
Notre Dame Journal of Formal Logic
Volume 58, Number 1, 2017

Canjar Filters

Osvaldo Guzmán, Michael Hrušák, and Arturo Martínez-Celis

Abstract If F is a filter on !, we say that F is Canjar if the corresponding
Mathias forcing does not add a dominating real. We prove that any Borel Canjar
filter is F� , solving a problem of Hrušák and Minami. We give several examples
of Canjar and non-Canjar filters; in particular, we construct a MAD family such
that the corresponding Mathias forcing adds a dominating real. This answers a
question of Brendle. Then we prove that in all the “classical” models of ZFC
there are MAD families whose Mathias forcing does not add a dominating real.
We also study ideals generated by branches, and we uncover a close relation
between Canjar ideals and the selection principle Sfin.�; �/ on subsets of the
Cantor space.

1 Introduction

Given a filter F and a forcing notion P, we say that P diagonalizes F if it adds a
pseudointersection to F . There are two classical partial orders for diagonalizing a
filter F , the Laver forcing relative to F , denoted by L.F /, which consists of all
trees of height ! that have a stem and above it the set of successors of every node is a
member of F , and there is also the Mathias forcing relative to F , which is defined as
M.F / D ¹.s; A/ j s 2 Œ!�<! ^ A 2 F º, where the order is given by .s; A/ � .z; B/

whenever z is an initial segment of s, s � z � B and A � B . These partial orders
have many properties in common, but in general they are distinct forcing notions;
for example, it is easy to see that L.F / always adds a dominating real, while this is
not necessarily the case for M.F /. It is folklore knowledge that if U is a Ramsey
ultrafilter, then M.U/ is equivalent to L.U/, hence adds a dominating real (this has
been implicitly proved in Louveau [14]). On the other hand, under d D c, Canjar
constructed an ultrafilter whose Mathias forcing does not add a dominating real (see
[5]). We call such filters Canjar filters. We say that an ideal I is a Canjar ideal if
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its dual filter I� D ¹! � X j X 2 Iº is a Canjar filter. Canjar filters have been
investigated in [9] and [3]. This paper is a continuation of that line of research.

In [9] Hrušák and Minami found a combinatorial reformulation of being Canjar.
If W is a countable set, we denote by fin.W / the set of all nonempty finite subsets
of W . If I is an ideal on W , we define the ideal I<! as the set of all A � fin.W /

such that there is Y 2 I with the property that a\Y ¤ ; for all a 2 A. We will write
fin instead of fin.W / when it is clear from the context. Recall that I is a P C-ideal
if every decreasing sequence of positive sets has a positive pseudointersection. The
characterization of Hrušák and Minami is the following.

Proposition 1 ([9]) I is a Canjar ideal if and only if I<! is a P C-ideal.

In [4] Brendle showed that every F� ideal is a Canjar ideal. It was asked by Hrušák
and Minami if every Borel Canjar ideal must be F� , and one of the main results
of this article is to answer this question positively. In order to achieve this, we will
extend a characterization of Canjar ultrafilters by Blass, Hrušák, and Verner in [3].

We say that a MAD family is Canjar if the ideal generated by it is Canjar. In [4]
Brendle showed that under b D c there is a non-Canjar MAD family, and asked if it
is possible to construct one in ZFC. We show that this is indeed the case. We then
turn our attention to constructing a Canjar MAD family, and we show that in many of
the “classical” models of ZFC there is one. We do not know if this is true in general.

We also study ideals generated by branches, and we show that there is a connection
between Canjar ideals and selection principles on the Cantor space.1

Using the previous ideas, in [7] we gave alternative proofs of the consistency of
b < a and b < s (which were proved by Shelah [20]).

Our notation is standard and follows mostly Bartoszyński and Judah [1]. By IC

we will denote the set of subsets of ! that are not in I and are called the positive sets
with respect to I or I-positive sets. Whenever a; b are two sets, a �b will denote the
set-theoretic difference of a and b. The definitions of the basic cardinal invariants
such as a, b, c, d, r, non.M/, and cov.M/ may be consulted in Blass [2].

2 Canjar Ideals

Given A � fin, we denote by C.A/ the set of all X � ! such that a \ X ¤ ; for
all a 2 A. We may identify }.!/ with 2! ,2 which is homeomorphic to the Cantor
set endowed with the product topology. In this way, we can talk about topological
properties (like compact, F� , or Borel) of families of subsets of !. The next lemma
is easy and its proof is left to the reader.

Lemma 1

1. If A � fin, then C.A/ is compact, and if A 2 .I<!/C, then C.A/ � IC.
2. If C � }.!/ is compact and X � ! intersects every element of C , then there

is F 2 ŒX�<! such that F intersects every element of C .
3. If C1; : : : ; Cn are compact, then D D ¹A1 \ � � � \ An j Ai 2 Ci º is also

compact.

A slightly less trivial lemma is the following.

Lemma 2 Let F be a filter, let X � fin be such that C.X/ � F , and let D

be compact with D � F . Then, for every n 2 ! there is S 2 ŒX�<! such that if
A0; : : : ; An 2 C.S/ and F 2 D , then A0 \ � � � \ An \ F ¤ ;.
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Proof Given s 2 X , define K.s/ as the set of all .A0; : : : ; An/ 2 C.s/nC1 with
the property that there is F 2 D such that A0 \ � � � \ An \ F D ;; this is a
compact set by the previous lemma. Note that if .A0; : : : ; An/ 2

T
s2X K.s/,

then A0; : : : ; An 2 C.X/ � F and there would be F 2 D � F such that
A0 \ � � � \ An \ F D ;, which is clearly a contradiction. Since the K.s/ are
compact, there must be S 2 ŒF �<! such that

T
s2S K.s/ D ;. It is easy to see that

this is the S we are looking for.

Now we prove the theorem of Canjar using the characterization of Hrušák and Mi-
nami. This is an elaboration of the proof that there is a P -point under d D c (see
[2]).

Proposition 2 ([5, Theorem 10]) If d D c, then there is a Canjar ultrafilter.

