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The Arithmetics of a Theory

Albert Visser

Abstract In this paper we study the interpretations of a weak arithmetic, like
Buss’s theory S1

2, in a given theory U . We call these interpretations the arith-
metics of U . We develop the basics of the structure of the arithmetics of U .
We study the provability logic(s) of U from the standpoint of the framework of
the arithmetics of U . Finally, we provide a deeper study of the arithmetics of a
finitely axiomatized sequential theory.

1 Introduction

In this paper, we propose and expose a particular way of viewing theories. We look
at theories as a class of interpretations of a given weak arithmetical theory. Consider
a theory U . We view the interpretations of the given weak arithmetical theory in U
as “occurrences” of that given theory in U . Thus, U appears as a class of copies of
the given weak theory. If we consider a model M of U , the versions of the weak
theory sitting inside U take the form of the set of internal models of the weak theory
in M.

We will call an interpretation N of the given weak theory in U an arithmetic
of U . The arithmetics of U have a natural ordering, the (definable) initial embedding
ordering �. We study basic facts concerning the arithmetics of U and the ordering
� in Section 3.

From the perspective of theories as containers of (possibly) lots of arithmetics,
we study the provability logics of theories. We fully characterize the propositional
modal principles for provability that hold in all arithmetics in any theory U , the
only assumption being a constraint on the complexity of the set of axioms of U .
The comparatively easy success of this characterization contrasts with the remaining
great open questions of provability logic concerning the provability logics of theories
like S1

2 or I�0 C�1.
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Section 4 briefly reviews some basic ideas concerning provability logic.
In Section 5, we study Solovay’s theorem in various settings. In Sections 5.1–5.4,

we present a proof of Solovay’s completeness theorem for Löb’s logic via a wonder-
ful version of the proof given by Dick de Jongh, Marc Jumelet, and Franco Montagna.
The main part of the proof is itself formulated in a richer modal logic which was for-
mulated and studied by David Guaspari and Robert Solovay. The advantage of the de
Jongh–Jumelet–Montagna proof is that it allows us to see clearly what arithmetical
principles are involved in Solovay’s proof. In Section 5.5, we prove our characteri-
zation of the provability logic of all arithmetics of a given theory. In Section 5.6, we
give a sufficient condition for when the provability logic of all theories is assumed at
a single arithmetic N in U .

In Section 7, we provide an example of a theory U where the provability logic of
U is not assumed at any arithmetic N in U .

In Section 6, we study the wondrous world of the arithmetics of a finitely axiom-
atized sequential theory U . In the sequential case we have many extra properties of
our structure of arithmetics to work with. In this section we strengthen certain results
due to Harvey Friedman and, independently, to Jan Krajíček. We use the methods of
Section 6 to construct the example of Section 7.

The reader interested in provability logic could very well choose to read Sec-
tions 2–5. The reader who is interested in the fine structure of the arithmetics of a
theory could study Sections 2, 3, 6, and 7. More details on the basics are provided in
Appendix A.

About this paper The present paper is, in a sense, a remake of my paper [33]. It
is the result of my reflection on what the earlier paper is saying. We strengthen the
results of that paper by presenting them in a better framework, and we add new results
relevant to the framework.

Prerequisites We will presuppose some knowledge of weak arithmetics. See, for
example, Buss [6] or Hájek and Pudlák [15, Chapter V]. Some basic knowledge of
provability logic will help to understand the paper. At present there are many exposi-
tions: Smoryński [28], Boolos and Sambin [5], Boolos [4], Lindström [21], Japaridze
and de Jongh [17], Švejdar [29], and Artemov and Beklemishev [1]. The most com-
prehensive source concerning the provability logic of weak theories is Verbrugge
[30].

2 Basics

In this section we sketch the framework in which our discussion will take place. One
problem of sections with basic notions and facts is that they are so long and so boring
that the reader gets stuck in them and never arrives at the real stuff. So what I did is
to make the present section rather sketchy. At the end of the paper, in Appendix A
more details are provided. Regrettably, even without the details this section is rather
long, so the reader is advised to go over it lightly and come back to it or Appendix A
when needed.

2.1 Theories Theories are, in this paper, one-sorted theories of first-order predicate
logic that have a finite signature and that are axiomatized by an axiom set that is
represented by a �b

1-formula.1
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Remark 2.1 The demand for �b
1-axiomatization seems to be rather restrictive.

However, it seems to me that every real-life theory is given by an axiomatization that
is p-time decidable.

Because in S1
2 we have the †b

1-replacement axiom, we can relax our demand to
the consideration of theories which are †b

1-axiomatized. In this case, the witnesses
of �UA would not be really a code of a proof but a somewhat modified object.

Note that, by a version of Craig’s trick, every recursively enumerable theory in
extension can be given a �b

1-axiomatization. Of course, a weak theory will not be
able to see that both axiomatizations prove the same theorems, so for the eyes of the
weak theory the Craigified theory will be a different theory. We need a theory like
EA, also known as I�0 C exp, plus †1-replacement to make this construction work
in a verifiable way.

The formula specifying the axiom set is part of the data for the theory. Thus, we treat
theories intensionally and not as mere sets of theorems. We will explain why this is
important for our purposes in Section 4.

We say that a theory is finitely axiomatized if its axiomatization has the formW
i<n x D pAi q.2 Note that S1

2 may prove that a theory has an axiom set of, say, less
than two axioms, without being able to prove the equivalence of the formula defining
the axiom set with any formula of the prescribed form.

We take identity to be a logical constant. Our official signatures are relational;
however, via the term-unwinding algorithm, we can also accommodate signatures
with functions.

2.2 Translations and interpretations The notion of interpretation that we will em-
ploy in this paper will be m-dimensional interpretation without parameters. There
are two extensions of this notion: we can consider piecewise interpretations, and we
can add parameters. We refrain from considering piecewise interpretations. We ex-
plain why in Section A.3 of Appendix A. We sketch a few basic ingredients of adding
parameters in Section A.4 of Appendix A. We explain why, in the sequential case,
addition of parameters makes no difference for the provability logic of all arithmetics
of a given theory in Remark 3.10.

Consider two signatures † and ‚. An m-dimensional translation � W † ! ‚

is a quadruple h†; ı;F ; ‚i, where ı.v0; : : : ; vm�1/ is a ‚-formula and where for
any n-ary predicate P of †, F .P / is a formula A.Ev0; : : : ; Evn�1/ in the language
of signature ‚, where Evi D vi0; : : : ; vi.m�1/. In the case of both ı and A all free
variables are among the variables shown. Moreover, if i ¤ j or k ¤ `, then vik is
syntactically different from vj`.

We demand that we have ` F .P /.Ev0; : : : ; Evn�1/ !
V

i<n ı.Evi /. Here ` is prov-
ability in predicate logic. This demand is inessential, but it is convenient to have.

We define B� as follows:

� .P.x0; : : : ; xn�1//
� WD F .P /.Ex0; : : : ; Exn�1/;

� .�/� commutes with the propositional connectives;
� .8x A/� WD 8Ex .ı.Ex/ ! A� /;
� .9x A/� WD 9Ex .ı.Ex/ ^ A� /.

We allow identity to be translated to a formula that is not identity. We can define
the identity translation id† on †, the composition � ı � of translations � and �, and
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the disjunctive translation �hAi�, which is � if A and � if :A. We refer the reader
to Appendix A for details.

A translation relates signatures; an interpretation relates theories. An inter-
pretation K W U ! V is a triple hU; �; V i, where U and V are theories and
� W †U ! †V . We demand that for all axioms A of U , we have V ` A� .

In the context of the formalization of interpretability, we have to distinguish be-
tween axioms-interpretability, which is the notion we just introduced, and theorems-
interpretability, where we demand that: for all theoremsA of U , we have V ` A� . In
the real world these notions are equivalent, but we need a principle like†1-collection
to prove that, so, for example, Buss’s theory S1

2 does not “know” this equivalence.
See Visser [32] for more information about this matter.

Here are some further definitions and conventions.

� Suppose K W U ! V . We often write AK for A�K , in the context of a theory
W that extends V .

� We write U for the set of theorems of U . Suppose K W U ! V . We write
K WD ¹A j V ` AKº. We note that U � K. If K D U , we will say that K is
faithful.

� IDU W U ! U is the interpretation hU; id†U
; U i.

� Suppose U � V . Then, EU V W U ! V is hU; id†U
; V i.

� Suppose K W U ! V andM W V ! W . Then, KM WD M ıK W U ! W is
hU; �M ı �K ;W i.

� Suppose K W W ! U and U � V . We write K " V for EU V ıK.
� Suppose M W V ! Z and U � V . We write U # M for M ı EU V .
� Suppose K W U ! .V C A/ and M W U ! .V C :A/. Then
KhAiM W U ! V is the interpretation hU; �KhAi�M ; V i. In an appro-
priate category KhAiM is a special case of a product.

The notationK W U ! V is inspired by the idea of interpretations as arrows in a cat-
egory. There is also an intuition of interpretability as a generalization of provability.
The traditional notation and notions associated to this intuition are the following:

� K W U C V stands for K W U ! V .
� K W V B U stands for K W U ! V .
� U C V stands for 9K K W U C V . We say that U is interpretable in V .
� V B U stands for 9K K W V B U . We say that V interprets U .
� U Cloc V means that all finitely axiomatized subtheories U0 of U are inter-

pretable in V . We say that U is locally interpretable in V .
� U Cmod V means that, for every M ˆ V , there is a translation � such that
�.M/ ˆ U . We say that U is model-interpretable in V .

2.3 i-morphisms Consider an interpretation K W U ! V . We can view this inter-
pretation as a uniform way of constructing internal models �K.M/ of U from models
M of V . This construction gives us the contravariant model functor as soon as we
have defined an appropriate category of interpretations.

Now consider two interpretations K;M W U ! V . Between the inner mod-
els �K.M/ and �M .M/ we have the usual structural morphisms of models. We are
interested in the case where these morphisms are V -definable and uniform over mod-
els. This idea leads to the notion of i-morphism. An i-morphism F W K ! M is a
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triple hK;F.Eu; Ev/;M i, where F.Eu; Ev/ is a V -formula and where in all models of V ,
F represents a morphism of models from �K.M/ to �M .M/.

Two i-morphisms F;G W K ! M are i-equal, when

V ` 8Eu; Ev
�
F.Eu; Ev/ $ G.Eu; Ev/

�
:

We will think about i-morphisms modulo i-equality without dividing this equivalence
relation out.

In the obvious way, we can define the identity i-morphism IdK W K ! K, com-
position of i-morphisms, i-isomorphisms, and so forth. All these operations preserve
i-equality. We easily see that i-isomorphisms really are isomorphisms in the category
given by these operations.

We will say that two interpretations K;M are i-equivalent when there is an
i-isomorphism between them, that is, they are i-isomorphic. The notion of i-
equivalence is our intended notion of sameness of interpretations. We will, however,
not divide out i-equivalence. This enables us to use the notation �M meaningfully,
to speak about the dimension of an interpretation, and so forth. Of course, we
demand that operations on interpretations preserve i-equivalence. One may show
that operations like identity, composition, .�/h�i.�/ do indeed preserve i-equivalence.
Moreover, if K is i-equivalent to M , then K D M .

The category INT1 is the category of theories (as objects) and interpretations
modulo i-equivalence (as arrows). One may show that we have indeed defined a
category. Two theories U and V are bi-interpretable if they are isomorphic in INT1.
Wilfrid Hodges calls this notion homotopy. See Hodges [16, p. 222].

Thus, U and V are bi-interpretable if there are interpretations K W U ! V and
M W V ! U , so thatM ıK is i-isomorphic to IDU andKıM is i-isomorphic to IDV .
We call the pair K;M a bi-interpretation between U and V . One can show that the
components of a bi-interpretation are faithful interpretations. Many good properties
of theories like finite axiomatizability, decidability, �-categoricity are preserved by
bi-interpretations.

2.4 Sequential theories The sequential theories form an important class of theories
in this paper. A sequential theory provides an interpretation N of a weak number
theory, say, S1

2, and sequences of all objects of the domain of the theories with pro-
jections in N . We can use these sequences to develop partial satisfaction predicates.
Using these we can prove restricted consistency statements of U in U . See Sec-
tion 2.5 for more about this.

The notion of sequential theory has a very simple definition discovered by Pavel
Pudlák. We first need the definition of a very weak set theory. The theory adjunctive
set theory or AS is a one-sorted theory with a binary relation 2:
(AS1) ` 9x 8y y … x,
(AS2) ` 8x; y 9z 8u .u 2 z $ .u 2 x _ u D y//.

We note that we do not demand extensionality. For example, in AS we could have
lots of “empty sets.”

An interpretation is direct if and only if it is one-dimensional, unrelativized (i.e., it
has the trivial domain), and identity preserving (i.e., it translates identity to identity).

A theory U is sequential if and only if it directly interprets AS. By a substantial
bootstrap, we can define, in a sequential theory U , an interpretation N of a weak
number theory, sequences of all objects, and so forth.
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For details see, for example, Pudlák [24], [25], Mycielski, Pudlák, and Stern [22],
Hájek and Pudlák [15], and Visser [37], [40].

