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Halldén Completeness for Relevant Modal Logics

Takahiro Seki

Abstract Halldén completeness closely resembles the relevance property.
To prove Halldén completeness in terms of Kripke-style semantics, the van
Benthem–Humberstone theorem is often used. In relevant modal logics, the
Halldén completeness of Meyer–Fuhrmann logics has been obtained using
the van Benthem–Humberstone theorem. However, there remain a number of
Halldén-incomplete relevant modal logics. This paper discusses the Halldén
completeness of a wider class of relevant modal logics, namely, those with some
Sahlqvist axioms.

1 Introduction

A propositional logic L is Halldén complete when, if A _ B is a theorem of L, either
A is a theorem of L or B is a theorem of L for all formulas A and B that do not
have any propositional variables in common. As mentioned by Mares [4], Halldén
completeness closely resembles the relevance property. Here, we say that a logic
L has the relevance property when, if A ! B is a theorem of L, A and B have
some propositional variables in common. If we think that A _ B and � A ! B

are “relatives,” then the relevance property says that, when A _ B is a theorem of a
relevant logic, A and B have some propositional variables in common. In this sense,
the relevance property is a strengthened form of Halldén completeness.

It is well known that classical logic, intuitionistic logic, and modal logics such
as T, S4, and S5 are Halldén complete but that the modal logic K is not. In both
relevant logics and relevant modal logics, there have been studies on Halldén com-
pleteness. Routley and Meyer [5] showed the Halldén completeness of the relevant
modal logic NR using Routley–Meyer semantics. The generalization of the argu-
ment in [5] to a wider class of (nonmodal) relevant logics was discussed in Routley
et al. [6, Section 5.7]. Furthermore, using the van Benthem–Humberstone theorem
(see [10]), Mares [4] showed that all Meyer–Fuhrmann logics are Halldén complete
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(Theorem 12) and also that there are Halldén-incomplete relevant modal logics that
include �.A _ B/ !� � � A _ �B (Theorem 13). Note that Mares [4] dealt with
modal logics based on the relevant logic R.

The van Benthem–Humberstone theorem gives a sufficient condition for Halldén
completeness. Because the theorem is stated in a frame-theoretical characteriza-
tion, it is not necessarily clear from a logical viewpoint in which logics are Halldén
complete. The Sahlqvist theorem is one of the fundamental results on the corre-
spondence between modal formulas and frame postulates. Combining the Sahlqvist
theorem and the van Benthem–Humberstone theorem, we expect to obtain a range of
Halldén-complete modal logics with Sahlqvist axioms.

This paper extends the results in [4] and [6] to a wider class of relevant modal
logics, namely, B:C�Þ and its extensions using Sahlqvist axioms. B:C�Þ was
introduced as the basic relevant modal logic with the independent modal opera-
tors � and Þ, and a Sahlqvist theorem for relevant modal logics was proven by
Seki [7].

2 Relevant Modal Logics

The language of relevant modal logics consists of (i) propositional variables; (ii) log-
ical connectives !; ^; _, and �; (iii) modal operators � and Þ; and (iv) a con-
stant t. Formulas are defined in the usual way and are denoted by capital letters
A; B; C; D; E. Prop and Wff will denote the set of all propositional variables and
formulas, respectively. Furthermore, Var.A/ will denote the set of propositional
variables in A 2 Wff. We also introduce the following abbreviations:

�A
def
D� Þ � A; Þ� A

def
D� � � A:

For n � 1, �nA represents �n � � � �2�1A, where �i .1 � i � n/ denotes � or
� and the �i are not necessarily the same; �nA represents �n � � � �2�1A, where
�i .1 � i � n/ denotes Þ or Þ� and the �i are not necessarily the same. Moreover,
let both �0A and �0A be A.

The relevant modal logic B:C�Þ is defined as follows:

(a) Axioms
(A1) A ! A,
(A2) A ^ B ! A,
(A3) A ^ B ! B ,
(A4) .A ! B/ ^ .A ! C / ! .A ! B ^ C /,
(A5) A ! A _ B ,
(A6) B ! A _ B ,
(A7) .A ! C / ^ .B ! C / ! .A _ B ! C /,
(A8) A ^ .B _ C / ! .A ^ B/ _ C ,
(A9) �� A ! A,

(A10) t;
(A11) �A ^ �B ! �.A ^ B/,
(A12) Þ.A _ B/ ! ÞA _ ÞB;
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(b) Rules of inference

.R1/
A ! B A

B
; .R2/

A B

A ^ B
;

.R3/
A ! B C ! D

.B ! C / ! .A ! D/
; .R4/

A !� B

B !� A
;

.R5/
A

t ! A
; .R6/

A ! B

�A ! �B
;

.R7/
A ! B

ÞA ! ÞB
:

We provide the following lists of axioms and rules of inference:
(B1) A ^ .A ! B/ ! B ,
(B2) .A !� A/ !� A,
(B3) .A ! .A ! B// ! .A ! B/,
(B4) .A ! B/ ^ .B ! C / ! .A ! C /,
(B5) .A ! B/ ! ..B ! C / ! .A ! C //,
(B6) .A ! B/ ! ..C ! A/ ! .C ! B//,
(B7) A ! ..A ! B/ ! B/,
(B8) .A ! .B ! C // ! .B ! .A ! C //,
(B9) .A ! .B ! C // ! ..A ! B/ ! .A ! C //,

(B10) .A ! B/ ! ..A ! .B ! C // ! .A ! C //,
(B11) .A ! B/ ! ..A ! C / ! .A ! B ^ C //,
(B12) A_ � A,
(B13) A !� .A !� A/,
(B14) .A !� B/ ! .B !� A/,
(B15) �.A ! B/ ! .�A ! �B/,
(B16) �.A ! B/ ! .�A ! �B/,
(B17) �.A ! B/ ! .�A ! �B/,
(B18) �.A ! B/ ! .�A ! �B/,
(B19) �.A ! B/ ! .ÞA ! ÞB/,
(B20) �.A ! B/ ! .ÞA ! ÞB/,
(B21) �.A ! B/ ! .Þ� A ! Þ� B/,
(B22) �.A ! B/ ! .Þ� A ! Þ� B/,
(D1) �A ! ÞA,
(D2) �A ! Þ� A,
(D3) �A ! ÞA,

(Q1)
A

.A ! B/ ! B
; (Q2)

A

�A
;

(Q3)
A

�A
; (Q4)

C _ .A ! B/ C _ A

C _ B
;

(Q5)
E _ .A ! B/ E _ .C ! D/

E _ ..B ! C / ! .A ! D//
; (Q6)

C _ .A !� B/

C _ .B !� A/
;

(Q7)
C _ .� A ! A/

C _ A
; (Q8)

C _ A

C _ � .A !� A/
;

(Q9)
C _ .A ! B/

C _ .�A ! �B/
; (Q10)

C _ .A ! B/

C _ .ÞA ! ÞB/
:

The rules of inference (Q4)–(Q10) are called disjunctive rules.
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H1 denotes any logic obtained from B:C�Þ by adding any set of axioms
(B1)–(B22) and the rules of inference (Q1)–(Q10). H2 denotes any logic obtained
from B:C�Þ by adding any set of axioms (B1)–(B22) and the rules of inference
(Q1)–(Q10) satisfying at least one of the following four conditions: (a) (B1) and
(D1) are theorems; (b) (B1), (D2), and (D3) are theorems; (c) (B2) and (D1) are
theorems; (d) (B2), (D2), and (D3) are theorems. Note that �A ! Þ� A is a theorem
whenever (D1) is a theorem of H2.