Proof Let hX˛ j ˛ 2 ci be an enumeration of all decreasing sequences of subsets
of Œ!�<! . Recursively, we will construct a continuous increasing sequence of filters
hU˛ j ˛ 2 ci such that for all ˛ < c,

1. U˛ is the union of less than d compact sets, and
2. either X˛ is not a sequence of U<! positive sets or it has a pseudointersection

P such that C.P / � U˛C1.
We begin by setting U0 to be the cofinite subsets of !, and we take the union

at limit stages. Assume that we have already defined U˛; we will see how to define
U˛C1. In case X˛ D hXn j n 2 !i is not a sequence of U<! positive sets, we just do
U˛C1 D U˛ . Now assume that each Xn 2 UC, which implies that C.Xn/ � UC.
We will find a compact set D such that U˛ [ D generates a filter, and this will be
U˛C1, by point 3 of Lemma 1; U˛C1 will be generated by less than c compact sets.

In case there is n 2 ! such that C.Xn/ is not contained in U˛ , we choose
Y 2 C.Xn/ � U˛ and define D D¹! � Y º. In this way, X˛ is no longer a se-
quence of positive sets. So assume that C.Xn/ � U˛ for each n 2 !. Let
U˛ D

S
ˇ2� Cˇ , where Cˇ is compact and � is less than d. By the previous lemma,

for every ˇ < � we can define a function fˇ W ! �! ! such that for every n 2 !

there is S 2 ŒXn�<! with S � }.fˇ .n// such that if A0; : : : ; AnC1 2 C.S/ and
F 2 Cˇ , then A0 \ � � � \ AnC1 \ F ¤ ;. Since ¹fˇ j ˇ < �º is not dominating,
there is g that is not dominated by any of the fˇ . Let P D

S
n2! }.g.n// \ Xn.

It is clear that P is a pseudointersection. Now we claim that U˛ [ C.P / gen-
erates a filter. For this, let F 2 U˛ , and let B0; : : : ; Bn 2 C.P /. We must
show that B0 \ � � � \ Bn \ F ¤ ;. Pick ˇ < � such that F 2 Cˇ , and since
g —� fˇ , there is m > n such that g.m/ > fˇ .m/. By the construction, then there
is S 2 ŒXm�<! with S � }.fˇ .m// � }.g.m// such that if A0; : : : ; AnC1 2 C.S/,
then A0 \ � � � \ AnC1 \ F ¤ ;, but clearly B0; : : : ; Bn 2 C.S/ so we are done.

Finally, let U D
S

˛<c U˛ . Then, by the construction, U is a Canjar ultrafilter.

In [12] Laflamme introduced the following notion for ultrafilters.

Definition 1 We say that I is a strong P C-ideal if, for every increasing se-
quence hCn j n 2 !i of compact sets with Cn � IC, there is an interval partition
P D hPn j n 2 !i such that if hXn j n 2 !i is a sequence with Xn 2 Cn for all
n 2 !, then

S
n2!.Xn \ Pn/ 2 IC.
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Laflamme noted without a proof that Canjar ultrafilters were strong P C-filters and
asked if these two notions were equivalent. This was answered positively by Blass,
Hrušák, and Verner in [3]. We will now extend their result to the general case.

Definition 2 We say that I is a coherent strong P C-ideal if for every increasing
sequence hCn j n 2 !i of compact sets with Cn � IC, there is an interval partition
P D hPn j n 2 !i such that if hXn j n 2 !i is a sequence with the following
“coherence property” for P ,

1. Xn 2 Cn for all n 2 !,
2. if n < m, then Xm \ Pn � Xn \ Pn,

then
S

n2! Xn \ Pn 2 IC.

Note that the coherence property is satisfied when hXn j n 2 !i is decreasing, as
well as when I is the dual of an ultrafilter. We will now prove that an ideal is Canjar
if and only if it satisfies the coherent strong P C-ideal property.

Proposition 3 ([3, p. 2877] for ultrafilters) An ideal I is Canjar if and only if I

is a coherent strong P C-ideal.

Proof First assume that I is a Canjar ideal. Let hCn j n 2 !i be an increasing
sequence of compact sets with Cn � IC. For every n 2 !, define An as the set of
all a 2 Œ!�<! such that if X 2 Cn, then a \ X ¤ ;. We will see that An 2 .I<!/C.
Let B 2 I. We must find an element of An that is disjoint from B . For every y … B ,
define Vy D ¹X 2 Cn j y 2 Xº. Since Cn � IC, we conclude that hVy j y … Bi

is an open cover of Cn, so there is a finite a � ! � B such that Cn D
S

y2a Vy .
Therefore a 2 An and a \ B D ;.

In this way, hAn j n 2 !i is a decreasing sequence of positive sets, and since I is
Canjar, there is A �� An with A 2 .I<!/C. We may as well assume that A � A0.
Define an interval partition P D hPn j n 2 !i in such a way that for all n 2 !, if
a 2 A � An, then a �

S
i<n Pi . We will see that this is the partition we are looking

for. Let hXn j n 2 !i be a sequence with the coherence property for P . We will
show that X D

S
n2! Xn \ Pn 2 IC. It is enough to show that X intersects every

element of A (because if X 2 I, then A will be in I<! , which is a contradiction).
Let a 2 A, and define n Dmax¹m j a \

S
i�m Pi ¤ ;º. Since a ª

S
i<n Pi ,

a must be in An, hence a \ Xn ¤ ;. By the coherence property, we know thatS
i�n Xn \ Pi �

S
i�n Xi \ Pi � X , so a \ X ¤ ;.

Now assume that I is a coherent strong P C-ideal. We will show that I<! is a
P C-ideal. Let hAn j n 2 !i � .I<!/C be a decreasing sequence. We must find
a positive pseudointersection. For every n 2 !, define Cn D ¹X � ! j 8a 2

An.a \ X ¤ ;/º. Since Cn is an intersection of compact sets, it is compact and
it is easy to see that Cn � IC. Let P D hPn j n 2 !i be an interval partition
witnessing that I is a coherent strong P C-ideal. Call En D

S
i�n Pi , and define

A D
S

n2!.An \ }.En//. Clearly A �� An for every n 2 !, so it remains to
show that A is positive. Assume this is not the case, so there is B 2 I that in-
tersects every element of A. Define Xn D .B \ En/ [ .! � En/, and note that
Xn 2 Cn and that hXn j n 2 !i satisfies the coherence property for P . In this way
B D

S
n2!.Xn \ Pn/ 2 IC, which is a contradiction.

