
Notre Dame Journal of Formal Logic
Volume 56, Number 2, 2015

On the Decidability of Axiomatized
Mereotopological Theories

Hsing-chien Tsai

Abstract The signature of the formal language of mereotopology contains two
predicates P and C , which stand for “being a part of” and “contact,” respec-
tively. This paper will deal with the decidability issue of the mereotopological
theories which can be formed by the axioms found in the literature. Three main
results to be given are as follows: (1) all axiomatized mereotopological theories
are separable; (2) all mereotopological theories up to ACEMT, SACEMT, or
SACEMT0 are finitely inseparable; (3) all axiomatized mereotopological theo-
ries except SAX, SAX0, or SBX0, where X is strictly stronger than CEMT, are
undecidable. Then it can also be easily seen that all axiomatized mereotopolog-
ical theories proved to be undecidable here are neither essentially undecidable
nor strongly undecidable but are hereditarily undecidable. Result (3) will be
shown by constructing strongly undecidable mereotopological structures based
on two-dimensional Euclidean space, and it will be pointed out that the same
construction cannot be carried through if the language is not rich enough.

1 Introduction

What is mereotopology? Such a term is ambiguous in the literature. Sometimes it
means a logical theory, for example, general extensional mereotopology (GEMT; see
Casati and Varzi [1, Chapter 4]). Sometimes it means a kind of algebraic structure,
that is, a Boolean algebra under � whose domain consists of some regular open
sets of a given topological space (see Pratt-Hartmann [10, p. 18]). I will understand
“mereotopology” in the first sense. But I will in a lot of places use “mereotopological
theory” instead of “mereotopology” when referring to a theory of such kind. In this
paper, I will deal with the decidability issue of mereotopological theories formed by
axioms that can be found in the literature.
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Mereotopological theories are extensions of mereological theories, which are
formed by axioms based on a binary predicate “being a part of.” The mereologi-
cal axioms which will be considered in this paper basically come from Simons [12]
and [1], but many of them are in effect more up-to-date reformulations of axioms
given by Leśniewski [6]. By adding a new binary predicate “contact” and some new
axioms about such a predicate, mereological theories can be extended to mereotopo-
logical theories. This is what has been done in [1], and I will focus mainly on the
axiomatized mereotopological theories given there.1

Now I will give a quick background of mereotopological theories. The signature
of the first-order language of mereotopology consists of two binary predicates P and
C , which stand for “being a part of” and “contact,” respectively. But for the sake of
convenience of expressing complicated things, four additional predicates are defined
as follows:

.Proper Part/: PP.x; y/ Ddf P.x; y/ ^ :P.y; x/;

.Overlap/: O.x; y/ Ddf 9z.P.z; x/ ^ P.z; y//;

.Underlap/: U.x; y/ Ddf 9z.P.x; z/ ^ P.y; z//;

.Internal Part/ IP.x; y/ Ddf P.x; y/ ^ 8z.C.z; x/ ! O.z; y//.
According to [1], there are two approaches to the formalization of mereotopological
theories: one is to keep bothP andC as primitives; the other, to defineP by usingC .
For the first approach, we have the following mereotopological axioms:

(C1) C.x; x/ (reflexivity for C );
(C2) C.x; y/ ! C.y; x/ (symmetry for C );
(C3) P.x; y/ ! 8z.C.z; x/ ! C.z; y// (monotonicity);
(P1) P.x; x/ (reflexivity for P );
(P2) .P.x; y/ ^ P.y; x// ! x D y (antisymmetry for P );
(P3) .P.x; y/ ^ P.y; z// ! P.x; z/ (transitivity for P );
(EP) 8x8y.9zPP.z; x/ ! .8z.PP.z; x/ $ PP.z; y// ! x D y// (exten-
sionality);
(WSP) 8x8y.PP.x; y/ ! 9z.PP.z; y/ ^ :O.z; x/// (weak supplementa-
tion);
(SSP) 8x8y.:P.y; x/ ! 9z.P.z; y/ ^ :O.z; x/// (strong supplementa-
tion);
(FS) 8x8y.U.x; y/ ! 9z8w.O.w; z/ $ .O.w; x/ _ O.w; y//// (finite
sum);
(FP) 8x8y.O.x; y/ ! 9z8w.P.w; z/ $ .P.w; x/ ^ P.w; y//// (finite
product);
(G) 9x8yP.y; x/ (the greatest member);
(B) 8x9y.IP.y; x/ ^ :IP.x; y// (boundarylessness);
(C) 8x.:8zP.z; x/ ! 9z8w.P.w; z/ $ :O.w; x/// (complementation);
(A) 8x9y.P.y; x/ ^ 8z:PP.z; y// (atomicity);
(A) 8x9yPP.y; x/ (atomlessness);
(UF) 9x˛.x/ ! 9z8y.O.y; z/ $ 9x.˛.x/^O.y; x/// (unrestricted fusion
axiom schema), for any formula ˛ in which x is free but z and y do not occur
free. Note that ˛ might have free variables other than x.2

Intuitively, the z in the formulation of UF is the object formed by “fusing” all the
objects each of which has property ˛. Now let us define the following function
symbols:3
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(Addition) xCy D z iff .U.x; y/^8w.O.w; z/ $ .O.w; x/_O.w; y////_

.:U.x; y/ ^ x D z/;
(Product) x�y D z iff .O.x; y/^8w.P.w; z/ $ .P.w; x/^P.w; y////_

.:O.x; y/ ^ x D z/;
(Complement) Ïx D z iff .:8zP.z; x/ ^ 8w.P.w; z/ $ :O.w; x/// _

.8zP.z; x/ ^ x D z/;
(Fusion)Fx.˛.x// D z iff .9x˛.x/^8y.O.y; z/ $ 9x.˛.x/^O.y; x////_

.:9x˛.x/^ 8yP.y; z//, for any formula ˛ in which x is free but z and y do
not occur free.

Note that the fusion function symbol Fx is actually a metafunction symbol which
takes formulas as parameters. Hence formally, we will take Fx.˛.x// D z

as the abbreviation of its definition. These function symbols are well defined
if the theory considered has at least (P1), (P2), (P3), and (SSP) (the theory
formed by these four axioms is called extensional mereology; see below), for
then 8z.O.x; z/ ! O.y; z// ! P.x; y/ will be a theorem and by (P2) and such
a theorem, it is easy to see the uniqueness of the z in each definition above. With
the foregoing function symbols on hand, the following topological operators can be
defined:

(Interior) i.x/ D z iff .9yIP.y; x/^Fy.IP.y; x// D z/_ .:9yIP.y; x/^

8yP.y; z//;
(Exterior) e.x/ Ddf i.

Ïx/;
(Closure) c.x/ Ddf

Ï.e.x//;
(Boundary) b.x/ Ddf

Ï.e.x/C i.x//.
Then we may add three more axioms which are counterparts of Kuratowski’s axioms
for topological closures:

(K1) P.x; c.x//;
(K2) c.c.x// D c.x/;
(K3) c.x C y/ D c.x/C c.y/.

We will also adopt the following nomenclature of mereological and mereotopological
theories given by [1]:

Ground Mereology: GM D .P1/C .P2/C .P3/;
Minimal Mereology: MM D GM C .WSP/;
Extensional Mereology: EM D GM C .SSP/;
Closure Mereology: CM D GM C .FS/C .FP/;
Minimal Extensional Mereology: MEM D MM C .FP/;
Minimal Closure Mereology: CMM D MM C .FS/C .FP/;
Extensional Closure Mereology: CEM D EM C .FS/C .FP/;
General Extensional Mereology: GEM D EM C .UF/.

