarrow x B y$;
4. $y \leq_{B} x \Longleftrightarrow$ for all $x^{\prime} \in X$ and $y^{\prime} \in Y$, if $x^{\prime} B y$ and $x B y^{\prime}$, then $x^{\prime} B y^{\prime}$.

Hence we may sometimes refer to the triple $\mathbb{F}=\left\langle X, Y, \leq_{B}\right\rangle$, instead of $\langle X, Y, B\rangle$, as a polarity. Also, we may sometimes omit the subscript ${ }_{-B}$ for \leq_{B}, that is, \leq.

For the time being, until Section 5, we consider formulas constructed simply by propositional variables p, q, \ldots and two logical connectives: conjunction \wedge and disjunction \vee only. We denote by Φ the set of propositional variables and by Λ the set of formulas. A sequent (logical consequence) is a pair of formulas ϕ and ψ, denoted by $\phi \Leftrightarrow \psi$.

To reason about sequents on polarities, it is necessary to introduce appropriate valuations. Let $\mathbb{F}=\langle X, Y, \leq\rangle$ be a polarity, let $\wp(X)$ be the poset of the powerset of X and the set-theoretical inclusion \subseteq, and let $\wp(Y)^{\partial}$ be the poset of the powerset of Y and the reverse set-theoretical inclusion \supseteq. A pair $V=\left(V^{\downarrow}, V_{\uparrow}\right)$ of two functions $V^{\downarrow}: \Phi \rightarrow \wp(X)$ and $V_{\uparrow}: \Phi \rightarrow \wp(Y)^{\partial}$ is a doppelgänger valuation on \mathbb{F}, if the pair of two functions satisfy

1. $V^{\downarrow}(p)=\left\{x \in X \mid \forall y \in V_{\uparrow}(p) . x \leq y\right\}$,
2. $V_{\uparrow}(p)=\left\{y \in Y \mid \forall x \in V^{\downarrow}(p) . x \leq y\right\}$,
for each propositional variable $p \in \Phi$. We denote by \mathscr{D}_{V} the set of all doppelgänger valuations on \mathbb{F}. Intuitively speaking, doppelgänger valuations make, for each propositional variable p, the sequent $p \Leftrightarrow p$ valid on polarities. Also, we mention a connection to the Dedekind-MacNeille completion as well. We can define a Galois connection $\lambda \dashv v$ between $\wp(X)$ and $\wp(Y)^{\partial}$ as follows:
3. $\lambda: \wp(X) \rightarrow \wp(Y)^{\partial}$ with $\lambda(\mathfrak{X}):=\{y \in Y \mid \forall x \in \mathfrak{X} . x \leq y\}$ for $\mathfrak{X} \in \wp(X)$;
4. $v: \wp(Y)^{\partial} \rightarrow \wp(X)$ with $v(\mathfrak{Y}):=\{x \in X \mid \forall y \in \mathfrak{Y} . x \leq y\}$ for $\mathfrak{Y} \in \wp(Y)^{\partial}$.

Since λ and v form a Galois connection, the images $\lambda[\wp(X)]$ and $v\left[\wp(Y)^{\partial}\right]$ are isomorphic. In fact, these images are the (generalized) Dedekind-MacNeille completions of \mathbb{F}, and the elements in $\lambda[\wp(X)]$ and $v\left[\wp(Y)^{\partial}\right]$ are the so-called Dedekind cuts. By doppelgänger valuations, we assign each propositional variable to the corresponding points on these images $\lambda[\wp(X)]$ and $v\left[\wp(Y)^{\partial}\right]$. Note that the order in the (generalized) Dedekind-MacNeille completion reflects the extended preorder \leq_{B}.

Remark 2.1 Each function $f: \Phi \rightarrow \wp(X \cup Y)$ can be extended to a doppelgänger valuation V_{f} by first-order sentences. Conversely, all doppelgänger valuations are first-order definable from some functions (see [14]; cf. also Ciabattoni, Galatos, and Terui [1], Galatos and Jipsen [3]).

Hereinafter, we call a polarity \mathbb{F} a polarity frame, and we call a pair $\mathbb{M}=\langle\mathbb{F}, V\rangle$ of a polarity frame \mathbb{F} and a doppelgänger valuation V on \mathbb{F} a bi-approximation model. On a bi-approximation model $\mathbb{M}=\langle\mathbb{F}, V\rangle$, we inductively define two satisfaction relations for formulas, that is, one for premises on X and the other for conclusions on Y, as follows. For all formulas ϕ and ψ, each $x \in X$ and each $y \in Y$, we let
$\mathbf{X}-\mathbf{1}: \mathbb{M} \Vdash=x \Longleftrightarrow x \in V^{\downarrow}(p)$ for each propositional variable $p \in \Phi$;
X-2: $\mathbb{M} \|^{\underline{x}} \phi \vee \psi \Longleftrightarrow$ for each $y^{\prime} \in Y$, if $\mathbb{M} \| \models_{y^{\prime}} \phi \vee \psi$, then $x \leq y^{\prime}$;
\mathbf{X}-3: $\mathbb{M}\left\|^{x} \phi \wedge \psi \Longleftrightarrow \mathbb{M}\right\|^{x} \phi$ and $\mathbb{M} \Vdash^{x} \psi$;
$\mathbf{Y} \mathbf{- 1}: \mathbb{M} \|_{y} p \Longleftrightarrow y \in V_{\uparrow}(p)$ for each propositional variable $p \in \Phi$;
$\mathbf{Y - 2 :} \mathbb{M}\left\|_{y} \phi \vee \psi \Longleftrightarrow \mathbb{M}\right\|_{y} \phi$ and $\mathbb{M} \|_{y} \psi$;
$\mathbf{Y - 3 :} \mathbb{M} \|_{y} \phi \wedge \psi \Longleftrightarrow$ for each $x^{\prime} \in X$, if $\mathbb{M} \| \xlongequal{x^{\prime}} \phi \wedge \psi$, then $x^{\prime} \leq y$.
On these satisfaction relations, we also introduce a satisfaction relation for logical consequences as follows:

S-1: $\mathbb{M} \| \frac{x}{y} \phi \Leftrightarrow \psi \Longleftrightarrow$ if $\mathbb{M} \|^{\underline{x}} \phi$ and $\mathbb{M} \|_{y} \psi$, then $x \leq y$;
S-2: $\mathbb{M} \| \phi \Leftrightarrow \psi \Longleftrightarrow$ for all $x \in X$ and $y \in Y, \mathbb{M} \| \frac{x}{y} \phi \Leftrightarrow \psi$;
S-3: $\mathbb{F} \| \phi \Leftrightarrow \psi \Longleftrightarrow$ for each $V \in \mathfrak{D}_{V},\langle\mathbb{F}, V\rangle \Vdash \phi \Leftrightarrow \psi$.
On bi-approximation semantics, these satisfaction relations are interpreted as follows:

1. $\mathbb{M} \Vdash^{\underline{x}} \phi$: a formula ϕ is assumed at x in \mathbb{M};
2. $\mathbb{M} \|_{y} \psi$: a formula ψ is concluded at y in \mathbb{M};
3. $\mathbb{M} \|_{y}^{x} \phi \Leftrightarrow \psi$: a sequent $\phi \Leftrightarrow \psi$ is true at (x, y) in \mathbb{M};
4. $\mathbb{M} \triangleq \phi \Leftrightarrow \psi$: a sequent $\phi \Leftrightarrow \psi$ is universally true in \mathbb{M};
5. $\mathbb{F} \| \phi \Leftrightarrow \psi$: a sequent $\phi \Leftrightarrow \psi$ is valid on \mathbb{F}.

Proposition 2.2 (Hereditary) For all $x, x^{\prime} \in X$ and $y, y^{\prime} \in Y$,

1. if $x^{\prime} \leq x$ and $\mathbb{M} \| \xlongequal{x} \phi$, then $\mathbb{M} \xlongequal{x^{\prime}} \phi$;
2. if $y \leq y^{\prime}$ and $\mathbb{M} \|_{y} \phi$, then $\mathbb{M} \|_{y^{\prime}} \phi$.

Proposition 2.3 (Extension of doppelgänger valuations) For all $x \in X$ and $y \in Y$,

1. $\mathbb{M} \| \xlongequal{x} \phi \Longleftrightarrow$ for each $y^{\prime} \in Y$, if $\mathbb{M} \|_{y^{\prime}} \phi$, then $x \leq y^{\prime}$;
2. $\mathbb{M} \|_{y} \phi \Longleftrightarrow$ for each $x^{\prime} \in X$, if $\mathbb{M} \|=\frac{x^{\prime}}{} \phi$, then $x^{\prime} \leq y$.

Remark 2.4 Note that each doppelgänger valuation is naturally extended from Φ to Λ. It means that, for each formula $\phi \in \Lambda$, the sequent $\phi \Leftrightarrow \phi$ is valid on polarity frames. Therefore, on the dual algebras, doppelgänger valuations become homomorphisms from Λ.

Initial sequents: $\phi \Leftrightarrow \phi \quad$ Cut rule: $\frac{\phi \Leftrightarrow \chi \quad \chi \Leftrightarrow \psi}{\phi \Leftrightarrow \psi}$ (cut)
Rules for logical connectives:

Figure 1 The sequent calculus of the lattice logic.

Theorem 2.5 (Soundness and completeness) The lattice logic, the collection of provable sequents in Figure 1, is sound and complete with respect to the class of all polarity frames.

Remark 2.6 In Figure 1, the distributivity $\phi \wedge(\psi \vee \chi) \mapsto(\phi \wedge \psi) \vee(\phi \wedge \chi)$ is not provable. Also, on polarity frames, since $\mathbb{M} \| \underline{x} \phi \vee \psi$ is not the same as $\mathbb{M} \| \underline{=} \phi$ or $\mathbb{M} \Vdash^{x} \psi$ (dually, $\mathbb{M} \Vdash_{y} \phi \wedge \psi$ is not the same as $\mathbb{M} \|_{y} \phi$ or $\mathbb{M} \Vdash_{y} \psi$), the distributivity is not valid in general.

Dedekind-cut-preserving morphisms Next we briefly summarize morphisms for biapproximation semantics (see [13]).