As an application, we will show that all F� ideals are Canjar.

Proposition 4 ([4, p. 191]) Every F� ideal is a Canjar ideal.
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Proof Let I be an F� ideal. We will show that it is a coherent strong P C-ideal.
By a theorem of Mazur (see [16, Lemma 1.2]), there is a lower semicontinuous
submeasure ' W }.!/ �! Œ0; 1� 3 such that I D¹A j '.A/ < !º.

Let hCn j n 2 !i be an increasing sequence of compact positive sets. Since
each Cn is compact, it is easy to recursively construct an interval partition
hPn j n 2 !i such that '.Pn \ Y / > n for each Y 2 Cn. In this way, it is
clear that

S
n2! Xn \ Pn 2 IC whenever Xn 2 Cn.

Actually, in [4] Brendle showed that if I is the union of less than d compact sets,
then I is Canjar. In [9] it was asked if every Borel Canjar ideal is F� . In the next
section we will prove that this is indeed the case.

3 Borel Canjar Ideals

Recall another notion introduced by Laflamme and Leary in [13]. We say that a tree
T � .Œ!�<!/<! is an IC-tree of finite sets if for every t 2 T , there is Xt 2 IC such
that sucT .t/ D ŒXt �

<! .

Definition 3 We say that I is a P C.tree/-ideal if for every IC-tree of finite sets
T , there is b 2 ŒT � such that

S
n2! b.n/ 2 IC.

We will show that Canjar ideals are P C.tree/.

Proposition 5 If I is Canjar, then I is P C.tree/.

Proof Let T � .Œ!�<!/<! be an IC-tree of finite sets. For convenience, denote
by !%! the set of all increasing finite sequences of natural numbers. We define a
subtree T 0 D ¹ts j s 2 !%!º � T in the following way:

1. t; D ;,
2. thni D X; \ Œ0; n/ for every n 2 !,
3. thn0;:::;nmC1i D Xthn0;:::;nmi

\ Œnm; nmC1/.

Let Y; D X;. If s_hni 2 !%! , define Ys_hni D .Ys \ n/ [ .Xs_hni � n/. Call
Cn D ¹Ys j s 2 !%! ^ jsj � nº. It is easy to see that hCn j n 2 !i is an increasing
sequence of compact positive sets (e.g., one may note that if Y 2 CnC1, then either
Y 2 ¹Ys j jsj D n C 1º or it is in the closure of Cn). Find P D hPn j n 2 !i an
interval partition that witnesses that I is Canjar. Define the function l W ! �! !,
where l.n/ is the right endpoint of Pn, and consider the branch b D htl�ni. We will
see that

S
n2! tl�n 2 IC. Note that Yl�n 2 Cn and that hYl�n j n 2 !i satisfies

the coherence property for P , so
S

n2! Yl�n \ Pn 2 IC but
S

n2! Yl�n \ Pn DS
n2! tl�n, which is what we were looking for.

However, being Canjar is a stronger notion than being P C.tree/. We will later see
an example of an ideal that is P C.tree/ but not Canjar.

Theorem 1 If I is a Borel ideal, then the following are equivalent:
1. I is Canjar;
2. I is F� ;
3. I is P C.tree/.

Proof The equivalence between 2 and 3 was proved by Hrušák and Meza-
Alcántara in [8, Theorem 2.6], and the other equivalence follows from the previous
results.
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In [5] Canjar proved that if a forcing notion adds a dominating real, then it must have
size at least d. It follows that every ideal generated by less than d sets is Canjar, since
its Mathias forcing has a dense set of size less than d. With this observation and the
previous theorem, we can conclude the following result of Louveau and Velickovic.

Corollary 1 (see Louveau and Velickovic [15]) If I is a Borel non-F� ideal, then
cof.I/ � d.

Note that there are Borel (non-F� ) ideals of cofinality d. One example is FIN � FIN,
which is the ideal in ! � ! generated by all columns Cn D ¹.n; m/ j m 2 !º and all
A � ! � ! such that A intersects every Cn in a finite set.

4 Canjar MAD Families

Given an almost disjoint family A, we denote by I.A/ the ideal generated by A.
We say that A is Canjar if I.A/ is Canjar. In [4] Brendle constructed a non-Canjar
MAD family under b D c and asked if it was possible to construct one without
additional axioms. We now answer his question in the affirmative.

Proposition 6 There is a non-Canjar MAD family.

Proof Let P D ¹An j n 2 !º be a partition of !. For every n 2 !, choose Bn

an almost disjoint family of subsets of An. Construct a tree T � .Œ!�<!/<! such
that for every t 2 T , there is nt 2 ! with the property that suc.t/ D ŒAnt

�<! ,
and make sure that if t ¤ s, then nt ¤ ns , and that for every m there is a t

such that nt D m. For every branch b 2 ŒT �, let Ab D
S

n2! b.n/, and note
that A D ¹Ab j b 2 ŒT �º [

S
¹Bn j n 2 !º is an almost disjoint family and

P � I.A/CC. Let A0 be any MAD family extending A. Note that P � I.A0/C, so
T is an I.A0/C-tree of finite sets but it has no positive branch.

Interestingly, we do not know if there is a Canjar MAD family in ZFC. Obvi-
ously, they exist under a < d. We will now give some sufficient conditions for
the existence of a Canjar MAD family. Usually, we will construct a MAD family
A D ¹A˛ j ˛ 2 �º recursively, and in such a case we will denote it by A˛ D ¹A� j

� < ˛º. Call Part the set of all interval partitions (partitions in finite sets) of !. We
may define an order on Part as follows. Given P ; Q 2 Part, we say that P �� Q if
for almost all Q 2 Q there is P 2 P such that P � Q. In [2] it is proved that the
smallest size of a dominating family of interval partitions is d.