It may be noted that the nonmodal reduct of B:C�Þ is the relevant logic B. Let
L C ‰ denote the logic obtained from L by adding a set ‰ consisting of axioms
and rules of inference. Then, G D B C ¹.B12/º, TW D B C ¹.B5/; .B6/; .B14/º,
T D TW C ¹.B2/; .B3/º, EW D TW C ¹.Q1/º, E D T C ¹.Q1/º, RW D EW C

¹.B7/º, and R D E C ¹.B7/º.
Note that modal logics over relevant logics that have (B2) as a theorem, including

T, E, and R, are divided into H1 and H2 based on whether they contain the theorems
(D1), (D2), or (D3). On the other hand, because neither (B1) nor (B2) is a theorem
of B or of contractionless relevant logics such as TW, EW, and RW, we will regard
their modal logics as belonging to H1.

3 Routley–Meyer Semantics

We use &; ); 8, and 9 to denote, respectively, conjunction, implication, universal,
and existential quantifiers in the metalanguage. We omit parentheses by assuming
that 8 and 9 bind more strongly than & and that & binds more strongly than ).

A B:C�Þ-frame is a 6-tuple hO; W; R; S�; SÞ; �i in which (a) W is the set of all
worlds, (b) O is a nonempty subset of W , (c) R is a ternary relation on W , (d) S�

and SÞ are binary relations on W , and (e) � is a unary operation on W . To simplify
the notation, we define binary relations �, S�� , and SÞ� on W as follows. For all
a; b 2 W :

a � b
def

” 9c 2 O.Rcab/; S�� ab
def

” SÞa�b�; SÞ� ab
def

” S�a�b�:

For a nonnegative integer n, the binary relations Sn
�

and Sn
�

on W , respectively, as-
sociated with �n.D �n � � � �2�1/ and �n.D �n � � � �2�1/, are defined as follows.
For all a; b 2 W :

(i) S0
�

ab iff a � b;
(ii) for n � 1,

Sn
�

ab iff 9c1 2 W � � � 9cn�1 2 W.S�n
acn�1 & � � � & S�2

c2c1 & S�1
c1b/I

(iii) S0
�

ab iff b � a;
(iv) for n � 1,

Sn
�

ab iff 9c1 2 W � � � 9cn�1 2 W.S�n
acn�1 & � � � & S�2

c2c1 & S�1
c1b/:

A B:C�Þ-frame hO; W; R; S�; SÞ; �i satisfies the following postulates. For all
a; b; c; d 2 W :

(p1) a � a,
(p2) a � b & b � c ) a � c,
(p3) a � b & a 2 O ) b 2 O ,
(p4) a � b & Rbcd ) Racd ,
(p5) a � b & S�bc ) S�ac,
(p6) a � b & SÞac ) SÞbc,
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(p7) a � b ) b� � a�,
(p8) a�� D a.
We call a 7-tuple hO; W; R; S�; SÞ; �; vi a B:C�Þ-model on a B:C�Þ-frame

(or simply a B:C�Þ-model) F D hO; W; R; S�; SÞ; �i, where F is a B:C�Þ-frame
and v is a mapping from Prop � W to ¹t; fº, called a valuation on F, that satisfies
the following hereditary condition. For all a; b 2 W and all p 2 Prop:

a � b & v.p; a/ D t ) v.p; b/ D t:

Given a B:C�Þ-model hO; W; R; S�; SÞ; �; vi, we can define the interpretation I

associated with v. A mapping I from Wff � W to ¹t; fº is defined inductively as
follows. For a 2 W :

i. for any p 2 Prop, I.p; a/ D t iff v.p; a/ D tI
ii. I.A ^ B; a/ D t iff I.A; a/ D t & I.B; a/ D tI
iii. I.A _ B; a/ D t iff I.A; a/ D t or I.B; a/ D tI
iv. I.A ! B; a/ D t iff 8b 2 W 8c 2 W.Rabc & I.A; b/ D t ) I.B; c/ D t/;
v. I.� A; a/ D t iff I.A; a�/ D fI

vi. I.�A; a/ D t iff 8b 2 W.S�ab ) I.A; b/ D t/;
vii. I.ÞA; a/ D t iff 9b 2 W.SÞab & I.A; b/ D t/;
viii. I.t; a/ D t iff a 2 O .

It is then easy to show the following. For all a 2 W and any nonnegative integer n:
(a) I.�A; a/ D t iff 8b 2 W.S�� ab ) I.A; b/ D t/;
(b) I.Þ� A; a/ D t iff 9b 2 W.SÞ� ab & I.A; b/ D t/;
(c) I.�nA; a/ D t iff 8b 2 W.Sn

�
ab ) I.A; b/ D t/;

(d) I.�nA; a/ D t iff 9b 2 W.Sn
�

ab & I.A; b/ D t/.
Then, by induction on the length of the formula A, we can show the following

hereditary lemma.

Lemma 3.1 Let M D hO; W; R; S�; SÞ; �; vi be a B:C�Þ-model. For all
a; b 2 W and all A 2 Wff, if a � b and I.A; a/ D t, then I.A; b/ D t.

Let A 2 Wff. We can say that (a) A holds in a B:C�Þ-model M D hO; W; R; S�;

SÞ; �; vi iff I.A; a/ D t for every a 2 O , and (b) A is valid in a B:C�Þ-frame
F D hO; W; R; S�; SÞ; �i iff A holds in every B:C�Þ-model M on F.

Let L be any extension of B:C�Þ. We say that L is characterized by a class
of B:C�Þ-frames CF if, for all A 2 Wff, A is a theorem of L iff A is valid in
every F 2 CF. Any B:C�Þ-frame in which all theorems of L are valid is called an
L-frame. L-models (on L-frames) are defined similarly to B:C�Þ-models.