Definition 2.7 (Dedekind-cut-preserving morphism) Given two polarity frames $\mathbb{F}=\left\langle X_{1}, Y_{1}, \leq_{1}\right\rangle$ and $\mathbb{G}=\left\langle X_{2}, Y_{2}, \leq_{2}\right\rangle$, a pair $\langle\sigma \mid \tau\rangle$ of two functions $\sigma: X_{1} \rightarrow X_{2}$ and $\tau: Y_{1} \rightarrow Y_{2}$ forms a Dedekind-cut-preserving morphism from \mathbb{F} to ?, a d-morphism for short and denoted by $\langle\sigma \mid \tau\rangle: \mathbb{F} \rightarrow \mathbb{G}$, if

1. for all $x \in X_{1}$ and $y \in Y_{1}$, if $\sigma(x) \leq_{2} \tau(y)$, then $x \leq_{1} y$;
2. for all $x \in X_{1}$ and $y^{\prime} \in Y_{2}$, if, for each $y \in Y_{1}, y^{\prime} \leq_{2} \tau(y)$ implies $x \leq_{1} y$, then $\sigma(x) \leq_{2} y^{\prime}$;
3. for all $x^{\prime} \in X_{2}$ and $y \in Y_{1}$, if, for each $x \in X_{1}, \sigma(x) \leq_{2} x^{\prime}$ implies $x \leq_{1} y$, then $x^{\prime} \leq 2 \tau(y)$.
In addition, a d-morphism $\langle\sigma \mid \tau\rangle: \mathbb{F} \rightarrow \mathbb{G}$ is called d-embedding, d-separating, and d-reflecting, if it also satisfies the following item 4, item 5, and both items 4 and 5, respectively:
4. for all $x \in X_{1}$ and $y \in Y_{1}$, if $x \leq_{1} y$, then $\sigma(x) \leq_{2} \tau(y)$;
5. for all $x^{\prime} \in X_{2}$ and $y^{\prime} \in Y_{2}$, if, for all $x \in X_{1}$ and $y \in Y_{1}, \sigma(x) \leq_{2} y^{\prime}$ and $x^{\prime} \leq_{2} \tau(y)$ imply $x \leq_{1} y$, then $x^{\prime} \leq_{2} y^{\prime}$.
For every doppelgänger valuation U on \mathbb{F} and every doppelgänger valuation V on \mathbb{G}, a d-morphism $\langle\sigma \mid \tau\rangle: \mathbb{F} \rightarrow \mathbb{G}$ is a Dedekind-cut-preserving morphism from $\langle\mathbb{F}, U\rangle$ to $\langle\mathbb{G}, V\rangle$, a d-morphism for short, and denoted by $\langle\sigma \mid \tau\rangle:\langle\mathbb{F}, U\rangle \rightarrow\langle\mathbb{G}, V\rangle$, if $\langle\sigma \mid \tau\rangle$ also satisfies
6. $x \in U^{\downarrow}(p) \Longleftrightarrow \sigma(x) \in V^{\downarrow}(p)$;
7. $y \in U_{\uparrow}(p) \Longleftrightarrow \tau(y) \in V_{\uparrow}(p)$,
for each propositional variable $p \in \Phi$ as well.
Based on d-morphisms, we can obtain the so-called p-morphism lemma as in the case of modal logic and invariance of validity of sequents for bi-approximation semantics.

Lemma 2.8 (For formulas) Let \mathbb{M}_{1} and \mathbb{M}_{2} be bi-approximation models, and let $\langle\sigma \mid \tau\rangle: \mathbb{M}_{1} \rightarrow \mathbb{M}_{2}$. For all $\phi, \psi \in \Lambda, x \in X_{1}$, and $y \in Y_{1}$,

1. $\mathbb{M}_{1} \| \frac{x}{=} \phi \mathbb{M}_{2} \Vdash^{\sigma(x)} \phi$;
2. $\mathbb{M}_{1}\left\|_{y} \psi \Longleftrightarrow \mathbb{M}_{2}\right\|_{\tau(v)} \psi$.

Lemma 2.9 (For sequents) Let \mathbb{M}_{1} and \mathbb{M}_{2} be bi-approximation models, and let $\langle\sigma \mid \tau\rangle: \mathbb{M}_{1} \rightarrow \mathbb{M}_{2}$. For every sequent $\phi \Leftrightarrow \psi$,

$$
\mathbb{M}_{1} \Vdash \phi \Leftrightarrow \psi \Longleftrightarrow \text { for all } x \in X_{1}, y \in Y_{1}, \mathbb{M}_{2} \|_{\tau(y)}^{\sigma(x)} \phi \Leftrightarrow \psi .
$$

Theorem 2.10 Let \mathbb{F} and \mathbb{G} be polarity frames, and let $\langle\sigma \mid \tau\rangle: \mathbb{F} \rightarrow \mathbb{G}$. For every sequent $\phi \Leftrightarrow \psi$,

1. if $\langle\sigma \mid \tau\rangle$ is d-embedding, then $\mathbb{G} \triangleq \phi \Leftrightarrow \psi$ implies $\mathbb{F} \Vdash \phi \Leftrightarrow \psi$;
2. if $\langle\sigma \mid \tau\rangle$ is d-separating, then $\mathbb{F} \| \phi \Leftrightarrow \psi$ implies $\mathbb{G} \Vdash \phi \Leftrightarrow \psi$;
3. if $\langle\sigma \mid \tau\rangle$ is d-reflecting, then $\mathbb{F} \Vdash \phi \Leftrightarrow \psi$ if and only if $\mathbb{G} \Vdash \phi \Leftrightarrow \psi$.

3 Distributive Polarity Frames

On lattice-based logics, we have already shown that sequents which have consistent variable occurrence are canonical (see [12]) and first-order definable on biapproximation semantics (see [14]). While the property "consistent variable occurrence" successfully accounts for many canonical and first-order definable sequents on bi-approximation semantics, there are also some interesting sequents which cannot be explicated by it. The distributivity $\phi \wedge(\psi \vee \chi) \triangleq(\phi \wedge \psi) \vee(\phi \wedge \chi)$ is, in fact, a remarkable example of a canonical sequent which does not have consistent variable occurrence. In this section, we will propose a possible characterization of the distributivity on polarity frames.

First, we consider special elements in X and in Y to handle the distributivity on a polarity frame $\mathbb{F}=\langle X, Y, \leq\rangle$. An element $x \in X$ is a splitter if there exists a splitting counterpart $y_{x} \in Y$ of x such that $x \notin y_{x}$ and, for each $y \in Y$, if $x \not 又 y$, then $y \leq y_{x}$. Analogously, an element $y \in Y$ is a splitter if there exists a splitting counterpart $x_{y} \in X$ of y such that $x_{y} \not \leq y$ and, for each $x \in X$, if $x \notin y$, then $x_{y} \leq x$.

Proposition 3.1 Let $\mathbb{F}=\langle X, Y, \leq\rangle$ be a polarity frame. For all $x \in X$ and $y \in Y$,

1. if x is a splitter, then every splitting counterpart y_{x} of x is also a splitter which has x as a splitting counterpart;
2. if y is a splitter, then every splitting counterpart x_{y} of y is also a splitter which has y as a splitting counterpart.
Furthermore, for each splitter, the splitting counterparts are unique up to \leq-equivalence; that is, if y_{x} and $y_{x}^{\prime}\left(x_{y}\right.$ and $\left.x_{y}^{\prime}\right)$ are splitting counterparts of $x(y)$, then $y_{x} \leq y_{x}^{\prime}$ and $y_{x}^{\prime} \leq y_{x}\left(x_{y} \leq x_{y}^{\prime}\right.$ and $\left.x_{y}^{\prime} \leq x_{y}\right)$ hold.

Proof It suffices to show that, for each $x^{\prime} \in X$, if $x^{\prime} \notin y_{x}$, then $x \leq x^{\prime}$, for each $y^{\prime} \in Y$, if $y^{\prime} \notin x_{y}$, then $y^{\prime} \leq y$ and the uniqueness up to \leq-equivalence.

Recall the definition of \leq; that is, $x \leq x^{\prime} \Longleftrightarrow$ for each $y^{\prime \prime} \in Y$, if $x^{\prime} \leq y^{\prime \prime}$, then $x \leq y^{\prime \prime}$. For arbitrary $x^{\prime} \in X$ and $y^{\prime \prime} \in Y$, if $x^{\prime} \nsubseteq y_{x}$ and $x^{\prime} \leq y^{\prime \prime}$, by the definition of \leq on Y, we obtain that $y^{\prime \prime} \not \leq y_{x}$. Since y_{x} is a splitting counterpart of
x, we have that, for each $y^{\prime} \in Y$, if $x \not \leq y^{\prime}$, then $y^{\prime} \leq y_{x}$. By contraposition, we get $x \leq y^{\prime \prime}$, which concludes $x \leq x^{\prime}$.

Analogously, for arbitrary $x^{\prime \prime} \in X$ and $y^{\prime} \in Y$, if $x_{y} \not \leq y^{\prime}$ and $x^{\prime \prime} \leq y^{\prime}$, by the definition of \leq on X, we have $x_{y} \notin x^{\prime \prime}$. As x_{y} is a splitting counterpart of y, we obtain $x^{\prime \prime} \leq y$. Hence $y^{\prime} \leq y$.

Let y_{x} and y_{x}^{\prime} be splitting counterparts of x. By definition, we have $x \notin y_{x}$ and $x \not \leq y_{x}^{\prime}$. Since y_{x} and y_{x}^{\prime} are splitting counterparts of x, for every $y^{\prime} \in Y$, if $x \not \leq y^{\prime}$, then we have $y^{\prime} \leq y_{x}$ and $y^{\prime} \leq y_{x}^{\prime}$. Therefore, by $x \not \leq y_{x}$ and $x \not \leq y_{x}^{\prime}$, we conclude that $y_{x} \leq y_{x}^{\prime}$ and $y_{x}^{\prime} \leq y_{x}$. The other case is analogous.

Thanks to Proposition 3.1, we can claim that a pair (x, y) of $x \in X$ and $y \in Y$ is a splitting pair, if $x \not \pm y$, for each $y^{\prime} \in Y$, if $x \not \pm y^{\prime}$, then $y^{\prime} \leq y$ and, for each $x^{\prime} \in X$, if $x^{\prime} \not \pm y$, then $x \leq x^{\prime}$.
Theorem 3.2 Let \mathbb{M} be a bi-approximation model, and let (x, y) be a splitting pair. For every formula $\phi \in \Lambda, \mathbb{M}\left\|^{x} \phi \Longleftrightarrow \mathbb{M}\right\| \Vdash_{y} \phi$, and equivalently $\mathbb{M} \Vdash_{y} \phi \Longleftrightarrow \mathbb{M} \Vdash^{\underline{x}} \phi$.