It is not difficult to see that GEM is the strongest theory on this list. As a
matter of fact, it can be easily shown that GEM implies (EP), (WSP), (FS),
(FP), (G), and (C). Now for any mereological theory X on the foregoing list,
X C .C1/ C .C2/ C .C3/ is named XT (if X is ˛-mereology, XT will be read as
˛-mereotopology; for instance, EMT is extensional mereotopology). For any XT,
XT C .A/ is named AXT, XT C .B/ is named BXT, and XT C .A/ is named
AXT. Besides, GEMT C .K1/C .K2/C .K3/ is named GEMTC, GEMTC C .A/
is named AGEMTC, GEMTC C .B/ is named BGEMTC, and GEMTC C .A/
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is named AGEMTC.4 In this setting, there are two incompatible maximally con-
sistent mereotopological theories AGEMTC and BGEMTC (it is easy to see that
BGEMTC implies A and that no finite model can satisfy BGEMTC). Later in
Theorem 2.1 we will give models which witness their consistency.

For the second approach, besides the mereotopological axioms listed above, there
is one more as follows:

(C4) 8z.C.x; z/ ! C.y; z// ! P.x; y/ (the Converse of C3).
Then for any theory X in the first approach, X C .C4/ is named SX (Strong X).
Note that (C3) and (C4) together means that P can be defined by using C . Now
there is a variation due to Clarke [3], which defines fusion by “contact” instead of
“overlap.” Such a variation replaces principles (FS), (FP), (C), and (UF) by the
following versions (then all the function symbols defined above will also have to be
redefined accordingly):

(FS0) 8x8y.U.x; y/ ! 9z8w.C.w; z/ $ 9u..P.u; x/ _ P.u; y// ^

C.w; u//// (finite sum for C );
(FP0) 8x8y.O.x; y/ ! 9z8w.C.w; z/ $ 9u.P.u; x/ ^ P.u; y/ ^

C.w; u//// (finite product for C );
(C0) 8x.:8zP.z; x/ ! 9z8w.P.w; z/ $ :C.w; x/// (complementation
for C );
(UF0) 9x˛.x/ ! 9z8y.C.y; z/ $ 9x.˛.x/^C.y; x/// (unrestricted fusion
axiom schema for C ), for any formula ˛ in which x is free but z and y do not
occur free.

For any theory SX in the second approach, if we replace the occurrences (if any) of
(FS), (FP), (C), and (UF), respectively, by (FS0), (FP0), (C 0), and (UF0), the resultant
theory will be named SX0. Since AGEMTC and BGEMTC are the two maximally
consistent theories in the first approach, it should be clear that the two maximally
consistent theories which can be formed in the second approach are SAGEMTC
and SBGEMTC (or SAGEMTC0 and SBGEMTC0 if we adopt the said variation).
Obviously no finite model can satisfy SBGEMTC or SBGEMTC0. However, in
Theorem 2.1 we will construct a model which satisfies both theories.

The foregoing sets up the scope of mereotopological theories that I will deal with.
Though naturally I will be mainly concerned with those theories with names, due to
the nature of the method which I will adopt, as we will see, the results to be given
will also cover the cases of other possible consistent combinations of the axioms in
either approach.

As mentioned earlier, this paper will deal with the decidability issue of axioma-
tized mereotopological theories. More precisely, I will actually consider three prop-
erties: separability, finite separability, and decidability. The first two properties are
defined as follows (the versions presented here are paraphrases of definitions given
in Monk [8]).

(Effectively inseparable) Two sets A and B of natural numbers are effectively in-
separable if and only if they are disjoint and there is a binary recursive function
f such that for any two disjoint recursively enumerable sets C � A and D � B ,
f .c; d/ … C [D, where c and d are indices of C and D, respectively.

(Inseparable) A theory T in a language L is inseparable if and only if the set of
Gödel numbers of the theorems of T and the set of Gödel numbers of the sentences
whose negations are theorems of T are effectively inseparable.
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(Finitely inseparable) A theory T in a language L is finitely inseparable if and
only if the set of Gödel numbers of the valid sentences in L and the set of Gödel
numbers of the sentences each of which can be refuted by some finite model of T are
effectively inseparable.

Of course, a theory is separable if it is not inseparable, and a theory is finitely
separable if it is not finitely inseparable. The following is a list of facts concerning
these properties (here we will assume that all theories considered are consistent).

(i) Decidability implies both separability and finite separability.
(ii) If a theory T is finitely inseparable, then any theory in the same language

which is weaker than T will also be finitely inseparable; that is, for theories
in the same language, finite inseparability is closed downwards.

(iii) If theories T1 and T2 are in the same language and T2 is a finite extension of
T1, then the decidability of T1 will imply the decidability of T2.

(iv) If all theories considered are in the same language or the language of a weaker
theory is included in the language of a stronger one, then inseparability is
closed upwards.

(v) If a theory has finite models, it cannot be inseparable, for the theory of a finite
model must be decidable. On the other hand, if a theory does not have finite
models, it cannot be finitely inseparable. Hence any theory must be separable
or finitely separable.

Although this paper is mainly concerned with the aforementioned three properties,
as we will see, based on the proofs to be given, some questions concerning other
properties relevant to decidability can also be answered. Keep in mind that, unless
deliberately specified, all mereotopological theories considered in the following are
those consistent ones which can be formed by using axioms in the first approach or
in the second approach listed above.

2 Separability and Finite Separability

I will first give the following general result of separability.

Theorem 2.1 All mereotopological theories are separable.

Proof If a mereotopological theory has finite models, then it is obviously sep-
arable, for the theory of a finite mereotopological structure must be decidable.
Observe that any mereotopological structure M whose domain has only one mem-
ber which contacts itself and which is a part of itself will satisfy AGEMTC,
SAGEMTC, and SAGEMTC0 (of course, this also shows that all these theo-
ries are consistent). In this light, if all models of a mereotopological theory are
infinite, then it must have (A) or (B). However, as mentioned earlier, for the
first approach, BGEMTC is the strongest among the theories each of which has
no finite model, and for the second approach, the strongest is SBGEMTC or
SBGEMTC0. Hence by fact (iv), it suffices to show that BGEMTC, SBGEMTC,
and SBGEMTC0 are separable. Now construct a mereotopological structure M as
follows: Dom.M/ .the domain of M/ D ¹x � ! W x is nonempty periodic, that is,
x ¤ ; and 9n 2 !8y.y 2 x $ y C n 2 x/º, CM D ¹.x; y/ 2 Dom.M/ �

Dom.M/ W x \ y ¤ ;º, and PM D ¹.x; y/ 2 Dom.M/� Dom.M/ W x � yº. Note
that even in the second approach, Dom.M/ will guarantee that the interpretation of
P must be set inclusion if C is interpreted as nonempty intersection (it is easy to
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show that in the said model, if every set which intersects x also intersects y, then x
will be a subset of y; see facts (a), (b), and (c) below). It is not difficult to see that M

satisfies (C1), (C2), (C3), (C4), (P1), (P2), (P3), and (SSP). All these cases either
follow immediately from relevant definitions or can be easily shown by using the
following three facts: (a) any nonempty periodic proper subset of ! is infinite and
not cofinite (note that ! itself is trivially nonempty periodic), (b) if x is a nonempty
periodic proper subset of !, then !�x is also nonempty periodic, and (c) if x and y
are nonempty periodic subsets of !, then x\y is either the empty set or a nonempty
periodic subset of !. Also observe that C.x; y/ and O.x; y/ are equivalent in M

and hence (UF) is equivalent to (UF0) in M. Based on the foregoing observations, in
order to show that M satisfies BGEMTC, SBGEMTC, and SBGEMTC0, it suffices
to show that (UF), (B), (K1), (K2), and (K3) are satisfied by M. SinceC is equivalent
toO in M, which means that C can be defined in M by using P , M can be viewed as
a mereological structure. Now consider a mereological theory CEM C .G/C .C/C

.A/. We have already known that M satisfies (P1), (P2), (P3), and (SSP). Obviously,
M also satisfies (G) and by the aforementioned facts (a), (b), and (c), M satisfies
(FS), (FP), and (C) as well. Furthermore, M satisfies (A), for it is trivial that any
nonempty periodic subset of ! will have a proper subset which is also nonempty
periodic. Due to these facts, M is a model of CEM C .G/C .C/C .A/. However, it
is known that such a theory is complete (see Tsai [16]), so it will be equivalent to any
of its consistent extensions, in particular, CEMC .UF/C .B/C .K1/C .K2/C .K3/,
where each occurrence of C.x; y/ will be replaced by O.x; y/ (note that if C.x; y/
is replaced by O.x; y/, IPxy is equivalent to Pxy; hence .B/ is equivalent to .A/
and i.x/ is just x itself). Therefore, M also satisfies (UF), (B), (K1), (K2), and (K3),
and hence M satisfies BGEMTC, SBGEMTC, and SBGEMTC0. The theory of
M is exactly CEM C .G/ C .C/ C .A/ C 8x8y.C.x; y/ $ O.x; y//, which is
decidable, for it is a complete recursively axiomatized theory. But since M satisfies
BGEMTC, SBGEMTC, and SBGEMTC0, the theory of M is a super-theory of
BGEMTC, SBGEMTC, and SBGEMTC0, which means that these three theories
are separable.

