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Boolean Algebras in Visser Algebras

Majid Alizadeh, Mohammad Ardeshir, and Wim Ruitenburg

Abstract We generalize the double negation construction of Boolean algebras
in Heyting algebras to a double negation construction of the same in Visser
algebras (also known as basic algebras). This result allows us to generalize
Glivenko’s theorem from intuitionistic propositional logic and Heyting algebras
to Visser’s basic propositional logic and Visser algebras.

1 Introduction

Basic propositional calculus (BPC), which was introduced by Albert Visser in [8],
captures a sublogic of intuitionistic propositional calculus (IPC) which corresponds
to modal logic K4 in essentially the same way that IPC corresponds to modal logic
S4. In Ardeshir [3] and Ardeshir and Ruitenburg [4] we introduce Visser algebras
(where we named them basic algebras), which correspond to BPC in the same way
that Heyting algebras correspond to IPC and that Boolean algebras correspond to
classical propositional calculus (CPC). In Section 2 we present axiomatizations and
some elementary properties of both BPC and Visser algebras.

The double negation construction of Boolean algebras from Heyting algebras is
well known (see Balbes and Dwinger [6, Theorem IX.5.3] or Johnstone [7, p. 10]).
It is natural to consider how closely one can repeat this construction over Visser
algebras. Surprisingly the end result still works, although in details we use several
new ideas.

Glivenko’s well-established theorem (see [6, Section VIII.4 plus Theorem IX.5.3]
or van Dalen [5, end of Section 5.2]) also goes through, but with an interesting
reformulation. Given propositional formula  , define

�. / WD ..> !  / !  / ! .> !  /.
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Formulas �. / are of interest in their own right, see [4, p. 323]. Over IPC, formulas
 and �. / are equivalent. So, in particular, IPC proves :�.?/. With Theorem 5.7
we show that for all (sequent) theories � � BPC we have

� proves ' ! �.?/ if and only if � C CPC proves ' ! �.?/.
So if � � IPC, then � proves :' if and only if � C CPC proves :' (Glivenko’s
theorem).

2 Basic Logic Axioms and Algebras

This section covers a quick overview of BPC and Visser algebras.
We choose an axiomatization of BPC by using sequents. We briefly recall some

relevant points from [4]. Our formulas are built from propositional variables by using
>, ?, '^ , '_ , and ' !  . Negation :' and bi-implication ' $  are defined
in the usual way by ' ! ? and .' !  / ^ . ! '/, respectively. Symbols > and
? are both atoms and nullary connectives. The foundation of our sequent theories
is a collection of closure rules which, on its own, generates a bounded distributive
prelattice with preorder ), on the collection of formulas. In each rule below, a
single horizontal line means that if the sequents above the line hold, then so do the
ones below the line. A rule with multiple conclusions is an abbreviation for several
rules with single conclusions. A double line means the same as a single line but in
both directions, so it is really an abbreviation for two (possibly abbreviated) rules.
The absence of a line means that the conclusion holds without premises. So sequents
are identifiable as special rules. Here they are:

' ) ' reflexivity,
' )   ) �

' ) �
transitivity,

' ) > ? ) ' top and bottom,
' )  ' ) �

' )  ^ �

 ) ' � ) '

 _ � ) '
meet and join,

' ^ . _ �/ ) .' ^  / _ .' ^ �/ distributivity, and
' ^  ) �
' )  ! �

implication introduction.

If in the implication introduction rule we replace the single horizontal line by a dou-
ble line, we essentially add modus ponens to the system and so get IPC. In the
absence of modus ponens we need to add the “formalized” versions of some of the
rules of ):

.' !  / ^ . ! �/ ) ' ! � formal transitivity,

.' !  / ^ .' ! �/ ) ' ! . ^ �/ formal meet, and

. ! '/ ^ .� ! '/ ) . _ �/ ! ' formal join.
This completes the axiomatization of BPC. It is possible to define theories over
BPC in terms of adding rules. For the purposes of this paper we restrict ourselves
to theories that are obtained by only adding sequents (or rules without premises).
Examples are IPC, which is axiomatizable by adding the schema .> ! '/ ) ',
and CPC, which is axiomatizable by adding the schema ..' ! ?/ ! ?/ ) '.

