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Uniform Density in Lindenbaum Algebras

V. Yu. Shavrukov and Albert Visser

Abstract In this paper we prove that the preordering . of provable implication
over any recursively enumerable theory T containing a modicum of arithmetic
is uniformly dense. This means that we can find a recursive extensional density
function F for .. A recursive function F is a density function if it computes,
for A and B with A ’ B , an element C such that A ’ C ’ B . The function is
extensional if it preserves T -provable equivalence. Secondly, we prove a general
result that implies that, for extensions of elementary arithmetic, the ordering .
restricted to †n-sentences is uniformly dense. In the last section we provide
historical notes and background material.

1 Introduction

It is well known that the Lindenbaum algebras of theories that contain a modicum
of arithmetic are dense with respect to the implication ordering. In this paper we
will study a property that is stronger than density, to wit, uniform density. We prove
that the Lindenbaum algebras of these theories are uniformly dense with respect to
the implication ordering. We first provide the necessary definitions to formulate the
result.

Consider any recursively enumerable theory T that interprets the theory R intro-
duced by Tarski, Mostowski, and Robinson in [21]. We define

A .T B if and only if T C A ` B ,
A ’T B if and only if A .T B and not B .T A,
A �T B if and only if A .T B and B .T A.

Here .T is the “provable implication” ordering on LT , the Lindenbaum sentence
algebra of T . It is well known that .T is dense. We say that LT (or .T ) is uniformly
dense if there is a recursive function F such that

1. F is a density function: that is, we have A ’T F.A; B/ ’T B , whenever
A ’T B , and if A �T B , then A �T F.A; B/ �T B;
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2. F is extensional: if A �T A0 and B �T B 0, then F.A; B/ �T F.A0; B 0/.
We show that LT is uniformly dense for recursively enumerable theories T that inter-
pret R. Moreover, we can take the function F to be elementary and, in some specific
cases, even p-time computable.

We present our proof in Section 3. It consists of two stages. First we prove the
desired result for Peano arithmetic PA or, more generally, for essentially reflexive
theories (see Remark 1.1 for a discussion of essential reflexivity). Our construction
delivers a p-time computable density function. This result is then generalized to all
r.e. consistent theories that interpret R although the new density functions fall outside
polynomial time—we don’t know if this can be rectified.

A variant of the density question is obtained by imposing a restriction to a pre-
scribed formula class. We explore this variant in Section 4. We prove a general
result which implies, for example, that, for extensions T of elementary arithmetic,
the ordering .T restricted to †n-sentences is uniformly dense.

The basic idea and the ingredients of our construction for PA come with a history.
The sentences we produce are certain unique Rosser sentences of a kind studied by
Smoryński [19], and they are the unique Gödel sentences of a certain Feferman pred-
icate studied in Shavrukov [18]. Finally, they are Orey sentences. We will explain
this background in Section 5. The reader who wants to just see the solution may, of
course, skip Section 5.

Remark 1.1 A theory is essentially reflexive (uniformly essentially reflexive) if
it proves reflection (resp., uniform reflection) for each of its finitely axiomatized
subtheories. Here (uniform) reflection concerns a proof predicate that is formalized
with respect to an interpretation N of a weak arithmetic, like S1

2, in the given theory.
Thus, a theory U is essentially reflexive with respect to N if it proves all principles
of the form ` �N

U0
A ! A, where A is a sentence of the language of U and U0 is any

finitely axiomatized subtheory of U . A theory U is uniformly essentially reflexive
with respect to N if it proves all principles of the form ` 8Ex .�N

U0
AEx ! AEx/, where

AEx is a formula of the language of U with all variables among those shown and U0

is any finitely axiomatized subtheory of U . We refer the reader to Beklemishev [1,
Section 2] for a more extensive discussion.

Uniform essential reflexivity implies full induction with respect to the designated
interpretation of the numbers. Conversely, a theory that satisfies full induction and is
sequential is uniformly essentially reflexive (for the definition of sequential see Hájek
and Pudlák [5] or Visser [26]). If we drop uniformity, essentially reflexive theories
can be much weaker. For example, the minimal essentially reflexive extension of
elementary arithmetic EA (here EA D I�0 C Exp) is both a subtheory of PA and of
EA plus all true …1-sentences. See also Visser [28].

Essentially reflexive theories form a natural class in the study of interpretability.
For example, they satisfy the same propositional schemes for interpretability. See,
for example, Visser [27] for a discussion.