The trick of the foregoing proof is to “collapse” a mereotopological structure into
a mereological one by defining “contact” as “overlap.” The same trick will be uti-
lized again below, for then we can resort to some known results about the decid-
ability of mereological theories. Before going on further, we will first introduce the
following lemma which is very useful for proving the finite inseparability of a the-
ory.

Lemma 2.2 Let T and T 0 be two theories in languages L and L0, respectively.
Assume that L has only finitely many function symbols. Suppose that L can be
interpreted into a finitely axiomatized L0-theory S 0. Call this interpretation I . If for
each finite model A of T , there is a finite model B of T 0 [S 0 such that A D BI (BI

is the L-structure defined in the L0-structure B by using interpretation I ) and T is
finitely inseparable, then T 0 is finitely inseparable too.5

Theorem 2.3 All mereotopological theories up to ACEMT or SACEMT or
SACEMT0 are finitely inseparable.
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Proof It is known that CEM is finitely inseparable (see Tsai [15]). Now, in
view of Lemma 2.2, ACEMT, SACEMT, and SACEMT0 will be finitely in-
separable if every finite model of CEM can be in a definable way extended to
a finite model which satisfies some finite extensions of ACEMT, SACEMT,
and SACEMT0 (note that any finite mereotopological structure must be atomic).
Consider S1 D ACEMT C 8x8y.C.x; y/ $ O.x; y//, S2 D SACEMT C

8x8y.C.x; y/ $ O.x; y//, and S3 D SACEMT0
C 8x8y.C.x; y/ $ O.x; y//.

It is easy to see that under EM C 8x8y.C.x; y/ $ O.x; y//, (FS) and (FP) are
equivalent, respectively, to (FS0) and (FP0). Hence S2 and S3 are equivalent and we
only have to consider one of them, say, S2. Now for any finite model M of CEM, it
is easy to see that there are models M1 and M2 of S1 and S2, respectively, such that
M D MI

1 and M D MI
2 , where I is the identity interpretation, that is, I interprets

“8” (the domain) as “x D x” and “P ” as “P.x; y/.” This is because if we expand M

by letting CM D ¹.x; y/ 2 Dom.M/ � Dom.M/W for some z 2 Dom.M/; .z; x/ 2

PM and .z; y/ 2 PMº, the expanded model obviously satisfies (C1), (C2), (C3),
and (C4), and therefore satisfies both S1 and S2. Then by Lemma 2.2, ACEMT,
SACEMT, and SACEMT0 are finitely inseparable, and by fact (ii), all their subthe-
ories are finitely inseparable too.

It is known that CEM C .C/ is decidable and CEM C .G/ is finitely separable (see
Tsai [14]) and that GEM is decidable (see [16]). Hence, for theories strictly stronger
than ACEMT or SACEMT, it is unlikely that we can utilize the same trick as above.
However, I am going to show in the following that all mereotopological theories
except those of the form SAX or SAX0 or SBX0, where X is strictly stronger than
CEMT, are undecidable even if their mereological counterparts are decidable (it is
unknown whether a theory of any of the said forms is decidable or not). This means
that the question whether a mereotopological theory strictly stronger than ACEMT
or SACEMT or SACEMT0 is finitely inseparable or not will still remain open.

3 Strong Undecidable Mereotopological Structures

A structure M of a language L is strongly undecidable if and only if any L-theory
which is satisfied by M is undecidable. Now in order to show the undecidability of
mereotopological theories, I will construct two strongly undecidable mereotopologi-
cal structures: one for the atomic mereotopological theories up to AGEMTC and the
other for the atomless mereotopological theories up to BGEMTC, SBGEMTC, or
SBCEMT0. More precisely, consider the two-dimensional Euclidean space R2 with
the standard topology on it. Let us construct two mereotopological structures M1

and M2 as follows:

Dom.M1/ D P .R2/.the power set of R2/n¹;º; 6

PM1 D
®
.x; y/ 2 Dom.M1/ � Dom.M1/ W x � y

¯
; and

CM1 D
®
.x; y/ 2 Dom.M1/ � Dom.M1/ W cl.x/ \ cl.y/ ¤ ;

¯
;

where cl is the closure operator induced by the standard topology on R2;

Dom.M2/ D RO.R2/.the set of the regular open subsets of R2/n¹;º and
CM2 D

®
.x; y/ 2 Dom.M2/ � Dom.M2/ W cl.x/ \ cl.y/ ¤ ;

¯
;
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where cl is the closure operator induced by the standard topology on R2. Note that
the interpretation of P in M2 will also be the set inclusion, that is,

PM2 D
®
.x; y/ 2 Dom.M2/ � Dom.M2/ W x � y

¯
;

for it can be easily shown in RO.R2/ that if for any z, cl.z/\cl.x/ ¤ ; implies that
cl.z/ \ cl.y/ ¤ ;, then x � y.7

I will first show that AGEMTC is satisfied by M1 and that BGEMTC,
SBGEMTC, and SBCEMT0 are satisfied by M2, and then show that both M1

and M2 are strongly undecidable.

Lemma 3.1 (a) M1 as defined above satisfies AGEMTC, and (b) M2 as defined
above satisfies BGEMTC, SBGEMTC, and SBCEMT0.

Proof For (a), by the interpretations of P and C , it is trivial that M1 satisfies
(P1), (P2), (P3), (C1), (C2), (C3), and (SSP). Since any set of a single point is
in Dom.M1/, M1 is of course atomic and hence satisfies (A). The structure M1

satisfies (UF) since any subset ofR2 except the empty set is in Dom.M1/. As to (K1),
(K2), and (K3), first observe that for any x 2 Dom.M1/, if x ¤ R2, Ïx is indeed
the complement under R2, that is, Ïx D R2 n x, and that for any x; y 2 Dom.M1/,
x C y D x [ y.8 Then we will show that c.x/ is indeed the closure of x under
the standard topology of R2, and it will be clear that M1 satisfies (K1), (K2), and
(K3). Now suppose that x 2 Dom.M1/, x ¤ R2, and x has nonempty interior;
then we will show that i.x/ is indeed the interior of x. Let u be the interior of x,
that is, u is the union of all open sets each of which is included in x. Obviously,
u 2 Dom.M1/. In order to show that i.x/ D u, it suffices to show that for all
s 2 Dom.M1/, s overlaps u if and only if there is some z such that IP.z; x/ and z
overlaps s (see endnote 8). Consider any s 2 Dom.M1/. If s overlaps u, then choose
a point p 2 s \ u and obviously ¹pº is an internal part of x. Conversely, suppose
that there is some z such that IP.z; x/ and z overlaps s. Now observe two facts. First,
z cannot consist of only some boundary points of x, for otherwise, the complement
of x will contact z but will not overlap x, which contradicts the assumption that z is
an internal part of x. Second, if IP.z; x/ and P.y; z/, then IP.y; x/, for otherwise,
there is some u such that C.u; y/ and :O.u; x/, but C.u; z/ since P.y; z/, which
contradicts IP.z; x/. Based on the foregoing two facts, z \ s is an internal part of
x and hence must contain some nonboundary points of x, which implies that s must
overlap the interior of x, that is, u. Now consider any x 2 Dom.M1/. There are
three possibilities: first, x D R2; second, x � R2 and Ïx has nonempty interior;
third, x � R2 and Ïx has empty interior (i.e., x is dense). If x D R2, by definition,
Ïx D R2, i.Ïx/ D e.x/ is also R2, and Ïe.x/ D c.x/ is again R2. If x � R2