Proof (\Rightarrow). Assume $\mathbb{M} \Vdash^{x} \phi$. Since (x, y) is a splitting pair, we have $x \not \approx y$. Then, this x is a witness to show that there exists $x^{\prime} \in X$ such that $\mathbb{M} \| \xlongequal{x^{\prime}} \phi$ but $x^{\prime} \notin y$. Hence, by Proposition 2.3 , we conclude that $\mathbb{M} \| \not \digamma_{y} \phi$.
(\Leftarrow). Suppose that $\mathbb{M} \|_{y} \phi$. By Proposition 2.3, there exists $x^{\prime} \in X$ such that $\mathbb{M} \Vdash^{x^{\prime}} \phi$ but $x^{\prime} \not \leq y$. Now, as (x, y) is a splitting pair, for each $x^{\prime \prime} \in X$, if $x^{\prime \prime} \not \leq y$, then $x \leq x^{\prime \prime}$. So we have $x \leq x^{\prime}$. Since $\mathbb{M} \Vdash^{x^{\prime}} \phi$, together with Proposition 2.2 , we complete this direction; that is, $\mathbb{M} \Vdash^{x} \phi$.

Also, with the help of Theorem 3.2, we can prove the following lemma.
Lemma 3.3 Let \mathbb{M} be a bi-approximation model, and let ϕ and ψ be formulas. For all splitters $x \in X$ and $y \in Y$,

1. $\mathbb{M} \|^{x} \phi \vee \psi \Longleftrightarrow \mathbb{M} \xlongequal{\underline{x}} \phi$ or $\mathbb{M} \|^{x} \psi$;
2. $\mathbb{M}\left\|_{y} \phi \wedge \psi \Longleftrightarrow \mathbb{M}\right\|_{y} \phi$ or $\mathbb{M} \|_{y} \psi$.

Proof In both cases, the \Leftarrow-directions are trivial.
For the \Rightarrow-direction of item 1, we consider the contraposition. Suppose that $\mathbb{M} \Vdash^{\kappa} \phi$ and $\mathbb{M} \Vdash^{\kappa} \psi$. Since x is a splitter, there exists a splitting counterpart $y_{x} \in Y$; hence $\left(x, y_{x}\right)$ forms a splitting pair. By Theorem 3.2, we obtain that $\mathbb{M} \Vdash_{y_{x}} \phi$ and $\mathbb{M} \|_{y_{x}} \psi$, which means $\mathbb{M} \|_{y_{x}} \phi \vee \psi$. However, as $x \not \approx y_{x}$, by Proposition 2.3, we conclude that $\mathbb{M} \| \nVdash^{\kappa} \phi \vee \psi$.

For the \Rightarrow-direction of item 2, we also consider the contraposition. Suppose that $\mathbb{M} \|_{y} \phi$ and $\mathbb{M} \|_{y} \psi$. Since y is a splitter, there exists a splitting counterpart x_{y} of y in X, so $\left(x_{y}, y\right)$ forms a splitting pair. By Theorem 3.2, we obtain that
 $\mathbb{M} \|_{y} \phi \wedge \psi$.

Next, by means of splitters, we characterize the distributivity on polarity frames.
Definition 3.4 (Distributive polarity frame) A polarity frame $\mathbb{F}=\langle X, Y, \leq\rangle$ is distributive if it satisfies

Splitting: for all $x \in X$ and $y \in Y$, if $x \not \leq y$, there exists a splitting pair (x_{s}, y_{s}) such that $x_{s} \leq x$ and $y \leq y_{s}$.

Remark 3.5 The condition Splitting is a first-order sentence.
Theorem 3.6 The distributivity $\phi \wedge(\psi \vee \chi) \mapsto(\phi \wedge \psi) \vee(\phi \wedge \chi)$ is valid on any distributive polarity frame.

Proof Let $\mathbb{F}=\langle X, Y, \leq\rangle$ be a distributive polarity frame, and let V be an arbitrary doppelgänger valuation on \mathbb{F}. Assume $\langle\mathbb{F}, V\rangle \|$| \underline{x} |
| :--- |
| |$(\psi \vee \chi)$ and $\langle\mathbb{F}, V\rangle \Vdash_{y}(\phi \wedge \psi) \vee(\phi \wedge \chi)$. So it suffices to show that $x \leq y$. We will prove it by contradiction.

Suppose that $x \not \leq y$. Since \mathbb{F} is distributive, by the splitting condition, there exists a splitting pair $\left(x_{s}, y_{s}\right)$ such that $x_{s} \leq x$ and $y \leq y_{s}$. By Proposition 2.2, we have that $\langle\mathbb{F}, V\rangle \| \xlongequal{x_{s}} \phi \wedge(\psi \vee \chi)$; that is, $\langle\mathbb{F}, V\rangle \| \xlongequal{x_{s}} \phi$ and $\langle\mathbb{F}, V\rangle \Vdash^{x_{s}} \psi \vee \chi$. In addition, as x_{s} is a splitter, by Lemma 3.3, we obtain that $\langle\mathbb{F}, V\rangle \| \xlongequal{x_{s}} \psi$ or $\langle\mathbb{F}, V\rangle \Vdash^{x_{s}} \chi$. Hence, we conclude that $\langle\mathbb{F}, V\rangle \Vdash^{x_{s}} \phi \wedge \psi$ or $\langle\mathbb{F}, V\rangle \|{ }^{x_{s}} \phi \wedge \chi$.

On the other hand, by Proposition 2.2, we also have $\langle\mathbb{F}, V\rangle \|_{y_{s}}(\phi \wedge \psi) \vee$ $(\phi \wedge \chi)$, which means $\langle\mathbb{F}, V\rangle \|_{y_{s}} \phi \wedge \psi$ and $\langle\mathbb{F}, V\rangle \|_{y_{s}} \phi \wedge \chi$. So either way, that is, either $\langle\mathbb{F}, V\rangle \triangleq \xlongequal{x_{s}} \phi \wedge \psi$ or $\langle\mathbb{F}, V\rangle \triangleq \xlongequal{x_{s}} \phi \wedge \chi$ holds, by Proposition 2.3, $x_{s} \leq y_{s}$ must hold, which contradicts the fact that $\left(x_{s}, y_{s}\right)$ is a splitting pair. Therefore, we conclude that $x \leq y$.

The dual representation of distributive lattices. We will also check the dual representation of distributive lattices and distributive polarity frames.

Given a lattice $\mathbb{L}=\langle L, \vee, \wedge\rangle$, a subset F of L is a filter if it is nonempty, upward-closed, and down-directed. Ordered dually, a subset I of L is an ideal if it is nonempty, downward-closed, and up-directed. We denote by \mathscr{F} the set of filters and by ℓ the set of ideals. Moreover, a filter F is prime if $F \neq L$ and, for all $a, b \in L, a \vee b \in F$ implies $a \in F$ or $b \in F$. An ideal I is prime if $I \neq L$ and, for all $a, b \in L, a \wedge b \in I$ implies $a \in I$ or $b \in I$.

Definition 3.7 (Dual polarity frame) Let \mathbb{L} be a lattice. A triple $\mathbb{L}_{+}=\langle\mathcal{F}, \ell, \sqsubseteq\rangle$ is the dual polarity frame of \mathbb{L}, where the binary relation \sqsubseteq on $\mathscr{F} \times \mathscr{d}$ is defined by $F \sqsubseteq I \Longleftrightarrow F \cap I \neq \emptyset$.

Now, we will show that, for every distributive lattice, the dual polarity frame is distributive (see Theorem 3.9). To prove it, we first recall the following lemma.

Lemma 3.8 Let $\mathbb{L}=\langle L, \vee, \wedge\rangle$ be a distributive lattice. For every prime filter F, the set-theoretical complement $L \backslash F$ is a prime ideal. Also, for every prime ideal I, the set-theoretical complement $L \backslash I$ is a prime filter.

Theorem 3.9 Let $\mathbb{L}=\langle L, \vee, \wedge\rangle$ be a distributive lattice. The dual polarity frame $\mathbb{L}_{+}=\langle\mathcal{F}, \ell, \sqsubseteq\rangle$ is distributive.

Proof It is straightforward to show that \mathbb{L}_{+}is a polarity frame. So the only nontrivial part is the splitting condition.

For arbitrary $F \in \mathcal{F}$ and $I \in \mathcal{\ell}$, assume that $F \nsubseteq I$; that is, $F \cap I=\emptyset$. Then, by the prime filter (ideal) theorem, there exists a prime filter P_{F} (or a prime ideal $\left.P_{I}\right)$ such that $F \subseteq P_{F}$ but $P_{F} \cap I=\emptyset\left(I \subseteq P_{I}\right.$ but $\left.F \cap P_{I}=\emptyset\right)$. Thanks to Lemma 3.8, the set-theoretical complement $L \backslash P_{F}\left(L \backslash P_{I}\right)$ of the prime filter P_{F} (the prime ideal P_{I}) is a prime ideal (a prime filter). Now, we claim that the pair $\left(P_{F}, L \backslash P_{F}\right)\left(\left(L \backslash P_{I}, P_{I}\right)\right)$ is an appropriate splitting pair for F and I. It is obvious that $P_{F} \nsubseteq L \backslash P_{F}\left(L \backslash P_{I} \nsubseteq P_{I}\right)$. Since $F \subseteq P_{F}\left(I \subseteq P_{I}\right)$, we have $P_{F} \sqsubseteq F\left(I \sqsubseteq P_{I}\right)$. Furthermore, since $P_{F} \cap I=\emptyset\left(F \cap P_{I}=\emptyset\right)$, we also have $I \subseteq L \backslash P_{F}\left(F \subseteq L \backslash P_{I}\right)$ as well. Hence $I \sqsubseteq L \backslash P_{F}\left(L \backslash P_{I} \sqsubseteq F\right)$. Finally, for every ideal $J \in \ell$, if $P_{F} \nsubseteq J$, then $P_{F} \cap J=\emptyset$. So we obtain $J \subseteq L \backslash P_{F}$; that is, $J \sqsubseteq L \backslash P_{F}$. Therefore, the splitting condition holds. Note that we can also analogously prove that the pair ($L \backslash P_{I}, P_{I}$) is an appropriate splitting pair as well.

Remark 3.10 The axiom of choice is essential to prove Theorem 3.9 for the prime filter (ideal) theorem.

From distributive polarity frames, we can construct the dual algebras as the (generalized) Dedekind-MacNeille completion (see Section 2). Namely, for a distributive polarity frame \mathbb{F}, the dual algebra of \mathbb{F}, denoted by \mathbb{F}^{+}, is the (generalized) Dedekind-MacNeille completion of \mathbb{F}.

Theorem 3.11 For every distributive polarity frame \mathbb{F}, the dual algebra \mathbb{F}^{+}is a distributive lattice.