We can generalize the notion of sequentiality a bit to polysequentiality by re-
placing direct interpretation in the definition by its obvious generalization to the
m-dimensional case. All results in this paper that we prove for sequential theories
also hold for polysequential theories.

2.5 Complexity and satisfaction Restricted provability plays an important role in
this paper. An n-proof is a proof from axioms with Gödel number smaller than or
equal to n only involving formulas of complexity smaller than or equal to n. To
work conveniently with this notion, a good complexity measure � is needed. This
should satisfy three conditions. (i) Eliminating terms in favor of a relational formu-
lation should raise the complexity only by a fixed standard number. (ii) Translation
of a formula via the translation corresponding to an interpretation K should raise
the complexity of the formula by a fixed standard number depending only on K.
(iii) The tower of exponents involved in cut elimination should be of height linear in
the complexity of the formulas involved in the proof.

Such a good measure of complexity together with a verification of desideratum
(iii)—a form of nesting degree of quantifier alternations—is supplied in the work of
Philipp Gerhardy [12], [13]. It is also provided by Samuel Buss in his preliminary
draft [7]. Buss also proves that (iii) is fulfilled. We give some details about these
measures in Appendix A.

We will use proofU;n for the proof predicate where only U -axioms with Gödel
numbers � n are allowed and where the formulas occurring in the proof are in the
complexity class �n of all formulas of complexity � n. Similarly we use U `n A,
conn.U /, �U;mA, and so forth.

In sequential theories we can define partial satisfaction predicates for formulas
with complexity below n, for any n. The presence of these predicates has as a conse-
quence that for any sequential theory U and for any n, we can find an interpretation
N of a weak arithmetic like Buss’s S1

2 in U such that U ` conN
n .U /. See, for

example, Visser [35] for more details.

3 The Arithmetics of a Theory

There are many heuristic ways to look at interpretations. For example, an interpreta-
tion is a uniform internal model construction. In the case of definitional extensions
an interpretation is an enrichment of the interpreting or target theory. In this paper,
we opt for a third heuristic: we view an interpretation as the interpreted theory in the
context of the interpreting theory.

We will say that an interpretation N W S1
2 ! U is an arithmetic in U or an

arithmetic of U . The theory S1
2 is Buss’s theory of p-time computability (see [6]).

We stipulate that we work with a version of S1
2 that is formulated in the language of

arithmetic with (the relational versions of) 0, S, C, and �.

Remark 3.1 In our definition of arithmetic we are both rewarded and punished
for having a strict typing regime of interpretations. The reward is that the target
theory or interpreting theory or context is part of the data for an arithmetic. So we
can speak about an arithmetic N without mentioning the context. The punishment is
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that, for example, an interpretationK W EA ! U is not an arithmetic. The associated
arithmetic is S1

2 # K. See also Remark A.1.

There are several reasons for choosing S1
2. First, it is a sequential theory. Second, the

usual metamathematics leading up to Gödel’s incompleteness theorems can be for-
malized in S1

2 without the use of any extraneous tricks. Moreover, it is a reasonably
weak choice among theories in which this can be done. Third, S1

2 is finitely axiom-
atizable. On the other hand, the results of the present paper are rather robust with
respect to different choices of the basic arithmetic. For example, T1

2 or I�0 C �1

would have worked as well. (But often some extra care is needed for I�0 C�1, since
it is not known whether this theory is finitely axiomatizable.)

The main structure between arithmetics that we will consider is the initial embed-
ding ordering �. Consider two arithmetics N and N 0 in U . An initial embedding
F W N ! N 0 is an i-morphism satisfying the following additional property:

� U ` .F.Ex0; Ey0/ ^ Ey1 <N 0 Ey0/ ! 9Ex1 <N Ex0 F.Ex1; Ey1/.
We write N � N 0 for: there is an initial embedding hN;F;N 0i of N in N 0. We note
that � is preserved by i-equivalence. In other words, i-equivalence is a congruence
relation for the arithmetics of U with �. So, i-equivalence is a subrelation of the
induced equivalence relation of �.

We call N a cut of N 0 if and only if emb W N � N 0, where emb is the identical
embedding.

The most salient fact about � is upward preservation of †1-sentences and down-
ward preservation of …1-sentences. We formulate this as a theorem.

Theorem 3.2 Suppose that N and N 0 are arithmetics in U and N � N 0. Let S
be any †1-statement, and let P be any …1-statement. We have U ` SN ! SN 0

and U ` PN 0

! PN .

We leave the trivial proof to the reader. Arithmetics commute in all the right ways
with bi-interpretations, as is shown in the next theorem.

Theorem 3.3 Suppose that K W U ! V and M W V ! U are a bi-interpretation
between U and V . Then the mapping ˆ W N 7! NK is a bijection between the
arithmetics of U and the arithmetics of V modulo i-equivalence. Moreover, ˆ is an
isomorphism with respect to � and N D ˆ.N/.

Proof Let ‰ W N 0 7! N 0M be a mapping between the arithmetics of V and the
arithmetics of U . It is easy to see that ‰ is the inverse of ˆ, modulo i-equivalence.
Clearly ˆ and ‰ preserve �, so it easily follows that ˆ is an isomorphism with
respect to �. Since the interpretations of a bi-interpretation are faithful, we find that
N D ˆ.N/.

Arithmetics of a sequential theory can always be assumed to be one-dimensional, as
is formulated in the following theorem.

Theorem 3.4 Suppose that U is sequential and that N is an arithmetic in U .
Then there is a one-dimensional arithmetic M in U that is i-equivalent to N .3

We leave the trivial proof to the reader. A fundamental fact about the arithmetics of
a sequential theory follows by Pavel Pudlák’s adaptation of Dedekind’s proof of his
categoricity theorem for second-order arithmetic.
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Theorem 3.5 (Pudlák) Consider a sequential theory U . Let N0 and N1 be arith-
metics in U . Then, there is an arithmetic M in U such that M � N0 and M � N1.

For a proof see, for example, [25]. In a sequential theory we have a convenient
reflection principle. We write �n for the class of all formulas of complexity � n.

Theorem 3.6 Consider any sequential theory U , and letN be an arithmetic in U .
For any n, we can find an arithmeticM � N such that, verifiably in S1

2, we have, for
all sentences A in �n, that U ` �M

U;nA ! A.

Sketch of the proof The idea of the proof is that, in U , we can define a satisfac-
tion predicate for �n, using the N -numbers, and prove �n-reflection by replacing
induction over proof length by the use of a definable cutM of N . For details see the
proof of [35, Fact 2.4.5(ii)]. In [35] only verifiability of this fact in EA was claimed.
However, the big disjunctions and conjunctions of exponential size used there are not
needed, since for each proof p we only need the truth of the axioms occurring in p.
So the disjunctions we really need are polynomial in p.

As far as we can ascertain, this theorem was known (or versions of it were known),
at an early stage, to, independently, Pavel Pudlák, Robert Solovay, Alex Wilkie and
Jeff Paris, and Harvey Friedman. The paper [25] contains a version.

The previous theorem shows that, for any n, we can “improve” a givenN to obtain
n-reflection. In contrast, if U is finitely axiomatized, for any N , we can find an n
such that, for any m � n, we have anti-m-reflection, in other words, a version of
Löb’s theorem for N and m. We first need [35, Lemma 4.1]. For the convenience of
the reader we reproduce it here.

Lemma 3.7 The following fact is verifiable in S2
1. Suppose that A is any finitely

axiomatized theory, �.A/ � m, �.B/ � m, and A ` B . Then S1
2 ` �A;mB .

We note that without the verifiability clause we could concludeA `m B fromA ` B .
Since this step uses superexponentiation, it is not available in the context of S1

2.

Proof We can prove the lemma in two ways.
The first uses the insight of Pudlák [26, Lemma 2.2] that, in S1

2, we have, for all x
and y, that S1

2 ` itexp.x; jyj/ exists. Here we define
� itexp.x; 0/ WD x,
� itexp.x; z C 1/ WD 2itexp.x;z/.

Suppose A ` B . By 9†b
1-completeness, we find, for some p, S1

2 ` proofA.p; B/.
Since we have that S1

2 ` itexp.kp; k0jpj/ exists, for standard k, k0, we can apply cut
elimination to p inside S1

2.
The second way is to note that, in S1

2 C conm.A C :B/, we can build a Henkin
interpretation H of A C :B . It follows that con.S1

2 C conm.A C :B// implies
con.AC :B/. We find the desired result by contraposition.

Theorem 3.8 Suppose that A is a finitely axiomatized sequential theory and that
N is an arithmetic in A. We can find an n such that for any m � n, we have, for all
B 2 �m, if A ` �N

A;mB ! B , then A ` B . This fact is verifiable in S1
2.

This theorem is a weaker version of [35, Theorem 4.1]. We sketch the proof since it
is easier to read without the ballast of the stronger version of [35].
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Proof The proof is just the usual proof of Löb’s theorem with some checks that all
the complexities are correct and one step involving Lemma 3.7 added. We choose

n WD max
�
�
�
provN

A;y.z/
�

C 1; �
�
subN .x; y/

�
C 1; �.A/

�
:

Here sub is the formula defining the Gödel substitution function. It follows that
n � �N

A;mB , for any B and m, since both B and n appear as numerals and, thus,
only add a nonalternating block of quantifiers.

Let C be a Gödel fixed point with A ` C $ .�N
A;mC ! B/. The complexity of

C is again m as can be seen by inspecting the construction.
Note that, for example, �.provN

A;y.z// is polynomial in the data for N . Suppose
A ` �N

A;mB ! B . We have

A ` �N
A;mC !

�
�N

A;m�N
A;mC ^ �N

A;m.�
N
A;mC ! B/

�
! �N

A;mB

! B:

So, (a) A ` �N
A;mC ! B , and, hence, A ` C . By Lemma 3.7, we find that (b)

A ` �N
A;mC . Combining (a) and (b), we may conclude that A ` B .

Theorem 3.9 Consider a theory U and an arithmetic N in U . Then, there is an
arithmetic N 0 � N and a U -formula TRUE such that, for †1-sentences S , we have
U ` TRUE.S/ $ SN 0 . (Here S is coded in N 0.)

Proof We first work S1
2. Let sat.v/ be a �0-satisfaction predicate for formulas

with just one designated variable v free. The main ingredients for the construction
of such a predicate can be found in [15, Chapter V(5)].4 We will use the following
two properties of sat, for D.v/ in �0:

(S1) S1
2 ` 8x .sat.x;D.v// ! D.x//,

(S2) S1
2 ` 8x ..22x exists ^D.x// ! sat.x;D.v///.

Let J be an S1
2-cut such that S1

2 ` x 2 J ! 22x exists. We suppose that
†1-sentences are written in the form 9x S0.x/ where S0 is �0. (If not, we add
an algorithm that rewrites the †1-sentence to this normal form.) We define

� true.9x S0.x// WD 9x 2 J sat.x; S0.v//,
� N 0 WD N ı J ,
� TRUE.x/ WD trueN .x/.

We easily verify that TRUE has the desired property.

Inspection of the proof of Theorem 3.9 shows that we can obtain reasonable commu-
tation properties for TRUE in addition to mere Tarskian disquotation.

Remark 3.10 Suppose that U is sequential. Let N be an arithmetic with param-
eters in U . In a model M of U we can view N as a definable class of internal
models parameterized by models of U . Theorem 3.5 tells us how to construct a
parameter-free arithmetic below two parameter-free arithmetics. With some care we
can generalize the construction to produce one parameter-free arithmetic below N

viewed as a class of internal models. For details on such a construction, see [40],
the second proof of Theorem 5.2. As a result of this observation, the provability
logic of all parameter-free arithmetics of U is the same as the provability logic of all
arithmetics of U with parameters.
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We end this section with a tentative discussion of what it means that � has a minimal
element.

Theorem 3.11 Consider any theoryU . Suppose thatN is a �-minimal arithmetic
in U , that is, for any arithmetic M in U with M � N , we have N � M . Then, we
have the following:

(i) For any †1-sentence S , and any M � N , we have U ` SN ! SM .
(ii) U proves parameter-free …1-induction for the N -numbers. In other

words, we have U ` .I…�
1 /

N . As a consequence, we have sentential
†1-completeness in N .

(iii) We have a †1-truth predicate TRUE satisfying Tarskian disquotation for
†1-sentences on N .

Proof Ad (i). We have (i) simply because if M � N , then M � N , and
†1-sentences are upwards preserved.

Ad (ii). As is easily seen, parameter-free …1-induction is equivalent to the
parameter-free †1-minimum principle (over PA�).5 We prove the parameter-free
†1-minimum principle for N . We reason in U . Suppose 9x 2 N S.x/, where S
is †1. Consider the virtual class X WD ¹x 2 N j 8y < x :S.x/º. Clearly 0 2 X .
If X is not closed under successor, there is a z 2 N such that z 2 X and Sz … X .
By elementary reasoning we find that z is the minimal N -number such that Sz. If
X is not closed under successor, we can shorten X to a cut J that satisfies S1

2. Thus
J is an arithmetic below N . It follows that on J we have both : 9x Sx and 9x Sx,
a contradiction.

The theory I…�
1 proves sentential †1-completeness since EA is conservative over

I…�
1 with respect to†2-sentences as was proved in Kaye, Paris, and Dimitracopoulos

[18].
Ad (iii). The existence of the desired truth predicate is immediate from Theo-

rem 3.9.