and Ïx has nonempty interior, by what has been shown above, e.x/ D i.Ïx/ is
indeed the interior of the complement of x and hence c.x/ D Ïe.x/ is indeed the
closure of x. If x � R2 and Ïx has empty interior, e.x/ D i.Ïx/ D R2 and
hence c.x/ D Ïe.x/ D R2. Therefore, in any case, c.x/ is indeed the closure of x.
However, it is known that R2 with the standard topology on it satisfies Kuratowski
closure axioms; hence M1 satisfies (K1), (K2), and (K3).

For (b), it is trivial that M2 satisfies (P1), (P2), (P3), (C1), (C2), (C3), (C4), and
(SSP). To see that M2 satisfies (B/, observe that any nonempty regular open subset
x of R2 has a nonempty proper subset, say, y, which is also regular open, and whose
closure is included in x (recall that R2 is compact Hausdorff), and then it is easy to
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show that IP.y; x/ but :IP.x; y/. As for (UF), consider any nonempty subset S of
Dom.M2/. Take the interior of the closure of

S
S and call it s. Then it is easy to

see that, for any z 2 Dom.M2/, z overlaps s if and only if z overlaps some member
of S . Hence M2 satisfies (UF). Now we will show that M2 satisfies (K1), (K2),
and (K3), and it suffices to show that for any x 2 Dom.M2/, c.x/ D x. Observe
that for any x; y 2 Dom.M2/, if x overlaps y, then their intersection is also regular
open. From this fact and the fact that R2 is compact Hausdorff, it is easy to see
that for any x 2 Dom.M2/, i.x/ D x. So if x D R2, by the definition of “c”,
trivially c.x/ D x. Otherwise, x is a regular open proper subset of R2. Then R2nx

must have regular open interior. Hence e.x/ D i.Ïx/ is the interior of R2nx and
then c.x/ D Ïe.x/ is x again. Therefore, for any x 2 Dom.M2/, c.x/ D x. The
foregoing shows that M2 is a model of SBGEMTC. Finally, in order to show that
M2 is a model of SBCEMT0, it suffices to show that M2 satisfies (FS0) and (FP0).
We will argue that for any x; y 2 Dom.M2/, (i) the interior of the closure of x [ y

will be the z such that 8w.C.w; z/ $ 9u..Pux _ Puy/ ^ Cwu//, and (ii) if x
overlaps y, x \ y will be the z such that 8w.Cwz $ 9u.Pux ^ Puy ^ Cwu//.
Obviously, the closure of the interior of the closure of x [ y is just the closure of
x [ y. Since cl.x [ y/ D cl.x/ [ cl.y/, for any w, cl.w/ \ cl.x [ y/ ¤ ; if
and only if either cl.w/ \ cl.x/ ¤ ; or cl.w/ \ cl.y/ ¤ ;, and then (i) follows
immediately. Now suppose that x overlaps y. Since cl.x \ y/ D cl.x/ \ cl.y/,
for any w, cl.w/ \ cl.x \ y/ ¤ ; if and only if both cl.w/ \ cl.x/ ¤ ; and
cl.w/ \ cl.y/ ¤ ;, and hence (ii) must be the case. Therefore, M2 satisfies (FS0)
and (FP0). Observe that M2 does not satisfy (C0), for the union of all w such that
:C.w; x/ is the complement of x, but it will contact x. This implies that M2 does
not satisfy (UF0) either.

Note that from the proof of Lemma 3.1, we can see that M2 can be defined in M1, for
the set of nonempty regular open subsets ofR2 can be defined in M1 by x D i.c.x//.
This fact will be utilized from time to time in the following. Next we will show that
both M1 and M2 are strongly undecidable. A conceivable strategy for showing the
strong undecidability of a structure M is to try to interpret the first-order language
of arithmetic (it is sufficient to consider the language whose signature contains only
two binary function symbols “C” and “�”) into the theory of M and then use that
interpretation I to define inside M a model MI such that MI is isomorphic to the
intended model .!I C;�/ of the first-order arithmetic (for the reason why M will
be strongly undecidable then, see Shoenfield [11, p. 136]). My first idea was also to
adopt the aforementioned strategy. However, the traditional way will not succeed,9
for in order to follow that way, we have to come up first with a formula with a free
variable which defines a countable infinite subset of Dom.M1/ or Dom.M2/(M1

and M2 are as defined above) and then such a subset will serve as !, but this is
impossible since as the following lemma shows, any definable nonempty subset of
Dom.M1/ or Dom.M2/ will either be the set whose only member is R2 or be un-
countable.
Lemma 3.2 Consider mereotopological structures M1 and M2 as defined above.
Any definable nonempty subset of Dom.M1/ or Dom.M2/ must either be the set
whose only member is R2 or be uncountable.
Proof It suffices to show the case of M1, for as mentioned above, M2 can be
defined in M1. Suppose that S � Dom.M1/ is nonempty, definable, and is not the
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set whose only member is R2. Observe that S 0 D ¹x 2 Dom.M1/ W Ïx 2 Sº is
also definable, and obviously S and S 0 have the same cardinality. Also observe that
any homeomorphism f on R2 will determine an automorphism Ff on M1 in the
following way: for any u 2 Dom.M1/, define Ff .u/ D ¹.x; y/ 2 R2 W 9.x0; y0/ 2

uf .x0; y0/ D .x; y/º (i.e., Ff .u/ is the image of u under f ; it is easy to check that
Ff is an automorphism on M1). Furthermore, it is known that if the signature of a
language L contains only finitely many predicates but no function symbols, then any
first-order definable relation on an L-structure must be Gaifman local (see Libkin [7,
Chapter 4]) . Now assume that the Gaifman locality ranks of S and S 0 are d and d 0,
respectively. Consider the following two possibilities.

(a) There is some s 2 S such that s or Ïs has interior. Assume first that Ïs has
interior. Let w be a closed disk which is included in Ïs. Choose two distinct points
from the boundary of w such that s intersects the line determined by these two points
(this can be done since Ïs ¤ R2). Now consider the segment E determined by the
said two points. Obviously, any point on E is not in s. Now consider a function
f which moves every point in R2 up along the slope of E for a positive distance r
which is smaller than the length of E. It should be clear that f is a homeomorphism
on R2. Moreover, as mentioned above, the function Ff defined as follows will be an
automorphism on M1: for any u 2 Dom.M1/, let Ff .u/ D the image of u under f .
Since S is Gaifman local with a rank d , for any u 2 Dom.M1/, if Nd .u/ is isomor-
phic toNd .s/with an isomorphism which maps u to s, then u 2 S too, whereNd .x/

is the neighborhood of x within the distance d , that is, Nd .x/ is the substructure of
M1 such that Dom.Nd .x// D ¹y 2 Dom.M1/W the distance between x and y � dº

(again, see [7] for the definition of “distance”). By the definition just mentioned,
Nd .s/ is a substructure of M1. Then let M0 be the substructure of M1 such that
Dom.M0/ D ¹Ff .u/ W u 2 Dom.Nd .s//º. Since Ff is an automorphism on M1, M0

will be isomorphic toNd .s/, but M0 is exactlyNd .Ff .s//, and hence Ff .s/ 2 S too.
However, there must be uncountably many f ’s such that Ff .s/’s are pairwise dis-
tinct, for there are uncountably many positive real numbers each of which is smaller
than the length of E. This means that S must be uncountable. If Ïs has no interior
but s has interior, we can apply the same argument as above to show that S 0 is un-
countable (except that the Gaifman locality rank involved in this case will be d 0). But
as mentioned earlier, S 0 and S have the same cardinality, so S will be uncountable
too.