Proof The nontrivial part follows from Theorem 3.6 (see also [11, Theorem 5.3]).

4 Prime Skeletons

In the previous section, we saw that, on distributive polarity frames, splitters or splitting pairs play central roles. In other words, splitters and splitting pairs essentially work to validate the distributivity on polarity frames. In this section, we will carefully investigate splitters on distributive polarity frames. To this end, hereinafter, we take care only of nontrivial polarity frames, that is, polarity frames $\langle X, Y, B\rangle$ without $B=X \times Y$. This allows us to build a consistent theory. Otherwise, we would encounter a special situation: every trivial polarity frame is distributive by definition, but there is no splitting pair (splitter) on it.

Let $\mathbb{F}=\langle X, Y, \leq\rangle$ be a nontrivial distributive polarity frame. We let X_{s} be the set of all splitters in X, Y_{s} be the set of all splitters in Y, and \leq_{s} be the restriction of \leq on $X_{s} \cup Y_{s}$. Then, we call the triple $\mathbb{F}_{s}=\left\langle X_{s}, Y_{s}, \leq_{s}\right\rangle$ the prime skeleton of \mathbb{F}. Note that, when we consider a trivial polarity frame, the prime skeleton is not a polarity since X_{s} and Y_{s} are empty.

Proposition 4.1 For every nontrivial distributive polarity frame \mathbb{F}, the prime skeleton \mathbb{F}_{s} of \mathbb{F} is a nontrivial distributive polarity frame as well.

Next, we compare distributive polarity frames with their prime skeletons via dmorphisms. Let $\mathbb{F}=\langle X, Y, \leq\rangle$ be a distributive polarity frame, and let \mathbb{F}_{s} be the prime skeleton of \mathbb{F}. By the construction of the prime skeleton \mathbb{F}_{s}, we easily no-
tice that there are two natural embedding functions $\varepsilon_{X}: X_{s} \rightarrow X$ and $\varepsilon_{Y}: Y_{s} \rightarrow Y$, because X_{s} and Y_{s} are subsets of X and Y, respectively. For these embedding functions, we prove the following proposition.
Proposition 4.2 Let $\mathbb{F}=\langle X, Y, \leq\rangle$ be a distributive polarity frame. Then the pair $\left\langle\varepsilon_{X} \mid \varepsilon_{Y}\right\rangle$ of the natural embeddings $\varepsilon_{X}: X_{s} \rightarrow X$ and $\varepsilon_{Y}: Y_{s} \rightarrow Y$ forms a d-reflecting morphism from $\mathbb{F}_{\text {s }}$ to \mathbb{F}; that is, $\left\langle\varepsilon_{X} \mid \varepsilon_{Y}\right\rangle: \mathbb{F}_{s} \rightarrow \mathbb{F}$ is d-reflecting.

Proof We will show that the pair $\left\langle\varepsilon_{X} \mid \varepsilon_{Y}\right\rangle$ satisfies the conditions in Definition 2.7.
(Item 1). For arbitrary $x_{s} \in X_{s}$ and $y_{s} \in Y_{s}$, if $\varepsilon_{X}\left(x_{s}\right) \leq_{s} \varepsilon_{Y}\left(y_{s}\right)$, then $x_{s} \leq y_{s}$, because ε_{X} and ε_{Y} are the natural embeddings and \leq_{s} is the restriction of \leq on $X_{s} \cup Y_{s}$.
(Item 2). We prove this by contraposition. For arbitrary $x_{s} \in X_{s}$ and $y \in Y$, suppose that $\varepsilon_{X}\left(x_{s}\right) \nsucceq y$; that is, $x_{s} \nexists y$. Since x_{s} is a splitter, there exists a splitting counterpart $y_{x} \in Y$ of x_{s} such that $x_{s} \not \leq y_{x}$ and, for each $y^{\prime} \in Y$, if $x_{s} \not \leq y^{\prime}$, then $y^{\prime} \leq y_{x}$. So we obtain $y \leq y_{x}$. Moreover, since y_{x} is also a splitter (see Proposition 3.1), $y_{x} \in Y_{s}$, which means $y \leq \varepsilon_{Y}\left(y_{x}\right)$. However, by definition, we have $x_{s} \not Z_{s} y_{x}$ as well. Therefore, there exists $y_{x} \in Y_{s}$ such that $y \leq \varepsilon_{Y}\left(y_{x}\right)$ but $x_{s} \not Z_{s} y_{x}$.
(Item 3). We prove this by contraposition. For arbitrary $x \in X$ and $y_{s} \in Y_{s}$, suppose that $x \not \leq \varepsilon_{Y}\left(y_{s}\right)$; that is, $x \not \leq y_{s}$. Since y_{s} is a splitter, there exists a splitting counterpart $x_{y} \in X$ of y_{s} such that $x_{y} \not \leq y_{s}$ and, for each $x^{\prime} \in X$, if $x \notin y_{s}$, then $x_{y} \leq x^{\prime}$. Hence we have $x_{y} \leq x$. By Proposition 3.1, x_{y} is also a splitter, so $x_{y} \in X_{s}$. Therefore $\varepsilon_{X}\left(x_{y}\right) \leq x$. However, as $x_{y} \not \mathbb{Z}_{s} y_{s}$ by definition, there exists $x_{y} \in X_{s}$ such that $\varepsilon_{X}\left(x_{y}\right) \leq x$ but $x_{y} \not z_{s} y_{s}$.
(Item 4). This is trivial, because ε_{X} and ε_{Y} are the natural embeddings and \leq_{s} is the restriction of \leq on $X_{s} \cup Y_{s}$.
(Item 5). We prove this by contraposition. Suppose that $x \not \leq y$ for arbitrary $x \in X$ and $y \in Y$. Because \mathbb{F} is distributive, there exists a splitting pair $\left(x_{s}, y_{s}\right)$ such that $x_{s} \leq x$ and $y \leq y_{s}$. Thanks to Proposition 3.1, we know that $x_{s} \in X_{s}$ and $y_{s} \in Y_{s}$; hence $\varepsilon_{X}\left(x_{s}\right) \leq x$ and $y \leq \varepsilon_{Y}\left(y_{s}\right)$. However, since $x_{s} \not \approx y_{s}$ by definition, we conclude that $x_{s} \not Z_{s} y_{s}$, which completes this clause.

Thanks to Proposition 4.2, with help of Theorem 2.10, we can show invariance of validity between distributive polarity frames and the prime skeletons.
Theorem 4.3 Let \mathbb{F} be a distributive polarity frame, and let \mathbb{F}_{s} be the prime skeleton of \mathbb{F}. For every sequent $\phi \Leftrightarrow \psi$,

$$
\mathbb{F} \Vdash \phi \Leftrightarrow \psi \Longleftrightarrow \mathbb{F}_{s} \Vdash \phi \Leftrightarrow \psi
$$

Finally, we also show a property of prime skeletons which relates somewhat to results on RS-frames of distributive lattices (see [5]).

Theorem 4.4 Let $\mathbb{F}=\langle X, Y, \leq\rangle$ be a nontrivial distributive polarity frame, and let $\mathbb{F}_{s}=\left\langle X_{s}, Y_{s}, \leq_{s}\right\rangle$ be the prime skeleton of \mathbb{F}. Then the two preordered subsets $\left\langle X_{s}, \leq_{s}\right\rangle$ and $\left\langle Y_{s}, \leq_{s}\right\rangle$ of $\left\langle X_{s} \cup Y_{s}, \leq_{s}\right\rangle$ are essentially isomorphic, namely, isomorphic up to \leq_{s}-equivalence. Hence, the quotients of $\left\langle X_{s}, \leq_{s}\right\rangle$ and $\left\langle Y_{s}, \leq_{s}\right\rangle$ with respect to \leq_{s}-equivalence are isomorphic.

Proof For each splitter $x_{s} \in X_{s}$, we let a splitting counterpart $y_{s} \in Y_{s}$ of x_{s} be the corresponding element. Then, thanks to Proposition 3.1, the sets X_{s} and Y_{s} are essentially bijective. This is because every splitter is a splitting counterpart of the
splitting counterpart of the splitter. Also, for each splitter, the splitting counterpart is unique up to \leq-equivalence. Therefore, it suffices to show that $x_{s} \leq_{s} x_{t}$ if and only if $y_{s} \leq y_{t}$ for all splitting pairs $\left(x_{s}, y_{s}\right)$ and $\left(x_{t}, y_{t}\right)$.
(\Rightarrow). We prove this by contradiction. Suppose that $x_{s} \leq_{s} x_{t}$ but $y_{s} \not Z_{s} y_{t}$. By the definition of \leq on Y, there exists $x \in X$ such that $x \leq y_{s}$ but $x \notin y_{t}$. Further, as $\left(x_{t}, y_{t}\right)$ forms a splitting pair, we have that $x_{t} \leq x$. By our assumption $x_{s} \leq s x_{t}$, we also obtain $x_{s} \leq x$. By the transitivity of \leq on $X \cup Y$, we conclude that $x_{s} \leq x \leq y_{s}$. However, this contradicts the fact that $\left(x_{s}, y_{s}\right)$ forms a splitting pair.
(\Leftarrow). We prove this by contradiction. Suppose that $y_{s} \leq_{s} y_{t}$ but $x_{s} \not Z_{s} x_{t}$. By the definition of \leq on X, there exists $y \in Y$ such that $x_{t} \leq y$ but $x_{s} \not 又 y$. Since (x_{s}, y_{s}) forms a splitting pair, we obtain $y \leq y_{t}$. Now, by the transitivity of \leq on $X \cup Y$, we also obtain $x_{t} \leq y \leq y_{t}$, which contradicts the fact that $\left(x_{t}, y_{t}\right)$ forms a splitting pair.

Therefore, $\left\langle X_{s}, \leq_{s}\right\rangle$ and $\left\langle Y_{s}, \leq_{s}\right\rangle$ are essentially isomorphic.

5 The Distributivity on Bi-Approximation Semantics for Intuitionistic Logic

Intuitionistic logic is one of the well-studied distributive substructural logics, which can derive (or possess) the distributivity $\phi \wedge(\psi \vee \chi) \Rightarrow(\phi \wedge \psi) \vee(\phi \wedge \chi)$ (see, e.g., Galatos, Jipsen, and Kowalski [4]). In this section, we will introduce bi-approximation semantics for intuitionistic logic. On the framework, we study how to validate the distributivity and discuss a connection to distributive polarity frames.