First we give a combinatorial reformulation of min¹d; rº.

Proposition 7 If � is an infinite cardinal, then � < min¹d; rº if and only if for
every hP˛ j ˛ 2 �i family of interval partitions of !, there is an interval partition
Q D ¹Qn j n 2 !º with the property that there are disjoint A; B 2 Œ!�! such that
for all ˛ < �, both

S
n2A Qn and

S
n2B Qn contain infinitely many intervals of P˛ .

Proof Let � < min¹d; rº, and let hP˛ j ˛ 2 �i be a family of interval partitions.
We may assume that for every P˛ and n 2 !, there is a Pˇ such that every interval of
Pˇ contains n intervals of P˛ . Define f˛ W ! �! ! such that f˛.n/ is the leftmost
point of P˛ (so f˛.0/ D 0). Since � < d, there is g W ! �! ! such that g is not
dominated by any f˛; we may as well assume that g is increasing and g.0/ D 0.
Define the interval partition Q D ¹Qn j n 2 !º, where Qn D Œg.n/; g.n C 1//. Let
M˛ be the set of all n 2 ! such that Qn contains an interval of P˛ .
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Claim 1 M˛ is infinite for every ˛ < �.

By the assumption on our family, it is enough to show that each M˛ is not empty.
Since g —� f˛ , there is n 2 ! such that f˛.n/ < g.n/. But then it follows that some
interval of P˛ must be contained in one Qm with m < n.

Since � < r, we know that ¹M˛ j ˛ < �º is not a reaping family, so there are
disjoint A; B 2 Œ!�! such that ! D A[B and for every ˛, both M˛ \A and Mˇ \B

are infinite. It is clear that A and B are the sets we were looking for.
Now we must show that the conclusion of the proposition fails for � D d and

� D r. Let R D ¹M˛ j ˛ 2 rº be a reaping family. Define P˛ such that every
interval of P˛ contains one point of M˛ . Assume that there is an interval partition
Q D ¹Qn j n 2 !º and A; B 2 Œ!�! as in the proposition. Let X D

S
n2A Qn.

Then no M˛ reaps X , which is a contradiction since R was a reaping family.
Finally, let hP˛ j ˛ 2 di be a dominating family of partitions, and let Q be

any other partition. Then there is a P˛ such that every interval of P˛ contains two
intervals of Q, so obviously there cannot be any A and B as required.

Using the proposition, we may prove the following result.

Proposition 8 If d D r D c, then there is a Canjar MAD family of size continuum
(in particular, there is one if b D c or cov.M/ D c).

Proof Let B be a MAD family of size c. Enumerate hX˛ j ! � ˛ < ci the
set of decreasing sequences of chains of finite subsets of !, and let Œ!�! D ¹Y˛ j

! � ˛ < cº. We will recursively construct a MAD family A D ¹A˛ j ˛ 2 cº and
P D¹P˛ j ˛ 2 cº such that

1. for every A� 2 A˛ there is B� 2 B such that A� � B� ; in this way, A˛ is
almost disjoint but it is not MAD;

2. if X˛ is a decreasing sequence of positive sets of .I.A˛/<!/C, then P˛ is a
pseudointersection;

3. if ˇ � ˛, then P˛ 2 .I.A˛/<!/C;
4. if Y˛ is almost disjoint with A˛ , then A˛ � Y˛ .

It should be obvious that if we manage to do the construction, then we would have
built a Canjar MAD family. We start by taking any partition ¹An j n 2 !º of !

in infinite sets. Assume that we have already defined A˛; we will see how to find
A˛ . If X˛ is not a sequence of elements in .I.A˛/<!/C, then we define P˛ D fin.
Otherwise (since d D c), we may find P˛ a positive pseudointersection.

Now assume that Y˛ is almost disjoint with A˛ (if not, take as Y˛ any other set
almost disjoint from A˛; note that there is always one since A˛ is not MAD). Call
D the set of all finite unions of elements of A˛ , and for every � � ˛ and B 2 D

define an interval partition P�B D ¹P�B.n/ j n 2 !º with the following properties:
1. for every n 2 ! there is s � P�B.n/ such that s 2 P� and s \ B D ;,
2. every P�B.n/ contains an element of Y˛ .

Since hP�B j � � ˛ ^ B 2 Bi has size less than max¹d; rº, by the previous
result, there is an interval partition Q D ¹Qn j n 2 !º and C; D disjoint such that
both

S
n2C Qn and

S
n2D Qn contain infinitely many intervals of each P�B . Define

A0
˛ D

S
n2C .Qn \ Y˛/. Then A0

˛ satisfies all the requirements except that it may
not be contained in some element of B. However, since B is MAD, we may find
B˛ 2 B such that A0

˛ \ B˛ is infinite and then we just define A˛ D A0
˛ \ B˛ .
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Given an almost disjoint family A, we will denote by .I.A/<!/CC the set of all
X 2 .I.A/<!/C such that there is ¹An j n 2 !º � A with the property that each
An contains infinitely many elements of X . Note that if A0 is an almost disjoint
family with A � A0 and X 2 .I.A/<!/CC, then X 2 .I.A0/<!/C. The purpose
of this definition is the following. Assume that we want to construct (recursively)
A D ¹A˛ j ˛ 2 �º a Canjar MAD family. At some stage ˛ of the construction,
we may look at some decreasing sequence hXn j n 2 !i � .I.A˛/<!/C and
if somehow we manage to find P˛ a pseudointersection with P˛ 2 .I.A˛/<!/C,
we must make sure that P remains positive in the future extensions of A˛ . In
the previous proof, we made sure that at each step of the construction, we pre-
served the positiveness of all the P˛ . Another approach would be to make sure that
P˛ 2 .I.A˛/<!/CC.

Lemma 3 If A is an almost disjoint family such that for every decreasing se-
quence hXn j n 2 !i of .I.A/<!/C there is a pseudointersection P 2 .I.A/<!/CC,
then A is a Canjar MAD family.

Proof The proof is left to the reader.