(b) For any s 2 S , neither s nor Ïs has interior, that is, both s and Ïs are dense.
Assume without loss of generality that R2 … S (if R2 2 S , consider instead the set
defined in M1 by the formula ˛.x/ ^ :8yPyx, where ˛.x/ defines S in M1). If
S is countable, then there are two possibilities. (b.1) S is finite, that is, for some
n, S D ¹s0; s1; : : : ; snº, where for each i; j � n, si � R2 and si ¤ sj if i ¤ j .
Choose nC 1mutually disjoint closed disksD0;D1; : : : ;Dn such that eachDi con-
tains a point ai 2 s0 and a point bi 2 Ïsi (this can be done since each si and
its complement are dense). Then it is easy to define a homeomorphism f on R2

such that f .ai / D bi for i � n and that f .x/ D x if x … D0 [ D1 [ � � � [ Dn.
As mentioned above, Ff will be an automorphism on M1, and by the same argu-
ment as that in (a), Ff .s0/ 2 S . However, for any i � n, Ff .s0/ ¤ si since
f .ai / … si ; therefore Ff .s0/ … S , and we have a contradiction. (b.2) S is infinite,
that is, S D ¹si � R2 W i 2 ! and si ¤ sj if i ¤ j º. Similar to the first case, we
can choose !-many mutually disjoint closed disks D0;D1;D2; : : : such that each
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Di contains a point ai 2 s0 and a point bi 2 Ïsi (again, this can be done since
each si and its complement are dense) and then define a homeomorphism f on R2

such that f .ai / D bi for i 2 ! and that f .x/ D x if x …
S

i2! Di . Then for
the same reason as above, Ff .s0/ 2 S but Ff .s0/ ¤ si , for any i 2 !, which is a
contradiction. This shows that S must be uncountable.

Owing to Lemma 3.2, the traditional way of defining a structure in another structure
cannot work in our case. Nonetheless, thanks to the richness of Dom.M2/, we can
define a subset S of Dom.M2/ such that each member of S can stand for !, and
then we can give an interpretation I relativized to members of S such that every
sentence ˛ in the first-order language of arithmetic can be effectively translated into
a sentence ˛I in the first-order language of mereotopology, and that .!;C;�/ ˆ ˛

if and only if M2 ˆ ˛I , from which it will also follow that .!;C;�/ ˆ ˛ if and
only if M1 ˆ 8x.x D i.c.x// ! ˛I /, for as mentioned earlier, the set of regular
open subsets of R2 is definable in M1 by the formula x D i.c.x//. Then it can be
shown that M1 and M2 are strongly undecidable. Let us give a sketch as follows.
Consider M2 first. If a mereotopological theory T is satisfied by M2, T will have a
finite extension T 0 which proves 9x'.x/, where '.x/ defines S in M2, and then T 0

cannot be decidable, for otherwise there will be a decidable arithmetic theory that is
satisfied by .!;C;�/, which is impossible since .!;C;�/ is strongly undecidable
(see [11, p. 134] ). The same argument can also apply to any theory which is satisfied
by M1, for again, M2 can be defined in M1. The situation here is kind of interesting:
we cannot define in M1 or in M2 a structure which is isomorphic to .!;C;�/ since
the set of natural numbers is not definable in M1 or in M2, but we can find in M1

or in M2 some objects each of which is, roughly speaking, isomorphic to .!;C;�/
and, in fact, there are uncountably many objects of such a kind in M1 or in M2. Even
though we cannot pick just one object of the said kind and then define it formally, as
we will see, for our purpose this does not matter.

We give a detailed proof now. As mentioned in the foregoing remarks, it suffices
to deal with the case of M2 and then the case of M1 will follow immediately. More
precisely, we will show each of the following propositions.

(1) We can define in M2 a class of objects which will be named “chains.” See
Figure 1 for an intuitive view of what a chain looks like.10

(2) We can define in M2 a binary relation such that two chains (which do not
contact each other) stand in this relation if and only if they are equinumerous, that is,
they have the same number of components (a component of a chain is a maximally
connected part of that chain; see below).

(3) We can define in M2 the class of finite chains (a finite chain has only finitely
many components).

(4) We can define in M2 a class of objects which will be named “UFC” (union
of finite chains). A UFC is the union of a collection of finite chains in which any

Figure 1 A chain.
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two distinct chains are not equinumerous to each other and in which any chain is
equinumerous to a chain with one component removed. Intuitively, the set of natural
numbers can be represented by a UFC.

(5) We can define addition and multiplication in a UFC. They will be four-place
relations in M2. For example, x C y D z in U iff U is a UFC; x, y, and z are chains
in U; and z is equinumerous to the chain generated by concatenating x and y (this is
the idea but the exact definition will be more circuitous).

(6) Based on the definitions given in (5), we can effectively translate each formula
in the first-order language of arithmetic into a formula in the first-order language of
mereotopology.

(7) We can show that any sentence in the first-order language of arithmetic is true
in .!;C;�/ if and only if its translation is true in M2 and from this we can show
that M2 is strongly undecidable.

Proof of (1) First observe that we can define “self-connectedness” as follows:

SC.x/ Ddf 8y8z
��

:O.y; z/ ^ x D y C z
�

! 9u9t
�
P.u; y/ ^ P.t; z/

^ C.u; t/ ^ :C.uC t;Ïx/
��
:11

Then we can define “x is a maximally-connected part of y” as follows:

MP.x; y/ Ddf SC.x/^
�
x D y _

�
PP.x; y/^ :9z

�
P.z; y/^ SC.z/^ PP.x; z/

���
:

Next we will define “chain,” and in order to make the definition more readable,
it will first be expressed in English, and then be translated into a formula in the
first-order language of mereotopology.

We have Chain.x/ iff x is self-connected or x has at least two maximally con-
nected parts, and there are exactly two of them each of which contacts, but not over-
laps, exactly one maximally connected part of x, and each maximally connected part
of x except the said two contacts but not overlaps exactly two maximally connected
parts of x.

Formally,

Chain.x/ Ddf SC.x/ _ 9y9z
�
y ¤ z ^ MP.y; x/ ^ MP.z; x/ ^ 9Šu

�
MP.u; x/

^ u ¤ y ^ C.u; y/
�

^ 9Šu
�
MP.u; x/ ^ u ¤ z ^ C.u; z/

�
^ 8v

�
9Šu

�
MP.u; x/ ^ u ¤ v ^ C.u; v/

�
! .v D y _ v D z/

�
^ 8v

��
MP.v; x/ ^ v ¤ y ^ v ¤ z

�
! 9u9t

��
MP.u; x/

^ MP.t; x/ ^ u ¤ v ^ t ¤ v ^ :C.u; t/ ^ C.v; u/ ^ C.v; t/
�

^ 8z
��

MP.z; x/ ^ z ¤ v ^ C.z; v/
�

! .z D u ^ z D t /
����

:

Proof of (2) We will give a general definition of the equinumerosity between two
disjoint collections each of which consists of some maximally connected parts.
Again, we first give an informal version and then a formal one.

We have EC.x; y/ iff x D y, or x and y do not contact each other and there is
some z which is composed of x and y as well as some maximally connected parts
which neither overlap x nor overlap y such that for each maximally connected part
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u of x there is exactly one maximally connected part v of y such that u and v are
connected via exactly one maximally connected part of z, and for each maximally
connected part u of y there is exactly one maximally connected part v of x such that
u and v are connected via exactly one maximally connected part of z.