Theorem 3.12 Consider any sequential theoryU . Suppose thatN is a �-minimal
arithmetic in U . It follows that

(i) N is a �-minimum inU ; in other words, for all arithmeticsM inU ,N � M ;
(ii) U is parameter-free essentially reflexive for N ; that is, for any n, and any

sentence B 2 �n, we have U ` �N
U;nB ! B;

(iii) U is not finitely axiomatizable.

Proof Claim (i) is immediate by Theorem 3.5, and (ii) follows from Theorem 3.6 in
combination with Theorem 3.11(i). Claim (iii) is immediate from (ii) in combination
with Theorem 3.8.

Remark 3.13 Consider a sequential theory U , and suppose that N is �-minimal
in U . It follows that the interpretability logic of U (for sentential substitutions), with
respect to arithmetization in N , is ILM. See Beklemishev and Visser [2] for most
ingredients of the proof.

Open Question 3.14 Suppose that U is sequential and has a �-minimal arith-
metic N . Can we get a precise estimate of what this implies? For example, can one
show that we do not get full induction for N ? Is any M � N i-equivalent to N ?
Such questions are both interesting in general and in the sequential case.



The Arithmetics of a Theory 91

4 Introduction to Provability Logic

We start with the basics concerning Löb’s logic GL. We define the language Lmod of
propositional modal logic by

� ˛ WWD p0 j p1 j : : : ,
� ' WWD ˛ j ? j > j :' j �' j .' ^ '/ j .' _ '/ j .' ! '/.

The logic GL is axiomatized by the following axioms and rules:
(GL1) we have all substitution instances of propositional tautologies;
(GL2) ` �.' !  / ! .�' ! � /;
(GL3) ` �' ! ��';
(GL4) ` �.�' ! '/ ! �';
(GL5) if ` ' !  and ` ', then `  ;
(GL6) if ` ', then ` �'.
We have a completeness theorem for GL in finite, transitive, irreflexive Kripke mod-
els. We define arithmetical interpretations of the modal language as follows. Let U
be a theory, and let N be an arithmetic in U . We define an N -translation � as a
mapping of the formulas of Lmod to the sentences of the language of U , where �
commutes with the propositional connectives and where

�.�'/ WD �N
U �.'/ WD provN

U

�
p�.'/q

�
:

The variable a will range over 0; 1; : : : ;1. We define
� �0' WD ', �nC1' WD ��n', �1' WD >;
� ' 2 prl.N / if and only if, for all N -translations � , U ` �.'/;
� ' 2 prlall.U / if and only if, for all arithmetics N in U , ' 2 prl.N /;
� deg.N / WD min.¹a j �a? 2 prl.N /º/;
� degall.U / WD min.¹a j �a? 2 prlall.U /º/;
� in the case when U is an extension of S1

2 in the language of arithmetic, we
write prl.U / for prl.ES1

2
U / and deg.U / for deg.ES1

2
U /.

We note that degall.U / WD sup.¹deg.N / j N is an arithmetic in U º/. We have
the following two major insights. Let exp be the axiom stating that exponentiation is
total.

Theorem 4.1 Consider any theory U . Let N be an arithmetic in U . We have
(I) prl.N / extends GL (and is closed under the rules of GL);

(II) if U ` expN , then prl.N / D GL C �deg.N /?.

In essence the proof of (I) is given in [6]. Most of the ideas are also in Wilkie and
Paris [42]. Robert Solovay proved (II) for theories like PA which are reasonably
strong and †1-sound. The extension to the case of †1-unsound theories extending
PA was proved in Visser [39]. The fact that EA was needed on the designated in-
terpretation of arithmetic slowly emerged (see [30]). In Section 5 we give a sharper
formulation of Theorem 4.1(II).

The gap between (I) and (II) provides the great open problem of provability logic.
What happens in the gap? For an extensive discussion of this problem, see Beklemi-
shev and Visser [3].

Is the provability logic of an arithmetic a good property of arithmetics? It should
at least be preserved under our chosen notion of sameness of arithmetics. We note
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that, if N is i-equivalent to N 0, then S1
2 verifies this i-equivalence. The next theorem

follows.

Theorem 4.2 Consider any theory U , and suppose that N and N 0 are arith-
metics in U and that N is i-equivalent to N 0. Then, for any N -translation �
and N 0-translation � 0, if �.p/ D � 0.p/ for all atoms p, then, for all ', we have
U ` �.'/ $ � 0.'/. It follows that prl.N / D prl.N 0/ and deg.N / D deg.N 0/. We
have the same result on the weaker assumption that N � N 0 and N 0 � N .

So, in this sense, the provability logic of an arithmetic is a good property. On the
other hand, the provability logic of a theory-in-extension is dependent on the speci-
fication of the axiom set. The provability logic of a theory is intensional.6

Example 4.3 Consider the theory U WD PA C �PA�PA? with the obvious ax-
iomatization. Clearly U ` �U �U ?. On the other hand, suppose U ` �U ?. Then,

PA C �PA�PA? ` �PAC�PA�PA??:

So,
PA C �PA�PA? ` �PA: �PA�PA?:

And, hence,
PA C �PA�PA? ` �PA: �PA?:

By applying the formalized second incompleteness theorem to the conclusion, we
get: PA C �PA�PA? ` �PA?. By Löb’s theorem, we obtain PA ` �PA?. Quod
non. So U ° �U ?.

Now we modify the formula defining U , thus obtaining the theory QU , by taking
something to be an axiom if it is an axiom of U or it is of the form p ¤ p, where
p is a PA-proof of �PA?. Clearly, U and QU are extensionally equal. We easily
see that PA C �PA�PA? ` � QU ?, and, hence, QU ` � QU ?. We conclude that
degall.U / D deg.U / D 2 and degall. QU/ D deg. QU/ D 1.

We note that the arithmetics in our example are †1-unsound. It is unknown
whether we can find two extensionally equal theories V and V 0 and two arith-
metics N WD hS1

2; �; V i and N 0 WD hS1
2; �; V

0i such that N and, a fortiori, N 0 are
†1-sound that give rise to different provability logics. In the case V ` expN ,
where exp is the axiom stating that exponentiation is total, we will see that
prlall.V / D prl.N / D GL D prl.N 0/ D prlall.V 0/. So any counterexamples for
prl.N / and prl.N 0/ should fail to prove the totality of exponentiation for N , and
any counterexamples for prlall.V / and prlall.V 0/ should not contain any †1-sound
arithmetic M that proves the principle expM .

Because of intensionality, provability logics and degrees need not be preserved by
bi-interpretation. To get the appropriate notion of sameness that preserves provability
logics and degrees we consider bi-interpretability for S1

2-verifiable interpretations:
� K W U B V is S1

2-verifiably an interpretation, if S1
2 ` 8A .�VA ! �UA

K/.
We have chosen the formalized version of the theorems formulation of interpretabil-
ity. This is convenient but not really necessary. As Emil Jeřábek pointed out to me,
Buss’s witnessing theorem implies that S1

2-verifiable axioms-interpretability implies
S1

2-verifiable theorems-interpretability.
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Theorem 4.4 Suppose that K W U ! V and M W V ! U form a bi-
interpretation. Suppose further that both K and M are S1

2-verifiably interpreta-
tions. Let N be an arithmetic in U . Then, K ı N is an arithmetic in V . We have
prl.K ıN/ D prl.N /. It follows that prl.U / D prl.V /. Similarly for the deg.

Proof We first note that (‡) U proves, for some F that “F is an isomorphism be-
tween IDU andM ıK.” It follows that S1

2 verifies the formalization of (‡). Similarly
for the isomorphism between IDV and K ı M . Thus, we may conclude that (†)
S1

2 ` �UA $ �VA
K , and so forth.

Suppose that � is an N -translation. We prove by induction on ' that, for all ', we
have V ` .�.'//K $ .K ı �/.'/. The only interesting case is when ' D � . We
have

V `
�
�.� /

�K
$

�
�N

U �. /
�K (1)

$ �KıN
U �. / (2)

$ �KıN
V

�
�. /

�K (3)
$ �KıN

V .K ı �/. /: (4)

We note that step (3) uses (†) and that step (4) uses the induction hypothesis.
Suppose that ' is in prl.K ı N/; then, for any N -translation � , we have

V ` .K ı �/.'/. Ergo, V ` �.'/K . Hence, U ` �.'/. It follows that ' 2 prl.N /.
Conversely, suppose that ' is in prl.N /. Then, by Theorem 4.2, it follows that

' is in prl.M ı K ı N/. By the above argument applied with V and U and K and
M interchanged and with K ı N in the role of N , we find the following. If ' is in
prl.K ı N/, then ' is in prl.M ıK ı N/. Hence, if ' is in prl.K ı N/, then ' is in
prl.N /.

Thus, if U and V are bi-interpretable via S1
2-verifiable interpretations, then the in-

terpretations provide an isomorphism between their arithmetics that preserves � and
deg and prl.

5 Solovay’s Theorem

In this section, we study the forms that Solovay’s theorem takes in various settings.

5.1 The Guaspari–Solovay system R� In this subsection we give a careful analysis
of the proof of Solovay’s theorem. We follow the modal presentation of the proof
due to Dick de Jongh, Marc Jumelet, and Franco Montagna in their paper [9].

We introduce the logic R� of Guaspari and Solovay [14] and some subsystems of
this logic. The language of R� is given by

� ˛ WWD p0 j p1 j � � � ,
� ' WWD ˛ j ? j > j :' j �' j .' ^ '/ j .' _ '/ j .' ! '/ j �' < �' j

�' � �'.
The logic R� is axiomatized by the axioms and rules of GL (for the extended

language) plus the following axioms:
(R�1) ` �' � � ! �',
(R�2) ` .�' � � ^ � � ��/ ! �' � ��,
(R�3) ` �' < � $ .�' � � ^ : � � �'/,
(R�4) ` �' ! .�' � � _ � � �'/,
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(R�5) ` �' � � ! �.�' � � /,
(R�6) ` �' < � ! �.�' < � /.

We can split Axiom R�4 into two parts that are jointly equivalent to R�4:
(R�4a) ` �' � �' ! .�' � � _ � � �'/,
(R�4b) ` �' ! �' � �'.

We will consider two subsystems of R�, to wit, R�
0 and R�

1 . R�
0 is given by the

axioms and rules of GL (for the extended language) plus R�1, R�2, R�3, R�4a, and
R�

1 is R�
0 plus R�4b; in other words, R�

1 is given by R�1, R�2, R�3, R�4.

5.2 Arithmetical interpretations of R� Consider any arithmetical theory U and any
arithmetic N in U . We specify what it is to be an interpretation of the language of
R� for U;N .

We remind the reader of the witness comparison notation. We define, for any
C D 9x C0.x/ and D D 9y D0.y/:

� C � D WD 9x .C0.x/ ^ 8y < x :D0.y//,
� C < D WD 9x .C0.x/ ^ 8y � x :D0.y//,
� .C � D/? WD .D < C/.

We interpret the language of R� as follows. An N -translation � sends the propo-
sitional variables to U -sentences, commutes with the propositional connectives, and
satisfies

� �.�'/ D provN
U .p�.'/q/,

� �.�' � � / D provN
U .p�.'/q/ � provN

U .p�. /q/,
� �.�' < � / D provN

U .p�.'/q/ < provN
U .p�. /q/.

We assume that we are employing an ordinary single conclusion proof predicate.
A modal formula ' is N -valid if for all N -translations � , we have U ` �.'/.

It is easily seen that the theory R�
0 is N -valid, for any N . The principles R�4b,

on the one hand, and R�5 and R�6, on the other, are not known to be N -valid, for
example, in the case N D IDS1

2
.

The principle R�4b is a modal articulation of a special case of the minimum
principle. It tells us that if a certain sentence has a proof, then it has a minimal
proof. Since the proof predicate is �b

1.S
1
2/, a reasonable principle to ask for is the

†b
1-minimum principle, that is, Buss’s minimization axiom †b

1-MIN. By the results
of [6, Section 2.9], this principle is equivalent over S1

2 with †b
1-induction, that is,

Buss’s principle †b
1-IND. This means that a salient not-too-strong theory in which

we have R�4b is the theory T1
2. Thus, if U ` .T1

2/
N , then R�

1 is N -valid.
The principles R�5 and R�6 are instances of sentential 9…b

1-completeness. Is
there a natural theory extending T1

2 that is as weak as possible that delivers this
principle? Of course, B0 WD T1

2 C ¹S ! �S1
2
S j S 2 9…b

1-sentº does the trick, but
this principle involves coding. Let J WD ¹x j 2x #º. We define

B WD T1
2 C ¹S 2 9…b

1-sent j S ! SJ
º:

Since the proof of completeness for 9…b
1-sentences only needs one exponent, we find

B ` S ! �S1
2
S , for S a 9…b

1-sentence. So B extends B0.7 Thus, if U ` BN , then
R� is N -valid.

