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Characterizing Model Completeness
Among Mutually Algebraic Structures

Michael C. Laskowski

Abstract We characterize when the elementary diagram of a mutually alge-
braic structure has a model complete theory, and give an explicit description of a
set of existential formulas to which every formula is equivalent. This characteri-
zation yields a new, more constructive proof that the elementary diagram of any
model of a strongly minimal, trivial theory is model complete.

1 Introduction

In [5], which borrows heavily from [4], it is shown that for any mutually algebraic
structureM (see Definition 1.4), its elementary diagram, which we denote by T .M/,
has a near model complete theory. Indeed, Definition 1.6 describes a specific class
E of existential L.M/-formulas, and every L.M/-formula is T .M/-equivalent to
some Boolean combination of formulas from E .

In earlier papers, it was shown that under stronger hypotheses on the theory of
M , the elementary diagram T .M/ has a model complete theory. Indeed, in [3],
Goncharov, Harizanov, Lempp, McCoy, and the author prove that the elementary
diagram of every model of a strongly minimal, trivial theory is model complete. In
[2], this result was strengthened by Dolich, Raichev, and the author to give the same
result for any model of an @1-categorical, trivial theory of Morley rank 1. In both
instances, it follows that every L.M/-formula is equivalent to an existential formula,
but the proofs do not give a specific description of a “minimal set” of existential
formulas needed to describe all L.M/-formulas.

The main theorem of this short note, Theorem 2.4, characterizes when the ele-
mentary diagram of a mutually algebraic structure M has a model complete theory
(as opposed to simply being near model complete). Moreover, we display a set P

of easily understood existential formulas,1 and show that T .M/ is model complete
if and only if every L.M/-formula is T .M/-equivalent to an element of P . Then,
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in the third section, we indicate that these conditions hold for models of either of the
two types of theories described above.

We conclude the Introduction by recalling the major definitions and results from
[4] and [5].

Definition 1.1 When we write a tuple Nz of variable symbols, we assume
that the elements of Nz are distinct, and range. Nz/ denotes the underlying set of
variable symbols. A proper partition Nz D Nx O Ny satisfies lg. Nx/; lg. Ny/ � 1,
range. Nx/ [ range. Ny/ D range. Nz/, and range. Nx/ \ range. Ny/ D ;. We do not
require Nx be an initial segment of Nz, but to simplify notation, we write it as if it were.

Definition 1.2 Let M denote any L-structure. An L.M/-formula '. Nz/ is mu-
tually algebraic if there is an integer N so that M ˆ 8 Ny9�N Nx'. Nx; Ny/ for every
proper partition Nx O Ny of Nz. We let MA.M/ denote the set of all mutually algebraic
L.M/-formulas. When M is understood, we simply write MA.

The reader is cautioned that whether a formula '. Nz/ is mutually algebraic or not
depends on the choice of free variables. In particular, mutual algebraicity is not
preserved under adjunction of dummy variables. Note that every L.M/-formula
'.z/ with exactly one free variable symbol is mutually algebraic. Furthermore, note
that inconsistent formulas are mutually algebraic.

The following lemma indicates some of the closure properties of the set MA. In
what follows, when we write '. Nx; Ny/ 2 MA, we mean that '. Nz/ 2 MA for any tuple
Nz of distinct symbols such that range. Nz/ D range. Nx/ [ range. Ny/, but that we are
concentrating on a specific proper partition Nz D Nx O Ny of '. Nz/.

Lemma 1.3 Let M be any structure in any language L.
1. If '. Nz/ 2 MA, then '.�. Nz// 2 MA for any permutation � of the variable

symbols.
2. If '. Nx; Ny/ 2 MA and Na 2 M lg. Ny/, then both 9 Ny'. Nx; Ny/ and '. Nx; Na/ 2 MA.
3. If '. Nz/ `  . Nz/ and  . Nz/ 2 MA, then '. Nz/ 2 MA.
4. For k � 1, if ¹'i . Nzi / W i < kº � MA, and

T
i<k range. Nzi / is nonempty, then

 .w/ WD
V

i<k 'i . Nzi / 2 MA, where range.w/ D
S

i<k range. Nzi /.
5. If '. Nx; Ny/ 2 MA and r 2 !, then �r . Ny/ WD 9�r Nx'. Nx; Ny/ 2 MA.