Lemma 4 Let A D ¹An j n 2 !º be an almost disjoint family, and let hXn j

n 2 !i in .I.A/<!/C be a decreasing sequence. Then there is an increasing
f W ! �! ! such that for every n 2 !, there is sn 2 }.f .n/ � f .n � 1// \ Xn and
sn \ .A0 [ � � � [ An/ D ; (for ease of writing, assume that f .�1/ D 0).

Proof The proof is easy.

Moreover, note that f can be obtained in a completely definable way. We must also
remark that if we define P D

S
n2! Xn \ }.f .n// and B D

S
n2!.f .n/ � A0 [

� � � [ An/, then P will be a positive pseudointersection of ¹Xn W n 2 !º, B will
contain infinitely many elements of P , and A [ ¹Bº will be an AD family.

The following guessing principle was defined in Moore, Hrušák, and Džamonja
[17]:

Þ.b/: For every Borel coloring C W 2<!1 �! !! , there is a G W !1 �! !!

such that for every R 2 2!1 the set ¹˛ j C.R � ˛/ � � G.˛/º is stationary
(such G is called a guessing sequence for C ).

Recall that a coloring C W 2<!1 �! !! is Borel if for every ˛, the function
C � 2˛ is Borel. It is easy to see that Þ.b/ implies that b D !1, and in [17] it is
proved that it also implies that a D !1.

Proposition 9 Assuming Þ.b/, there is a Canjar MAD family.

Proof For every ˛ < !1, fix an enumeration ˛ D ¹˛n j n 2 !º. With a
suitable coding, the coloring C will be defined on pairs t D .At ; Xt /, where
At D hA� j � < ˛i and Xt D hXn j n 2 !i. We define C.t/ to be the constant
0 function in case At is not an almost disjoint family or if Xt is not a decreasing
sequence of .I.A/<!/C. In the other case, let C.t/ be the function obtained by the
previous lemma with A D¹A˛n

j n 2 !º and Xt . Using Þ.b/, let G W !1 �! !!

be a guessing sequence for C . By changing G if necessary, we may assume that all
the G.˛/ are increasing, and if ˛ < ˇ, then G.˛/ <� G.ˇ/.
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We will now define our MAD family. Start by taking ¹An j n 2 !º a partition
of !. Having defined A� for all � < ˛, we proceed to define

A˛ D

[
n2!

�
G.˛/.n/ � A˛0

[ � � � [ A˛n

�
in case this is an infinite set; otherwise take any A˛ that is almost disjoint from A˛ .
We will see that A is a Canjar MAD family. Let X D hXn j n 2 !i be a decreasing
sequence in .I.A/<!/C. Consider the branch R D .hA� j � < !1i; X/, and pick
ˇ0; ˇ1; ˇ2; : : : such that C.R � ˇn/ � � G.ˇn/. Choose ˛ bigger than all the
ˇn, and define h D G.˛/ and P D

S
n2! }.h.n// \ Xn. It is clear that P is a

pseudointersection of X . We will now just show that P 2 .I.A˛/<!/CC, and we
will do this by proving that each Aˇn contains infinitely many elements of P .

Fix n 2 !, and let t D R � ˇn. Since C.t/ � � G.ˇn/, we may find m

such that C.t/.m/ < G.ˇn/.m/ < h.m/. In this case (by the property of C.t/),
there is s 2 }.C.t/.m// \ Xm disjoint from Aˇn

0
; : : : ; Aˇn

m
, and then s � Aˇn and

s 2 P .

We quote an instance of a very general theorem from [17].

Proposition 10 ([17, Theorem 6.6]) Let hQ˛ j ˛ 2 !2i be a sequence of Borel
proper partial orders where each Q˛ is forcing equivalent to }.2/C � Q˛ , and let
P!2

be the countable support iteration of this sequence. If P!2

 “b D !1”, then

P!2

 “ Þ .b/”.

With the aid of the previous result, we can prove that there are Canjar MAD families
in many of the models obtained by countable support iteration.

Corollary 2 Let hQ˛ j ˛ 2 !2i be a sequence of Borel proper partial orders
where each Q˛ is forcing equivalent to }.2/C � Q˛ , and let P!2

be the countable
support iteration of this sequence. Let G � P!2

be generic. Then there is a Canjar
MAD family in V ŒG�.

Proof If in V ŒG� it happens that b is !2, then we already know there is a Canjar
MAD family. Otherwise b D !1 and then Þ.b/ holds in V ŒG�, so there is a Canjar
MAD family.

Recall that a forcing is !!-bounding if it does not add unbounded reals (or, equiv-
alently, the ground model reals still form a dominating family). Given a forcing P
and a Canjar MAD family A, we say that A is P MAD-Canjar indestructible if it
remains Canjar MAD after forcing with P. We will see that, under CH; no proper
!!-bounding forcing of size !1 can destroy all Canjar MAD families. If P is a par-
tial order, Pa is a P name, and G � P is a generic filter, we will denote by PaŒG� the
evaluation of Pa according to the generic filter G.

Proposition 11 Assume CH, and let P be a proper !!-bounding forcing of size
!1. Then there is a P MAD-Canjar indestructible family.

Proof Using the continuum hypothesis and the properness of P, we may find a
set H D ¹.p˛; PW˛/ j ˛ 2 !1º such that for all p and PX , if p forces that PX is a
decreasing sequence, then there is ˛ such that p � p˛ and p˛ 
 “ PW˛ D PX”.

We will construct a MAD family A D ¹A˛ j ˛ 2 !1º such that if p˛ forces that
PW˛ is a decreasing sequence of positive sets in .I.A˛/<!/C, then there is q � p˛
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with the property that there is PP˛ such that q forces that PP˛ is a pseudointersection
of PW˛ and that PP˛ is in .I.A˛/<!/CC (hence q will force that PP˛ is in .I.A/<!/C).