The two main theorems concerning provability logic of this paper, to wit The-
orems 5.11 and 5.15, will employ T1

2 to ensure the principle R�4b. In contrast,
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we will not use B to obtain R�5 and R�6. This last theory is, in a sense, still too
strong. The theory T1

2 is interpretable in S1
2 on a cut, but B is locally but not globally

interpretable in S1
2. See Remark 5.1.

Remark 5.1 The two minimal salient theories in the literature in which we have
B0 are EA and I…�

1 . Since I…�
1 does not fit our framework, we will consider

I…�
1 C �1 instead. The theory B is a subtheory of both EA and of I…�

1 C �1.
The theories EA and I…�

1 have the same B†1-consequences (see [18] or [8]).
In [8, Theorem 1.3(2)] it is shown that the B†1-consequences of I…�

1 and, hence,
of EA can be axiomatized by the theory

CFL WD I�0 C ¹S 2 †1-sent j S ! SJ
º:8

Clearly, CFL C�1 extends B. The theories I…�
1 C�1 and, a fortiori, CFL C�1 and

B are locally interpretable in S1
2. The proof that I…�

1 C�1 is locally interpretable in
S1

2 can be found in Visser [41]. Thus, they are locally weak. One can show that S1
2

does not interpret B, so B is not a weak theory and, a fortiori, neither are CFL C�1

and I…�
1 C �1. To prove this one shows that B ` conn.S1

2/, for every n. By the
results of [25], S1

2 cannot interpret S1
2 C ¹conn.S1

2/ j n 2 !º. See also, for example,
Visser [38].

5.3 The basic proof In this subsection we present the version of Solovay’s proof that
is due to de Jongh, Jumelet, and Montagna.

Our first aim is to embed a finite Kripke frame for ordinary modal logic in the
logic R� extended with a finite set of constants and a finite set of axioms concerning
these constants. Via the arithmetical validity of our modal theory this embedding
subsequently induces an embedding in an arithmetic.

Let F be a finite, irreflexive, transitive Kripke frame on worlds ¹0; : : : ; n � 1º.
Our frame need not be rooted.

We write i k j for i and j are incomparable, that is, i � j and j � i .
For i D 0; : : : ; n � 1, we add constants `i to the language of R�. Consider the

following axioms:
(F 1) ` `i $ .�: `i ^

V
j �i Þ`j ^

V
j ki

W
k�i; kkj �: `k < �: `j /;

(F 2) for i ¤ j , we have ` �: `i � �: `j ! �: `i < �: `j .
We add these axioms to R�

i and to R�, thus obtaining R�
i;F

and R�
F

. (Here we let
the axioms and rules of R�

.i/
apply to the extended language with the new axioms.)

We adhere to the usual convention that the empty conjunction is > and the empty
disjunction is ?.

TheN -interpretation of these principles is given as follows. By the multiple fixed-
point lemma we find sentences Li such that

S1
2 ` Li $

�
�U :LN

i ^

^
j �i

ÞLN
j ^

^
j ki

_
k�i; kkj

�U :LN
k < �U :LN

j

�
:

We will assume that, for i ¤ j , we have Li ¤ Lj .9 We demand that
�.`i / WD LN

i . Thus we treat the `i as constants.10 For an arbitrary arithmetic
N this gives us the validity of R�

0;F
.

Below we want to reason in an informal way in the theory R�
.1/;F

. We want to
reason as if we have predicate logic available, so that we can talk about statements
like i � j and so that we can quantify over the nodes of F . These problems can be
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solved as follows. A statement like i � j in the context of R�
.1/;F

stands for > when
it is true and for ? when it is false. Quantification over our finite domain is handled
by translating it to iterated conjunctions and disjunctions.

We define
� hi WD .�: `i ^

V
j ki

W
k�i; kkj �: `k < �: `j /.

Lemma 5.2 In R�
1;F

we have the following. Suppose i k j ; then : .hi ^ hj /. In
other words, hi and hj imply i � j or j � i .

Proof Reason in R�
1;F

. Suppose i k j and hi and hj . Consider the i 0, such that
i 0 � i , i 0 k j , and �:`i 0 . We note that there is such an i 0, to wit i , because
i � i , i k j and �: `i . The �:`i 0 are linearly ordered in the witness comparison
ordering <. Suppose that �:`i? is the <-smallest such element. Consider the j 0,
such that j 0 � j , j 0 k i , and �:`j 0 . The node j is an example of such a j 0.
The �:`j 0 are linearly ordered in the witness comparison ordering <. Suppose that
�:`j ? is the �-smallest such element.

By the second conjunct of hi applied to j ?, we find �: `i? < �: `j ? . By the
second conjunct of hj applied to i?, we find �: `j ? < �: `i? , a contradiction.

Lemma 5.3 In R�
1;F

we have the following. Suppose i ¤ j ; then : .`i ^ `j /.

Proof Reason in R�
1;F

. In the case when i and j are incomparable, this is imme-
diate by Lemma 5.2. Suppose, for example, i � j . Suppose `i and `j . From `i , we
have Þ`j , and, from `j , we have �: `j , a contradiction.

Lemma 5.4 In R�
1;F

we have the following result. Suppose hi and : `i . Then, for
some j � i , we have hj .

Proof Reason in R�
1;F

. Suppose hi and : `i . Then for some j 0 � i , we have
�: `j 0 . The �: `j 0 with j 0 � i can be linearly ordered by the witness comparison
ordering <. Let �: `j ? be the <-minimal element among these j 0.

Consider any m k j ?. If m k i , by hi , we can find a k such that k � i � j ?, and
k k m and �: `k < �: `m. If not m k i , we must have i � m. In the case �:`m,
by the choice of j ?, we find �: `j ? < �: `m. In the case : �: `m, the axioms of
R� imply �: `j ? < �: `m. So in all cases we can find a k such that k � j ? and
k k m and �: `k < �: `m. We may conclude hj ? .

Lemma 5.5 In R�
1;F

we have the following result. Suppose hi ; then, for some
j � i , we have `j .

Proof Reason in R�
1;F

. Suppose hi . If `i , we are done. If not, by Lemma 5.4,
there is a i 0 � i such that hi 0 . If `i 0 , we are done. By repeating this procedure, we
eventually find a j � i , such that `j .

Lemma 5.6 In R�
1;F

we have the following result. Suppose �: `i . Then, for some
j , we have `j .

Proof Reason in R�
1;F

. Suppose �: `i . Consider all j 0 such that �: `j 0 . There
is one such j 0, to wit i . The �: `j 0 are linearly ordered by the witness comparison
ordering <. Let j ? be the minimal such. It is easy to see that hj ? . By Lemma 5.5,
we find a j � j ? such that `j .
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We define the theory R�
2;F

as R�
1;F

plus the following axioms:
(F 3) `

V
i<n.hi ! �hi /.

Let K be any Kripke model on the frame F . We define an interpretation �? from
Lmod to the closed formulas of the language of R�

F
, by setting �?.p/ WD

W
j 
p `j ,

where �? commutes with the propositional connectives and �. We have the follow-
ing.

Theorem 5.7 We have, for every formula ' of the modal language, the following:
� if i 
 ', then R�

2;F
` `i ! �?.'/;

� if i ± ', then R�
2;F

` `i ! : �?.'/.

Proof The proof is by induction on '. The cases of the atoms and of the proposi-
tional connectives are trivial using Lemma 5.3.

Suppose ' D � .
Suppose i 
 � . We reason in R�

2;F
. Suppose `i . Then, hi and, hence, �hi .

By Lemma 5.5, in combination with �: `i , we find �
W

j �i `j . So, by the induction
hypothesis, we have ��?. /.

Suppose i ± � . Then, for some j � i , j ±  . We reason in R�
2;F

. Sup-
pose `i . It follows that Þ`j . Ergo, by the induction hypothesis, Þ: �?. /. Hence,
: ��?. /.

Remark 5.8 The most naive attempt to avoid the use of ` hi ! �hi is to replace
�: `i by �

W
j �i `j (where we read Þ as : �:) everywhere in the above defini-

tions and arguments. This certainly will give us the .i 
 � /-part in the proof of
Theorem 5.7 for free. It may amuse the reader to try this and to see where and why
precisely it goes wrong.

5.4 Application to arithmetic In this subsection, we articulate what Theorem 5.7
tells us about a theory U with arithmetic N .

Consider a theory U and an arithmetic N in U . Suppose that deg.N / D ˛ and
U ` .T1

2/
N . Suppose GL˛ ° '. Let K be a finite counter Kripke model with

frame F . We choose K in such a way that the set of worlds is ¹0; : : : ; n � 1º, the
root is 0, and 0 ± '. Note that the depth of the root must be k � ˛.

Let � be the N -interpretation of the language of R�
F

that is generated by
`i 7! LN

i . (We are only interested in � on the closed fragment of R�
F

.) Clearly, �.hi /

is of the form HN
i , where Hi is S1

2-provably equivalent to an 9…b
1-sentence. Let �?

be the interpretation of the language of provability logic in the closed fragment of
R�

2;F
generated by p 7!

W
i
p `i . We take the interpretation � of the language of

provability logic into the language of U to be � ı �?. Thus, � is the N -interpretation
generated by p 7!

W
i
p L

N
i . We assume that U `

V
.Hi ! �UHi /, in other

words, that R�
2;F

is N -valid. We show that U ° �.'/.
Suppose U ` �.'/. Since U ` LN

0 ! : �.'/, we find that U ` :LN
0 . It

follows that U ` �N
U :LN

0 , and, hence U `
W

j <nL
N
j . Since U ` :LN

0 , we find
U `

W
0<j <N L

N
j . Thus, since each j > 0 satisfies �k�1?, we findU ` �N;k�1

U ?,
quod non. We may conclude that U ° �.'/.

The following theorem is an immediate consequence of these considerations.
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Theorem 5.9 Consider a theory U and an arithmetic N in U . We suppose
that U ` .T1

2/
N and U ` SN ! �N

U S
N , for all sentences S in 9…b

1. Then
prl.N / D GL C �deg.N /?.

5.5 All arithmetics of a theory In this subsection, we apply the Solovay argument to
all arithmetics of a theoryU . We first show how we can improve our local arithmetic.

Consider any set of †1-sentences S with n elements. Let CS WD
V

S2S .S !

�S1
2
S/. Let J be an S1

2-cut such that S1
2 ` 8x 2 J 9y 22x

D y. We define
J0 WD ID, JkC1 WD IDhCS i.J ı Jk/, JS WD Jn. The following argument is taken
from Visser [33].

Lemma 5.10 We have S1
2 ` C

JS

S
.

Proof Reason in S1
2. If we have CS , clearly Jn D ID, and we are done. Otherwise,

for some S in S , we have S and : �S1
2
S . So, inside J , the sentence S will be false.

It follows that, inside J , the number of true S ’s from S is at least one less than inside
ID. Now the game repeats itself inside J for Jn�1. Each time we have :CS , we move
inside J and loose at least one true S . If at some point, we have CS , we are done.
Otherwise we end up with zero true S ’s and we have CS in Jn. (Since n is standard
the whole argument can be spelled out with big disjunctions, and so forth.)

We have the following theorem.

Theorem 5.11 Consider any theory U . We have provall.U / D GL C �deg.U /?.
We note that the result also is valid for the case when degall.U / D 0, that is, when
either U is inconsistent or S1

2 is not interpretable in U .

Proof Consider any theory U , and suppose degall.U / D ˛. It is easily seen that
GL C �˛? � prl.U /.

Suppose GL˛ ° '. Then, there is a finite Kripke model K with nodes
¹0; : : : ; n � 1º and with root 0, such that 0 ± ' and d.0/ � ˛.

Since degall.U / WD sup.¹deg.M/ j M is an arithmetic in U º/ and d.0/ is finite,
we can find an arithmetic N0 with d.0/ � deg.N0/ � ˛. We can shorten N0 to an
arithmetic N1 � N0 in which we have T1

2 (see, e.g., [15]; in fact, we can shorten N0

to a cut on which we have I�0 C�1). We note that deg.N1/ � deg.N0/ � d.0/.
We simultaneously construct a cutN inN0 and theLi using the Gödel fixed-point

lemma. We find Li such that

S1
2 ` Li $

�
�U :L

N1ıJH

i

^

^
j �i

ÞLN1ıJH

j ^

^
j ki

_
k�i; kkj

�U :L
N1ıJH

k
< �U :L

N1ıJH

j

�
:

Here
� Hi WD .�U :L

N1ıJH

i ^
V

j ki

W
k�i; kkj �U :L

N1ıJH

k
< �U :L

N1ıJH

j /,
� H WD ¹H0; : : : ;Hn�1º.

We note that we have indeed a valid application of the fixed-point lemma since H

occurs “inside the box.”
We take N WD N1 ı JH . We note that S2

1 ` �S2
1
Hi ! �UH

N
i . Hence, we

find that U ` HN
i ! �N

UH
N
i . Moreover, U ` .T1

2/
N , since T 1

2 is downwards
preserved over �. Finally, deg.N / � deg.N1/ � d.0/.
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We now employ the interpretation � of Section 5.4 using theLi constructed above.
We find U ° �.'/.

5.6 Theories with a †1-sound arithmetic In this subsection we provide a sufficient
condition for a theory to contain an arithmeticN with prl.N / D GL. We will use the
following facts.