A Visser algebra A D .A;^;_;!; 0; 1/ (called a basic algebra in Alizadeh and
Ardeshir [1], [2] and in [3], [4]) is a bounded distributive lattice .A;^;_; 0; 1/ with
an arrow satisfying the schemas
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.a ! b ^ c/ D .a ! b/ ^ .a ! c/,

.b _ c ! a/ D .b ! a/ ^ .c ! a/,

.a ! a/ D 1,
a � .1 ! a/,
.a ! b/ ^ .b ! c/ � .a ! c/ (transitivity),

where � is the usual order relation implied by the lattice. This completes the ax-
iomatization of a Visser algebra. A Heyting algebra is a Visser algebra satisfying the
extra schema .1 ! a/ D a. Visser algebras need not be Heyting algebras, but they
always satisfy

a ^ b � c implies a � b ! c.
Further such properties can be found in [1], [4], or [2].

Visser algebra morphisms preserve sequent theories. For example, the image of
a Heyting algebra under a Visser algebra morphism is again a Heyting algebra. The
same applies to Boolean algebras.

3 Boolean Algebras

For the purposes of this paper we introduce notations �a for 1 ! a, and xa for
x ! a. So ��a D 1 ! .1 ! a/, and xaaa D ..x ! a/ ! a/ ! a. For all terms
t .x/ built from the defining functions of A D .A;^;_;!; 0; 1/ and the elements
of A, and for all x 2 A, we have x ^ t .x/ D x ^ t .1/ (simple substitution). For
example, x ^ .x ^ y/a D x ^ .1^ y/a D x ^ ya. Positive and negative occurrences
in formulas and terms are defined in the usual way. If x is only positive in t .x/, then
x � y implies t .x/ � t .y/. For example, xaa � �a ! a. If x is only negative in
t .x/, then x � y implies t .y/ � t .x/. For example, �a � xa.

An element a is called Heyting if �a D a. A Visser algebra is a Heyting algebra
exactly when all its elements are Heyting. Since a � �a for all a, we have that 1 is
always Heyting, but 0 need not be Heyting.

Proposition 3.1 Let a be an element of a Visser algebra A. Then
1. .x ^ y/a � x ! ya � .x ^ y/�a,
2. .x ^ y/aa D xaa ^ yaa.

Proof Item 1: First, .x^y/a ^x D ya ^x � ya, so .x^y/a � x ! ya. Second,
x ^ y � x implies x ! ya D x ! .y ! a/ � .x ^ y/ ! .y ! a/ D .x ^ y/ !

.1 ! a/ D .x ^ y/�a.
Item 2: Direction .x^y/aa � xaa ^yaa is immediate from the positive positions

of x and y. For the other direction, with .x ! ya/ ^ yaa � xa and item 1 we get
xaa ^ yaa ^ .x ^ y/a � xaa ^ yaa ^ .x ! ya/ � xaa ^ xa D �a^ xa D �a. So
xaa^yaa � .x^y/a ! �a. From the positive position of x we get xaa � �a ! a.
Thus, with transitivity, xaa ^ yaa � .x ^ y/aa.

Let a 2 A. An element x is called a-regular if xaa D x. Let Ra.A/ be the set of
a-regular elements of A. Clearly we have ¹xa W x 2 Aº � ¹xaa W x 2 Aº �

¹xaaa W x 2 Aº � � � � � Ra.A/. Since x is positive in xaa and 0aa D �a and
1aa D �a ! a, we also have Ra.A/ � Œ�a;�a ! a�. The set Ra.A/ inherits a
partial order from A.

Proposition 3.2 Let a be an element of a Visser algebra A. Then
1. x 2 Ra.A/ implies xa 2 Ra.A/,
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2. �a 2 Ra.A/ (this is [4, Proposition 2.12]),
3. �a ! a 2 Ra.A/,
4. x; y 2 Ra.A/ implies x ^ y 2 Ra.A/.

Proof Item 1: This is immediate, since xaa D x implies xaaa D xa.
Item 2: By positivity of �a we have .�a ! a/ ! a � �a ! a, so with simple

substitution .�a ! a/ ! a � �a. Thus .�a/aa D �a.
Item 3: This is immediate from items 1 and 2.
Item 4: This is Proposition 3.1.2.