For formulas of substructural logic, we extend our formulas discussed so far with three binary logical connectives fusion \circ, residuals \rightarrow, and \leftarrow, and two logical constants truth \mathbf{t} and false \mathbf{f}. In substructural logic, a sequent is usually introduced as a pair of a finite list of formulas $\phi_{1}, \ldots, \phi_{n}$ and a possibly empty formula ψ, denoted by $\phi_{1}, \ldots, \phi_{n} \Leftrightarrow \psi$. However, since it is equivalent to a pair of two formulas $\phi_{1} \circ \cdots \circ \phi_{n}$ and ψ, that is, $\phi_{1} \circ \cdots \circ \phi_{n} \Leftrightarrow \psi$, we look at every sequent as a pair of two formulas ϕ and ψ, denoted by $\phi \Leftrightarrow \psi$, for consistency for the other sections. To evaluate these additional logical connectives and constants, we expand polarity frames to p -frames for substructural logic (see [11]).

Definition 5.1 (Polarity frame for substructural logic) A polarity frame for substructural logic, a p-frame for short, is an octuple $\mathbb{F}=\left\langle X, Y, \leq, R, O_{X}, O_{Y}, N_{X}\right.$, $\left.N_{Y}\right\rangle$ if $\langle X, Y, \leq\rangle$ is a polarity frame, R is a ternary relation on $X \times X \times Y$; that is, $R \subseteq X \times X \times Y, O_{X}$ is a nonempty subset of X, N_{X} is a subset of X, O_{Y} and N_{Y} are subsets of Y, and \mathbb{F} satisfies

R-order: for all $x, x^{\prime} \in X, x^{\prime} \leq x \Longleftrightarrow R^{\circ}\left(x, o, x^{\prime}\right)$ or $R^{\circ}\left(o, x, x^{\prime}\right)$ for some $o \in O_{X}$;
R-identity: for each $x \in X, R^{\circ}\left(x, o_{2}, x\right)$ for some $o_{2} \in O_{X}$ and $R^{\circ}\left(o_{1}, x, x\right)$ for some $o_{1} \in O_{X}$;
R-transitivity: for all $x_{1}, x_{2}, x_{1}^{\prime}, x_{2}^{\prime} \in X$ and $y, y^{\prime} \in Y$, if $x_{1}^{\prime} \leq x_{1}, x_{2}^{\prime} \leq x_{2}$, $y \leq y^{\prime}$ and $R^{\circ}\left(x_{1}, x_{2}, y\right)$, then $R\left(x_{1}^{\prime}, x_{2}^{\prime}, y^{\prime}\right)$;
R-associativity: for all $x_{1}, x_{2}, x_{3}, x \in X, R^{\circ}\left(x_{1}, x^{\prime}, x\right)$ and $R^{\circ}\left(x_{2}, x_{3}, x^{\prime}\right)$ for some $x^{\prime} \in X$, if and only if $R^{\circ}\left(x_{1}, x_{2}, x^{\prime \prime}\right)$ and $R^{\circ}\left(x^{\prime \prime}, x_{3}, x\right)$ for some $x^{\prime \prime} \in X$;
O-isom: $O_{X}=\left\{x \in X \mid \forall y \in O_{Y} \cdot x \leq y\right\}$ and $O_{Y}=\{y \in Y \mid \forall x \in$ $\left.O_{X} . x \leq y\right\} ;$

N-isom: $N_{X}=\left\{x \in X \mid \forall y \in N_{Y} . x \leq y\right\}$ and $N_{Y}=\{y \in Y \mid \forall x \in$ $\left.N_{X} . x \leq y\right\}$;
o-tightness: for all $x_{1}, x_{2} \in X$ and $y \in Y$, if, for every $x \in X, R^{\circ}\left(x_{1}, x_{2}, x\right)$ implies $x \leq y$, then $R\left(x_{1}, x_{2}, y\right)$;
\rightarrow-tightness: for all $x_{1}, x_{2} \in X$ and $y \in Y$, if, for every $y_{2} \in Y, R^{\rightarrow}\left(x_{1}, y_{2}, y\right)$ implies $x_{2} \leq y_{2}$, then $R\left(x_{1}, x_{2}, y\right)$;
\leftarrow-tightness: for all $x_{1}, x_{2} \in X$ and $y \in Y$, if, for all $y_{1} \in Y, R \leftarrow\left(y_{1}, x_{2}, y\right)$ implies $x_{1} \leq y_{1}$, then $R\left(x_{1}, x_{2}, y\right)$;
where $R^{\circ}\left(x_{1}, x_{2}, x\right), R^{\rightarrow}\left(x_{1}, y_{2}, y\right)$, and $R^{\leftarrow}\left(y_{1}, x_{2}, y\right)$ are abbreviations of, for every $y \in Y, R\left(x_{1}, x_{2}, y\right)$ implies $x \leq y$, for every $x_{2} \in X, R\left(x_{1}, x_{2}, y\right)$ implies $x_{2} \leq y_{2}$, and for every $x_{1} \in X, R\left(x_{1}, x_{2}, y\right)$ implies $x_{1} \leq y_{1}$, respectively.

Note that doppelgänger valuations are the same as those on polarity frames. Given a bi-approximation model $\mathbb{M}=\langle\mathbb{F}, V\rangle$, we evaluate the additional logical connectives and constants as follows: for each $x \in X$, each $y \in Y$, and all formulas ϕ and ψ,

X-4: $\mathbb{M} \Vdash^{x} \phi \circ \psi \Longleftrightarrow$ for each $y^{\prime} \in Y$, if $\mathbb{M} \Vdash_{y^{\prime}} \phi \circ \psi$, then $x \leq y^{\prime}$;
X-5: $\mathbb{M} \| \Vdash^{x} \phi \rightarrow \psi \Longleftrightarrow$ for all $x_{1} \in X$ and $y^{\prime} \in Y$, if $\mathbb{M} \Vdash^{x_{1}} \phi$ and $\mathbb{M} \|_{y^{\prime}} \psi$, then $R\left(x_{1}, x, y^{\prime}\right) ;$
X-6: $\mathbb{M} \|^{x} \psi \leftarrow \phi \Longleftrightarrow$ for all $x_{2} \in X$ and $y^{\prime} \in Y$, if $\mathbb{M} \|^{x_{2}} \phi$ and $\mathbb{M} \|_{y^{\prime}} \psi$, then $R\left(x, x_{2}, y^{\prime}\right)$;
$\mathbf{X - 7 : ~} \mathbb{M} \Vdash^{\underline{x}} \mathbf{t} \Longleftrightarrow x \in O_{X}$;
X-8: $\mathbb{M} \|^{x} \mathbf{f} \Longleftrightarrow x \in N_{X}$;
Y-4: $\mathbb{M} \Vdash_{y} \phi \circ \psi \Longleftrightarrow$ for all $x_{1}, x_{2} \in X$, if $\mathbb{M} \Vdash^{x_{1}} \phi$ and $\mathbb{M} \| \xlongequal{x_{2}} \psi$, then $R\left(x_{1}, x_{2}, y\right) ;$
Y-5: $\mathbb{M} \|_{y} \phi \rightarrow \psi \Longleftrightarrow$ for each $x^{\prime} \in X$, if $\mathbb{M} \| \xlongequal{x^{\prime}} \phi \rightarrow \psi$, then $x^{\prime} \leq y$;
Y-6: $\mathbb{M} \|_{y} \psi \leftarrow \phi \Longleftrightarrow$ for each $x^{\prime} \in X$, if $\mathbb{M} \| \xlongequal{x^{\prime}} \psi \leftarrow \phi$, then $x^{\prime} \leq y$;
Y-7: $\mathbb{M} \|_{y} \mathbf{t} \Longleftrightarrow y \in O_{Y}$;
Y-8: $\mathbb{M} \|_{y} \mathbf{f} \Longleftrightarrow y \in N_{Y}$.
The fundamental properties for polarity frames in Section 2 are naturally extended to those on p-frames as well. In particular, the basic substructural logic FL, named after the full Lambek calculus $(F L)$, is sound and complete with respect to the class of p-frames. In the light of substructural logic, intuitionistic logic can be explicated as a collection of derivable sequents on the sequent calculus FL extended by two types of axioms: weakening $p \Leftrightarrow \mathbf{t}$ and $\mathbf{f} \Leftrightarrow p$, and contraction $p \Leftrightarrow p \circ p$. Hence we may sometimes denote intuitionistic logic by $\mathbf{F L}_{w c}$, which means the set of derivable sequents in FL extended by weakening and contraction.

In [14], we have shown that every substructural logic extended by sequents (axioms) which have consistent variable occurrence is complete with respect to a class of first-order definable p-frames. In addition, the first-order sentences are algorithmically computable. In fact, since the weakening axioms and the contraction axiom have consistent variable occurrence, we can calculate the first-order correspondents as follows:

Weakening: $\forall x \in X . x \in O_{X}$ and $\forall y \in Y . y \in N_{Y}$,
Contraction: $\forall x \in X . R^{\circ}(x, x, x)$.
Therefore, intuitionistic logic is sound and complete with respect to the class of pframes satisfying the above first-order sentences. Hereinafter, we call p-frames satisfying the above first-order sentences p-frames for intuitionistic logic, or intp-frames for short. Because the distributivity $\phi \wedge(\psi \vee \chi) \mapsto(\phi \wedge \psi) \vee(\phi \wedge \chi)$ is derivable in intuitionistic logic, each intp-frame must validate the distributivity. Now let us check this fact. Note that, in the following argument, we fully investigate that fusion \circ on $\mathbf{F L}_{w c}$ corresponds to conjunction \wedge on the level of intp-frames.