All the axioms and rules of inference we have mentioned have corresponding
frame conditions. That is, if a logic L (over B:C�Þ) contains an axiom or a rule of
inference, then any L-frame F D hO; W; R; S�; SÞ; �i satisfies certain postulates.
Here is a list of such correspondences. The postulate (qi ) corresponds to axiom (Bi )
for 1 � i � 22, the postulate (sj ) corresponds to axiom (Dj ) for 1 � j � 3, and
the postulate (rk) corresponds to the rule of inference (Qk) for 1 � k � 10. For all
a; b; c; d; f 2 W :

(q1) Raaa,
(q2) Raa�a,
(q3) Rabc ) 9x 2 W.Rabx & Rxbc/,
(q4) Rabc ) 9x 2 W.Rabx & Raxc/,
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(q5) Rabc & Rcdf ) 9x 2 W.Radx & Rbxf /,
(q6) Rabc & Rcdf ) 9x 2 W.Rbdx & Raxf /,
(q7) Rabc ) Rbac,
(q8) Rabc & Rcdf ) 9x 2 W.Radx & Rxbf /,
(q9) Rabc & Rcdf ) 9x 2 W 9y 2 W.Radx & Rbdy & Rxyf /,

(q10) Rabc & Rcdf ) 9x 2 W 9y 2 W.Radx & Rbdy & Ryxf /,
(q11) Rabc & Rcdf ) Radf & Rbdf ,
(q12) a 2 O ) a� � a,
(q13) Ra�aa�,
(q14) Rabc ) Rac�b�,
(q15) Rabc & S�cd ) 9x 2 W 9y 2 W.S�ax & S�by & Rxyd/,
(q16) Rabc & S�cd ) 9x 2 W 9y 2 W.S�ax & S�by & Rxyd/,
(q17) Rabc & S�cd ) 9x 2 W 9y 2 W.S�ax & S�by & Rxyd/,
(q18) Rabc & S�cd ) 9x 2 W 9y 2 W.S�ax & S�by & Rxyd/,
(q19) Rabc & SÞbd ) 9x 2 W 9y 2 W.S�ax & SÞcy & Rxdy/,
(q20) Rabc & SÞbd ) 9x 2 W 9y 2 W.S�� ax & SÞcy & Rxdy/,
(q21) Rabc & SÞ� bd ) 9x 2 W 9y 2 W.S�ax & SÞ� cy & Rxdy/,
(q22) Rabc & SÞ� bd ) 9x 2 W 9y 2 W.S�ax & SÞ� cy & Rxdy/,

(s1) 9x 2 W.S�ax & SÞax/,
(s2) 9x 2 W.S�ax & SÞ� ax/,
(s3) 9x 2 W.SÞax & S�ax/,
(r1) 9x 2 O.Raxa/,
(r2) a 2 O & S�ab ) b 2 O ,
(r3) a 2 O & S�� ab ) b 2 O ,
(r4) a 2 O ) Raaa,
(r5) a 2 O & Rabf & Rfcd ) 9x 2 W 9y 2 W.Racx & Rbxy & Rayd/,
(r6) a 2 O & Rabc ) Rac�b�,
(r7) a 2 O ) Ra�aa�,
(r8) a 2 O ) Raa�a,
(r9) a 2 O & Rabc & S�cd ) 9x 2 W.Raxd & S�bx/,

(r10) a 2 O & Rabc & SÞbd ) 9x 2 W.Radx & SÞcx/.
If H1 (or H2) is a logic in which all disjunctive rules can be derived from axioms

and nondisjunctive rules, then we obtain completeness by the usual method of the
canonical model (see Seki [7]). Otherwise, completeness can be proven by using the
modified method of the canonical model, which is discussed in Seki [9].

Proposition 3.2 Let L be the logic H1 or H2. Then, L is characterized by a class
of L-frames.

4 rp-Morphisms

To adapt the van Benthem–Humberstone theorem to relevant modal logics, we need
to define the following.

Let F D hO; W; R; S�; SÞ; �i and F0 D hO 0; W 0; R0; S 0
�

; S 0

Þ
; �0

i be B:C�Þ-
frames. Then, a mapping f from W onto W 0 is a relevant p-morphism (rp-
morphism) from F to F0 if the following conditions hold. For all a; b; c 2 W and
a0; b0; c0 2 W 0:
(m1) f �1.O 0/ D O ,
(m2) Rabc ) R0f .a/f .b/f .c/,
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(m3) R0f .a/b0c0 ) 9b 2 W 9c 2 W.Rabc & b0 �0 f .b/ & f .c/ �0 c0/,
(m4) S�ab ) S 0

�
f .a/f .b/,

(m5) S 0
�

f .a/b0 ) 9b 2 W.S�ab & f .b/ �0 b0/,
(m6) SÞab ) S 0

Þ
f .a/f .b/,

(m7) S 0

Þ
f .a/b0 ) 9b 2 W.SÞab & b0 �0 f .b//,

(m8) f .a�/ D .f .a//�0.
This definition of rp-morphisms is due to Seki [8], where rp-morphisms are called
frame morphisms and are defined for general frames. This definition is slightly dif-
ferent from that of Mares [4], but there is no fundamental difference between them.

Let F0 D hO 0; W 0; R0; S 0
�

; S 0

Þ
; �0

i and F00 D hO 00; W 00; R00; S 00
�

; S 00

Þ
; �00

i be
B:C�Þ-frames, and let a 2 W 0 and b 2 W 00. Then, .F; c/ is an rp-morphic fusion
of .F0; a/ and .F00; b/ if and only if F D hO; W; R; S�; SÞ; �i is a B:C�Þ-frame,
c 2 W , and there exist rp-morphisms f 0 from F to F0 and f 00 from F to F00 such
that f 0.c/ D a and f 00.c/ D b.

We now prove a relevant version of the van Benthem–Humberstone theorem.
Though the theorem was essentially proven in [4, Theorem 6], we provide a proof to
show that our definition of rp-morphisms also works well.

Theorem 4.1 If a logic L is characterized by a class of B:C�Þ-frames that are
closed under rp-morphic fusion, then L is Halldén complete.