Fact 5.12 Suppose that N is an arithmetic in U . Then U B .U C �N
U ?/.

This insight was first due Solomon Feferman in his classical paper [10]. The simple
proof below was discovered independently by Per Lindström (see [11]) and the author
[31].

Proof Suppose thatN is an arithmetic in U . We have U C:�N
U ? ` ÞN

U .�
N
U ?/,

by Löb’s theorem. Hence, it follows that .U C :�N
U ?/ B .U C ÞN

U �N
U ?/. So,

using a Henkin interpretation, we may conclude that .U C :�N
U ?/ B .U C �N

U ?/.
On the other hand, we trivially have .U C �N

U ?/ B .U C �N
U ?/. Thus, using a

disjunctive interpretation, we find that U B .U C �N
U ?/.

Fact 5.13 SupposeU B V . LetN be an arithmetic in V . ThenU B .V C�N
U ?/.

Proof Suppose M W U B V . We apply Fact 5.12 to the arithmetic M ı N to find
the desired result.

We note that Facts 5.12 and 5.13 can be considered as nice and general formulations
of the second incompleteness theorem. Suppose that, for some arithmetic N in U ,
we would have U ` conN .U /. Since, by Fact 5.12, we have U B .U C �N

U ?/, it
follows that U is inconsistent.

Fact 5.14 Suppose that U B V , and suppose that U contains a †1-sound arith-
meticN ; that is, for all†1-sentences S , ifU ` SN , then S is true. ThenU Bfaith V .

This fact is a direct consequence of Theorem B.4 of Appendix B. It was first proved
in Visser [36]. The basic idea of the proof is due to Per Lindström. We prove the
following theorem.

Theorem 5.15 Suppose that U contains a†1-sound arithmetic N0. Then there is
an N in U such that prl.N / D GL.

Proof Suppose that U contains a †1-sound arithmetic N0. We can find an inter-
pretation of T1

2 by shortening N0. By Fact 5.13, we find U B .T1
2 C �U ?/. Let

W be T1
2 plus sentential †1-completeness for U with respect to each arithmetic M

in U . Since T1
2 C �U ? extendsW , we find U B W . By Fact 5.14, we can find a K

such that K W U Bfaith W . Finally, let N WD S1
2 # K. Since W is a true theory, N

is a †0
1-sound arithmetic in U . Hence deg.N / D 1. By Theorem 5.9 we find that

prl.N / D GL.

6 Deep Arithmetics

In this section we study the fine structure of the arithmetics of a finitely axiomatized
sequential theory. Finitely axiomatized sequential theories have many surprising
properties. The present section builds on and extends a line earlier work, to wit:
Smoryński [27], Pudlák [25], Krajíček [19], and Visser [35], [36].
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We have the following definition. Suppose that A is a finitely axiomatized se-
quential theory. (We confuse these theories with their single axiom.) Let N be an
arithmetic in A.

� N is †1-veracious in A if and only if

S1
2 ` 8S 2 †1-sent

�
�AS

N
! �S1

2

�
con�.A/.A/ ! S

��
:

Thus, we see that †1-veracity is the S1
2-verifiable †1-conservativity of N

over ES1
2

.S1
2

Ccon�.A/.A//:
� N is strong in A if and only if A ` conN

�.A/
.A/;

� N is deep in A if and only if N is both †1-veracious and strong in A.
†1-veracity is connected to †1-soundness: this is elucidated by the following

theorem.

Theorem 6.1 Suppose that A is a finitely axiomatized sequential theory and N is
†1-veracious in A. Then,

I�0 C supexp C con.A/ ` 8S 2 †1-sent
�
�AS

N
! true.S/

�
:

Here true is a †1-truth predicate.

Proof By [42], the theory EA, also known as I�0 C exp, proves uniform
…2-reflection for cut-free provability in S1

2. Hence, I�0 C supexp proves uni-
form …2-reflection for ordinary provability in S1

2. Our theorem is immediate from
this.

In the definition of †1-veracious theory we may replace �.A/ by any m � �.A/, in
the light of the following theorem.

Theorem 6.2 Let A be a finitely axiomatized sequential theory. Suppose that
m � �.A/. We have

S1
2 ` 8S 2 †1-sent

�
�S1

2

�
conm.A/ ! S

�
$ �S1

2

�
con�.A/.A/ ! S

��
:

Proof The right-to-left direction of our theorem is trivial.
To go from m-provability to �.A/-provability we need to eliminate standard

(proof-theoretical) cuts. So we only need a multiexponential transformation.11 Thus,
there is an S1

2-cut J , such that S1
2 ` con�.A/.A/ ! conJ

m.A/.
Reason in S1

2. Consider any †1-sentence S . Suppose that �S1
2
.conm.A/ ! S/.

So, �S1
2
.conm.A/ ! S/J . It follows that �S1

2
.conJ

m.A/ ! SJ /. We have
�S1

2
.SJ ! S/, since we can find a p-time transformation of S into a proof of

.SJ ! S/ by the obvious recursion on the construction of S . (Note that the recur-
sion is over †1-formulas rather than sentences.) Hence, �S1

2
.conJ

m.A/ ! S/. Thus,
we may conclude that �S1

2
.con�.A/.A/ ! S/.

To illustrate the theorem, let us briefly consider the case where S WD ?. We have

S1
2 ` �S1

2
inconm.A/ $ �S1

2
incon�.A/.A/:

We note that the “guarding” boxes are essential. We definitely do not generally have
that S1

2 proves the equivalence inconm.A/ and incon�.A/.A/, which would involve a
multiexponential transformation.
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If an arithmetic is deep, we can strengthen the implication in †1-veracity to a
bi-implication.
Theorem 6.3 Let A be a finitely axiomatized sequential theory. Suppose that N
is a deep arithmetic in A. We have

S1
2 ` 8S 2 †1-sent

�
�AS

N
$ �S1

2

�
con�.A/.A/ ! S

��
:

We leave the simple proof to the reader.
Theorem 6.4 Let A be a finitely axiomatized sequential theory. Each of the fol-
lowing classes is S1

2-verifiably downwards closed under �: the †1-veracious theo-
ries, the strong theories, and the deep theories.
We leave the simple proof to the reader. Iterated inconsistencies take a simple form
for †1-veracious arithmetics, as will be proved in the next theorem.
Theorem 6.5 Suppose that A is sequential and that N is a †1-veracious arith-
metic in A. We have

.�n/ S1
2 ` �A�N;n

A ? $ �n

S1
2

�A?:

Proof We prove our theorem by induction on n. The case n D 0 is trivial. Suppose
that we have .�n/. Note that it follows that

.��
n/ S1

2 ` �S1
2
�A�N;n

A ? $ �S1
2
�n

S1
2

�A?:

We prove .�nC1/. We have in S1
2,

�A�N;nC1
A ? ! �S1

2

�
con�.A/.A/ ! �A�N;n

A ?
�

(5)

! �S1
2
.�A;�.A/? _ �A�N;n

A ?/ (6)

! �S1
2
�A�N;n

A ? (7)

! �S1
2
�n

S1
2

�A? (8)

! �nC1

S1
2

�A? (9)

! �S1
2
�n

S1
2

�A? (10)

! �S1
2
�A�N;n

A ? (11)

! �A�N
A �N;n

A ? (12)

! �A�N;nC1
A ?: (13)

Here step (5) follows by †1-veracity. Steps (8) and (11) use .��
n/. Finally, Step (12)

uses the fact that we have S1
2 inside N .

Corollary 6.6 Suppose that A is a finitely axiomatized sequential theory and that
N is a †1-veracious arithmetic in A. We have

(i) A ` �N;nC1
A ? $ .�n

S1
2

�A?/N ;

(ii) I�0 C supexp ` �A�N;n
A ? $ �A?.

In the next theorem, we establish the existence of lots of deep arithmetics in a finitely
axiomatized sequential theory. The proof of the theorem employs a form of the
Friedman–Goldfarb–Harrington fixed point. See [36] for a discussion of this fixed
point.
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Theorem 6.7 For every finitely axiomatized sequential theory A, and, for every
arithmetic N0 in A, there is a deep arithmetic N in A with N � N0. This theorem is
verifiable in S1

2.

The arithmetic N in the theorem is dependent on A and N0. Suppose that we have
a deep arithmetic N for A. Of course, we can extend A to B WD .AC inconN .A//.
Consider the arithmetic N 0 W S1

2 ! B that is based on the same translation as N ,
that is, �N . Clearly, N 0 will not be deep. However, the theorem tells us that we can
shorten N 0 in such a way that we obtain a deep arithmetic for B .

Proof Let A be a finitely axiomatized sequential theory, and let N0 be an arith-
metic in A.

Let true be a †1-truth predicate. For the construction of such a truth predicate,
see [15, Chapter V(5)]. The two classical works on this subject are [20] and [23].
We will use the following two properties of true: for S in †1,

(T1) S1
2 ` true.S/ ! S .

(T2) Suppose that J is an S1
2-cut such that S1

2 ` x 2 J ! 22x exists; then, we
have S1

2 ` SJ ! true.S/.
We remind the reader of the witness comparison ordering. We define, for any

C D 9x C0.x/ and D D 9y D0.y/,
� C � D WD 9x .C0.x/ ^ 8y < x :D0.y//,
� C < D WD 9x .C0.x/ ^ 8y � x :D0.y//,
� .C � D/? WD .D < C/, and .C < D/? WD .D � C/.

By the Gödel fixed-point lemma, we find R such that, for a suitably chosen m:

S1
2 ` R $ true.S/ � �A;mR

N0 :

We note that the complexity �.R/ of R is not dependent on S andm, since numerals
do not change the complexity of a formula even if the numeral is given a relational
representation. Moreover, for any B andK, �.BK/ is linear in �.B/. Hence, we may
choose m so large that max.�.A/; �.RN0// � m.

We choose N1 to be an initial segment of N0 such that
(U1) A ` �N1

A;mB ! B , for any B with �.B/ � m;
(U2) A ` .8S 2 †1-sent .true.S/ ! true.S/ � true.S///N1 ;

in other words, A proves that, inN1, if true.S/ is witnessed, then true.S/ has
a minimal witness.

We can always find such an N1 since (i) we have a truth predicate for formulas of
complexity � m and since (ii) we can interpret I�0 C�1 in S1

2.
Let J be an S1

2-cut such that S1
2 ` x 2 J ! 22x exists. We take N WD N1 ı J .

We note that N1 is strong and that, hence, N is strong. We show that N is
†1-veracious.

We reason, for the rest of the proof, in S1
2. Consider any †1-sentence S . Suppose

�AS
N . It follows, by (T2) that �A.true.S//N1 . Ergo, by (U2), �A.R _ R?/N1 .

Thus, �A.R _ �A;mR
N0/N1 . Hence, by (U1), �A.R

N1 _ RN0/. Since N1 is a cut
of N0, we get �AR

N0 .
By Lemma 3.7, we may conclude that (†) �S1

2
�A;mR

N0 .
We can find an S1

2-cut J ?, on which we have T1
2, so that if something is

A-provable with a proof in J ?, then there is a minimal proof. We can arrange that J ?



The Arithmetics of a Theory 103

is so small that S1
2 ` x 2 J ? ! 22x exists. We find from (†): �S1

2
.�A;mR

N0/J
? .

Hence, �S1
2
.R _R?/J

? . We may conclude that

�S1
2

�
true.S/ _ .R?

^ �A;mR
N0/

�J ?

:

Since we have †1-completeness in the presence of double exponentiation, it follows
that

�S1
2

�
true.S/ _ �A;m.R

?
^R/N0

�
:

Hence, �S1
2
.S _ �A;m?/, or, in a different formulation: �S1

2
.conm.A/ ! S/.

By Theorem 6.2, we may conclude that �S1
2
.con�.A/.A/ ! S/.

We have proved that, for every finitely axiomatized sequential theory A, and, for
every arithmetic N0 in A, there is a deep arithmetic N in A with N � N0. To
see that this argument is verifiable in S1

2, we have to see that the construction of N
from N0 is feasible. We note that m in our argument remains standard even if S is
nonstandard. As a consequence, for example, ıN D '.ıN0

;ZN0
; SN0

; : : :/, where '
is a fixed standard context. Thus N will be p-time in N0.

Discussion 6.8 Clearly, the second incompleteness theorem implies that adding
con.U / to a consistent theory U that contains an arithmetic gives us a stronger the-
ory, a theory that is, so to say, one gödel stronger. However, it is clear that we have
to ask: to what arithmetic in U are we adding the consistency statement?

Consider GB, and let neumann be the interpretation of S1
2 in the finite von Neu-

mann ordinals. Clearly,

PA ° con.GB/ ! con
�
GB C conneumann.GB/

�
:

In fact, by the second incompleteness theorem, GB cannot prove this statement with
respect to the neumann-interpretation. However, for a †1-veracious arithmetic N in
GB, we have

I�0 C supexp ` con.GB/ ! con
�
GB C conN .GB/

�
:

Thus, in which theories the relative consistency of a theory plus its consistency state-
ment with respect to that theory can be verified is dependent on the chosen arithmetic.
Adding conN .GB/ adds less strength to GB than adding conneumann.GB/ does.