Definition 1.4 Given an arbitrary L-structure M , let MA�.M/ denote the set of
all L.M/-formulas that are T .M/-equivalent to a Boolean combination of formulas
from MA.M/. A structure M is mutually algebraic if L.M/ D MA�.M/; that
is, every L.M/-formula is T .M/-equivalent to a Boolean combination of mutually
algebraic formulas.

It is evident that the mutual algebraicity of a structure is preserved under elementary
equivalence. The following is the main theorem (Theorem 3.3) of [5].

Theorem 1.5 The following are equivalent for any theory T :
1. Every model of T is a mutually algebraic structure.
2. Every mutually algebraic expansion of every model of T is a mutually alge-

braic structure.
3. T h..M;A// has the non-finite cover property for every M ˆ T and every

expansion .M;A/ by a unary predicate.
4. Every complete extension of T is weakly minimal and trivial.
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Next, we recall four classes of L.M/-formulas that were introduced in [4].

Definition 1.6 Let M be any L-structure. We have
� A D ¹all quantifier-free, mutually algebraic L.M/-formulasº;
� E D ¹all L.M/-formulas of the form 9 Nx�. Nx; Ny/, where � 2 Aº (we allow

lg. Nx/ D 0 so A � E);
� A� D ¹all L.M/-formulas T .M/-equivalent to a Boolean combination of

formulas from Aº; and
� E� D ¹all L.M/-formulas T .M/-equivalent to a Boolean combination of

formulas from Eº.

The following theorem lists the main results of [4], specifically Proposition 4.1 and
Theorem 4.2 (noting that by Theorem 1.5, if M is mutually algebraic, then T h.M/

is weakly minimal and trivial).

Theorem 1.7 Let M be any mutually algebraic structure. Then we have the fol-
lowing:

1. Every quantifier-free L.M/-formula �. Nz/ is in A�.
2. Every L.M/-formula is T .M/-equivalent to a Boolean combination of for-

mulas from E , that is, E� D L.M/.

2 A New Class of Existential Formulas

We begin this section with the central definitions of the current note.

Definition 2.1 A formula S.w/ is a partial equality diagram if it is a Boolean
combination of formulas of the form w D w0 for various w;w0 2 w.

An L.M/-formula �. Ny; Nz/ is preferred if it has the form
9 Nx

�
R. Nx; Ny/ ^ S. Nx; Ny; Nz/

�
;

where Nx; Ny; Nz are disjoint tuples of variable symbols, lg. Ny/ � 1, R. Nx; Ny/ 2 A, and
S. Nx; Ny; Nz/ is a partial equality diagram.

Let P denote the set of all L.M/-formulas that are T .M/-equivalent to a positive
Boolean combination of preferred formulas.

As the quantification in a preferred formula is only over the mutually algebraic con-
junct, it is easily checked that every '. Ny/ 2 P is T .M/-equivalent to an algebraically
existential formula in the sense of the footnote.

Lemma 2.2 Suppose that M is an infinite, mutually algebraic structure, Nx; Nz; y

are disjoint sequences of variable symbols, lg.y/ D 1, and ¹Rj . Nxj ; y; Nzj / W

j 2 J º is a finite set of quantifier-free, mutually algebraic formulas where, for
each j , Nxj � Nx, Nzj � Nz, and the variable y occurs in Rj . Then T .M/ ˆ

8 Nx8y9Nz
V

j 2J :Rj . Nxj ; y; Nzj /.

Proof Given such a set of formulas, choose N � M and Na, b from N . We will
produce a tuple Ne from N so that N ˆ :R. Naj ; b; Nej / for each j 2 J . Say that
Nz D .z0; : : : ; zk�1/. For each ` < k, let J` D ¹j 2 J W z` occurs in Nzj º, and let

B` WD
®
c 2 N W N ˆ 9Nzj

�
Rj . Naj ; b; Nzj / ^ z` D c

�
for some j 2 J`

¯
:

As each Rj is mutually algebraic and b is fixed, it follows that each of the sets B`

is finite. Since N is infinite, we can choose Ne D .e0; : : : ; ek�1/ so that e` … B` for
each ` < k. It is easily checked that Ne is as desired.
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Lemma 2.3 Let M be an infinite, mutually algebraic structure. Say that

 . Nx; y/ WD

^
i2I

Ri . Nxi ; y/ ^

^
j 2J

:Rj . Nxj ; y/;

where I and J are finite, eachRi , Rj is quantifier-free and mutually algebraic, each
Nxi and Nxj is a subsequence of Nx, lg.y/ D 1, and y occurs in each Ri , Rj . Then
9 Nx . Nx; y/ 2 P .