Proof Let L be a logic characterized by a class of B:C�Þ-frames that are closed
under rp-morphic fusion. Suppose that neither A nor B is a theorem of L, where
Var.A/ \ Var.B/ D ;. Then, there exist B:C�Þ-frames F0 D hO 0; W 0; R0; S 0

�
;

S 0

Þ
; �0

i and F00 D hO 00; W 00; R00; S 00
�

; S 00

Þ
; �00

i, valuations v0 and v00 on F0 and F00,
respectively, and a0 2 O 0, a00 2 O 00 such that I 0.A; a0/ D f and I 00.B; a00/ D f,
where I 0 and I 00 are the interpretations associated with v0 and v00, respectively. Fur-
thermore, there exists a frame F D hO; W; R; S�; SÞ; �i and some a 2 W such
that .F; a/ is an rp-morphic fusion of .F0; a0/ and .F00; a00/. Then, there are rp-
morphisms f 0 from F to F0 and f 00 from F to F00 such that f 0.a/ D a0 and
f 00.a/ D a00.

Define a valuation v on F as follows. For all x 2 W :
� for all p 2 Var.A/, v.p; x/ D v0.p; f 0.x//;
� for all q 2 Var.B/, v.q; x/ D v00.q; f 00.x//.

We show the following. For all x 2 W , we have the following.
(1) For all formulas C such that Var.C / � Var.A/, I.C; x/ D I 0.C; f 0.x//.
(2) For all formulas D such that Var.D/ � Var.B/, I.D; x/ D I 00.D; f 00.x//.

We prove (1) by induction on the length of C . The cases in which C is of the form
p.2 Var.A//, C1 ^ C2, and C1 _ C2 are easily proven, so we restrict our attention to
the following.

(a) C is of the form C1 ! C2. First, suppose that I.C1 ! C2; x/ D t. To see
I 0.C1 ! C2; f 0.x// D t, suppose that R0f 0.x/b0c0 and I 0.C1; b0/ D t. By
(m3), there exist b; c 2 W such that Rxbc, b0 �0 f 0.b/, and f 0.c/ �0 c0.
By Lemma 3.1, we have I 0.C1; f 0.b// D t, and hence I.C1; b/ D t by
the inductive hypothesis. Then, I.C2; c/ D t, and hence, using the induc-
tive hypothesis again, I 0.C2; f 0.c// D t. Thus, by Lemma 3.1, we have
I 0.C2; c0/ D t, as desired.
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For the converse, suppose that I 0.C1 ! C2; f 0.x// D t. To see
I.C1 ! C2; x/ D t, suppose that Rxbc and I.C1; b/ D t. We have
R0f 0.x/f 0.b/f 0.c/ and I 0.C1; f 0.b// D t by (m2) and the inductive hy-
pothesis, respectively. Then, I 0.C2; f 0.c// D t, and hence, by the inductive
hypothesis, I.C2; c/ D t, as desired.

(b) C is of the form � C1:
I.� C1; x/ D t iff I.C1; x�/ D f

iff I 0
�
C1; f 0.x�/

�
D f (inductive hypothesis)

iff I 0
�
C1;

�
f 0.x/

�
�0

�
D f (m8)

iff I 0
�
� C1; f 0.x/

�
D t:

(c) C is of the form �C1. First, suppose that I.�C1; x/ D t. To see
I 0.�C1; f 0.x// D t, suppose that S 0

�
f 0.x/b0. By (m5), there exists

b 2 W such that S�xb and f 0.b/ �0 b0. Then, I.C1; b/ D t, and hence
I 0.C1; f 0.b// D t by the inductive hypothesis. Thus, by Lemma 3.1, we
have I 0.C1; b0/ D t, as desired.

For the converse, suppose that I 0.�C1; f 0.x// D t. To see
I.�C1; x/ D t, suppose that S�xb. By (m4), we have S 0

�
f 0.x/f 0.b/. Then,

I 0.C1; f 0.b// D t, and hence, by the inductive hypothesis, I.C1; b/ D t, as
desired.

(d) C is of the form ÞC1. First, suppose that I.ÞC1; x/ D t. Then, there ex-
ists b 2 W such that SÞxb and I.C1; b/ D t. We have S 0

Þ
f 0.x/f 0.b/

and I 0.C1; f 0.b// D t by (m6) and the inductive hypothesis. Thus,
I 0.ÞC1; f 0.x// D t, which is the desired result.

For the converse, suppose that I 0.ÞC1; f 0.x// D t. Then, there exists
b0 2 W 0 such that S 0

Þ
f 0.x/b0 and I 0.C1; b0/ D t. By (m7), there exists

b 2 W such that SÞxb and b0 �0 f 0.b/. We have I 0.C1; f 0.b// D t by
Lemma 3.1, and hence I.C1; b/ D t by the inductive hypothesis. Therefore,
I.ÞC1; x/ D t, which is the desired result.

(e) C is of the form t. Using (m1),
I.t; x/ D t iff x 2 O

iff x 2 f 0�1.O 0/

iff f 0.x/ 2 O 0

iff I 0
�
t; f 0.x/

�
D t:

This completes the proof of (1). Claim (2) can be proven similarly.
Since f 0.a/ D a0, f 00.a/ D a00, a0 2 O 0, and a00 2 O 00, we have a 2 O by (m1).

Since I 0.A; f 0.a// D f and I 0.B; f 00.a// D f, we have I.A; a/ D f and I.B; a/ D f
by (1) and (2), respectively. Therefore, I.A _ B; a/ D f. By assumption, A _ B is
not a theorem of L. This completes the proof.

5 Products of Routley–Meyer Models

We would like to know which logics are characterized by classes of frames that are
closed under rp-morphic fusion. Mares [4] gave a partial answer to this question:
RC and some of its extensions, the Meyer–Fuhrmann logics introduced in Section 6,
are among them.
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Let F0 D hO 0; W 0; R0; S 0
�

; S 0

Þ
; �0

i and F00 D hO 00; W 00; R00; S 00
�

; S 00

Þ
; �00

i be
B:C�Þ-frames. Then, the product F of F0 and F00 is the structure F D hO; W; R;

S�; SÞ; �i such that
� W D ¹ha1; a2i j a1 2 W 0 & a2 2 W 00º .D W 0 � W 00/,
� ha1; a2i 2 O ” a1 2 O 0 & a2 2 O 00 (i.e., O D O 0 � O 00),
� Rha1; a2ihb1; b2ihc1; c2i ” R0a1b1c1 & R00a2b2c2,
� S�ha1; a2ihb1; b2i ” S 0

�
a1b1 & S 00

�
a2b2,

� SÞha1; a2ihb1; b2i ” S 0

Þ
a1b1 & S 00

Þ
a2b2,

� for all ha1; a2i 2 W , ha1; a2i� D ha1
�0; a2

�00
i.

We say that a class C of B:C�Þ-frames is strongly elementary if there is a set ˆ

of frame postulates that can be put in the form of a conjunction of conditions on R,
S�, SÞ, �, and O implying a conjunction of conditions on R, S�, SÞ, �, and O such
that, for every B:C�Þ-frame F, F 2 C iff F satisfies each frame postulate in ˆ. The
following lemma can then be easily verified.