Formally,

EC.x; y/ Ddf x D y _
�
:C.x; y/ ^ 9z

�
PP.x; z/ ^ PP.y; z/ ^ 8u

�
MP.u; x/

! MP.u; z/
�

^ 8u
�
MP.u; y/ ! MP.u; z/

�
^ 8u

�
MP.u; x/

! 9Št
�
MP.t; y/ ^ 9Šv

�
MP.v; z/ ^ :O.v; x/ ^ :O.v; y/

^ C.v; u/ ^ C.v; t/ ^ 8w
��

MP.w; z/ ^ w ¤ u ^ w ¤ t ^ w ¤ v
�

! :C.v;w/
����

^ 8u
�
MP.u; y/ ! 9Št

�
MP.t; x/ ^ 9Šv

�
MP.v; z/

^ :O.v; x/ ^ :O.v; y/ ^ C.v; u/ ^ C.v; t/ ^ 8w
��

MP.w; z/

^ w ¤ u ^ w ¤ t ^ w ¤ v
�

! :C.v;w/
������

:

Proof of (3) We define a class of chains which will be called “even.” Intuitively, a
chain x is even if and only if each component u of x can be paired with exactly one
component v of x, where u ¤ v. This motivates the following definition:

Even.x/ Ddf Chain.x/ ^ 9y9z
�
y ¤ z ^ MP.y; x/ ^ MP.z; x/

�
^ 9y

�
PP.y; x/

^ 8z
�
MP.z; x/ ! 9Šu

�
MP.u; y/ ^ PP.u; z/

��
^ 8u

�
MP.u; y/

! 9Šv
�
MP.v; y/ ^ :O.u; v/ ^ C.u; v/

���
:

Now a chain x is finite if and only if it is not the case that both x and the chain formed
by removing one component from x are even. Let FC stand for “finite chain.”

Formally,

FC.x/ Ddf Chain.x/ ^ :
�
Even.x/ ^ 9y

�
Chain.y/ ^ PP.y; x/ ^ 9Šz

�
MP.z; x/

^ :O.z; y/ ^ 8u
��

MP.u; x/ ^ u ¤ z
�

! P.u; y/
��

^ Even.y/
��
:

Proof of (4) Let us now define “union of finite chains” .UFC/. First we give the
informal version.

We have UFC.x/ iff x is composed of some finite chains which do not contact
each other, and x contains a finite chain which is composed of exactly one maximally
connected part (i.e., itself), and for any finite chain y in x there is another finite chain
z in x such that y is equinumerous to a proper subchain u of z, where u is formed by
removing one maximally connected part of z, and for any two distinct finite chains
y and z in x, one must be equinumerous to a proper subchain of the other, and for
any maximally connected part y of x, there is some finite chain z of x such that y
is a part of z (the final clause is to make sure that x is composed of finite chains
only).

Before giving a formal version, let us define the following predicates:

Proper Chain Part W PC.x; y/

Ddf PP.x; y/ ^ Chain.x/ ^ 8u
�
MP.u; x/ ! MP.u; y/

�
I

Maximal Chain Part W MC.x; y/

Ddf Chain.x/ ^ P.x; y/ ^ 8z
�
MP.z; x/ ! MP.z; y/

�
^ :9z

�
PP.z; y/ ^ PP.x; z/ ^ Chain.z/

�
I



300 Hsing-chien Tsai

Successor W S.x; y/

Ddf Chain.x/ ^ Chain.y/ ^ :C.x; y/

^ 9z
�
PC.z; x/ ^ 9Šu

�
MP.u; x/ ^ :O.u; z/

�
^ EC.z; y/

�
I

UFC.x/ Ddf 8y
�
MC.y; x/ ! FC.y/

�
^ 8y8z

��
MC.y; x/ ^ MC.z; x/ ^ y ¤ z

�
! :C.y; z/

�
^ 9y

�
MC.y; x/ ^ SC.y/

�
^ 8y

�
MC.y; x/

! 9z
�
MC.z; x/ ^ S.z; y/

��
^ 8y8z

��
MC.y; x/ ^ MC.z; x/

^ y ¤ z
�

! 9u
��

PC.u; z/ ^ EC.u; y/
�

_
�
PC.u; y/

^ EC.u; z/
���

^ 8y
�
MP.y; x/ ! 9z

�
MC.z; x/ ^ P.y; z/

��
:

It should be clear that in M2 there is some member which satisfies the condition
for “union of finite chains,” so UFC.x/ defines a nonempty subset of Dom.M2/.12

Proof of (5) We define next a four-place predicate Add.u; x; y; z/which expresses
the following conditions: (i) u is a UFC; (ii) x, y, and z are finite chains in u;
(iii) if x consists of only one component, z D y, and if y consists of only one
component, z D x; (iv) if neither x nor y consists of only one component, then the
predecessor of x is equinumerous to a proper subchain w of z, y is equinumerous
to a proper subchain v of z, w and v are disjoint, and z is composed of w and v.
Now let 0u be the finite chain of u which consists of only one component. Then
formally,

Add.u; x; y; z/ Ddf UFC.u/ ^ MC.x; u/ ^ MC.y; u/ ^ MC.z; u/

^
�
.x D 0u

! z D y/ ^ .y D 0u
! z D x/

�
^

�
.x ¤ 0u

^ y ¤ 0u/ ! 9t9w9v
�
MC.t; u/ ^ S.x; t/

^ PC.w; z/ ^ PC.v; z/ ^ :O.w; v/

^ z D w C v ^ EC.w; t/ ^ EC.y; v/
��
:

Note that M2 is a model of GEMT and hence C is well defined in M2. Also note
that since 0u is the chain with one component, the interpretation of a natural number
n will be a finite chain which has nC 1 components and hence the interpretation of
nCm will be equinumerous to the concatenation of the interpretations of n� 1 and
m (if n ¤ 0).

Similar to the case of addition, the interpretation of multiplication will also
be a four-place predicate Mul.u; x; y; z/ which expresses the following condi-
tions: (i) u is a UFC; (ii) x, y, and z are finite chains in u; (iii) if x D 0u or
y D 0u, then z D 0u; (iv) if x consists of exactly two components, z D y,
and if y consists of exactly two components, z D x; (v) otherwise, there is
some w which is equinumerous to the predecessor of z and which is composed
of some maximal chain parts each of which is equinumerous to the predeces-
sor of x, and there is some w0 which has w and the predecessor of y as proper
parts such that each component of the predecessor of y is linked via some max-
imally connected part of w0 with exactly one maximal chain part of w, and con-
versely, each maximal chain part of w is linked via some maximally connected
part of w0 with exactly one component of the predecessor of y. Now let 1u be
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the finite chain of u which is composed of exactly two components. Then for-
mally,

Mul.u; x; y; z/ Ddf UFC.u/ ^ MC.x; u/ ^ MC.y; u/ ^ MC.z; u/
^

�
.x D 0u

_ y D 0u/ ! z D 0u
�

^
�
.x D 1u

! z D y/

^ .y D 1u
! z D x/

�
^

�
.x ¤ 0u

^ x ¤ 1u
^ y ¤ 0u

^ y ¤ 1u/ ! 9x0
9y0

9z0
�
MC.x0; u/ ^ MC.y0; u/ ^ MC.z0; u/

^ S.x; x0/ ^ S.y; y0/ ^ S.z; z0/ ^ 9w
�
EC.w; z0/

^ 9zMC.z; w/ ^ 8y8z
��

MC.y;w/ ^ MC.z; w/ ^ y ¤ z
�

! :C.y; z/
�

^ 8z
�
MC.z; w/ ! EC.z; x0/

�
^ 9w0

�
PP.w;w0/ ^ PP.y0; w0/ ^ 8u

��
MP.u; y0/

! MP.u;w0/
�

^
�
MP.u;w/ ! MP.u;w0/

��
^ 8u

�
MP.u; y0/ ! 9Šz

�
MC.z; w/ ^ 9t

�
MP.t; w0/

^ :O.u; t/ ^ :O.z; t/ ^ C.u; t/ ^ C.z; t/
���

^ 8z
�
MC.z; w/ ! 9Šu

�
MP.u; y0/ ^ 9t

�
MP.t; w0/

^ :O.u; t/ ^ :O.z; t/ ^ C.u; t/ ^ C.z; t/
�������

:

Proof of (6) Let N.u/ be an abbreviation of

UFC.u/ ^ 8y8z
��

MC.x; u/ ^ MC.y; u/
�

! 9Šz9Šz0
�
MC.z; u/ ^ MC.z0; u/ ^ Add.u; x; y; z/ ^ Mul.u; x; y; z0/

��
:

It is easy to see that N.u/ defines in M2 a nonempty set (see the example given in
endnote 12) and, intuitively, each u in such a set will be isomorphic to .!;C;�/ if we
treat “C” and “�” as predicates which denote the graphs of the original functions.
Now every first-order arithmetic formula ˛ (in the language which treats “C” and
“�” as predicates) can be effectively translated in the following two-step way into a
formula in the language of mereotopology.