So Ra.A/ inherits top and bottom from the interval Œ�a;�a ! a� and is closed
under ^. We show below that closure under x 7! xa essentially means closure
under (relative) complement.

Given a 2 A, define x _a y D .x _ y/aa.

Proposition 3.3 Let a be an element of a Visser algebra A. Then
1. x; y 2 Ra.A/ implies x _a y 2 Ra.A/,
2. x; y 2 Ra.A/ implies x _ y � x _a y,
3. z 2 Ra.A/ plus x _ y � z imply x _a y � z,
4. x 2 Ra.A/ implies x ^ .y _a z/ D .x ^ y/ _a .x ^ z/.

Proof Item 1: x _a y D .xa ^ ya/a. Apply Propositions 3.2.1 and 3.2.4.
Item 2: By positivity, x _ y D xaa _ yaa � .x _ y/aa D x _a y.
Item 3: x _ y � z implies x _a y � zaa D z.
Item 4: By Proposition 3.1.2, x^.y_a z/ D xaa ^.y_z/aa D .x^.y_z//aa D

..x ^ y/ _ .x ^ z//aa D .x ^ y/ _a .x ^ z/.

Given a 2 A, define x !a y D xa _a y. Let Ra.A/ be structure .Ra.A/;^;_a;

!a;�a;�a ! a/. By Propositions 3.2 and 3.3.1, this structure is well defined.

Theorem 3.4 Let a be an element of a Visser algebra A. Then Ra.A/ is a
Boolean algebra.

Proof By Propositions 3.2.2, 3.2.3, 3.2.4, and 3.3, .Ra.A/;^;_a;�a;�a ! a/

is a bounded distributive lattice. So it suffices to show that x 7! xa gives a (relative)
Boolean complement.

For all x we have x ^ xa D x ^ �a. In case x 2 Ra.A/ this means that
x ^ xa D �a, and so x and xa are relatively disjoint.

Suppose that x and y are such that both x � y and xa � y hold. Then
ya � xa � y, so ya � �a and so ya D �a. So also yaa D �a ! a. So if
x � y plus xa � y plus y 2 Ra.A/, then y D �a ! a is the largest element of
Ra.A/.

4 Boolean Elements and Morphisms

We have a further characterization of the elements of Ra.A/ which allows us to find
an idempotent Visser algebra morphism from the “subalgebra” of A on the interval
Œa; 1�, onto Ra.A/.

Proposition 4.1 Let a be an element of a Visser algebra A. Then
1. x ^ xaa D x ^ .�a ! a/ (so x � �a ! a if and only if x � xaa),
2. �a � x implies xa � xaaa,
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3. xaaa D xa ^ .�a ! a/,
4. xaaaa D xaa,
5. Ra.A/ D ¹xaa W x 2 Aº.

Proof Item 1: This is immediate by simple substitution.
Item 2: �a � x implies xa � �a ! a. Apply item 1.
Item 3: By simple substitution of xa we have xa ^ xaaa D xa ^ .�a ! a/. So

xaaa � xa ^ .�a ! a/. For the other direction, inequality x ^ .�a ! a/ � xaa

of item 1 implies xaaa � .x ^ .�a ! a//a. From positivity of xa we get
xaaa � �a ! a. Thus, with simple substitution, xaaa � .�a ! a/ ^

.x ^ .�a ! a//a D .�a ! a/ ^ xa.
Item 4: For all x we have xaa � �a ! a. Apply item 3 with x replaced by xa.
Item 5: This is immediate from item 4.

Proposition 4.1.3 may be viewed as the natural generalization of Brouwer’s triple
negation theorem. If a is Heyting, then it yields xaaa D xa for all x, and so
Ra.A/ D ¹xa W a 2 Aº.

Now we have the tools to present an idempotent Visser algebra morphism from
the subinterval Œa; 1� of A onto Ra.A/.