Proof First, if I D ;, then by Lemma 2.2, T .M/ ˆ 8y9 Nx . Nx; y/; hence
9 Nx . Nx; y/ is true for every y. In this case, 9 Nx is equivalent to y D y, which
is in A, and hence in P .

Next, assume that I ¤ ;. Let Nx0 be the smallest subsequence of Nx for which
every Nxi is a subsequence of Nx0. Let Nz D Nx n Nx0, let K D ¹j 2 J W Nxj � Nx0º, and
let J � D J n K. As I is nonempty, it follows from Lemma 1.3(3) and (4) that the
formula

�. Nx0; y/ WD

^
i2I

Ri . Nxi ; y/ ^

^
j 2K

:Rj . Nxj ; y/

is mutually algebraic (and it is visibly quantifier-free). But, by Lemma 2.2, it follows
that 9 Nx . Nx; y/ is T .M/-equivalent to 9 Nx0�. Nx0; y/, so 9 Nx . Nx; y/ 2 P .

Theorem 2.4 The following are equivalent for every mutually algebraic struc-
ture M :

1. 9Dr NxR. Nx; y/ 2 P for all R. Nx; y/ 2 A with lg.y/ D 1 and all r 2 !;
2. 9Dr NxR. Nx; y/ 2 P for all R. Nx; y/ 2 A with lg.y/ � 1 and all r 2 !;
3. P is closed under negation;
4. P D L.M/;
5. T .M/ is model complete.

Proof First, note that if the universe of M is finite, then all five conditions hold
trivially. Thus, we assume throughout that M is infinite.
.1/ ) .2/: Assume that (1) holds. Choose any R. Nx; Ny/ 2 A and any integer r .

Choose any variable symbol y� 2 Ny, and let Ny0 satisfy Ny0 Oy� D Ny. Choose an
integer N so that R. Nx Ny0; y�/ has fewer than N solutions. For each m < N , let

Sm.u0v0 � � �um�1vm�1; Ny0/

WD

^
i¤j

uivi ¤ uj vj ^

_
Q2

�
m
r

�
�^

i2Q

vi D Ny0
^

^
i…Q

vi ¤ Ny0
�
;

and let

�m. Ny/ WD 9u0v0 � � � 9um�1vm�1

� ^
i<m

R.uivi ; y
�/ ^ Sm.u0v0 � � �um�1vm�1 Ny0/

�
:

Using the closure properties in Lemma 1.3, �m. Ny/ is a preferred formula. Let w be
new variables satisfying lg.w/ D lg.u/C lg.v/, and let ı. Ny/ be_

m<N

�
9

DmwR.w; y�/ ^ �m. Ny/
�
:

It is easily checked that ı. Ny/ is T .M/-equivalent to 9Dr NxR. Nx; Ny/ and, using (1),
ı. Ny/ 2 P .
.2/ ) .3/: In order to show that P is closed under negation, by De Morgan’s

laws it suffices to show that the negation of every preferred formula is in P . So
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fix a preferred formula �. Ny; Nz/ WD 9 Nx.R. Nx; Ny/ ^ S. Nx; Ny; Nz//, where R. Nx; Ny/ 2 A,
lg. Ny/ � 1, and S. Nx; Ny; Nz/ is a partial equality diagram. Choose N so that T .M/

implies that 9<N NxR. Nx; Ny/. It is easily checked that :�. Ny; Nz/ is T .M/-equivalent to_
m<N

�
9

Dm
NxR. Nx; Ny/ ^  m. Ny; Nz/

�
;

where

 m. Ny; Nz/ WD 9 Nx0 � � � Nxm�1

� ^
i<m

R. Nxi ; Ny/ ^

^
i¤j

Nyi ¤ Nyj ^

^
i<m

:S. Nxi ; Ny; Nz/
�
:

Thus, :�. Ny; Nz/ 2 P by (2).
.3/ ) .4/: As P is closed under positive Boolean combinations by definition,

it follows immediately from (3) that P is closed under all Boolean combinations.
However, E � P trivially, so E�, the closure of E under Boolean combinations, is
also a subset of P . But, asM is mutually algebraic, E� D L.M/ by Theorem 1.7(2).
Thus P D L.M/.
.4/ ) .5/: Visibly, every preferred formula is an existential L.M/-formula, and

the set of existential L.M/-formulas is closed under positive Boolean combinations.
Thus, (4) implies that every L.M/-formula is T .M/-equivalent to an existential for-
mula, which is equivalent to model completeness (see, e.g., Chang and Keisler [1]).
.5/ ) .1/: Assume that T .M/ is model complete. We argue that every

L.M/-formula '.y/ with lg.y/ D 1 is in P . Fix such a formula '.y/.