Lemma 5.1 Every strongly elementary class of B:C�Þ-frames is closed under
products. That is, for a strongly elementary class C of B:C�Þ-frames, if F; F0 2 C ,
then the product of F and F0 is in C .

Let F D hO; W; R; S�; SÞ; �i be a frame. Then, we say:
� F is R-serial iff, for all a 2 W , 9x 2 W 9y 2 W.Raxy/;
� F is S�-serial iff, for all a 2 W , 9x 2 W.S�ax/;
� F is SÞ-serial iff, for all a 2 W , 9x 2 W.SÞax/;
� F is completely serial iff it is R-serial, S�-serial and SÞ-serial.

We notice that all H2-frames are completely serial because they satisfy (a) at least
one of (q1) or (q2), which guarantees R-seriality, and (b) at least one of (s1) or both
(s2) and (s3), which guarantees both S�- and SÞ-serialities.

Lemma 5.2 Every class of completely serial B:C�Þ-frames that is closed under
products is also closed under rp-morphic fusions.

Proof Let CCSF be a class of completely serial B:C�Þ-frames that is closed
under products. Furthermore, let F D hO; W; R; S�; SÞ; �i be the product of
F0 D hO 0; W 0; R0; S 0

�
; S 0

Þ
; �0

i 2 CCSF and F00 D hO 00; W 00; R00; S 00
�

; S 00

Þ
; �00

i 2

CCSF. Then, F 2 CCSF. We define the mappings f 0 W W ! W 0 by f 0.ha1; a2i/ D a1

and f 00 W W ! W 00 by f 00.ha1; a2i/ D a2. Then, we can easily see that both f 0 and
f 00 are rp-morphisms, but we present some typical examples of f 0.
(m1) Since O 00 ¤ ;, we have the following:

ha1; a2i 2 f 0�1.O 0/ iff f 0
�
ha1; a2i

�
2 O 0

iff a1 2 O 0

iff a1 2 O 0 & a2 2 O 00

iff ha1; a2i 2 O:

(m2) Suppose that Rha1; a2ihb1; b2ihc1; c2i. By definition, R0a1b1c1 and
R00a2b2c2. Since R0a1b1c1, we have R0f 0.ha1; a2i/f 0.hb1; b2i/f 0.hc1; c2i/.

(m3) Suppose that R0f 0.ha1; a2i/b1c1. Then, R0a1b1c1. Since F00 is com-
pletely serial, there exist b2; c2 2 W 00 such that R00a2b2c2. Therefore,
Rha1; a2ihb1; b2ihc1; c2i, b1 �0 f 0.hb1; b2i/, and f 0.hc1; c2i/ �0 c1.
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(m8) We have f 0.ha1; a2i�/ D f 0.ha1
�0; a2

�00
i/ D a1

�0
D .f 0.ha1; a2i//�0.

Note that the proof of this lemma requires complete seriality. By Theorem 4.1 and
Lemmas 5.1 and 5.2, we have the following.

Theorem 5.3 If a logic L is characterized by a strongly elementary class of com-
pletely serial B:C�Þ-frames, then L is Halldén complete.

6 Halldén Completeness of H1

Our proof of Theorem 5.3 naturally leads to an interest in knowing which logics are
characterized by a strongly elementary class of completely serial B:C�Þ-frames. It
is clear that H2 is one such logic, since it is characterized by a class of H2-frames,
which are strongly elementary, by Proposition 3.2, and all H2-frames are completely
serial, as mentioned in Section 5. On the other hand, as indicated in [6], logics for
which nondegenerate canonical modeling is not required are also characterized by a
class of completely serial B:C�Þ-frames.

To see that H1 is characterized by a class of completely serial frames, we will
examine its canonical model. Here, according to [7], we present key notions of the
canonical model for a logic H1 in which all disjunctive rules can be derived from
axioms and nondisjunctive rules. Let a � Wff.

� a is an H1-theory iff (a) if A; B 2 a, then A ^ B 2 a, and (b) if A ! B is a
theorem of H1 and A 2 a, then B 2 a.

� An H1-theory a is prime iff A _ B 2 a implies A 2 a or B 2 a.
� An H1-theory a is regular iff a contains all theorems of H1.
� An H1-theory a is null iff there are no formulas in a.
� An H1-theory a is universal iff every formula is in a.

Null and universal theories are called degenerate. For a logic H1 including disjunc-
tive rules that cannot be derived from axioms and nondisjunctive rules, the third
clause is replaced by the following.

� An H1-theory a is regular iff (a) a contains all theorems of H1, and (b) a

satisfies the following closure conditions for suitable disjunctive rules:
C _ A1 .C _ A2/

C _ A3

in H1; C _ A1 2 a (and C _ A2 2 a) implies C _ A3 2 a.
We define the canonical model hOc ; Wc ; Rc ; S�c ; SÞc ; �c ; vci for H1 as follows:

� Wc is the set of all prime H1-theories;
� Oc is the set of all regular prime H1-theories;
� Rc is a ternary relation on Wc defined by
Rcabc ” for all A; B 2 Wff; if A ! B 2 a and A 2 b; then B 2 cI

� S�c is a binary relation on Wc defined by
S�cab ” for all A 2 Wff; if �A 2 a; then A 2 bI

� SÞc is a binary relation on Wc defined by
SÞcab ” for all A 2 Wff; if A 2 b; then Þ A 2 aI

� �c is a unary operation on Wc defined by a�c D ¹A 2 Wff j � A … aº;
� vc is defined by vc.p; a/ D t iff p 2 a, for all p 2 Prop and a 2 Wc .
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If degenerate theories do not belong to Wc , then the canonical model is nondegener-
ate.

Concerning H1, Proposition 3.2 can be strengthened as follows.

Lemma 6.1 H1 is characterized by a class of completely serial H1-frames.

Proof Suppose that A is not a theorem of H1. Furthermore, consider the canonical
model hOc ; Wc ; Rc ; S�c ; SÞc ; �c ; vci for H1 such that Ic.A/ D f. In H1, since
nondegenerate canonical modeling is not required, we may assume that both ec and
uc are in Wc , where ec D ; and uc D Wff. Then, we have Rcaucuc , S�cauc , and
SÞcaec for any a 2 Wc , and hence the canonical frame for H1 is completely serial.
Therefore, A is not valid in a completely serial H1-frame.

Because a class of H1-frames is strongly elementary, we have the following by
Lemma 6.1 and Theorem 5.3.

Theorem 6.2 H1 is Halldén complete.