First take ¹An j n 2 !º a partition of !. Assume that we have defined A˛ .
We will see how to define A˛C! . In case p˛ does not force that PW˛ is a de-
creasing sequence of positive sets in .I.A˛/<!/C, take A˛C! to be any almost
disjoint family extending A˛ . Now assume otherwise, write ˛ D ¹˛n j n 2 !º,
and let G � P be a generic filter with p˛ 2 G. Since A˛ is countable and
PW˛ŒG� D h PW˛.n/ŒG� j n 2 !i 2 V ŒG� is a sequence of positive sets in V ŒG�,

there is an interval partition P D ¹Pn j n 2 !º 2 V ŒG� such that for all n 2 !, there
is sn � Pn such that sn 2 PW˛.n/ŒG� and sn is disjoint from A˛0

[ � � � [ A˛n
. Define

P˛ D
S

.Pn \ PW˛.n/ŒG�/. Let q0 � p˛ force that PP is an interval partition and that
every PPn contains an element in PW˛.n/ disjoint from A˛0

[ � � � [ A˛n
. Since P is

!!-bounding, there is q � q0 and Q D¹Qn j b 2 !º a ground model partition such
that q 
 “ PP � Q”. Let ¹Dn j n 2 !º be a partition of ! with Dn D ¹d i

n j i 2 !º.
Define A˛Cn D

S
n2!.Pd i

n
� A˛0

[ � � � [ A˛n
/; then A˛C! is an AD family, and q

forces that each A˛Cn contains infinitely many elements of PP˛ .

Corollary 3 There are Canjar MAD families in the Cohen, Random, Hechler,
Sacks, Laver, Miller, and Mathias models.

Proof We have already proved it for the models obtained by countable support
iteration and in the Cohen and Hechler models since cov.M/ is equal to c. It only
remains to check it for the Random real model. Assume CH, and denote by B.�/ the
forcing notion for adding � random reals. Let G � B.!2/ be a generic filter. We
want to see that there is a Canjar MAD family in V ŒG�. By the previous proposition,
we know there is A a B.!1/ MAD-Canjar indestructible family. It is easy to see that
A is B.!2/ MAD-Canjar indestructible (since every new real in V ŒG� appears in an
intermediate extension after adding only !1 random reals).

Although there still may be models without Canjar MAD families, it is easy to show
that there are always uncountable Canjar almost disjoint families. Let Cn D ¹nº�!,
and given a family of increasing functions B D¹f˛ j ˛ 2 !1º � !! such that if
˛ < ˇ, then f˛ <� fˇ , define AB D B [¹Cn j n 2 !º, and note that it is an almost
disjoint family.

Proposition 12 There is a family B D¹f˛ j ˛ 2 !1º such that AB is Canjar, so
there is an uncountable Canjar almost disjoint family.

Proof If !1 < d, then any B will do, so assume that d D !1. Let B D¹f˛ j

˛ 2 !1º be a well-ordered dominating family. For every ˛ < !1, define
L˛ D ¹.n; m/ j m < f˛.n/º, and for a given X , define X.˛/ D X \ ŒL˛�<! .
We will show that I.AB/<! is a P C-ideal and to do that, we will need the following
“reflection property” due to Nyikos (see [18, Theorem 3.9]).

Claim 2 If X 2 .I.A/<!/C, then X.˛/ 2 .I.A/<!/C for some ˛ < !1.

Assume this is not the case, so for every ˛ < !1 the set X.˛/ 2 I.AB/<! , which
means there is F˛ 2 Œ˛�<! and n˛ 2 ! such that Z˛ D

S
�2F˛

f� [
S

i�n˛
Ci

intersects every element of X.˛/. By a trivial application of elementary submodels,
there are S � !1 a stationary set, F a finite subset of !1, and n 2 ! such that
F D F˛ and n˛ D n for every ˛ 2 S ; call Z D

S
�2F f� [

S
i�n Ci 2 I.AB/.
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Given s � ! � !, define �.s/ D ¹n j 9m..n; m/ 2 s/º. As X 2 .I.AB/<!/C,
we may find a sequence Y D ¹xn j n 2 !º � X such that xn \ Z D ; and
max.�.xn// < min.�.xnC1// for all n 2 !. Since B is a well-ordered dominating
family of increasing functions, there is ˛ 2 S such that the set Y \ L˛ is infinite.
Note that Z˛ D Z, so xn \ Z˛ D ; for all xn 2 Y \ L˛ , which contradicts the
choice of F˛ and n˛ .

We are ready to show that I.AB/<! is a P C-ideal. Let hXn j n 2 !i be a
decreasing sequence of positive sets. Find ˛ such that Xn.˛/ 2 .I.A/<!/C for all
n 2 ! (this is possible because if ˇ < 
 and Xn.ˇ/ is positive, Xn.
/ is positive).
Let ˛ D ¹˛n j n 2 !º. For every n 2 !, choose xn 2 Xn such that xn is disjoint
from

S
i�n f˛i

[
S

i�n Ci . Then it is easy to see that X D ¹xn j n 2 !º is a positive
pseudointersection.

In particular, we have the following.

Corollary 4 There is a non-Borel Canjar ideal generated by !1 sets.

Proof By the previous result, we know there is B D¹f˛ j ˛ 2 !1º such that
I.AB/ is Canjar; it is enough to show that it is not F� . Assume otherwise, so it
must be F� . Let I.AB/ D

S
n2! Cn, where each Cn is a compact set. Clearly,

there is n 2 ! such that Cn contains uncountably many elements of B. Note that
Cn \ B D Cn \ !! , so A D Cn \ B is a Borel set. For a given Z subset of a Polish
space, recall the following definition (see Todorchevich and Farah [21]).

OCA.Z/: If c W Z2 �! 2 is a coloring such that c�1.0/ is open, then either
Z has an uncountable 0-monochromatic set, or Z is the union of countably
many 1-monochromatic sets.

In [21] it is proved that OCA.Z/ is true for every analytic set, so in particular
OCA.A/ is true. However, we will arrive at a contradiction using the same argument
that OCA implies that b D !2 (see [21]).