Claim For any N � M and any b 2 N such that N ˆ '.b/, there is ı.y/ 2 P

such that N ˆ ı.b/ ^ 8y.ı.y/ ! '.y//.

Proof Fix such an N and b. As T .M/ is model complete, this implies that

T .M/ [�M � ˆ '.b/;

where �M � is the atomic diagram of M �. Thus, by compactness, there is a
quantifier-free �. Ne; b/ 2 �M � such that T .M/ [ ¹�. Ne; b/º ˆ '.b/. Without loss
of generality, we may assume that Ne is disjoint from M [ ¹bº, so it follows that
T .M/ ˆ 8y.9 Nx�. Nx; y/ ! '.y//.

By Theorem 1.7(1), �. Nx; y/ 2 A�. Thus, by considering the disjunctive normal
form, we can write �. Nx; y/ as

W V
Rij . Nzij /, where each Nzij is contained in Nx [ ¹yº,

and where Rij . Nzij / is quantifier-free and is either mutually algebraic or is the nega-
tion of a mutually algebraic formula.

Thus, one of the disjuncts  . Nx0; y/ of �. Nx; y/ satisfies N ˆ 9 Nx0 . Nx0; b/,

T .M/ ˆ 8y
�
9 Nx0 . Nx0; y/ ! '.y/

�
;

and Nx0 � Nx. Now  . Nx0; y/ has the form^
Ri . Nxi ; y/ ^

^
:Rj . Nxj ; y/;

where each Ri and Rj is quantifier-free and mutually algebraic, and each Nxi ; Nxj �

Nx0. We may additionally assume that the variable symbol y appears in each Ri and
Rj . AsM is infinite, Lemma 2.3 applies, and the formula ı.y/ WD 9 Nx0 . Nx0; y/ 2 P

is as required.

To finish the proof of .5/ ) .1/, let

� WD
®
ı.y/ 2 P W T .M/ ˆ 8y

�
ı.y/ ! '.y/

�¯
:
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It follows immediately from the Claim and compactness that the formula '.y/ is
T .M/-equivalent to a finite disjunction

W
i ıi .y/ of elements ıi 2 � . As P is closed

under T .M/-equivalence and finite disjunctions, we conclude that '.y/ 2 P .

3 New Proofs of Model Completeness

We close by giving new proofs of the model completeness results first proved in [3]
and [2]. The first theorem clearly follows from the second, but we give a separate
proof as it follows so easily from our main result.

Theorem 3.1 If T is strongly minimal and trivial, then T .M/ is model complete
and L.M/ D P for every model M of T .

Proof Fix a model M of T . With our eye on clause (1) of Theorem 2.4, choose
an L.M/-formula '.y/ with lg.y/ D 1. By strong minimality, the solution
set '.N / in any N � M is either finite or cofinite, with the “exceptional set”
contained in M . That is, there is some finite set Q � M such that, letting
�.y/ WD

W
m2Q y D m, '.y/ is T .M/-equivalent to either �.y/ or :�.y/. As any

quantifier-free L.M/-formula in a single free variable is in A and hence in P , both
�;:� 2 P . Applying this argument to any instance of 9Dr NzR. Nz; y/, we conclude
that both T .M/ is model complete and L.M/ D P by Theorem 2.4.

Theorem 3.2 Suppose that T is @1-categorical, trivial, and of Morley rank 1.
Then for every M ˆ T , the elementary diagram is model complete. Furthermore,
L.M/ D P .

Proof Again, we employ Theorem 2.4, but here we need to focus on a particu-
lar instance of clause (1). So fix a formula R. Nz; y/ 2 A and an integer r . As
9�r NzR. Nz; y/ 2 P , to establish clause (1) it suffices to prove that 9�r NzR. Nz; y/ 2 P .