The relevant modal logic RC is the Þ- and t-free reduct of R:C�Þ, where
R:C�Þ D B:C�Þ C ¹.B2/; .B5/; .B6/; .B8/; .B14/º. Since RC is regarded as
a special case of H1, we have the following.

Corollary 6.3 (see [4]) RC is Halldén-complete.

Meyer–Fuhrmann schemes consist of (B15), (D2), �A ! A, �A ! ��A,
A ! �Þ� A, Þ� A ! �Þ� A, and (Q2). Meyer–Fuhrmann logics (see [4]) are those
obtained from RC by adding some or all of the Meyer–Fuhrmann schemes. Then,
the following proposition holds.

Proposition 6.4 (see [4]) Every Meyer–Fuhrmann logic is Halldén complete.

To generalize the Meyer–Fuhrmann logics, consider the following axiom, called (ga):

�k�lA ! �m�nA;

for nonnegative integers k; l; m; n. The following frame postulate corresponds to
(ga). For all a; b; c 2 W :

Sk
�

ab & Sm
�

ac ) 9x 2 W.S l
�

bx & Sn
�

cx/:

We will not give a proof of the completeness of H1 C ¹.ga/º, but we remark that
nondegenerate canonical modeling is not required for H1 C ¹.ga/º. Therefore, we
have the following, from which Proposition 6.4 follows as a corollary.

Theorem 6.5 Every logic H1 C ¹.ga/º is Halldén complete.

On the other hand, our discussion does not necessarily apply to logics obtained from
H1 by adding the following axioms:

(C1) A ! .B ! A/,
(C2) �.A _ B/ ! Þ� A _ �B .

The frame postulates corresponding to axioms (C1) and (C2) are (t1) and (t2), re-
spectively. For all a; b; c 2 W :

(t1) Rabc ) a � c,
(t2) S�ab ) 9x 2 W.x � b & S�ax & SÞ� ax/.
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First, consider the classical modal logic K, where K D RCC¹.B15/; .C1/; .Q2/º.
It is well known that K is not Halldén complete. It may seem that a proof of the
Halldén completeness of K follows from our method, but because K requires nonde-
generate canonical modeling in the sense of Routley–Meyer semantics, this expecta-
tion is not met. In fact, to see that the canonical model for K satisfies (t1), that is,
Rcabc ) a �c c, we must assume that b is not a null K-theory.

As another interesting example, the relevant modal logic RK, where RK D RCC

¹.B18/; .Q2/; .C2/º, is not Halldén complete (see [4]). It is remarkable that our
canonical models are so-called tight, while the canonical model for RK discussed in
Mares [2] is not. In the canonical model for RK, S�c is defined by

S�cab ” (i) for all A 2 Wff; if �A 2 a; then Þ� A 2 a; and
(ii) for all A 2 Wff; if �A 2 a; then A 2 b;

and hence S�-seriality is not necessarily guaranteed. On the other hand, the canoni-
cal models for Meyer–Fuhrmann logics over RK C ¹.D2/º are tight (see Mares [3]),
and these logics are Halldén complete (see [4] and Corollary 8.5 of this paper).

The following proposition shows the existence of Halldén-incomplete logics
weaker than RK. This indicates the importance of (C2) in weaker relevant modal
logics from the viewpoint of Halldén incompleteness.

Proposition 6.6 (see [4]) RC C ¹.C2/º is not Halldén complete.

The proof in [4, Theorem 13] shows that (1) .� �p _ Þ� p/ _ �q is a theorem of
RC C ¹.C2/º and that (2) neither � �p _ Þ� p nor �q is a theorem of RC C ¹.C2/º.
Note that, as mentioned in [4], � �p _ Þ� p is a theorem of logics with axiom (D2).
It is trivial that (2) holds for logics weaker than RC C ¹.C2/º. Close examination of
a proof of (1) reveals that both (B2) and (C2) play essential roles in ensuring that (1)
holds.

Consider a generalized formula of (C2). We refer to formulas of the following
form as (gk):

�l .A _ B/ ! �mA _ �nB;

for nonnegative integers l; m; n. The following frame postulate corresponds to (gk).
For all a; b 2 W :

Sn
�

ab ) 9x 2 W.x � b & S l
�

ax & Sm
�

ax/:

From the above observations, we have a generalization of Proposition 6.6.

Theorem 6.7 Let L be any logic H1 C ¹.B2/; .gk/º or H1 C ¹.B2/; .ga/; .gk/º

that satisfies the following.
� There is no theorem of the form �lA ! �nA, where l C n > 0.
� The axiom (gk), �l .A _ B/ ! �mA _ �nB , satisfies l C m > 0.

Then, L is not Halldén complete.

Note that none of (D1), (D2), or (D3) are theorems and that the formula �lA ! �nA

is a special case of (ga).
When the necessitation rules (Q2) and (Q3) are assumed, we have the following.

Theorem 6.8 Let L be any logic H1 C ¹.Q2/; .Q3/; .gk/º or H1 C ¹.Q2/; .Q3/;

.ga/; .gk/º that satisfies the following.
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� L does not satisfy either (a) at least one of (B1) or (B2) is a theorem, or
(b) the condition that there is no theorem of the form �lA ! �nA, where
l C n > 0, (or both).

� The axiom (gk), �l .A _ B/ ! �mA _ �nB , satisfies m > 0.
Then, L is not Halldén complete.

Proof It is obvious that .p ! p/_q is a theorem of L, and so is �l ..p ! p/_q/

by (Q2) and (Q3). Using (gk), �m.p ! p/ _ �nq is a theorem of L.
Take a one-world frame F D h¹aº; ¹aº; R; S�; SÞ; �i that satisfies only Raaa.

Note that S� and SÞ are empty relations, that is, neither S�aa nor SÞaa hold, and
that a� D a. We can easily see that F is an L-frame and that I.�m.p ! p/; a/ D f
for any valuation v on F. Since L is characterized by a class of L-frames,
�m.p ! p/ is not a theorem of L.

Furthermore, take another one-world frame F0 D h¹bº; ¹bº; R0; S 0
�

; S 0

Þ
; �0

i that
satisfies R0bbb, S 0

�
bb, and S 0

Þ
bb. Then, we can easily see that F0 is an L-frame

and that I 0.�nq; b/ D f when a valuation v0 on F0 is defined by v0.q; b/ D f. Thus,
�nq is not a theorem of L.

Since Var.�m.p ! p// \ Var.�nq/ D ;, L is not Halldén complete.

7 A Sahlqvist Theorem

A Sahlqvist theorem is one of the fundamental results of correspondence and Kripke
completeness, and it was proven for relevant modal logics by Seki [7]. In this section,
we provide a brief explanation of a full version of the Sahlqvist formulas in order to
explain the necessity of the restrictions imposed in the next section.