5 Ideals Generated by Branches

If b 2 2! , we denote bb D ¹b � n j n 2 !º. Let A be a dense, co-dense subset of 2! .
We define IA the branching ideal of A as the set of all X � 2<! such that there are
b1; : : : ; bn 2 A with the property that X � bb1 [ � � � [ bbn. Clearly, if M 2 Œbb�! with
b … A, then M 2 IC

A , and also every infinite antichain, is positive.

Lemma 5 IA is P C for every A � 2! .

Proof This result follows since IA is the ideal generated by an infinite almost
disjoint family.

We now investigate when IA is P C.tree/ and Canjar.

Proposition 13 If A is the union of less than d compact sets, then IA is Canjar.

Proof Assume that A D
S

˛<� C˛ , where C˛ is compact and � < d. Moreover, we
may assume that for every b1; : : : ; bn 2 A, there is a C˛ such that b1; : : : ; bn 2 C˛ .
We will show that I<!

A is a P C-ideal. Before starting the proof, we must make
an important observation. Assume that Y 2 .I<!

A /C, and for every a 2 Y define
Ua D ¹b 2 2! j a \ bb D ;º; since a is finite, Ua is open and hUa j a 2 Y i is an
open cover of A. Therefore, every C˛ is contained in only a finite number of Ua.
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Let hXn j n 2 !i be a decreasing family of positive sets of I<!
A . For every

˛ < �, we define f˛ W ! �! Œ2<! �<! such that if n 2 !, then f˛.n/ � Xn and
C˛ �

S
a2f˛.n/ Ua. Since � < d, there is f W ! �! Œ2<! �<! such that f .n/ � Xn,

and for all ˛ < � it happens that f˛.n/ � f .n/ for infinitely many n 2 !. It is easy
to see that

S
n2! f .n/ is a positive pseudointersection of hXn j n 2 !i.

Given a topological space X , we say that an open cover U is an !-cover if for every
x0; : : : ; xn 2 X , there is U 2 U such that x0; : : : ; xn 2 U. We say that X is
Sfin.�; �/ if for every sequence hUn j n 2 !i of !-covers, there are Fn 2 ŒUn�<!

such that
S

n2! Fn is an !-cover (see Sakai and Scheepers [19] for more information
concerning this type of space). The following was noted by Ariet Ramos.

Proposition 14 IA is Canjar if and only if A is Sfin.�; �/.

Proof First, assume that A is Sfin.�; �/, and let hXn j n 2 !i � .I<!
A /C be a

decreasing sequence. Given any a, we define Ua D ¹b j a \bb D ;º. Since each Xn

is positive, Vn D ¹Ua j a 2 Xnº is an !-cover of A. In this way, hVn j n 2 !i is a
sequence of !-covers, so there are Fn 2 ŒXn�<! such that ¹Ua j a 2

S
n2! Fnº is

an !-cover. It is easy to see that P D
S

n2! Fn is a positive pseudointersection of
hXn j n 2 !i.

Now, assume that IA is Canjar, and let hUn j n 2 !i be a sequence of !-covers.
Given an open set U , define YU D ¹a j 8b.bb \ a D ; �! b 2 U /º. Define
Xn D

S
U 2Un

YU . Since Un is an !-cover, each Xn is positive. Since IA is Canjar,
there are Fn 2 ŒXn�<! such that P D

S
n2! Fn is a positive pseudointersection. For

every a 2 Fn, choose Ua 2 Un with the property that a 2 YUa
. It is not difficult to

check that ¹Ua j a 2 Fn ^ n 2 !º is an !-cover.

Given an ideal I, we define LF .I/ the Laflamme game on I as follows:

I X0 X1 X2 X3 � � �

II s0 s1 s2 � � �

where each Xn 2 IC, and sn is a finite subset of Xn. Player II wins the game
if

S
sn 2 IC. Laflamme proved in [13] that I is a P C.tree/ ideal if and only if

player I does not have a winning strategy in LF .I/. In case of branching ideals,
the Laflamme game can be simplified. Given A � 2! , define the game LF 0.I/ as
follows:

I b0 b1 b2 b3 � � �

II s0 s1 s2 � � �

where each bn … A, sn is an initial segment of bn, sn ¨ snC1, and bnC1 2 hsni.
Player II wins the game if

S
sn … A. The analogue of the result of Laflamme is the

following.

Proposition 15 IA is a P C.tree/ ideal if and only if player I does not have a
winning strategy in LF 0.I/.

Proof It is easy to see that if I has a winning strategy in LF 0.I/, then she has
one in LF .I/, so I is not P C.tree/. For the other direction, assume that I does not
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have a winning strategy, and let T be a IC

A tree. We will show that there is b 2 ŒT �

such that
S

b � n 2 IC

A .
Case 1. For all s 2 T and n 2 !, there is t an extension of s such that

S
i<jt j t � i

cannot be covered by n branches.
In this case, we simply choose s0; s1; : : : such that snC1 extends sn and it cannot

be covered by n branches. It is clear that b D
S

sn is as desired.
Case 2. Without loss of generality, there is n 2 ! such that for every t 2 T , the

set
S

i<jt j t � i can be covered by n branches.
By an easy compactness argument, for every s 2 T there are bs

0; : : : ; bs
n�1 2 2!

such that Xs � bbs
0 [ � � � [ bbs

n�1, bs
0 … A, and Xs \ bbs

0 is infinite. Let T 0 � T such
that for every t 2 T 0, there is mt with the property that t D Xt \ 2�mt .

We say that s prefers t if s extends t , ms > mt , and bs
0 2 hbt

0 � mt i. We also say
that t is totally preferred if for all s � t , there is s0 � s such that s0 prefers t . We first
claim that there is t 2 T that is totally preferred. Assume this is not the case. Then
we do the following.

1. Let t; D ;.
2. Let t1 � t0 such that no extension of t1 prefers t0.
3. Let t2 � t1 such that no extension of t2 prefers t1.

4.
:::

We keep this procedure until we find tnC1, but then tnC1 must prefer some ti
(with i � n), which is a contradiction. Now assume that t is totally preferred. We
will describe � a strategy for player I .