Toward this end, our assumptions on T imply that there are finitely many nonalge-
braic 1-types overM . Indeed, if Sna WD ¹pi W i < dº denotes this set of nonalgebraic
1-types, then d is the Morley degree of T . As well, the @1-categoricity of T implies
that each of these types are nonorthogonal. As T is trivial, this further implies that
pi and pj are not weakly orthogonal over M for all pi ; pj 2 Sna. As forking of a
1-type implies algebraicity, this implies that for any N � M and any a 2 pi .N /,
there is b 2 pj .N / such that b 2 acl.M [ ¹aº/ (and hence a 2 acl.M [ ¹bº/). As
E� D L.M/, it is easy to verify that for all pairs pi ; pj 2 Sna, there is a mutually
algebraic, quantifier-free formula �ij .x; y; Nz/ such that for any a 2 pi .N /, there is
b 2 pj .N / such that N ˆ 9Nz�ij .a; b; Nz/. Fix a finite set F � A consisting of one
such �ij for each pair pi ; pj 2 Sna (if i D j , we can take �ij to be the mutually
algebraic formula x D y).

Now, fix an elementary extension N � M . For every b 2 N , let
� ��.b;N / D ¹c 2 N W N ˆ 9w�.b; c; w/º, that is, ��.b;N / is the set of

elements that are part of a tuple realizing �.b;N /;
� F .b/ D

S
�2F ��.b;N /; and

� Fr .b/ D ¹c 2 F .b/ W N ˆ 9�rC1 NzR. Nz; c/º.
Clearly, for b 2 N nM , Fr .b/ � F .b/ and jF .b/j �

P
�2F N� � lg. Nz/, where

N� is an integer such that T .M/ ˆ 8y9<N� Nz�.y; Nz/.
Thus, there is a finite exceptional set Q � M and an integer `� such that
1. T .M/ ˆ 8y.y … Q ! jFr .y/j � `�/, and
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2. for some b 2 N nM , jFr .b/j D `�.
Also, it is clear that the size jFr .b/j depends only on tp.b=M/; that is, if

tp.b=M/ D tp.b0=M/, then jFr .b/j D jFr .b
0/j. Fix any nonalgebraic 1-type

p�.y/ 2 Sna such that jFr .b/j D `� for some (every) realization b of p�.
Let ı.x/ express

“There is some �.x; y; Nz/ 2 F such that 9y9Nz.�.x; y; Nz/^y … Q and there are distinct
elements ¹wi W i < `�º witnessing that jFr .y/j � `� and x ¤ wi for all i < `�/.”

It is routine to check that the formula ı.x/ 2 P . It suffices to prove the following.

Claim T .M/ ˆ 8xŒ9�r NzR. Nz; x/ $ ı.x/�.

Proof Fix anyN � M and a 2 N . First, suppose thatN ˆ 9�r NzR. Nz; a/. Choose
�.x; y; Nz/ 2 F such that there is b 2 p�.N / with N ˆ 9Nz�.a; b; Nz/. By our choice
of p� we have jFr .b/j D `�, so choose an enumeration ¹ci W i < `�º of Fr .b/.
Since the definition of Fr .b/ implies that N ˆ 9�rC1 NzR. Nz; ci / for each i , it follows
that a ¤ ci for each i . Thus, N ˆ ı.a/.

Conversely, suppose that N ˆ 9�rC1 NzR. Nz; a/. Choose any b 2 N nQ such that
N ˆ 9Nz�.a; b; Nz/ for some � 2 F and jFr .b/j � `�. Choose any set of `� distinct
elements ¹ci W i < `�º � Fr .b/. But now, as b … Q,

N ˆ
ˇ̌
Fr .b/

ˇ̌
� `�:

This, combined with the fact that our assumption on a and � implies that a 2 Fr .b/,
guarantees that a D ci for some i . That is, N ˆ :ı.a/, completing the proof of the
Claim.

As we have shown that 9�r NzR. Nz; x/ 2 P , it follows from Theorem 2.4 that both
T .M/ is model complete and L.M/ D P .

Note

1. Every '. Ny/ 2 P can be written in the form 9 Nx . Nx; Ny/, where  is quantifier-free and
there is an integer K so that T .M/ ˆ 8 Ny9<K Nx . Nx; Ny/. Perhaps such a formula should
be called an “algebraically existential” formula?
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