So the gödel is not such a good unit when we define it as how much stronger a
theory becomes when we add its consistency statement. My proposal would be to
take as the theory that is one gödel stronger: S1

2 C con.U /. Note that the strength of
S1

2 C con.U / still depends on the chosen axiomatization of U .
In the case of a finitely axiomatized sequential theory A and a†1-veracious arith-

metic N in A, we have

S1
2 ` con

�
AC conN .A/

�
$ con

�
S1

2 C con.A/
�
:

So, by the measure of S1
2-verifiable relative consistency, adding the consistency state-

ment for a †1-veracious arithmetic in A is adding one gödel. Note that there are no
arithmetics in, say, PA with the same property.

The next theorem shows that under a verifiability condition, Theorem 6.7 can be
strengthened to theories that are mutually interpretable with a finitely axiomatized
sequential theory.
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Theorem 6.9 Suppose thatA is a consistent finitely axiomatized sequential theory
and that U is any theory. Suppose K W A B U and M W U B A. Then, there is an
arithmetic N in U , such that

S1
2 ` K W A Bthm U ! 8S 2 †1-sent

�
�US

N
! �S1

2

�
con�.A/.A/ ! S

��
:

Here Bthm stands for theorems-interpretability, where we demand that the interpret-
ing theory prove the translations of the theorems of the interpreted theory. In the
context of arithmetics without†1-collection this notion is not provably equivalent to
the usual notion of axioms-interpretability.

Proof Suppose K W A B U and M W U B A. We find �S1
2
.M W U B A/.

Consider any arithmetic N0 in A. We note that N1 WD N0MK is also an arithmetic
in A.12 Let N2 be an arithmetic in A such that N2 � N0 and N2 � N1. We may
assume that inN2 we have I�0 C�1, or a sufficiently large, finitely axiomatized part
of I�0 C�1.

Let k be the complexity of .true.x//N0 , where true is the †1-truth predicate. By
Theorem 3.8, we can choose m so large that, S1

2-verifiably,

8B 2 �k

�
�A.�N2

A;mB ! B/ ! �A;mB
�
: (14)

Let N3 � N0 be an arithmetic in A such that, verifiably in S1
2,

8B 2 �m �A.�N3

A;mB ! B/: (15)
Let N4 be a cut of N3 such that

�A8x 2 N4 9y 2 N3 2
2x

D y: (16)
Finally, we take N WD N4M . So, N is an arithmetic in U . By the Gödel fixed-

point lemma, we find R such that

�S1
2

�
R $ true.S/ � �A;mR

N0
�
: (17)

We reason in S1
2. We have, for all †1-sentences S ,

�A

�
SN4 !

�
true.S/

�N3 (18)
! .R _R?/N3 (19)
! .RN0 _ �N3

A;mR
N0/ (20)

! RN0
�
: (21)

SupposeK W A Bthm U . We also haveM W U B A. Consider any S , and suppose
�US

N . It follows that �AS
N4MK . By the previous result, we may conclude that

�AR
N0MK , that is, �AR

N1 . From this, we have

�A .�N2

A;mR
N0 ! RN1 ^ �N2

A;mR
N0 (22)

! RN2 (23)
! RN0/: (24)

So, by equation (14), we have �AR
N0 . It follows that �S1

2
�A;mR

N0 . We now may
repeat the reasoning of the proof of Theorem 6.7. So we get

�S1
2

�
con�.A/.A/ ! S

�
;

and we are done.
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7 An Example

In this section, we provide an example of a sequential theory W , such that the de-
grees of the arithmetics in W are finite and cofinal in !. So, for every n there is an
arithmetic in W with degree k � n, but there is no arithmetic in W with degree 1.

We start with a consistent finitely axiomatized sequential theory A. Pick any
arithmetic N in A. Let † be the signature of A, and let ‚ be the signature of
arithmetic.

Let � W ‚ ! † be a translation. We define Q� WD hS1
2; �h.S1

2/
� i�N ; Ai. Here we

assume that the axioms of identity are an explicit part of the axiomatization of S1
2. It

is easily seen that Q� is an arithmetic in A. We assign to any translation � W ‚ ! † a
Gödel number gn.�/. We define

W WD AC
®
.�gn.�/

S1
2

�A?/Q�
j � W ‚ ! †

¯
:13

We note that there is a p-time algorithm to decide whether a sentence is of the
form .�gn.�/

S1
2

�A?/Q� . So, W is �b
1-axiomatized.14

Consider any arithmetic K in W . We have W ` .�gn.�K /

S1
2

�A?/Q�K . Clearly,
in W , the interpretations K and Q�K " W coincide; hence, by an easy induction,
W ` �K;gn.�K /C1

W ?. So, each arithmetic K in W has a finite degree.
We show that, for any n, the theory W contains an arithmetic with degree � n.

Consider any number n.
LetN ? be a strong arithmetic in A that has an initial embedding in all arithmetics

Q� in A with gn.�/ � n. Let N ı � .N ? " .A C �N ?

A ?// be a deep arithmetic in
AC �N ?

A ?. Let Nı WD Q�N ı . We note that Nı is an arithmetic in A.
We want to show that W ° �Nı"W;n

W ?. This will be a direct consequence of the
following claim.

Claim We have S1
2 ` �W �Nı"W;n

W ? ! �n

S1
2

�A?.

We first show how our desired result follows from the claim. Suppose W `

�Nı"W;n
W ?. Since S1

2 is a true theory, the claim gives us, by applying reflection a
number of times, �A?. Quod non. Note that this argument can be formalized in
I�0 C supexp.

Proof of the claim By our conventions, we may write �Nı"W;n
W ? as �Nı;n

W ?. We
will apply this convention to increase readability. We prove by induction that, for
each j � n,

.$j / S1
2 ` �W �Nı;j

W ? ! �j

S1
2

�A?:

For the case j D 0, we have to prove S1
2 ` �W ? ! �A?. We reason in S1

2.
Suppose �W ?. Consider any W -proof p of ?. If p only employs the axiom A, we
are done. Suppose that p employs at least one axiom of the form .�gn.�/

S1
2

�A?/Q� .
Let X be the set of such axioms employed in p. By our assumption X is not empty.

We construct an arithmetic M in A, such that M � Q� , for all � 2 X . Suppose
�0 2 X . For each � we construct an initial embedding F� of an initial segment J� of
Q�0 in Q� . This construction is uniform in � , and jF� j is linear in j� j. We take M to be
the intersection of the J� .
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The definition ofM involves, for example, a conjunction ıM .x/ W$
V

�2X J� .x/.
Why is this conjunction not too big? Under reasonable assumptions, we have

gn.�/ � gn
�
.�gn.�/

S1
2

�A?/Q�
�

� p:

Moreover, jJ� j of is linear in jgn.�/j and, hence, linear in jpj. Moreover the size of
X is < jpj. Hence jM j is bounded by L.jpj/ � jpj, where L is a standard linear
term. So M is below a � .!1.p//

b , for some standard a and b.
Clearly, each axiom in X is implied by �M

A ?. So, we have �AC�M
A

?
? and,

hence �A?, by the second incompleteness theorem.
An alternative way to prove this is to adapt the proof of the second incompleteness

theorem as follows. We still reason inside S1
2. By the Gödel fixed-point lemma, we

construct G such that
�S2

1

�
G $ : �A

_
�2X

G Q�
�
:

Note that the big disjunction exists inside S1
2, since the set X is derived from p. We

have

�S1
2

�
:G ! �A

_
�2X

G Q� (25)

!

�
�A

_
�2X

G Q�
^ �A

^
�2X

�Q�
A

_
�2X

G Q�
�

(26)

!

�
�A

_
�2X

G Q�
^ �A

^
�2X

:G Q�
�

(27)

! �A?

�
: (28)

Step (26) uses the fact that we have 9†b
1-completeness for every Q� .

From our assumption on X , it clearly follows that �
AC

V
�2X � Q�

A
?

?. Hence, we
find �A

W
�2X conQ� .A/, and, so, by (28), �A

W
�2X G

Q� . We may conclude that
�A?.

The nice feature of this second argument is that it does not use sequentiality.
We stop reasoning in S1

2.
We now prove .$j C1/, for jC1 � n, where we use the induction hypothesis .$j /.
We reason again in S1

2. Suppose �W �Nı;j C1
W ?. Our induction hypothesis, $j ,

gives us �W .�j

S1
2

�A?/Nı . Let p be a proof witnessing �W .�j

S1
2

�A?/Nı . Let X

be the set of all � such that .�gn.�/

S1
2

�A?/Q� occurs as an axiom in p. We clearly have

proof
AC¹.�

gn.�/

S1
2

�A?/ Q� j�2Xº

�
p; .�j

S1
2

�A?/Nı
�
: (29)

Let X0 be the set of elements � of X with gn.�/ � j , and let X1 be the set of
elements of X with gn.�/ > j . Since j C 1 � n, we find that N ? � Q� , for any �
with gn.�/ � j . It follows that, inside �S1

2
, �N ?

A ? implies .�gn.�/

S1
2

�A?/Q� , for each
� in X0.

Reasoning as in the case j D 0, we can find an arithmetic M ? in A, such that
M ? � Q� , for all � 2 X1. Moreover, we can choose M ? in such a way that it is deep.
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We have to move in a careful way, at this point, to compensate for our lack of
induction. Clearly, we can find a standard cut J such that

�S1
2
8z 2 J .�j

S1
2

�A? ! �j Cz

S1
2

�A?/: (30)

If follows that for p-time computable f with standard code:

8� 2 X1; 9q < f
�
gn.�/

�
proofS1

2

�
q; .�j

S1
2

�A? ! �gn.�/

S1
2

�A?/
�
: (31)

We note that we can find a p-time computable g with standard code such that

8� 2 X1; 9 r < g
�
gn.�/

�
proofA

�
r; .�M ?;gn.�/

S1
2

�A? ! �Q�;gn.�/

S1
2

�A?/
�
: (32)

Using equations (31) and (32), we can transform the proof p of equation (29) to a
proof s witnessing the following provability:

�
AC�N ?

A
?C.�

j C1

S1
2

�A?/M? .�j

S1
2

�A?/Nı : (33)

Hence, using �B for B ^ �B ,

� S1
2

�
�A.�j C1

S1
2

�A?/M
?

! �
AC�N ?

A
?
.�j

S1
2

�A?/Nı
�
: (34)

Since Nı " .AC �N ?

A ?/ D N ı, we have

� S1
2

�
�A.�j C1

S1
2

�A?/M
?

! �
AC�N ?

A
?
.�j

S1
2

�A?/N
ı�
: (35)

Since M ? is deep, we find

� S1
2

�
�S1

2

�
con�.A/.A/ ! �j C1

S1
2

�A?
�

! �
AC�N ?

A
?
.�j

S1
2

�A?/N
ı�
: (36)

Hence,
� S1

2

�
�j C2

S1
2

�A? ! �
AC�N ?

A
?
.�j

S1
2

�A?/N
ı�
: (37)

Since N ı is deep, we get

� S1
2

�
�j C2

S1
2

�A? ! �S1
2

�
con

�.AC�N ?

A
?/
.AC �N ?

A ?/ ! �j

S1
2

�A?
��
: (38)

It follows that

� S1
2

�
�j C2

S1
2

�A? ! �S1
2
.�A: �N ?

A ? _ �j

S1
2

�A?/
�
: (39)

By the second incompleteness theorem, we have

� S1
2

�
�j C2

S1
2

�A? ! �S1
2
.�A? _ �j

S1
2

�A?/
�
: (40)

Ergo, we have
� S1

2
.�j C2

S1
2

�A? ! �j C1

S1
2

�A?/: (41)

So, by Löb’s theorem,

.�j C2

S1
2

�A? ! �j C1

S1
2

�A?/ ^ �j C2

S1
2

�A?: (42)

We may conclude the following:

�j C1

S1
2

�A?: (43)

This is what we wanted to prove.
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We end this section by providing a bit of information on the relationship between A
and W . By Theorem 6.9, it follows that W is not interpretable in A. On the other
hand, it turns out that W is model-interpretable in A. Consider any model M of A.
In case when for all arithmeticsN in M we have �N

A ?, we find thatM ˆ W . So we
can take the identity translation to provide an inner model of M . Suppose, for some
N , we have M ˆ conN .A/. We note that the proof of .$0/ works for an arbitrary
arithmetic. So we have M ˆ conN .W /. We use the Henkin interpretation to provide
an inner model of W .

Appendix A: More Details on the Basics

In this appendix we explain some basic notions in somewhat more detail.

A.1 Translations and interpretations The notion of interpretation that we will em-
ploy in this paper will be m-dimensional interpretation without parameters. There
are two extensions of this notion: we can consider piecewise interpretations, and
we can add parameters. We refrain from considering piecewise interpretations. We
explain why in Section A.3. We sketch a few basic ingredients of adding parame-
ters in Section A.4. We explain why, in the sequential case, addition of parameters
makes no difference for the provability logic of all arithmetics of a given theory in
Remark 3.10.