First step: Translate each “8x” in ˛ into “8x.MC.x; u/ !,” each “9x” in ˛ into
“9x.MC.x; u/^,” and replace each C.x; y; z/ and �.x; y; z/ with Add.u; x; y; z/
and Mul.u; x; y; z/. Call the resultant formula ˛�.

Second step: If there is no free variable in ˛, the final translation ˛T will be
8u.N.u/ ! ˛�/. Otherwise, suppose that there are n free variables x1; : : : ; xn in ˛.
Then the final translation ˛T will be 8u..N.u/ ^ MC.x1; u/ ^ � � � ^ MC.xn; u//

! ˛�).
It should be clear that the foregoing procedure is effective.

Proof of (7) As mentioned above, N.u/ defines in M2 a nonempty set and each u
in that set is isomorphic to .!;C;�/. Naturally, the isomorphism involved will be
from natural numbers in ! to finite chains in u such that 0 is mapped to the chain
composed of one component, 1 to the chain composed of two components, and so on.
In this light, we can see that for any first-order arithmetic sentence ˛, .!;C;�/ ˆ ˛

if and only if M2 ˆ ˛T .
Now we will show that M2 is strongly undecidable, which will utilize the fact

that .!;C;�/ is strongly undecidable. Consider any mereotopological theory T
which is satisfied by M2. Suppose that T is decidable. Consider the following set
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of first-order arithmetic sentences H D ¹˛ W T ˆ ˛T º. Since M2 ˆ T , for each
˛ 2 H , M2 ˆ ˛T and hence .!;C;�/ ˆ ˛. H is decidable, for T is decidable
and the translation from ˛ to ˛T is effective. Next we will show that H is a logical
theory, that is,H is closed under logical implication. For any 
 such thatH ˆ 
 , by
compactness, there are some ˛1; : : : ; ˛n 2 H such that ˛1; : : : ; ˛n ˆ 
 . Therefore,
.˛1 ^� � �^˛n/ ! 
 is a logical truth and it follows that T ˆ ..˛1 ^� � �^˛n/ ! 
/T ,
that is, (i) T ˆ 8u.N.u/ ! ..˛�

1 ^ � � � ^ ˛�
n/ ! 
�//. Besides, we also know that

(ii) for each 1 � i � n, T ˆ ˛T
i , that is, T ˆ 8u.N.u/ ! ˛�

i /. From (i) and
(ii), we have T ˆ 8u.N.u/ ! 
�/, that is, T ˆ 
T . So 
 2 H too, and this
shows that H is a logical theory. However, H is satisfied by .!;C;�/ and then
by the strong undecidability of .!;C;�/, H is undecidable and hence we have a
contradiction. Therefore, T cannot be decidable, which shows that M2 is strongly
undecidable.

Since M2 is definable in M1, it follows that M1 is strongly undecidable too (again,
see [11, p. 134]).

4 Concluding Remarks

So all mereotopological theories except those of the form SAX or SAX0 or SBX0,
where X is strictly stronger than CEMT, are undecidable (my guess is that any theory
of any of the aforementioned forms is also undecidable). Moreover, from the results
given above, we can also get information about other kinds of undecidability. Let us
introduce the following definitions first.

Definition 4.1 A theory T is essentially undecidable if and only if all its consis-
tent extensions in the same language are undecidable.

Definition 4.2 A theory T is hereditarily undecidable if and only if all its sub-
theories are undecidable.

Definition 4.3 A theory T is strongly undecidable if and only if any theory in the
same language which is compatible with T is undecidable.13

Obviously, all mereotopological theories are neither essentially undecidable nor
strongly undecidable, for from the proof of separability, we can see that they have
decidable consistent extensions in the same language. Moreover, all mereotopo-
logical theories except those of any of the forms mentioned above are hereditarily
undecidable, for they are either finitely inseparable or are satisfied by some strongly
undecidable models.

The proof which shows the strong undecidability of M1 and M2 also shows
that Th.M1/ and Th.M2/ cannot be arithmetical. Otherwise, since the proce-
dure for translating ˛ into ˛T is effective and .!;C;�/ ˆ ˛ if and only if
M2 ˆ ˛T , Th..!;C;�// will be arithmetical too, which is impossible owing
to Tarski’s undefinability theorem (see Enderton [5, p. 236]). Furthermore, Th.M1/

and Th.M2/ are at least as strong as the second-order arithmetic in the follow-
ing sense. If u satisfies N.u/ in M2, the power set of chains in u can be defined by
Sub.x; u/ Ddf P.x; u/^8y..MP.y; x/ ! MP.y; u//^.MC.y; x/ ! MC.y; u///;
that is, each x which satisfies Sub.x; u/ is the union of some chains in u, so x can
stand for a subset of !. In this light, each u which satisfies N.u/ in M2 will in effect
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be isomorphic to the intended two-sorted structure .!; P.!/;C;�/ of second-order
arithmetic.

Some readers might think that intuitively both the power set of R2 and the set of
regular open subsets of R2 are very rich and hence it is not surprising at all that we
can “do arithmetic” on such domains. However, even though they are indeed very
rich, we cannot describe the way we do arithmetic on them if the formal language
(with an intended interpretation) is not expressive enough. For example, if the lan-
guage contains only one predicate P whose interpretation is the set inclusion, it is
impossible to interpret the first-order arithmetic into the power set of R2 or into the
set of regular open subsets of R2, for the mereological structure M based on either
domain can only be a Boolean algebra with the least member removed and it is known
that the theory of the said M is decidable (see [16]). But as we have seen here, with
an additional predicate C and a suitable intended interpretation, the expressiveness
of the language increases amazingly. So language matters.

Finally, an anonymous referee brings to my attention the decidability issue of
complete Boolean algebras with a relation of “overlapping.” Here I will make some
quick observations. Let “O*” stand for the relation of “overlapping.” Then any
complete Boolean algebra with such a relation must satisfy the following conditions
(see Ciraulo [2]):

(O*1) O�.x; y/ ! O�.y; x/ (symmetry);
(O*2) O�.x; y/ ! O�.x; .x ^ y// (meet closure);
(O*3) O�.x;

W
i2I yi / iff 9i2IO

�.x; yi / (splitting of join);
(O*4) 8z.O�.z; x/ ! O�.z; y// ! x � y (density).

In order to make use of the results given in this paper or in previous ones,
let us first translate the foregoing conditions into mereological axioms with
“O*” as an additional primitive. (O*1) will remain intact. (O*2) will become
“O�.x; y/ ! O�.x; x � y/”; that is, we use “finite product” to stand for “meet.”
(O*3) is not really first-order axiomatizable, but its first-order approximation may
be defined by the following schema:

9x˛.x/ ! 9z8y
��
O.y; z/ $ 9x

�
˛.x/ ^O.y; x/

��
^

�
O�.y; z/ $ 9x

�
˛.x/ ^O�.y; x/

���
;

for any formula ˛ in which x is free but z and y do not occur free (˛ might have free
variables other than x); that is, we use the fusion of the members of a definable (with
or without parameters) subset S of the domain to stand for the join of such members.
(O*4) will be “8z.O�.z; x/ ! O�.z; y// ! P.x; y/”; that is, we use parthood
relation to stand for the ordering.