A formula A is positive if it can be constructed using no connectives other than
^; _; �; Þ; �, and Þ� . A positive formula of the form �m1p1 ^ � � � ^ �mk pk , in
which the propositional variables p1; : : : ; pk are not necessarily distinct, is called
a strongly positive formula. A given formula A is negative (in a logic L) if it is
equivalent in L to � B for a positive formula B . A modal formula A is untied
(in L) if it can be constructed from strongly positive formulas and negative formu-
las (in L) by using only ^; Þ, and Þ� . A formula A is called Sahlqvist if it is a
conjunction of the form �k.B ! C /, where k � 0, B is untied in L, and C is
positive.

In order to state a Sahlqvist theorem, we first establish some notions. It should
be noted that the logic obtained from B:C�Þ by adding a Sahlqvist axiom, for ex-
ample, p^ � p ! q, is incomplete with respect to frames in the usual sense.
Thus, to obtain frames for which the logic will be complete, we introduce enlarged
frames with the null world e and the universal world u. An enlarged B:C�Þ-frame
hO; W; R; S�; SÞ; �; e; ui is obtained from a B:C�Þ-frame hO; W; R; S�; SÞ; �i

by adding the elements e; u 2 W . The enlarged frame then satisfies the following
definition and postulates. For all a; b 2 W :

(ep1) e ¤ u; (ep2) e� D u;

(ep3) Ruab ) a D e or b D u; (ep4) Reue;

(ep5) S�ua ) a D u; (ep6) S�ee;

(ep7) SÞea ) a D e; (ep8) SÞuu:

The following is called a Sahlqvist theorem. Note that we use Routley–Meyer
semantics with the null and universal worlds.
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Proposition 7.1 (see [7])

(1) Let L0 be the H1 or H2 logics defined above. For any Sahlqvist formula
A, there exists a first-order formula '.a/ in the predicates O , R, S�, SÞ,
�, and the constants e; u having a as its only free variable and in which the
following holds for every descriptive L0-frame or enlarged L0-frame F and
every a 2 W :

.F; a/ ˆ A iff F satisfies '.a/,

where .F; a/ ˆ A means that I.A; a/ D t under any valuation on F.
(2) Let L be a logic obtained from H1 or H2 by adding a set of Sahlqvist formulas

as axioms. Then, L is characterized by a class of enlarged B:C�Þ-frames.

The point of this theorem is that the logic L is D?-elementary, that is, there exists a
set ˆ of first-order sentences in the predicates O; R; S�; SÞ; �, and the constants e; u

such that, for every descriptive L-frame or enlarged L-frame F, F is an L-frame iff F
satisfies each sentence in ˆ. Because the logics H1 and H2 are D?-elementary, we
are interested in showing that the logic L is D?-elementary. In other words, we want
to specify what qualifies as a first-order sentence corresponding to a given Sahlqvist
formula. Following [7], we will sketch this construction. Although, essentially, we
use the notion of general frames, we present some additional notions that are required
for our discussion. For precise definitions of general frames and descriptive frames,
see [7].

Below, AŒp1; : : : ; pn� denotes a formula A whose variables are listed among
p1; : : : ; pn. Let hO; W; R; S�; SÞ; �; e; ui be an enlarged L-frame. For AŒp1; : : : ;

pn� 2 Wff and X1; : : : ; Xn � W , AŒX1; : : : ; Xn� is defined as follows:
� for pi 2 Prop, pi ŒX1; : : : ; Xn� D Xi ,
� .B ^ C /ŒX1; : : : ; Xn� D BŒX1; : : : ; Xn� \ C ŒX1; : : : ; Xn�,
� .B _ C /ŒX1; : : : ; Xn� D BŒX1; : : : ; Xn� [ C ŒX1; : : : ; Xn�,
� .B ! C /ŒX1; : : : ; Xn� D ¹a 2 W j 8b; c 2 W.Rabc & b 2 BŒX1; : : : ;

Xn� ) c 2 C ŒX1; : : : ; Xn�/º,
� .� B/ŒX1; : : : ; Xn� D ¹a 2 W j a� … BŒX1; : : : ; Xn�º,
� .�B/ŒX1; : : : ; Xn� D ¹a 2 W j 8b 2 W.S�ab ) b 2 BŒX1; : : : ; Xn�/º,
� .ÞB/ŒX1; : : : ; Xn� D ¹a 2 W j 9b 2 W.SÞab & b 2 BŒX1; : : : ; Xn�/º.

For a 2 W and a nonnegative integer n, we write a"n
�

D ¹b 2 W j Sn
�

abº. The
frame-theoretic term a1 "

n1

�
[ � � � [ ak "

nk

�
, with (not necessarily distinct) a1; : : : ;

ak 2 W , is called an S�-term for brevity.
It suffices to consider a conjunction �k.B ! C / of a formula equivalent to the

given Sahlqvist formula A. Let F D hO; W; R; S�; SÞ; �; e; u; P i be a descriptive
B:C�Þ-frame or an enlarged B:C�Þ-frame. Then, the following statements are
mutually equivalent:

1. .F; a/ ˆ �k.BŒp1; : : : ; pn� ! C Œp1; : : : ; pn; q1; : : : ; ql �/,
2. 8X1; : : : ; Xn; Y1; : : : ; Yl 2 P.a 2 �k.B ! C /ŒX1; : : : ; Xn; Y1; : : : ; Yl �/,
3. 8X1; : : : ; Xn; Y1; : : : ; Yl 2 P 8b1; b2; b3 2 W.Sk

�
ab1 & Rb1b2b3 &

b2 2 BŒX1; : : : ; Xn� ) b3 2 C ŒX1; : : : ; Xn; Y1; : : : ; Yl �/;
4. 8X1; : : : ; Xn; Y1; : : : ; Yl 2 P 8b1; b2; b3; b4; : : : ; bt 2 W.Sk

�
ab1 &

Rb1b2b3 & D &
V

i�n Ti � Xi &
V

j �m cj 2 Nj ŒX1; : : : ; Xn� &V
h�l u 2 Yh ) b3 2 C ŒX1; : : : ; Xn; Y1; : : : ; Yl �/, where D is a conjunction
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of formulas of the form S�bc, Ti are suitable S�-terms, and Nj Œp1; : : : ; pn�

are negative formulas;
5. 8b1; : : : ; bt 2 W.Sk

�
ab1 & Rb1b2b3 & D )

W
j �mC1 dj 2 Kj ŒT1; : : : ; Tn;

u"0
�

; : : : ; u"0
�

�/, where dj D cj
� for j � m, Kj is a positive formula such

that Nj is equivalent to � Kj for j � m, dmC1 D b3, and KmC1 is C .
Thus, the first-order sentence corresponding to �k.B ! C / can be written as