Consider two signatures † and ‚. An m-dimensional translation � W † ! ‚

is a quadruple h†; ı;F ; ‚i, where ı.v0; : : : ; vm�1/ is a ‚-formula and where for
any n-ary predicate P of †, F .P / is a formula A.Ev0; : : : ; Evn�1/ in the language
of signature ‚, where Evi D vi0; : : : ; vi.m�1/. In the case of both ı and A all free
variables are among the variables shown. Moreover, if i ¤ j and k ¤ `, then vik is
syntactically different from vj`.

We demand that we have ` F .P /.Ev0; : : : ; Evn�1/ !
V

i<n ı.Evi /. Here ` is prov-
ability in predicate logic. This demand is inessential, but it is convenient to have.

We define B� as follows:
� .P.x0; : : : ; xn�1//

� WD F .P /.Ex0; : : : ; Exn�1/;
� .�/� commutes with the propositional connectives;15

� .8x A/� WD 8Ex .ı.Ex/ ! A� /;
� .9x A/� WD 9Ex .ı.Ex/ ^ A� /.

There are two worries about this definition. First, what variables Exi on the side of the
translation A� correspond with xi in the original formula A? The second worry is
that substitution of variables in ı and F .P / may cause variable clashes. These wor-
ries are never important in practice: we choose “suitable” sequences Ex to correspond
to variables x, and we avoid clashes by ˛-conversions. However, if we want to give
precise definitions of translations and, for example, of composition of translations,
these problems come into play. We will address these problems elsewhere.

We allow identity to be translated to a formula that is not identity. There is some
tension between this choice and the treatment of identity as a logical constant. The
reason is that the notion of logical constant can do several kinds of work. It may be
obligatory in the language and it may be preserved under translation. For identity
we only ask that it is obligatory.

There are several important operations on translations.
� The identity translation is id†. We take ıid†

.v/ WD v D v and F .P / WD P.Ev/.
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� We can compose translations. Suppose � W † ! ‚ and � W ‚ ! ƒ. Then
� ı � or �� is a translation from † to ƒ. We define

– ı��.Ev0; : : : ; Evm� �1/ WD
V

i<m�
ı�.Evi / ^ .ı� .v0; : : : ; vm� �1//

� ;
– P��.Ev0;0; : : : ; Ev0;m� �1; : : : ; Evn�1;0; : : : ; Evn�1;m� �1/ WDV

i<n;j <m�
ı�.Evi;j / ^ .P.v0; : : : ; vn�1/

� /� .
� Let �; � W † ! ‚, and let A be a sentence of signature ‚. We define

the disjunctive translation � WD �hAi� W † ! ‚ as follows. We take
m� WD max.m� ; m�/. We write Ev � n, for the restriction of Ev to the first
n variables, where n � length.Ev/:

– ı� .Ev/ WD .A ^ ı� .Ev � m� // _ .:A ^ ı�.Ev � m�//;
– P� .Ev0; : : : ; Evn�1/ WD .A ^ P� .Ev0 � m� ; : : : ; Evn�1 � m� // _ .:A ^

P�.Ev0 � m� ; : : : ; Evn�1 � m�//.
Note that in the definition of �hAi� we used a padding mechanism. In case, for
example, m� < m� , the variables vm�

; : : : ; vm��1 are used “vacuously” when we
have A. If we had piecewise interpretations, where domains are built up from pieces
with possibly different dimensions, we could avoid padding by building the domain
of disjoint pieces with different dimensions.

A translation relates signatures; an interpretation relates theories. An inter-
pretation K W U ! V is a triple hU; �; V i, where U and V are theories and
� W †U ! †V . We demand that for all axioms A of U , we have V ` A� .

In the context of the formalization of interpretability, we have to distinguish be-
tween axioms-interpretability, which is the notion we just introduced and theorems-
interpretability, where we demand that for all theorems A of U , we have V ` A� . In
the real world these notions are equivalent, but we need a principle like†1-collection
to prove that, so, for example Buss’s theory S1

2 does not “know” this equivalence. See
[32] for more information about this matter.

Remark A.1 The design choice to make interpretations a transition between the-
ories has many advantages. It allows us to build various categories of theories and
interpretations; it allows us to have a decent model functor on categories of theories
and interpretations; in various arguments, it reminds us where we are, and so forth.
However, in some cases, the typing regime is somewhat stifling. For example, if you
have an interpretation K W U ! V and an extension W of V , then it would seem
that K is also an interpretation of U in W . The typing regime forces us to say that it
is a lifting K " W W U ! W ; that is the interpretation based on �K , and so forth. In
this paper we will remain faithful to the typing regime, but we will alleviate it a bit
by the convention below.

� Suppose K W U ! V . We often write AK for A�K , in the context of a theory
W that extends V .

Here are some further definitions.
� We write U for the set of theorems of U . Suppose K W U ! V . We write
K WD ¹A j V ` AKº. We note that U � K. If K D U , we will say that K is
faithful.

� IDU W U ! U is the interpretation hU; id†U
; U i.

� Suppose U � V . Then, EU V W U ! V is hU; id†U
; V i.

� Suppose K W U ! V andM W V ! W . Then, KM WD M ıK W U ! W is
hU; �M ı �K ;W i.
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� Suppose K W W ! U and U � V . We write K " V for EU V ıK.
� Suppose M W V ! Z and U � V . We write U # M for M ı EU V .
� Suppose K W U ! .V C A/ and M W U ! .V C :A/. Then
KhAiM W U ! V is the interpretation hU; �KhAi�M ; V i. In an appro-
priate category KhAiM is a special case of a product.

The notationK W U ! V is inspired by the idea of interpretations as arrows in a cat-
egory. There is also an intuition of interpretability as a generalization of provability.
The traditional notation and notions associated to this intuition are as follows:

� K W U C V stands for K W U ! V .
� K W V B U stands for K W U ! V .
� U C V stands for 9K K W U C V ; we say that U is interpretable in V .
� V B U stands for 9K K W V B U ; we say that V interprets U .
� U Cloc V means that all finitely axiomatized subtheories U0 of U are inter-

pretable in V ; we say that U is locally interpretable in V .
� U Cmod V means that, for every M ˆ V , there is a translation � such that
�.M/ ˆ U ; we say that U is model interpretable in V .

A.2 i-morphisms Consider an interpretation K W U ! V . We can view this inter-
pretation as a uniform way of constructing internal models �K.M/ of U from models
M of V . This construction gives us the contravariant model functor as soon as we
have defined an appropriate category of interpretations.

Now consider two interpretations K;M W U ! V . Between the inner models
�K.M/ and �M .M/ we have the usual structural morphisms of models. We are in-
terested in the case when these morphisms are V -definable and uniform over models.
This idea leads to the following definition. An i-morphism M W K ! M is a triple
hK;F.Eu; Ev/;M i, where F.Eu; Ev/ is a V -formula and where Eu has length mK and Ev

has length mM . We demand that
� V ` F.Eu; Ev/ ! .ıK.Eu/ ^ ıM .Ev//,
� V ` ıK.Eu/ ! 9Ev .ıM .Ev/ ^ F.Eu; Ev//,
� V ` .Eu0 DK Eu1 ^ F.Eu0; Ev0/ ^ F.Eu1; Ev1// ! Ev0 DM Ev1,
� V ` .Eu0 DK Eu1 ^ Ev0 DM Ev1 ^ F.Eu0; Ev0// ! F.Eu1; Ev1/,
� V ` .PK.Eu0; : : : ; Eun�1/ ^

V
i<n F.Eui ; Evi // ! PM .Ev0; : : : ; Evn�1/.

Clearly, F W K ! M is an i-morphism if and only if, for all models M of V , FM

represents a morphism of models from �K.M/ to �M .M/.
Two i-morphisms F;G W K ! M are i-equal, when V ` 8Eu; Ev .F.Eu; Ev/ $

G.Eu; Ev//.
In the obvious way, we can define the identity i-morphism IdK W K ! K, com-

position of i-morphisms, i-isomorphisms, and so forth. One can show that these
operations preserve i-equality. Moreover, i-isomorphisms really are isomorphisms
in the categories given by these operations.

We will say that two interpretations K;M are i-equivalent when there is an i-
isomorphism between them, that is, when they are i-isomorphic.

We will not divide out i-equivalence of interpretations. This enables us to use
the notation �M meaningfully, to speak about the dimension of an interpretation,
and so forth. However, we demand that operations on interpretations preserve i-
equivalence. It is easy to see that, for example, the operation K;M 7! KhAiM

preserves i-equivalence. Moreover, if K and M are i-equivalent, then K D M .
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One can show, by a simple compactness argument, thatK andM are i-isomorphic
if and only if, for every M ˆ V , there is an F such that FM represents an isomor-
phism between �K.M/ and �M .M/.

The category INT1 is the category of theories (as objects) and interpretations
modulo i-equivalence (as arrows). One may show that we have indeed defined a
category. The relation of i-equivalence is preserved by composition. Two theories
U and V are bi-interpretable if they are isomorphic in INT1. Wilfrid Hodges [16,
p. 222] calls this notion homotopy.

Thus, U and V are bi-interpretable if there are interpretations K W U ! V and
M W V ! U , so that M ı K is i-isomorphic to IDU and K ıM is i-isomorphic to
IDV . We call the pair K;M a bi-interpretation between U and V . One can show
that the components of a bi-interpretation are faithful interpretations. Many good
properties of theories like finite axiomatizability, decidability, and �-categoricity are
preserved by bi-interpretations.

A.3 Piecewise interpretations There is a notion of piecewise interpretability where
we allow the domain of the interpretation to be built up from finitely many pieces
with possibly different dimensions. An example of this is the construction where we
add points at infinity to a points-only version of plane geometry. We could have a
piece with the original points and strict identity and a piece with pairs of distinct
points with the following equivalence relation: .x; y/ is equivalent to .u; v/ if there
is no point w that is both collinear with x and y and with u and v. Of course, we
can replace this interpretation by a one-piece interpretation that is isomorphic (in an
appropriate sense) to it in various obvious ways. For example, a pair .x; y/ could
represent a point at infinity if x ¤ y and the point x if x D y.

One can show that, if we have V ` 9x; y x ¤ y, then any piecewise interpreta-
tion is isomorphic (in an appropriate sense) to an interpretation without pieces (but
in general with higher dimension). It follows that a theory piecewise interprets a
weak arithmetic if and only if it interprets this arithmetic nonpiecewise via an inter-
pretation that is in a relevant sense i-equivalent to the original one.

A.4 Parameters In general, interpretations are allowed to have parameters. We will
briefly sketch how to add parameters to our framework. We first define a translation
with parameters. The parameters of the translation are given by a fixed sequence
of variables Ew that we keep apart from all other variables. A translation is defined
as before, but for the fact that now the variables Ew are allowed to occur in the do-
main and in the translations of the predicate symbols in addition to the variables that
correspond to the argument places. Officially, we represent a translation � Ew with pa-
rameters Ew as a quintuple h†; ı; Ew;F;‚i. The parameter sequence may be empty;
in this case our interpretation is parameter-free.

An interpretation with parameters K W U ! V is a quadruple hU; ˛;E; � Ew ; V i,
where � Ew W †U ! †V is a translation and ˛ is a V -formula containing at most
Ew free. The formula ˛ represents the parameter domain. For example, if we inter-
pret the hyperbolic plain in the Euclidean plain via the Poincaré interpretation, we
need two distinct points to define a circular disk. These points are parameters of the
construction, the parameter domain is ˛.w0; w1/ D .w0 ¤ w1/. (For this specific
example, we can also find a parameter-free interpretation.) The formula E repre-
sents an equivalence relation on the parameter domain. In practice this is always
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pointwise identity for parameter sequences, but for reasons of theory one must admit
other equivalence relations too. We demand the following:

� ` ı�; Ew.Ev/ ! ˛. Ew/;
� ` P�; Ew.Ev0; : : : ; Evn�1/ ! ˛. Ew/;
� V ` 9 Ew ˛. Ew/;
� V ` E. Ew; Ez/ ! .˛. Ew/ ^ ˛.Ez//;
� V proves that E represents an equivalence relation on the sequences forming

the parameter domain;
� ` E. Ew; Ez/ ! 8Ex .ı�; Ew.Ex/ $ ı�;Ez.Ex//;
� ` E. Ew; Ez/ ! 8Ex0; : : : ; Exn�1 .P�; Ew.Ex0; : : : ; Exn�1/ $ P�;Ez.Ex0; : : : ; Exn�1//;
� for all U -axioms A, V ` 8 Ew .˛. Ew/ ! A�; Ew/.

We can lift the various operations in the obvious way. Note that the parameter
domain of N WD M ıK and the corresponding equivalence relation should be

� ˛N . Ew; Eu0; : : : ; Euk�1/ WD ˛M . Ew/ ^
V

i<k ı�M
. Ew; Eui / ^ .˛K.Eu//

�M ; Ew ,
� EN . Ew; Eu0; : : : ; Euk�1; Ez; Ev0; : : : ; Evk�1/ WD EM . Ew; Ez/ ^

V
i<k ı�M

. Ew; Eui / ^V
i<k ı�M

. Ew; Evi / ^ .EK.Eu; Ev//
�M ; Ew .