First some facts about Visser algebras on intervals. Let a; b 2 A be with a � b.
We construct a Visser algebra I Œa;b�.A/ on the interval Œa; b� as follows. Define
x !I y D .x ! y/ ^ b. Define I Œa;b�.A/ D .Œa; b�;^;_;!I ; a; b/. Clearly
I Œa;b�.A/ is well defined. The map �Œa;b� W x 7! .x ^ b/ _ a D .x _ a/ ^ b is a
well-defined map from A onto Œa; b�. If b D 1, then x !I y D x ! y, so I Œa;1�.A/
is clearly a Visser algebra and is a subalgebra of A except for the bottom element.

Proposition 4.2 Let a � b be elements of a Visser algebra A. Then I Œa;b�.A/ is
a Visser algebra, and �Œa;b� is an idempotent bounded distributive lattice morphism
from A onto I Œa;b�.A/.

Proof The bounded distributive lattice properties are well known. One easily ver-
ifies the defining Visser algebra properties of Section 2 for arrow x !I y.

Map �Œa;b� does not need to respect arrows even when A is a Heyting algebra and
b D 1, since �Œa;1�.x ! y/ D .x ! y/ _ a and �Œa;1�.x/ !I �Œa;1�.y/ D

x ! .y _ a/ need not be the same.
Finally the morphism of primary interest: let a 2 A. Define the map a W

A ! Ra.A/ by a.x/ D xaa. By Proposition 4.1.5, map a is well defined. We are
primarily interested in a with restriction to subdomain Œa; 1�.

Proposition 4.3 Let a and b be elements of a Visser algebra A. Then
1. .xaa _ yaa/aa D .x _ y/aa,
2. .x ! .b _ y//a � ..x ! b/ _ y/a,
3. .x ! .a _ y//a D ..x ! a/ _ y/a.

Proof Item 1: With Propositions 3.1.2 and 4.1.4 we have .xaa _ yaa/aa D

.xaaa ^ yaaa/a D .xa ^ ya/aaa D .x _ y/aaaa D .x _ y/aa.
Item 2: This immediately follows from .x ! b/ _ y � x ! .b _ y/.
Item 3: By item 2 we need only to show one direction. Since .a _ y/a D ya we

have .x ! .a_y//a � .x ! .a_y//a ^ya D ..x ! .a_y//^..a_y/ ! a//a ^

ya � .xa/a ^ ya D ..x ! a/ _ y/a.
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Theorem 4.4 Let a be an element of a Visser algebra A. Then a is an idempotent
Visser algebra morphism from I Œa;1�.A/ onto Ra.A/.

Proof Preservation of top 1, bottom a, and conjunction are easy. Surjectiv-
ity and idempotency of a follow from Propositions 4.1.4 and 4.1.5. Equation
a.x_y/ D a.x/_a a.y/ is Proposition 4.3.1. Finally, let y 2 Œa; 1�. Then a � y,
so with Proposition 4.3.3 we have .x ! y/a D .xa _ y/a. Combined with Proposi-
tion 4.3.1 we then have a.x ! y/ D .x ! y/aa D .xa_y/aa D .xaaa_yaa/aa D

a.x/ !a a.y/.

Map a W A ! Ra.A/ is an idempotent onto bounded lattice morphism with
a.x ! y/ D .x ! y/aa � .x ! .a _ y//aa D .xa _ y/aa D a.x/ !a a.y/.
In general these two expressions are not equal, even when A is a Heyting algebra.

5 Glivenko Theorems

Let A be a bounded distributive lattice with a binary function x ! y satisfying
x ! y D 1 for all x; y 2 A. Then A is clearly a Visser algebra. All Visser algebras
satisfying �0 D 1 can so be obtained from bounded distributive lattices. They
belong to the very interesting collection of Visser algebras that satisfy the principle
of excluded middle x _ x0 D 1, a collection which was essentially introduced in [3]
(see also [4, Proposition 5.11]). So the principle of excluded middle is not sufficient
to yield just Boolean algebras. Therefore the following is not completely self-evident.

Proposition 5.1 Let A be a Visser algebra satisfying the schema of double nega-
tion elimination x00 � x. Then A is a Boolean algebra.