8a 2 O 8b1; : : : ; bt 2 W
�
Sk

�
ab1 & Rb1b2b3 & D

)

_
j �mC1

dj 2 Kj ŒT1; : : : ; Tn; u"
0
�

; : : : ; u"
0
�

�
�
: (�)

8 Halldén Completeness of H2

From the discussion in Section 6, we have the strengthened result of Proposition 3.2.
Lemma 8.1 H2 is characterized by a strongly elementary class of completely se-
rial H2-frames.
By Lemma 8.1 and Theorem 5.3, we have the following.
Theorem 8.2 H2 is Halldén complete.
Next, we consider the Halldén completeness of H2-logics with some Sahlqvist ax-
ioms. Because H2-frames are completely serial, so are the frames for H2-logics
with any Sahlqvist axioms. We will also consider a class of frames in the usual
sense, that is, when enlarged frames are not assumed, and determine for which log-
ics they are strongly elementary. In light of Theorem 5.3, we hope to find Sahlqvist
formulas that ensure that a class of frames for the H2-logic is strongly elementary.
Since neither e nor u appear in our frame postulates, we do not assume the existence
of u. Therefore, all propositional variables appearing in C also appear in B; that is,
Var.C / � Var.B/.

If m > 0 in (�), then the succedent is a disjunctive form that, in general, cannot
be written by a conjunctive form. Thus, we may assume that m D 0, which means
that there is no subformula with the form of a negative formula in B . Then, (�) can
be simplified to

8a 2 O 8b1; : : : ; bt 2 W
�
Sk

�
ab1 & Rb1b2b3 & D

) d 2 C ŒT1; : : : ; Tn�
�
: (��)

Note that K1 is just C in (�).
However, the succedent in (��) may still be a disjunctive form. For example, we

consider the case d 2 pŒb "1
�

[c "2
�

�, that is, S�bd or S2
�

cd . It is impossible
to write this with a conjunctive form. To avoid this situation, we may assume that
S�-terms are restricted to the form c"h

�
, which means that each propositional vari-

able in B appears only once.
Furthermore, considering the definitions of C ŒT1; : : : ; Tn�, we may assume that

C is of the form �lC 0, where C 0 is constructed using no connectives other than ^

and �. Then, (��) can be simplified to

8a 2 O 8b1; : : : ; bt ; d 0
2 W

�
Sk

�
ab1 & Rb1b2b3 & D & S l

�
dd 0

) d 0
2 C 0ŒT1; : : : ; Tn�

�
: (���)
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Note here that bi D d for some i .1 � i � t / and that the succedent is a conjunctive
form.

We will examine some Sahlqvist formulas, called PC-Sahlqvist formulas, based
on the above consideration. A formula A is called PC-Sahlqvist if it is a conjunction
of the form �k.B ! �lC /, where

� k; l � 0,
� Var.C / � Var.B/,
� B is constructed from strongly positive formulas by applying ^ and �, and

no propositional variable occurs twice in B , and
� C is constructed using no connectives other than ^ and �.

From Proposition 7.1 and the above observation, we have the following.

Lemma 8.3

(1) For any PC-Sahlqvist formula A, there exists a first-order formula '.a/ in
the predicates O , R, S�, SÞ, and � having a as its only free variable, and
such that the following holds for every descriptive H2-frame or H2-frame F
and every a 2 W : .F; a/ ˆ A iff F satisfies '.a/.

(2) Let L be a logic obtained from H2 by adding a set of PC-Sahlqvist formu-
las as axioms. Then, L is characterized by a strongly elementary class of
completely serial B:C�Þ-frames.

By Lemma 8.3 and Theorem 5.3, Theorem 8.2 can be extended to any logic obtained
from H2 by adding any set of PC-Sahlqvist formulas as axioms.

Theorem 8.4 Every logic obtained from H2 by adding any set of PC-Sahlqvist
formulas as axioms is Halldén complete.

As all axioms in Meyer–Fuhrmann schemes, except for (B15) and (Q2), are PC-
Sahlqvist formulas, all Meyer–Fuhrmann logics with (D2) are regarded as special
cases of H2 with PC-Sahlqvist axioms. Furthermore, the dual of (C2) is a PC-
Sahlqvist formula. Thus, we have the following.

Corollary 8.5 (see [4]) If L is a logic constructed by adding (only) zero or more
of the Meyer–Fuhrmann schemes to RC C ¹.C2/; .D2/º, then L is Halldén complete.

9 Halldén Completeness of Classical Modal Logics

We now consider the classical modal logics. If we adopt the enlarged frames in-
troduced in Section 7, then it is hard to prove the enlarged version of Lemma 5.1
because of clause (ep3). Thus, instead of using enlarged frames, we will consider the
usual frames, in the sense of Routley–Meyer semantics, to prove the Halldén com-
pleteness of the classical modal logics. In the following discussion, frames refer to
those in the sense of Routley–Meyer semantics.

The nonnormal classical modal logic EMC, where EMC D RC C ¹.C1/º, is not
complete with respect to any class of EMC-frames. In fact, �.A_ � A/ is not a
theorem of EMC (see Chellas [1, p. 251]), though it is valid in any EMC-frame.
Therefore, it is impossible to consider the Halldén completeness of EMC (and its
modal extensions) in our framework.

In contrast, Proposition 3.2, which shows Kripke completeness in the usual
Routley–Meyer semantics, also holds for several normal classical modal logics,
including K and KD, where KD D K C ¹.D2/º. As mentioned in Section 6, K is
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not Halldén complete. This fact is related to the problem of canonical models; that
is, nondegenerate canonical modeling is required for K. On the other hand, from
the fact that (B1), (B2), and (D2) are theorems of KD and a similar argument in
Lemma 8.3, we have the following.

Lemma 9.1

(1) KD is characterized by a strongly elementary class of completely serial KD-
frames.

(2) Let L be a logic obtained from KD by adding a set of PC-Sahlqvist formu-
las as axioms. Then, L is characterized by a strongly elementary class of
completely serial B:C�Þ-frames.

By Lemma 9.1 and Theorem 5.3, we have the following.

Theorem 9.2 The classical modal logic KD, and all logics obtained from KD by
adding any set of PC-Sahlqvist formulas as axioms, are Halldén complete.

Note that, as long as e and u are neglected, the frames for K are exactly equal
to the usual Kripke frames for K because the following holds in every K-frame:
(1) O D W , (2) Rabc implies a D b D c, and (3) a� D a (for more information,
see [7, p. 408]). Thus, Theorem 9.2 can also be proven in the sense of usual Kripke
frames.
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