If we interpret “O*” as the usual overlap relation, that is,
“O�.x; y/ $ 9z

�
P.z; x/ ^ P.z; y/

�
,”

then (O*1)–(O*4) will be theorems of GEM. However, it is known that GEM is
decidable and hence the first-order approximation of the theory of complete Boolean
algebras is decidable (see [16]). On the other hand, if we interpret “O*” as “contact,”
it is obvious that GEMT C (O*1) C (O*2) C (O*4) is undecidable, for it is satisfied
by M2. Nonetheless, neither M1 nor M2 can satisfy (O*3). For example, for any
regular open x ¤ R2, the fusion z of all y such that :C.x; y/ is the interior of
the complement of x; however, no y of the said kind can contact x even though z
contacts x. It seems that any model of SGEMT0 can satisfy (O*1)–(O*4) if “O*” is
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interpreted as “contact,” for intuitively .UF0/ fits (O*3) well. However, the problem is
that a model of SGEMT0 is not necessarily a Boolean algebra with the least member
removed. The foregoing are just some preliminary observations, and I do have some
further questions in my mind now. However, I will not pursue this issue here but will
probably try to address it in a much more detailed manner somewhere else.

Notes

1. The predicate “contact” is called “be connected to” by Casati and Varzi [1]. They
have basically followed the nomenclature given by Whitehead [18]. However, as Pratt-
Hartmann has pointed out in [10, p. 22], such a term risks confusion with the stan-
dard topological notion of “connectedness.” Hence I will follow the more recent us-
age and adopt the name “contact.” By the way, as a matter of fact, the term “con-
tact” instead of “be connected to” was first used by Düntsch and Orłowska [4], who
also proved a result of undecidability. What they considered is so-called “contact re-
lation algebra,” abbreviated as CRA. A CRA is an algebra of binary relations on a
given domain U , and such an algebra is generated from a relation C on U , where C
satisfies C.x; x/, C.x; y/ ! C.y; x/ and 8z.C.x; z/ $ C.y; z// ! x D y, by
applying the following operations: union, intersection, complementation, composition
(R j Q D ¹.x; y/ W 9z.R.x; z/ ^Q.z; y//º), and converse (R[ D ¹.x; y/ W R.y; x/º).
Düntsch and Orłowska have shown that the equational theory of CRA is undecidable. Let
L be a first-order language which has only one binary predicate “C ,” and consider any
formula ˛ of L of the form  $ ', where  and ' contain at most three variables, two
of which are free ( and ' must have the same free variables). Then the aforementioned
result amounts to saying that the set S of formulas of the said form, each of which can be
proved from C.x; x/, C.x; y/ ! C.y; x/ and 8z.C.x; z/ $ C.y; z// ! x D y, is un-
decidable (see [4, pp. 242–43]). If we define P.x; y/ Ddf 8z.C.x; z/ ! C.y; z//, P is
obviously reflexive, transitive, and antisymmetric. Then such a result in effect says that
the set of formulas of the aforementioned form, each of which can be proved from SGMT
(see below for its definition), is undecidable. This implies that SGMT is undecidable,
for we can effectively determine whether a formula is of that form or not. However, this
fact does not imply that any meretopological theory strictly stronger than SGMT will
also be undecidable. The undecidability of SGMT is indeed one of the results given in
this paper (actually, the result given here is even stronger: SGMT is finitely inseparable;
see Theorem 2.3), but this paper is only concerned with logical theories, where a logical
theory is a set of sentences which is closed under logical implication, and hence whether
a proper subset of a logical theory is decidable or not will not be considered here.

2. Casati and Varzi also mentioned a complicated axiom which is called “Whitehead’s
principle” (see [1, p. 61]): .W) C.x; y/ ! 9z.SC.z/ ^ O.z; x/ ^ O.z; y/ ^

8w.P.w; z/ ! .O.w; x/ _ O.w; y////, where SC.x/ Ddf 8y8z.8w.O.w; x/ $

.O.w; y/ _ O.w; z/// ! C.y; z//. However, they refrained from endorsing such an
axiom. Actually, (W) is hard to satisfy; it will fail in some reasonable domains, for
example, ROS(R3) (see [10, p. 19] for the definition of ROS(Rn)). In this light, I will
temporarily leave (W) out.

3. Casati and Varzi’s original definitions (including those of topological operators to be
seen below) define only partial functions. Here I have modified the definitions in a
harmless way so as to make each function total.
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4. Casati and Varzi did not consider XT C .K1/C .K2/C .K3/ for any X which is strictly
weaker than GEM.

5. This lemma comes from [8, p. 272], but the version presented here has been rephrased to
make it more readable. By the way, I refer readers who would like to know more about
how to interpret a language into a theory to Enderton [5, Section 2.7].

6. Note that in order to satisfy (SSP), there will be no least member in the model to be
constructed and this is why the empty set has to be removed.

7. This is an easy theorem of general topology, but let us give a quick proof as follows.
Consider D D RO.R2/ n ¹;º. Suppose that there are some x; y 2 D such that for all
z 2 D, cl.z/ \ cl.x/ ¤ ; implies that cl.z/ \ cl.y/ ¤ ;, but x is not a subset of y.
If x and y are disjoint, then there will be a regular open nonempty proper subset z of x
such that cl.z/ � x (this is because R2 is compact Hausdorff; see Munkres [9, p. 185])
and hence cl.z/ \ cl.y/ D ;, which contradicts the assumption. So u D x \ y ¤ ;.
Consider cl.x � u/. Such a set must have a regular open interior, say, v, and again there
will be a regular open nonempty proper subset z of v such that cl.z/ � v and hence
cl.z/ \ cl.y/ D ;, which again contradicts the assumption.

8. Strictly speaking, here “Ïx” and “x C y” should be “ÏM1 x” and “x CM1 y”, re-
spectively, where ÏM1 and CM1 are the interpretations of Ï and + in M1. How-
ever, I will omit such superscripts if there is no risk of causing confusion. By
the way, to show that x C y D x [ y, first observe that x [ y can serve as the
z such that 8u.O.u; z/ $ .O.u; x/ _ O.u; y///, but such a kind of z must be
unique in M1 since 8z.O.z; x/ ! O.z; y// $ P.x; y/ is an easy theorem of
EM D .P1/ C .P2/ C .P3/ C .SSP/ and M1 satisfies EM. The said easy theorem
is very useful for proving the identity between two members in any structure which
satisfies EM.

9. The so-called traditional way can be seen in [5], [11], and [8], as well as in many other
prestigious textbooks for mathematical logic.

10. I am indebted to Haim Gaifman for inspiring me to use a “chain” to stand for a natural
number. Actually I gave a sketch in my dissertation [17] several years ago of how to
make use of “chains” to show that the theory of M1 is not axiomatizable. However,
many things were not clear then, and the idea of the proof relies on the fact that there are
“boundaries” in Dom.M1/ and hence cannot apply to the case of M2.

11. This definition is attributed to Pratt-Hartmann ([10, p. 28]). He has also shown there that
x is self-connected in M2 if and only if x is a connected open subset of R2, that is, x is
not the union of two nonempty disjoint open subsets of R2.

12. The following is a “canonical” sample of UFC in M2: the union of the regular open
disks which are defined by .x�d/2 C .y�e/2 < 1, where .d; e/ 2 ¹.2k; 4m/ 2 !�! W

m; k 2 ! and k � mº.

13. The definitions of “essentially undecidable” and “hereditarily undecidable” are due to
Tarski, Mostowski, and Robinson [13]. The definition of “strongly undecidable” is given
by [5], which applies to logical theories, not to models.
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