1. First, player I plays bt
0.

2. If player II plays s0, then I finds n0 � js0j; �.Xt /, and let t0 D Xt \ 2�n0 .
Player I finds t 0

0 � t0 such that t 0
0 prefers t and I plays b

t 0
0

0 .
3. If player II plays s1, then I finds n1 � js1j; �.Xt 0

0
/, and let t1 D Xt 0

0
\ 2�n1 .

Player I finds t 0
1 � t1 such that t 0

1 prefers t and I plays b
t 0
1

0 .

4.
:::

Since � is not a winning strategy, there are s0; s1; s2; : : : such that if player II plays
sn at round n, then he will win when I follows � . Let d D .�.s0; : : : ; si / � ni /.
Then

S
d … A (since II won the game) and d is a branch through T .

We will now give a topological characterization of the sets such that their branching
ideal is P C.tree/. Recall that a topological space is a Baire space if no nonempty
open sets are meager, and a space is called completely Baire if all of its closed subsets
are Baire. Hurewicz proved that a space is completely Baire if and only if it does not
contain a closed copy of Q (see van Mill [22, pp. 78–79]).

Proposition 16 The ideal IA is P C.tree/ if and only if 2! �A is completely Baire.

Proof Assume that IA is P C.tree/, and suppose that 2! � A is not completely
Baire, so there is a perfect set C such that A \ C D ¹dn j n 2 !º is countable dense
in C . Consider the following strategy � for I in LF 0.2! � A/.

1. I plays d0.
2. If II plays s0, then I plays dn1

, where n1 Dmin¹i > 0 j di 2 hs0iº.
3. If II plays s1, then I plays dn2

, where n1 Dmin¹i > n1 j di 2 hs1iº.



92 Guzmán, Hrušák, and Martínez-Celis

4.
:::

Since this is not a winning strategy, there are s0; s1; s2; : : : such that if I follows �

and II plays si at round i , then II will win. Let a D
S

n2! sn. Then a 2 A \ C since
C is compact and II won the game; however, a is different than all the dn, which is a
contradiction.

Now assume that A \ C is uncountable whenever C is perfect and A \ C is
dense in C . Aiming for a contradiction, assume that I has � a winning strat-
egy in LF 0.2! � A/. Let D � 2! be the set of all b 2 2! such that there are
s0; s1; : : : ; sn with the property that �.s0; s1; : : : ; sn/ D b. Since � is a winning
strategy, D � A has no isolated points and C D D is perfect. Since D is countable,
there is b 2 A \ C � D. Note that b corresponds to a legal play in LF 0.2! � A/ in
which II won (since b 2 A), which is a contradiction.

For our next result, we need to recall a result from Kechris, Louveau, and Woodin
([11]; see also [10, Theorem 21.22]).

Proposition 17 ([11, Theorem 21.22]) If A � 2! is analytic and A\B D ;, then
one of the following holds:

1. there is an F� set that separates A from B , or
2. there is a perfect set C � A [ B such that C \ B is countable dense in C .

With this we can easily prove the following.

Corollary 5 If A is Borel and is not F� , then IA is not P C.tree/.

Proof If A is Borel but not F� , then, by the Kechris–Louveau–Woodin theorem,
there is a perfect set C such that C \ .2! � A/ is countable dense in C , which shows
that IA is not P C.tree/.

An alternative proof of the previous corollary would be to note that if A is Borel but
not F� , then IA will also be Borel but not F� , so it cannot be P C.tree/. The next
result will give us an example of a non-Canjar ideal that is P C.tree/.

Proposition 18 If B is Bernstein, then IB is P C.tree/ but not Canjar.

Proof Since the complement of a Bernstein set is Bernstein, it follows easily by
the topological characterization of P C.tree/ that IB is P C.tree/. We now show that
it is not Canjar. Build an increasing sequence hCn j n 2 !i of compact sets in the
following way:

1. we choose b0
0 … B and let C0 D ¹

bb0
0º,

2. we choose hb01
n in2! � 2! � B a convergent sequence to b0

0 and define
C1 D C0 [ ¹

bb01
n j n 2 !º,

3. for every b01
n , we choose hb012

n in2! � 2! � B a convergent sequence to b01
n

and define C2 D C1 [ ¹
bb012
n j n 2 !º,

4.
:::

It is clear that each Cn � IC

B and that hCn W n 2 !i forms an increasing sequence
of compact sets. Let P D¹Pn j n 2 !º be a finite partition of 2<! , and define D as
the set of all x 2 2! such that there is hdn j n 2 !i with the coherence property with
respect to P and bx \ Pn D bdn. It is easy to see that D is an uncountable closed set,
so B \ D ¤ ; and hence IB is not Canjar.
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Recall that a Luzin set is an uncountable set that has countable intersection with
every meager set. Luzin sets exist under CH or after adding at least !1 Cohen reals.
However, it is easy to see that the existence of a Luzin set implies that non.M/ is
!1, so their existence is not provable from ZFC. By a suitable modification of the
previous argument, one can show the following.

Corollary 6 If L is a (dense) Luzin set, then I!�L is not Canjar.

6 Open Questions

There are some questions we were unable to answer. Of those, probably the most
interesting one is the following.

Problem 1 Is there a Canjar MAD family? Is there one of cardinality continuum?

We proved that if d D r D c, then there is a Canjar MAD family of size continuum,
but we do not even know the answer to the following question.

Problem 2 Does d D c imply that there is a Canjar MAD family?

The characterization of Canjar ideals suggests the next questions.

Problem 3 Are there coherent strong P C-ideals that are not strong P C?

We know there are P C-ideals that are not P C.tree/, but we do not know the answer
to the following question.

Problem 4 Is there a Canjar ideal I such that I<! is not P C.tree/?4

Notes

1. This connection has recently been further studied in Chodounský, Repovš, and Zdom-
skyy [6].

2. We are using }.Z/ to denote the power set of Z.

3. We say that ' W }.!/ �! Œ0; 1� is a lower semicontinuous submeasure if '.;/ D 0,
'.A/ � '.B/ whenever A � B , '.A [ B/ � '.A/ C '.B/, and '.A/ D

limn�!1 '.A \ n/.

4. These questions, except the first one, have recently been answered in [6].
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