Let $\mathbb{F}=\left\langle X, Y, \leq, R, O_{X}, O_{Y}, N_{X}, N_{Y}\right\rangle$ be an intp-frame, and let V be a doppelgänger valuation on \mathbb{F}. For arbitrary $x \in X$ and $y \in Y$, suppose that $\langle\mathbb{F}, V\rangle \|^{\underline{x}} \phi \wedge(\psi \vee \chi)$ and $\langle\mathbb{F}, V\rangle \Vdash^{\underline{x}}(\phi \wedge \psi) \vee(\phi \wedge \chi)$. By definition, we have $\langle\mathbb{F}, V\rangle \Vdash^{x} \phi,\langle\mathbb{F}, V\rangle \Vdash^{\underline{x}} \psi \vee \chi,\langle\mathbb{F}, V\rangle \Vdash_{y} \phi \wedge \psi$, and $\langle\mathbb{F}, V\rangle \Vdash_{y} \phi \wedge \chi$. Now we claim the following:

$$
\langle\mathbb{F}, V\rangle\left\|_{y} \phi \wedge \psi \Longleftrightarrow\langle\mathbb{F}, V\rangle\right\|_{\bar{y}} \phi \circ \psi
$$

(\Rightarrow). For arbitrary $x_{1}, x_{2} \in X$, assume that $\langle\mathbb{F}, V\rangle \Vdash \Vdash^{x_{1}} \phi$ and $\langle\mathbb{F}, V\rangle \Vdash^{x_{2}} \psi$. Let $x \in X$ satisfying $R^{\circ}\left(x_{1}, x_{2}, x\right)$. Because of the weakening conditions, we have x_{1} in O_{X} and $x_{2} \in O_{X}$, which derives $x \leq x_{1}$ and $x \leq x_{2}$ by the R-order of Definition 5.1. Thanks to the hereditary Proposition 2.2, we also obtain that $\langle\mathbb{F}, V\rangle \|^{x} \phi$ and $\langle\mathbb{F}, V\rangle \| \underline{\underline{x}} \psi$; hence $\langle\mathbb{F}, V\rangle \Vdash^{x} \phi \wedge \psi$. By our assumption $\langle\mathbb{F}, V\rangle \Vdash_{y} \phi \wedge \psi$ and Proposition 2.3, we derive $x \leq y$. Finally, by the o-tightness condition of Definition 5.1, we conclude $R\left(x_{1}, x_{2}, y\right)$, which means $\langle\mathbb{F}, V\rangle \|_{y} \phi \circ \psi$.
(\Leftarrow). For any $x \in X$, if $\langle\mathbb{F}, V\rangle \|^{x} \phi \wedge \psi$, by definition we have $\langle\mathbb{F}, V\rangle \|^{x} \phi$ and $\langle\mathbb{F}, V\rangle \|^{x} \psi$. So by our assumption $\langle\mathbb{F}, V\rangle \Vdash_{y} \phi \circ \psi$, we obtain that $R(x, x, y)$. Moreover, as \mathbb{F} satisfies the contraction condition, we also have $R^{\circ}(x, x, x)$. Hence, by the definition of R°, we get $x \leq y$, which concludes $\langle\mathbb{F}, V\rangle \Vdash_{y} \phi \wedge \psi$.

Analogously, we also have that $\langle\mathbb{F}, V\rangle \Vdash_{y} \phi \wedge \chi \quad \Longleftrightarrow \quad|\mathbb{F}, V\rangle \Vdash_{y} \phi \circ \chi$. Furthermore, by [11, Theorem 4.4], we also obtain

1. $\langle\mathbb{F}, V\rangle \Vdash_{y} \phi \wedge \psi \Longleftrightarrow$ for all $x_{1} \in X$ and $y_{2} \in Y$, if $\langle\mathbb{F}, V\rangle \Vdash^{x_{1}} \phi$ and $R \rightarrow\left(x_{1}, y_{2}, y\right)$, then $\langle\mathbb{F}, V\rangle \Vdash_{y_{2}} \psi$;
2. $\langle\mathbb{F}, V\rangle \Vdash_{y} \phi \wedge \chi \Longleftrightarrow$ for all $x_{1} \in X$ and $y_{2} \in Y$, if $\langle\mathbb{F}, V\rangle \Vdash^{x_{1}} \phi$ and $R^{\rightarrow}\left(x_{1}, y_{2}, y\right)$, then $\langle\mathbb{F}, V\rangle \Vdash_{y_{2}} \chi$.
Now let us come back to the original argument. We currently have $\langle\mathbb{F}, V\rangle \| \triangleq$, $\langle\mathbb{F}, V\rangle \Vdash^{x} \psi \vee \chi,\langle\mathbb{F}, V\rangle \Vdash_{y} \phi \wedge \psi$, and $\langle\mathbb{F}, V\rangle \Vdash_{y} \phi \wedge \chi$. To conclude the validity, it suffices to show that $R(x, x, y)$. This is because, on \mathbb{F}, we have $R^{\circ}(x, x, x)$, so if we have $R(x, x, y)$ we can conclude $x \leq y$ because of the definition of R°.

To prove $R(x, x, y)$, we use the \rightarrow-tightness condition of Definition 5.1. For any $y^{\prime} \in Y$, if $R^{\rightarrow}\left(x, y^{\prime}, y\right)$ holds, as $\langle\mathbb{F}, V\rangle \| \xlongequal{x} \phi$, we obtain that $\langle\mathbb{F}, V\rangle\left\|\|_{y^{\prime}} \psi\right.$ and $\langle\mathbb{F}, V\rangle \Vdash_{y^{\prime}} \chi$ by the above item 1 and item 2. Therefore, we have $\langle\mathbb{F}, V\rangle \Vdash_{y^{\prime}} \psi \vee \chi$.

Now, since $\langle\mathbb{F}, V\rangle \|_{x} \psi \vee \chi$, we have $x \leq y^{\prime}$ by Proposition 2.3. Furthermore, by the \rightarrow-tightness condition of Definition 5.1, we conclude $R(x, x, y)$. Therefore, the distributivity is valid on any intp-frame.

Remark 5.2 The weakening conditions and the contraction condition are used to prove that $\langle\mathbb{F}, V\rangle \Vdash_{y} \phi \wedge \psi \Longleftrightarrow\langle\mathbb{F}, V\rangle \Vdash_{y} \phi \circ \psi$. Note that the tightness conditions are essentially working to show the adjointness (residuation).

Comparison with distributive polarity frames As we saw above, to validate the distributivity on intp-frames, we have not, at least explicitly, used any condition such as splitters or splitting pairs at all. Instead, we have manipulated the tightness conditions and the adjointness to show the distributivity. So it is natural to ask how intp-frames relate to distributive polarity frames and the splitting condition. Before tackling this question, we first consider the ternary relation R on intp-frames.

Let \mathbb{F} be an intp-frame. Here we claim that for all $x_{1}, x_{2} \in X$ and $y \in Y$,

$$
\begin{equation*}
R\left(x_{1}, x_{2}, y\right) \Longleftrightarrow \forall x \in X .\left[x \leq x_{1} \text { and } x \leq x_{2} \Longrightarrow x \leq y\right] \tag{1}
\end{equation*}
$$

(\Rightarrow). Assume $R\left(x_{1}, x_{2}, y\right)$. For any $x \in X$, if $x \leq x_{1}$ and $x \leq x_{2}$, we obtain that $R(x, x, y)$ by the R-transitivity condition of Definition 5.1. Since \mathbb{F} satisfies the contraction condition, we have that $R^{\circ}(x, x, x)$; that is, for each $y^{\prime} \in Y$, if $R\left(x, x, y^{\prime}\right)$, then $x \leq y^{\prime}$. Hence, $x \leq y$.
(\Leftarrow). By [11, Lemma 4.2], on p-frames, $R\left(x_{1}, x_{2}, y\right)$ is equivalent to the following condition: for each $x \in X$, if $R^{\circ}\left(x_{1}, x_{2}, x\right)$, then $x \leq y$. So we will show this condition. Assume $R^{\circ}\left(x_{1}, x_{2}, x\right)$ for an arbitrary $x \in X$. As \mathbb{F} satisfies the weakening conditions, x_{1} and x_{2} are in O_{X}; hence we have $x \leq x_{1}$ and $x \leq x_{2}$ by the R-order condition of Definition 5.1. By our assumption, we conclude $x \leq y$, which shows the equivalence in equation (1).

By the above equivalence, we can say that the auxiliary condition $R^{\circ}\left(x_{1}, x_{2}, x\right)$ is the same as $x \leq x_{1}$ and $x \leq x_{2}$. Furthermore, the above equivalence tells us that, on intp-frames, the ternary relation R is reconstructed from the binary relation B (or \leq).

Remark 5.3 It does not mean that every polarity frame is transferable to an intpframe. However, from some specific distributive polarity frames, we can reconstruct intp-frames.

Let us look at an example of how to construct an intp-frame from a distributive polarity frame. Let $\langle X, Y, B\rangle$ be a polarity frame with $X=\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right\}$, $Y=\left\{y_{1}, y_{2}, y_{3}\right\}$, and the binary relation B is given by Table 1. In Table 1, we let 1 and 0 represent "related" and "not related," respectively. For example, we can learn $x_{1} B y_{1}$ but $x_{1} \quad B y_{2}$ from the table.

Based on this binary relation B, we can obtain the posets $\langle X, \leq\rangle$ and $\langle Y, \leq\rangle$ represented by the following Hasse diagrams in Figure 2. Now we induce a ternary relation R by the above equivalence in equation (1). Table 2 shows the results. On the induced ternary relation R, if we let $O_{X}=\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right\}, O_{Y}=\emptyset, N_{X}=\left\{x_{5}\right\}$, and $N_{Y}=\left\{y_{1}, y_{2}, y_{3}\right\}$, they form a p-frame. Since this is a routine check, we can safely leave the proof of this part for readers. Furthermore, we claim that the p-frame $\left\langle X, Y, \leq, R, O_{X}, O_{Y}, N_{X}, N_{Y}\right\rangle$ satisfies the splitting condition; hence the base polarity $\langle X, Y, \leq\rangle$ is distributive. That is, for each pair $\left(x_{i}, y_{j}\right)$ of disconnected elements, namely, $x_{i} \not \leq y_{j}$, we can find a splitting pair $\left(x_{s}, y_{s}\right)$ satisfying $x_{s} \leq x_{i}$ and $y_{j} \leq y_{s}$.

Table 1 The binary relation B

B	y_{1}	y_{2}	y_{3}
x_{1}	1	0	0
x_{2}	1	1	0
x_{3}	0	0	1
x_{4}	1	0	1
x_{5}	1	1	1

$$
\langle X, \leq\rangle
$$

$$
\langle Y, \leq\rangle
$$

Figure 2 The posets $\langle X, \leq\rangle$ and $\langle Y, \leq\rangle$.