Consider interpretations K;M W U ! V . An i-morphism ' W K ! M is a
triple hK;G;F;M i, where G.Eu; Ew/ and F.Eu; Ew; Ex; Ey/ are V -formulas.16 We write
F EuI Ew.Ex; Ey/ for F . We demand that

� V proves that G is a surjective relation between ˛K=EK and ˛M=EM ;17

� V ` F EuI Ew.Ex; Ey/ ! G.Eu; Ew/;
� V proves that if G.Eu; Ew/, then F EuI Ew is a function from ıK=DK to ıM=DM ;
� V proves that if EK.Eu0; Eu1/ and EM . Ew0; Ew1/, then F Eu0; Ew0 is the same func-

tion is F Eu1; Ew1 .
Finally, we say that two i-maps '0 and '1 are i-equal if V proves that G'0

and G'1

and F'0
and F'1

are the same.
The definitions of the identity i-morphism and of composition of i-morphisms are

as is to be expected. We can compute what an i-isomorphism is: G is, V -verifiably,
a bijection between ˛K=EK and ˛M=EM , and V proves that, if G.Eu; Ew/, then F EuI Ew

is a bijection between ıK=DK and ıM=DM .

A.5 Complexity measures Restricted provability plays an important role in this pa-
per. An n-proof is a proof from axioms with Gödel number smaller than or equal to
n only involving formulas of complexity smaller than or equal to n. To work conve-
niently with this notion, a good complexity measure is needed. This should satisfy
three conditions. (i) Eliminating terms in favor of a relational formulation should
raise the complexity only by a fixed standard number. (ii) Translation of a formula
via the translation corresponding to an interpretation K should raise the complexity
of the formula by a fixed standard number depending only on K. (iii) The tower of
exponents involved in cut elimination should be of height linear in the complexity of
the formulas involved in the proof.

Such a good measure of complexity together with a verification of desideratum
(iii)—a form of nesting degree of quantifier alternations—is supplied in the work of
Philipp Gerhardy [12], [13]. It is also provided by Samuel Buss in his preliminary
draft [7]. Buss also proves that (iii) is fulfilled.



The Arithmetics of a Theory 113

Gerhardy’s measure corresponds to the following formula classes:
� AT is the class of atomic formulas;
� N?

�1 D †?
�1 D …?

�1 WD ;;
� N?

n WWD AT j :N?
n j .N?

n ^ N?
n/ j .N?

n _ N?
n/ j .N?

n ! N?
n/ j 8…?

n j 9†?
n;

� †?
n WWD AT j :…?

n j .N?
n�1 ^ N?

n�1/ j .†?
n _†?

n/ j .…?
n ! †?

n/ j 8…?
n�1 j

9†?
n;

� …?
n WWD AT j :†?

n j .…?
n ^…?

n/ j .N?
n�1 _N?

n�1/ j .N?
n�1 ! N?

n�1/ j 8…?
n j

9†?
n�1.

We may define �.A/ as the minimal n such that A is in N?
n.18

Samuel Buss gives the following formula classes:
� †�

0 D …�
0 D the class of quantifier-free formulas;

� †�
n WWD †�

n�1 j …�
n�1 j :…�

n j .†�
n ^†�

n/ j .†�
n _†�

n/ j .…�
n ! †�

n/ j 9†�
n;

� …�
n WWD †�

n�1 j …�
n�1 j :†�

n j .…�
n ^ …�

n/ j .…�
n _ …�

n/ j .†�
n ! …�

n/ j

8…�
n.

We may define �.A/ as the smallest n such that A is in †�
n. This is the same

measure as was employed in [35]. For our purposes it does not matter whether we
use Gerhardy’s or Buss’s definition.

Appendix B: On Faithful Interpretability

We assume that the formalization of syntax is standard, so that the code of a sub-
formula C of B is smaller than the code of B , and so forth. We also assume that
the proof-predicate is standard, so that every proof p has a single conclusion C with
C < p.

Theorem B.1 Consider a theory T , and suppose thatN is an arithmetic in T . Let
� be any T -definable class of T -sentences for which T contains a definable truth
predicate, say, TRUE, for sentences coded in N . We only need that TRUE satisfies
Tarski’s convention. We assume that the set of codes of elements of � has a fixed
binumeration in T (which, par abus de langage, we call also �). So we assume that
if A 2 � , then T ` A 2 � and, if A … � , then T ` A … � . Then, there is a unary
predicate A.x/, such that

(i) T ` A.x/ ! x 2 N ;
(ii) T ` .A.x/ ^ x DN y/ ! A.y/;
(iii) T ` .A.x/ ^ A.y// ! x DN y;
(iv) for any n, T CA.n/ is �-conservative over T ; here n is the N -numeral of n.

Proof We define, for p 2 N and B an N -code of a formula with at most one
designated variable v0 free:

� =.p; x; B/ W$ p; x 2 N ^9C 2 � .proofN
T .p; B.x/ ! C/^: TRUE.C //.

Here B.x/ in the context of proof means the code of the result of substituting the
numeral of x for v0 in B . We find, using the Gödel fixed-point lemma, a formula A
with the following property:

T ` A.x/ $ 9p
�
=.p; x; A/ ^ 8q <N p 8y 2 N : =.q; y; A/

�
:

Clearly, we have (i) and (ii). We prove the uniqueness clause (iii).
Reason in T . Suppose that x ¤N y and A.x/ and A.y/. Let p be a witness for

A.x/, and let q be a witness of A.y/. By our assumption about the proof predicate,
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we find that p ¤N q, and, hence, p <N q or q <N p. By the specification of A,
this is impossible.

We move to the metatheory again. We prove (iv). We write r W T ` E when r is
(a code of) a T -proof of E.

We assume, to get a contradiction, that, for some n, A.n/ is not �-conservative
over T . Let p be the smallest proof such that, for some n and some C 2 � , we
have p W T ` A.n/ ! C and T ° C . It follows that, for all q < p, and
all m and all D 2 � , if q W T ` A.m/ ! D, then T ` D. It follows that
T ` 8q <N p 8y 2 N : =.q; y; A/. We also find T ` :C ! =.p; n; A/. Ergo
T C:C ` A.n/. In other words, we have both T CA.n/ ` C and T C:A.n/ ` C .
Ergo T ` C , a contradiction.

By the specification of the above formula A it functions as a closed partial
N -numerical term in T . For this reason we will write � 'N x for A.x/.

Theorem B.2 Let T be a theory, and suppose that N is an arithmetic in T . Let
† be a finite signature for predicate logic. We call predicate logic of signature †:
FOL†. Let ˛.x/ be a formula in the language of T such that T proves that all
elements of ¹x j ˛.x/º are N -codes of †-sentences. We write �˛ for provability
from the sentences coded by the elements of ¹x j ˛.x/º. We write con.˛/ for : �˛?.

There is an interpretation H W .T C con.˛// B FOL† such that, for any
†-sentence A, we have T C con.˛/ C �˛A ` AH . We say that H is a Henkin
interpretation of ˛.

Proof We can see this by inspection of the usual proof of the interpretation exis-
tence lemma. The basic idea is that we formalize the Henkin construction, employing
definable cuts whenever we would have used induction in PA. See, for example, [32]
or [34].

We proceed with our upper-bound result.

Theorem B.3 Let T be any theory. Suppose K W T B U . Let A be any
T -sentence, and let N be an arithmetic in T C A. Then there is an interpretation
M W T B U such that, for any U -sentence B , T ` BM ) T C A ` �N

UB .

Proof Consider T C A. We first show that we may assume without loss of gener-
ality that we have a †1-truth predicate for N .

By Theorem 3.9, we may shorten N to a T CA-definable cut N 0 such that T CA

contains a truth predicate, say, TRUE, for the †1-sentences of N 0, that is, for every
S in †1, U ` SN 0

$ TRUE.S/, where S inside the truth predicate is coded in N 0.
Note that

T C A ` �N 0

U B ) T C A ` �N
UB:

It follows that it is sufficient to prove our theorem for N 0.
Thus, we may assume that T contains a truth predicate, say, TRUE, for the

†1-sentences of N .
Let � be the partial closed term promised by Theorem B.1 for N and †1. We fix

some standard enumeration Cx of the U -sentences in such a way that T verifies its
elementary properties with respect to N . We specify M by cases. In case we have
:A, we take M equal to K. Suppose we have A. We may now work in T C A.
Let U � WD U C ¹Cx j � 'N xº. Note that (i) U � is not �b

1-axiomatized, that
(ii) in talking about U � we are really talking about the formula defining the axiom
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set, and that (iii) the definition of U � only makes sense in the presence of A. In case
inconN .U �/,19 we take M again equal to K. If con.U �/, we take M equal to the
Henkin interpretation H of U �. In other words, we take

M WD H
˝
A ^ conN .U �/

˛
K:20

Clearly, M W T B U . Suppose T ` BM . Let :B D Cn. We have

T C AC � 'N n ` “.U C :B/ D U �”:

Here “D” stands for extensional identity. Hence,

T C AC .� D n/C conN .U C :B/ ` :BM :

Thus, T C A ` .� 'N n/ ! �N
UB . By the †1-conservativity of � 'N n, we find

T C A ` �N
UB .

From Theorem B.3 we can derive a basic result about interpretability. We say that a
theory U is trustworthy if, whenever U B V , then U Bfaith V .

Theorem B.4 The following are equivalent.
(i) U is trustworthy.
(ii) U faithfully interprets predicate logic with a binary predicate R.
(iii) For some A, U C A contains a †1-sound arithmetic N .

Proof Trivially (ii) follows from (i).
Suppose (ii). Let B be the single axiom of adjunctive set theory AS. In AS we can

provide a †1-sound interpretation M of S1
2. Suppose that K is the promised faithful

interpretation of predicate logic with a binary relation symbol R in U . Then, as is
easily seen, A WD BK and N WD K ıM satisfy the desiderata of (iii).

Finally, we assume (iii). Suppose K W U B V . Let M be the interpretations
of V provided by Theorem B.3, such that M W U B V and U ` BM implies
U C A ` �N

V B . By the †1-soundness of N , we may conclude that U ` BM

implies V ` B , and we are done.

Notes

1. See [6] or [15] for an explanation of the relevant formula classes.

2. The function p�q sends a syntactical object to its Gödel number. The function .�/ sends a
number to its numeral. We will employ efficient numerals that reflect binary notation.

3. Similarly, if U is polysequential via an m-dimensional interpretation of AS, any arith-
metic N in U is i-equivalent to an m-dimensional arithmetic N .

4. The two classical works on this subject are Lesan [20] and Paris and Dimitracopoulos
[23].

5. See Kaye, Paris, and Dimitracopoulos [18] and Cordon–Franco, Fernández-Margarit,
and Lara-Martín [8] for details on I…�

1 .

6. This fact is folklore. I learned it first from Sergei Artemov around 1984.
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7. The theory B as defined here seems to suffice. However, I am not sure that a definition
using 9�…b

1-sentences is not more natural.

8. It takes a little argument to prove the equivalence of our formulation of CFL and the
formulation in [8]. For the definition it does not matter, modulo provable equivalence
over T1

2, whether the †1-sentences are written in the form 9�0 or 9��0. We may also
consider sentences in 9��0 and just relativize only the first of the block of existential
quantifiers to J.

9. I was aware of two essentially different constructions for the multiple fixed-point lemma.
Vincent van Oostrom, after I asked him, provided a third construction. All three con-
structions automatically guarantee the desired property even in the presence of nontrivial
automorphisms of the frame. One reason that this happens is that the choice of substitu-
tion variables is explicitly arithmetically coded in the construction.

10. Note that the Li are not necessarily uniquely determined by the fixed-point equations.
Thus, we are looking at some choice of the Li .

11. We use the work of [12], [13], and [7] here. See Section A.5 of Appendix A.

12. We remind the reader that N0MK stands for K ıM ıN0.

13. Instead of .�gn.�/

S1
2

�A?/Q� , we could also have used �Q�;gn.�/C1
A

?, but it seems to me
that the argument is a bit shorter under the present choice.

14. Alternatively, we could have constructed W using a version of Craig’s trick, taking as
axioms .p D p/ ^ .�gn.N /

S1
2

�A?/N , where p is an A-proof that N is an arithmetic.

15. If we have a complex formula A, the translation A� could be satisfied in a model even if
the sequences of values of the variables corresponding to the free variables inA are not in
the domain of the translation in that model. One alternative option for the definition is to
add a conjunction that stipulates that these sequences are in the domain. Thus, we would
always have ` A� ! ıK.Ex/, where Ex is a sequence corresponding to a free variable
in A. We will refrain from doing this. The cost is that, for example, the definition of
composition of translations becomes more complicated.

16. In G and F we could allow extra parameters, Ez, the eigenparameters of G and F . We
will refrain from doing that here to unburden the presentation a bit.

17. It seems a more logical choice to demand that G represent a function from ˛K=EK

to ˛M =EM . There are also sound theoretical reasons for that choice. However, the
definition of initial embedding that we need in Section 3 does not work under this second
choice. So for the purposes of at least this paper we seem to need the definition given in
the main text.

18. Vincent van Oostrom gave a variant of this formulation of Gerhardy’s measure in con-
versation.

19. In writing .in/conN .U �/, we intend no relativization of the formula defining the axiom
set, only of the proofs.
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20. Strictly speaking, we should not have K here but K " .T C .:A _ incon.U �///.
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