Proof Clearly �0 D 000 � 0, so �0 D 0. Let x 2 A. Then �x ^ x0 � �0 = 0,
so �x � x00 � x. So A is a Heyting algebra satisfying double negation elimination
and thus is a Boolean algebra.

The Glivenko theorems we describe below involve inverse images of �0 and
�0 ! 0 under the Visser algebra morphism 0 W A ! R0.A/ of Section 4 (note
that I Œ0;1�.A/ D A). We use the following defined term in the description of these
inverse images.

For every element a of a Visser algebra, define �.a/ D .�a ! a/ ! �a.

Proposition 5.2 Let a be an element of a Visser algebra A. Then
1. �.a/ ^ .�a ! a/ D �a,
2. ��.a/ D �.a/ (this is [4, Proposition 2.11]),
3. x ! �.a/ D 1 if and only if x � �.a/,
4. �.a/ ! a D �a ! a.

Proof Item 1: With simple substitution, �.a/^.�a ! a/ D ��a^.�a ! a/ �

�a.
Item 2: By item 1 we have 1 D �.a/ ^ .�a ! a/ ! �a. So ��.a/ � .�a !

a/ ! �.a/ D .�a ! a/ ! �.a/ ^ .�a ! a/ D .�a ! a/ ! �a D �.a/.
Item 3: From right to left is immediate. For the converse, suppose x ! �.a/ D 1.

Then with item 2 we have x D x ^ .x ! �.a// D x ^ ��.a/ � �.a/.
Item 4: Obviously �.a/ ! a � �a ! a. Conversely, with item 1 and simple

substitution we have .�a ! a/^ .�.a/ ! a/ D .�a ! a/^ .�.a/^ .�a ! a/ !

a/ D .�a ! a/ ^ .�a ! a/.
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Proposition 5.3 Let a be an element of a Visser algebra A. Then
�a ! a � xa if and only if xaa D �a if and only if x � �.a/.

Proof With Propositions 3.2.2 and 4.1.3 we have that �a ! a � xa implies
xaa � .�a/aa D �a (and so xaa D �a) implies �a ! a � xaaa � xa. So
the first two statements are equivalent. By Proposition 5.2.4 we have that x � �.a/

implies �a ! a � x ! a. So the third statement implies the first. For the
converse, suppose the first statement. Then x ^ .�a ! a/ � x ^ xa � �a. So
x � .�a ! a/ ! �a D �.a/.

So the inverse image of �a under a is the principal ideal Œ0; �.a/�.

Theorem 5.4 Let a be an element of a Visser algebra A, and let a.x/ D xaa

be the idempotent bounded distributive lattice morphism from A onto Ra.A/. Then
�1

a .�a/ D ¹x 2 A W x�.a/ D 1º and �1
a .�a ! a/ D ¹x 2 A W xa�.a/ D 1º.

Proof With Propositions 5.3 and 5.2.3 we have a.x/ D �a if and only if
x�.a/ D 1. Similarly, a.x/ D �a ! a if and only if xaa D �a ! a if and only
if (use Propositions 3.2.2 and 4.1.4) xaaa D �a if and only if (see Proposition 5.3)
xa � �.a/ if and only if (see Proposition 5.2.3) xa�.a/ D 1.

Fix a propositional language L. With its presentation in [3] (see also [4, Proposi-
tion 2.4]), the Lindenbaum algebra of basic propositional logic BPC is isomorphic in
the natural way with the free Visser algebra on the set of propositional letters of L.
Sequent theories � � BPC correspond to adding equations between (equivalence
classes of) formulas of L. Examples are intuitionistic propositional logic � D IPC,
which is axiomatizable by the schema > ! ' ) ', and classical propositional
logic � D CPC, which is axiomatizable by the schema .' ! ?/ ! ? ) ',
also written as ::' ) '. Write A� for the Lindenbaum Visser algebra of � , with
elements Œ'�� D ¹ 2 L W � `  , 'º. Given sequent theories � � �, the
map ��

� W Œ'�� 7! Œ'�� is a Visser algebra morphism from A� onto A�. A Visser
algebra morphism � W A ! B induces a congruence on A in the usual way by
x � y exactly when �.x/ D �.y/. If A D A� for some sequent theory � , then
�.�/ D ¹' )  W Œ'�� � Œ' ^  ��º is the unique sequent theory containing �
such that A�=.�/ Š A�.�/ by the usual isomorphism ŒŒ'�� �� 7! Œ'��.�/. We call
�.�/ the congruence theory implied by �. Given sequent theories � � � � �.�/,
the map �.Œ'��/ D �.Œ'��/ is the unique function (and Visser algebra morphism)
that makes the following diagram commute:

A�

��
�

��

�
// B

A�

9Š �

>>

where � is an isomorphism exactly when � D �.�/.
Given an element a of Visser algebra A, we have Ra.A/ � A. So each func-

tion � from A uniquely determines a restricted function �a from Ra.A/. Let
� W A ! B be a Visser algebra morphism. Then the following diagram commutes,
with �a.x

aa/ D �.x/�.a/�.a/:
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A

�

��

a

// Ra.A/

�a

��
B

�.a/ // R�.a/.B/

The following is not immediately self-evident since the idempotent onto maps a and
�.a/ need not be Visser algebra morphisms.

Proposition 5.5 Let a be element of a Visser algebra A, and let � W A ! B be a
Visser algebra morphism. Then �a is a Visser algebra morphism.

Proof This is essentially immediate from the definition of the Boolean alge-
bra in terms of the defining functions of the original Visser algebra. For exam-
ple, �a.x _a y/ D �.x _a y/ D �..x _ y/aa/ D .�.x/ _ �.y//�.a/�.a/ D

�a.x/ _�.a/ �a.y/.

So map �a is also a Boolean algebra morphism.

Proposition 5.6 Let � be a sequent theory. Then the congruence theory implied
by 0 W A� ! R0.A�/ equals � C CPC.

Proof By Proposition 4.1.4 we have 0.Œ'��/ D 0.Œ::'��/. So � [ CPC �

�.0/. Consider the following diagram:

A�

�

��

0

// R0.A�/

�0

��
A�CCPC

0Did //

9Š �

::

R0.A�CCPC/

where � is short for ��
�CCPC. The bottom 0 is clearly an identity between Boolean

algebras. The outer square and the top left triangle both commute. An easy diagram
chase plus � onto gives that the lower right triangle also commutes. So �0� D 1.
Since 0 is onto, � is also onto. With � D ��0� this gives ��0 D 1. Thus � is a
Visser algebra isomorphism, and � C CPC D �.0/,

This is essentially all we need to generalize the Glivenko theorems from IPC to BPC.
We employ the following notation for formulas and sequent theories over BPC.

We write � ` ' as short for � ` .> ) '/. This agrees with default practice over
IPC, where, with modus ponens, ' )  and > ) ' !  are provably equivalent.
So intuitionistic theories can ignore sets of sequents in favor of sets of formulas, by
simply dropping the .> )/-part.

Define �.'/ as short for ..> ! '/ ! '/ ! .> ! '/. This is in agreement with
the function � over Visser algebras of the form A� , since �.Œ'��/ D Œ�.'/�� .

Theorem 5.7 Let � be a sequent theory over BPC. Then for all formulas ' we
have

1. � ` ' ! �.?/ if and only if � C CPC ` ' ! ?,
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2. � ` .' ! ?/ ! �.?/ if and only if � C CPC ` '.

Proof Item 1: � ` ' ! �.?/ if and only if Œ'��.0/
� D 1 in A� if and only if (see

Theorem 5.4) Œ'�00
� D 0 in R0.A�/ if and only if (see Proposition 5.6) Œ'��CCPC D 0

in A�CCPC if and only if � C CPC ` ' ! ?.
Item 2: By item 1 we have � ` .' ! ?/ ! �.?/ if and only if � C CPC `

.' ! ?/ ! ?. Apply double negation elimination over CPC.

Since IPC ` ..> ! '/ , '/, we have IPC ` .�.'/ , '/. In particular,
IPC ` :�.?/. So over IPC, Theorem 5.7 reduces to the following well-known
theorem.

Theorem 5.8 (Glivenko) Let � be a theory over IPC. Then for all formulas ' we
have

1. � ` :' if and only if � C CPC ` :',
2. � ` ::' if and only if � C CPC ` '.
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