Table 2 The induced ternary relation R

R	y_{1}	y_{2}	y_{3}					
x_{1}, x_{1}	1	0	0					
x_{1}, x_{2}	1	1	0					
x_{1}, x_{3}	1	0	1					
x_{1}, x_{4}	1	0	1					
x_{1}, x_{5}	1	1	1					
x_{2}, x_{1}	1	1	0					
x_{2}, x_{2}	1	1	0					
x_{2}, x_{3}	1	1	1					
x_{2}, x_{4}	1	1	1	\quad	R	y_{1}	y_{2}	y_{3}
:---:	:---:	:---:	:---:					
x_{2}, x_{5}	1	1	1					
x_{3}, x_{1}	1	0	1					
x_{3}, x_{2}	1	1	1					
x_{3}, x_{3}	0	0	1					
x_{3}, x_{4}	1	0	1					
x_{3}, x_{5}	1	1	1					
x_{4}, x_{1}	1	0	1					
x_{4}, x_{2}	1	1	1					

R	y_{1}	y_{2}	y_{3}
x_{4}, x_{3}	1	0	1
x_{4}, x_{4}	1	0	1
x_{4}, x_{5}	1	1	1
x_{5}, x_{1}	1	1	1
x_{5}, x_{2}	1	1	1
x_{5}, x_{3}	1	1	1
x_{5}, x_{4}	1	1	1
x_{5}, x_{5}	1	1	1

On this p-frame, we note that there are three splitting pairs, that is, $\left(x_{2}, y_{3}\right),\left(x_{4}, y_{2}\right)$, and $\left(x_{3}, y_{1}\right)$. Then, for each disconnected pair, we have an appropriate splitting pair as follows:

1. for $x_{1} \not \leq y_{2}$, we have $\left(x_{4}, y_{2}\right)$ as a splitting pair (note that, in this case, we can also take $\left(x_{2}, y_{3}\right)$ as a splitting pair);
2. for $x_{1} \not \leq y_{3}$, we have $\left(x_{4}, y_{2}\right)$ as a splitting pair (note that, in this case, we can also take $\left(x_{2}, y_{3}\right)$ as a splitting pair);
3. for $x_{2} \not \leq y_{3}$, we have $\left(x_{2}, y_{3}\right)$ itself as a splitting pair;
4. for $x_{3} \not \leq y_{1}$, we have $\left(x_{3}, y_{1}\right)$ itself as a splitting pair;
5. for $x_{3} \not \leq y_{2}$, we have $\left(x_{3}, y_{1}\right)$ as a splitting pair;
6. for $x_{4} \not \leq y_{2}$, we have $\left(x_{4}, y_{2}\right)$ itself as a splitting pair.

Therefore, this p-frame is distributive. Here we mention that, although one may feel that it is too complicated to find an appropriate splitting pair for each disconnected pair, there is a simple algorithm for finding an appropriate splitting pair, which is in fact the main technique used to prove Theorem 5.4. Before proving Theorem 5.4, let us look at the algorithm. For any disconnected pair $x_{i} \not \leq y_{j}$,

1. take the set of all elements in Y which are disconnected to x_{i} and are greater than or equal to y_{j};
2. choose a maximal element, say, y_{m}, in the set;
3. collect all elements in X which are disconnected to y_{m} and are less than or equal to x_{i};
4. take the minimum element, say, x_{m}, in the set.

Then, we have obtained an appropriate splitting pair $\left(x_{m}, y_{m}\right)$ for the disconnected pair $x_{i} \not \leq y_{j}$.

Theorem 5.4 Every p-frame for intuitionistic logic is distributive.

Proof It suffices to show that every intp-frame satisfies the splitting condition. Let x_{i} and y_{j} be a disconnected pair; that is, $x_{i} \not \leq y_{j}$. Then, as in item 1 of the algorithm, we take the following set $\mathfrak{\bigvee}_{\left(x_{i}, y_{j}\right)}$:

$$
\mathfrak{Y}_{\left(x_{i}, y_{j}\right)}:=\left\{y_{k} \in Y \mid x_{i} \not \leq y_{k} \text { and } y_{j} \leq y_{k}\right\} .
$$

To use Zorn's lemma, we will show that $\mathfrak{V}=\left(x_{i}, y_{j}\right)$ is an inductive set. By our assumption, that is, $x_{i} \not \leq y_{j}$, we have that $y_{j} \in \mathfrak{Y}_{\left(x_{i}, y_{j}\right)}$; hence $\mathfrak{Y}_{\left(x_{i}, y_{j}\right)}$ is nonempty. Note that each element y_{k} in Y is represented by the subset of all elements of X which are connected to y_{k}. Also note that this representation is not always unique. For example, in Table $1, y_{1}, y_{2}$, and y_{3} are represented by $\left\{x_{1}, x_{2}, x_{4}, x_{5}\right\},\left\{x_{2}, x_{5}\right\}$, and $\left\{x_{3}, x_{4}, x_{5}\right\}$, respectively. Actually, the order \leq on Y is nothing but the inclusion relation of these subsets. Therefore, for each chain in $\mathfrak{Y}\left(x_{i}, y_{j}\right)$, the supremum is calculated as the union of these representing subsets of X. Moreover, for each chain, the representing subsets do not contain x_{i} by definition. As the union of every chain in $\mathfrak{Y}_{\left(x_{i}, y_{j}\right)}$ is in $\mathfrak{Y}_{\left(x_{i}, y_{j}\right)}$, the set $\mathfrak{Y}_{\left(x_{i}, y_{j}\right)}$ is inductive. Thanks to the axiom of choice, we can take a maximal element y_{m} in $\mathfrak{\bigvee}\left(x_{i}, y_{j}\right)$. We also mention that, by the definition of $\mathfrak{\bigvee}_{\left(x_{i}, y_{j}\right)}$, we have that $y_{j} \leq y_{m}$.

Next, as in item 3 of the algorithm, we take the following set $\mathscr{X}_{\left(x_{i}, y_{m}\right)}$:

$$
\mathscr{X}_{\left(x_{i}, y_{m}\right)}:=\left\{x_{k} \in X \mid x_{k} \not \leq y_{m} \text { and } x_{k} \leq x_{i}\right\} .
$$

Again, we claim that $\mathfrak{X}_{\left(x_{i}, y_{m}\right)}$ is an inductive set, to use Zorn's lemma. We take the same strategy. As $y_{m} \in \mathfrak{Y}_{\left(x_{i}, y_{j}\right)}$, we have $x_{i} \in \mathfrak{X}_{\left(x_{i}, y_{m}\right)}$. Hence, $\mathfrak{X}_{\left(x_{i}, y_{m}\right)}$
is nonempty. As above, each element x_{k} in X is representable by the subset of all elements in Y which are connected to x_{k}. Then, the order \leq on X is the reverse inclusion \supseteq of these representing subsets of Y. For each chain in $\mathfrak{X}_{\left(x_{i}, y_{m}\right)}$, the infimum (the supremum with respect to the inclusion relation) is computable as the union of the representing subsets. Because each element in $\mathfrak{X}_{\left(x_{i}, y_{m}\right)}$ is disconnected to y_{m}, no representing subset contains y_{m}. So $\mathfrak{X}_{\left(x_{i}, y_{m}\right)}$ is inductive. Therefore, by the axiom of choice, we can take an infimum x_{m} (a supremum with respect to the inclusion order \subseteq).

Furthermore, we also want to state that this infimum x_{m} is actually the minimum element of $\mathfrak{X}_{\left(x_{i}, y_{m}\right)}$. For this purpose, we show that the set $\mathfrak{X}_{\left(x_{i}, y_{m}\right)}$ is downdirected; namely, for arbitrary $x_{k}, x_{l} \in \mathfrak{X}_{\left(x_{i}, y_{m}\right)}$, there exists $x \in X$ such that $x \leq x_{k}, x \leq x_{l}$, and $x \in \mathfrak{X}_{\left(x_{i}, y_{m}\right)}$. We prove it by contradiction. That is, we will derive a contradiction on the assumption that there exist $x_{k}, x_{l} \in \mathfrak{X}_{\left(x_{i}, y_{m}\right)}$ such that, for any x, if $x \leq x_{k}$ and $x \leq x_{l}$, then $x \notin \mathfrak{X}_{\left(x_{i}, y_{m}\right)}$; that is, $x \leq y_{m}$.

Suppose that, for $x_{k}, x_{l} \in \mathfrak{X}_{\left(x_{i}, y_{m}\right)}$ and any $x \in X$, if $x \leq x_{k}$ and $x \leq x_{l}$, then $x \leq y_{m}$. Since \mathbb{F} is an intp-frame, we obtain that $R\left(x_{k}, x_{l}, y_{m}\right)$ by the equivalence in equation (1).

Next, to obtain $R\left(x_{k}, x_{i}, y_{m}\right)$, we consider the \rightarrow-tightness condition of Definition 5.1 for x_{k}, x_{i}, and y_{m} :

$$
\begin{equation*}
\forall y_{2} \in Y \cdot\left[R^{\rightarrow}\left(x_{k}, y_{2}, y_{m}\right) \Longrightarrow x_{i} \leq y_{2}\right] \Longrightarrow R\left(x_{k}, x_{i}, y_{m}\right) \tag{2}
\end{equation*}
$$

For any $y_{2} \in Y$, if $R \rightarrow\left(x_{k}, y_{2}, y_{m}\right)$, then $x_{l} \leq y_{2}$, because we have already obtained $R\left(x_{k}, x_{l}, y_{m}\right)$. By the definition of \leq on Y and the fact that $x_{l} \in \mathfrak{X}_{\left(x_{i}, y_{m}\right)}$, we have that $x_{l} \not \pm y_{m}$; hence $y_{2} \not \leq y_{m}$. Here, we want to show that $y_{m} \leq y_{2}$, namely, y_{2} is strictly greater than y_{m}, to state that $x_{i} \leq y_{2}$. For any $x^{\prime} \in X$, suppose that $x^{\prime} \leq y_{m}$. Now, we look at the o-tightness condition of Definition 5.1 for x_{k}, x^{\prime}, and y_{m} :

$$
\begin{equation*}
\forall x^{\prime \prime} \in X \cdot\left[R^{\circ}\left(x_{k}, x^{\prime}, x^{\prime \prime}\right) \Longrightarrow x^{\prime \prime} \leq y_{m}\right] \Longrightarrow R\left(x_{k}, x^{\prime}, y_{m}\right) \tag{3}
\end{equation*}
$$

For any $x^{\prime \prime} \in X$, if $R^{\circ}\left(x_{k}, x^{\prime}, x^{\prime \prime}\right)$, since \mathbb{F} satisfies the weakening conditions, $x^{\prime \prime} \leq x^{\prime}$; hence $x^{\prime \prime} \leq y_{m}$ by our assumption $x^{\prime} \leq y_{m}$. Therefore, by the condition (3), we obtain $R\left(x_{k}, x^{\prime}, y_{m}\right)$. Furthermore, by our assumption $R \rightarrow\left(x_{k}, y_{2}, y_{m}\right)$, we also obtain that $x^{\prime} \leq y_{2}$; hence $y_{m} \leq y_{2}$. So y_{2} is strictly greater than y_{m}. Since y_{m} is a maximal element in $\mathfrak{Y}_{\left(x_{i}, y_{j}\right)}, x_{i} \leq y_{2}$ holds. Hence, by the condition (2), $R\left(x_{k}, x_{i}, y_{m}\right)$ as we claimed above.

Next, to obtain $R\left(x_{i}, x_{i}, y_{m}\right)$, we think about the \rightarrow-tightness condition of Definition 5.1 for x_{i}, x_{i}, and y_{m} :

$$
\begin{equation*}
\forall y_{1} \in Y \cdot\left[R^{\leftarrow}\left(y_{1}, x_{i}, y_{m}\right) \Longrightarrow x_{i} \leq y_{1}\right] \Longrightarrow R\left(x_{i}, x_{i}, y_{m}\right) \tag{4}
\end{equation*}
$$

For any $y_{l} \in Y$, if $R \leftarrow\left(y_{l}, x_{i}, y_{m}\right)$, then $x_{k} \leq y_{l}$, since we already have $R\left(x_{k}, x_{i}, y_{m}\right)$. By the definition of \leq on Y and the fact that $x_{k} \in \mathfrak{X}_{\left(x_{i}, y_{m}\right)}$, we have that $x_{k} \not \leq y_{m}$; hence $y_{l} \not \leq y_{m}$. Again, here we would like to show that $y_{m} \leq y_{l}$, that is, that y_{l} is strictly greater than y_{m}. For any $x^{\prime} \in X$, suppose that $x^{\prime} \leq y_{m}$. Now, apply the o-tightness condition of Definition 5.1 for x^{\prime}, x_{i}, and y_{m} :

$$
\begin{equation*}
\forall x^{\prime \prime} \in X \cdot\left[R^{\circ}\left(x^{\prime}, x_{i}, x^{\prime \prime}\right) \Longrightarrow x^{\prime \prime} \leq y_{m}\right] \Longrightarrow R\left(x^{\prime}, x_{i}, y_{m}\right) \tag{5}
\end{equation*}
$$

For any $x^{\prime \prime} \in X$, if $R^{\circ}\left(x^{\prime}, x_{i}, x^{\prime \prime}\right)$, since \mathbb{F} satisfies the weakening conditions, we have $x^{\prime \prime} \leq x^{\prime}$; hence $x^{\prime \prime} \leq y_{m}$ by our assumption $x^{\prime} \leq y_{m}$. By the condition (5), we obtain that $R\left(x^{\prime}, x_{i}, y_{m}\right)$. Moreover, by our assumption $R^{\leftarrow}\left(y_{l}, x_{i}, y_{m}\right)$, we also have that $x^{\prime} \leq y_{l}$. Then, we get $y_{m} \leq y_{l}$, which means that y_{l} is strictly greater than
y_{m}. Since y_{m} is a maximal element in $\mathfrak{Y}_{\left(x_{i}, y_{j}\right)}$, hence $x_{i} \leq y_{l}$ holds. Therefore, by the condition (4), we obtain $R\left(x_{i}, x_{i}, y_{m}\right)$.

Here we have that $R^{\circ}\left(x_{i}, x_{i}, x_{i}\right)$, because \mathbb{F} satisfies the contraction condition. We also have that $R\left(x_{i}, x_{i}, y_{m}\right)$. Hence, we conclude that $x_{i} \leq y_{m}$. However, it contradicts the fact that y_{m} is a maximal element in $\mathfrak{Y}_{\left(x_{i}, y_{j}\right)}$. Therefore, $\mathfrak{X}_{\left(x_{i}, y_{m}\right)}$ is down-directed. Note that the fact derives that the infimum x_{m} in $\mathfrak{X}_{\left(x_{i}, y_{m}\right)}$ is actually the least element in $\mathfrak{X}_{\left(x_{i}, y_{m}\right)}$. We also mention that $x_{m} \leq x_{i}$ by definition.

Finally, we show that the pair $\left(x_{m}, y_{m}\right)$ is a splitting pair. Namely, $x_{m} \not \leq y_{m}$ and $\forall x^{\prime} \in X .\left[x^{\prime} \notin y_{m} \Longrightarrow x_{m} \leq x^{\prime}\right]$. However, these follow straightforwardly from the fact that x_{m} is the minimum element in $\mathfrak{X}_{\left(x_{i}, y_{m}\right)}$.

Remark 5.5 There are three comments for the proof of Theorem 5.4.

1. The axiom of choice is essential to find a maximal element y_{m} in $\mathfrak{Y}_{\left(x_{i}, y_{j}\right)}$ and the minimum element x_{m} of $\mathfrak{X}_{\left(x_{i}, y_{m}\right)}$.
2. We manipulate all three tightness conditions (residuation) to prove that $\mathfrak{X}_{\left(x_{i}, y_{m}\right)}$ is down-directed in general. However, as in the above example, for p-frame for intuitionistic logic satisfying

$$
R\left(x_{1}, x_{2}, y\right) \Longleftrightarrow x_{1} \leq y \text { or } x_{2} \leq y
$$

we have a simpler way to show the down-directedness of $\mathfrak{X}_{\left(x_{i}, y_{m}\right)}$.
3. The algorithm to find splitting pairs is symmetric. That is, we can choose a minimal element x_{m}, first. After that, we can take the maximum element y_{m}.

6 Conclusion

In the current paper, we have introduced special elements in polarity frames, named splitters, to characterize the distributivity on bi-approximation semantics. As we saw in Section 3, splitters play central roles to validate the distributivity. Plus, we have also studied that, to obtain the dual representation between distributive lattices and distributive polarity frames, the axiom of choice essentially works. By introducing the prime skeletons, we have also learned how splitters work on distributive polarity frames, and we have shown invariance of validity of sequents between distributive polarity frames and the prime skeletons. On the other hand, by applying the Sahlqvist theorem for substructural logic on bi-approximation semantics, we have also considered bi-approximation semantics for intuitionistic logic, which obviously validate the distributive law, but which does not, at least explicitly, guarantee the existence of splitting pairs. The interesting things are:

1. To prove that bi-approximation semantics for intuitionistic logic is based on distributive polarity frames, the axiom of choice is needed.
2. Nevertheless, we can validate the distributive law on bi-approximation semantics for intuitionistic logic without the axiom of choice but by manipulating the adjointness $\wedge \vdash \rightarrow$.
As a natural consequence, we obtain interesting questions: is there any constructive characterization of the distributivity depending neither on the axiom of choice nor on the adjointness? And: is there any interesting connection between the axiom of choice and the adjointness?

One may also question how the first-order definability for Kripke semantics of distributive substructural logics relates to bi-approximation semantics of distributive
substructural logics. But, we already have a possible answer for this question, and it will appear in this author's subsequent work.

Note

1. In case $x=y$ for $x \in X$ and $y \in Y, x B y$ has to hold.

References

[1] Ciabattoni, A., N. Galatos, and K. Terui, "Algebraic proof theory for substructural logics: Cut-elimination and completions," Annals of Pure and Applied Logic, vol. 163 (2012), pp. 266-90. Zbl 1245.03026. MR 2871269. DOI 10.1016/j.apal.2011.09.003. 414
[2] Davey, B. A., and H. A. Priestley, Introduction to Lattices and Order, 2nd ed., Cambridge University Press, New York, 2002. MR 1902334. DOI 10.1017/CBO9780511809088. 413
[3] Galatos, N., and P. Jipsen, "Residuated frames with applications to decidability," Transactions of the American Mathematical Society, vol. 365 (2013), pp. 1219-49. Zbl 1285.03077. MR 3003263. DOI 10.1090/S0002-9947-2012-05573-5. 411, 414
[4] Galatos, N., P. Jipsen, T. Kowalski, and H. Ono, Residuated lattices: An algebraic glimpse at substructural logics, vol. 151 of Studies in Logic and the Foundations of Mathematics, Elsevier, Amsterdam, 2007. Zbl 1171.03001. MR 2531579. 421
[5] Gehrke, M., "Generalized Kripke frames," Studia Logica, vol. 84 (2006), pp. 241-75. Zbl 1115.03013. MR 2284541. DOI 10.1007/s11225-006-9008-7. 411, 412, 420
[6] Ghilardi, S., and G. Meloni, "Constructive canonicity in non-classical logics," Annals of Pure and Applied Logic, vol. 86 (1997), pp. 1-32. Zbl 0949.03019. MR 1452653. DOI 10.1016/S0168-0072(96)00048-6. 411
[7] Goldblatt, R. I., "Semantic analysis of orthologic," Journal of Philosophical Logic, vol. 3 (1974), pp. 19-35. Zbl 0278.02023. MR 0432410. 411
[8] Hartonas, C., "Duality for lattice-ordered algebras and for normal algebraizable logics," Studia Logica, vol. 58 (1997), pp. 403-50. Zbl 0886.06002. MR 1460255. DOI 10.1023/ A:1004982417404. 411
[9] Hartonas, C., and J. M. Dunn, "Stone duality for lattices," Algebra Universalis, vol. 37 (1997), pp. 391-401. Zbl 0902.06008. MR 1452408. DOI 10.1007/s000120050024. 411
[10] Restall, G., An Introduction to Substructural Logics, Routledge, London, 2000. Zbl 1028.03018. 411
[11] Suzuki, T., "Bi-approximation semantics for substructural logic at work," pp. 411-33 in Advances in Modal Logic (Nancy, France, 2008), edited by L. Beklemishev, V. Goranko, and V. Shehtman, vol. 8 of Advances in Modal Logic, College Publications, London, 2010. MR 2808455. 411, 413, 419, 421, 423, 424
[12] Suzuki, T., "Canonicity results of substructural and lattice-based logics," Review of Symbolic Logic, vol. 4 (2011), pp. 1-42. Zbl 1229.03023. MR 2809214. DOI 10.1017/ S1755020310000201. 411, 412, 416
[13] Suzuki, T., "Morphisms on bi-approximation semantics," pp. 494-515 in Advances in Modal Logic, edited by T. Bolander, T. Braüner, S. Ghilardi, and L. Moss, vol. 9 of Advances in Modal Logic, College Publications, London, 2012. MR 3220343. 415
[14] Suzuki, T., "A Sahlqvist theorem for substructural logic," Review of Symbolic Logic, vol. 6 (2013), pp. 229-53. Zbl 1282.03014. MR 3069838. DOI 10.1017/ S1755020313000026. 411, 412, 414, 416, 422

Acknowledgments

The author would like to thank Rostislav Horčík and the anonymous reviewer for valuable comments. The author is supported by Czech Science Foundation grant GAP202/10/1826 and RVO 67985807.

Institute of Computer Science
Academy of Sciences of the Czech Republic
Pod Vodarenskou vezi 271/2
18207 Prague 8, Liben
Czech Republic
tomoyuki.suzuki@cs.cas.cz
http://www2.cs.cas.cz/~suzuki/