2 The Usual Proof of Density

Our proof of uniform density for LPA is a specific instance of the usual proof of the
density of LT , where T is a recursively enumerable theory that interprets R. We first
present this usual proof. This proof will form a frame of reference for the rest of the
paper.
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Suppose A ’T B . It follows that T C :A C B is consistent.
Let C be any arithmetical sentence that is independent of T C :A C B; that is,

T C :A C B ° C and T C :A C B ° :C .
The essential ingredients of the proof that, for every consistent recursively enu-

merable theory U that interprets R, there exists a sentence R that is independent of U

were provided by J. Barkley Rosser in his classical paper [16]. Here R is a very weak
arithmetic introduced in [21].

We consider D WD A _ .C ^ B/. We claim that A ’T D ’T B .
First, we clearly have A .T D .T B .
Suppose T C B ` A _ .C ^ B/. By propositional logic, we find T C :A C

B ` C . Quod non.
Suppose T C A _ .C ^ B/ ` A. By propositional logic, we have T C :A C

B ` :C . Quod non.
We can squeeze a little bit more information out of our construction. If C is in-

dependent, then :C is also independent. So we can construct E WD A _ .:C ^ B/.
We find that A ’T E ’T B . Moreover, we have T ` .D ^ E/ $ A and
T ` .D _ E/ $ B . So we have two sentences D and E strictly between A and B

such that B is the supremum with respect to .T of D and E and A is the infimum
with respect to .T of D and E.

Rosser’s construction delivers a p-time mapping A 7! CA, where CA is indepen-
dent over T C A, provided that T C A is consistent, for a given r.e. theory T that
interprets R. It is very unlikely, however, that the usual Rosser construction produces
a uniform density function. For a brief discussion of this issue see Section 5.

In light of the proof given above, to prove p-time uniform density for PA, it is,
modulo some simple details, sufficient to give a p-time construction A 7! CA,
where CA is independent over PA C A, provided that PA C A is consistent and,
if PA ` A0 $ A1, then PA ` CA0

$ CA1
.

In the next section, we will provide a mapping A 7! CA that satisfies the desider-
ata.

3 Uniform Density

The first order of business for this section is the following.

Theorem 3.1 LPA is uniformly dense via a p-time computable density function.
More generally, this result holds for all essentially reflexive sequential r.e. theories.

This theorem will later be extended to more theories.
We are interested in getting our density function as efficient as possible. In this

case, we will construct a p-time computable function. To obtain an algorithm of the
desired complexity, we will use efficiently coded syntax and base 2 numerals. See,
for example, Buss [2, Chapter 7.3] or Hájek and Pudlák [5, Chapter V, Section 3].

We consider the sequence of theories Arn, where Ar0 is EA, also known as
I�0 C Exp, and ArnC1 WD I†nC1. These theories have the following important
property.

Theorem 3.2 (EA proves that) for all n, ArnC1 proves uniform …nC3-reflection
for Arn.

The theorem claims formalizability in EA of a result that was presumably first stated
in Ono [12, Theorem 4.4]. That result is readily seen to be equivalent to I†nC1
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proving uniform …nC3-reflection for EA or even for pure predicate calculus, for
I†n C Exp can be axiomatized by a single …nC2-sentence (see [5, Theorems I.2.52
and V.5.6]). The latter equivalent coincides with the lemma in Leivant [7] modulo
some ambiguity as to what Leivant’s base theory Z0 exactly is. The verification of
EA-provability is best carried out along the proof of TeopeMa 7 in [1]. We note that
we have the following as an immediate consequence.

Corollary 3.3 (EA proves that) for any sentence A in †nC3, ArnC1 C A proves
uniform …nC3-reflection for Arn C A.

We have the following definitions:
�A;xB stands for provArxCA. pBq /,
ÞA;xB stands for : provArxCA. p:Bq /; that is, : �A;x: B .

As a first step towards the proof of Theorem 3.1 we need the formula CA:

CA WD A ^ 8x .�A;x�A;x? ! �A;x?/:

We have the following useful lemma.

Lemma 3.4 Given any n, suppose A 2 †nC3. Then,

Arn ` CA $
�
A ^ 8x � n .�A;x�A;x? ! �A;x?/

�
:

Proof By Corollary 3.3, Arn C A proves †1-reflection for �A;k with k < n.
Hence,

Arn C A ` 8x < n .�A;x�A;x? ! �A;x?/:

The desired result is immediate.

In the next lemma, we show that A 7! CA is extensional.

Lemma 3.5 Suppose PA ` A0 $ A1; then PA ` CA0
$ CA1

.

Proof Suppose PA ` A0 $ A1. Then, for some n, Arn ` A0 $ A1. We can pick
n so large that A0; A1 2 †nC3. We have

Arn ` CA0
$ A0 ^ 8x � n .�A0;x�A0;x? ! �A0;x?/

$ A1 ^ 8x � n .�A1;x�A1;x? ! �A1;x?/

$ CA1
:

Hence, PA ` CA0
$ CA1

.

Lemma 3.6 Suppose that PA C A is consistent. Then CA is independent over
PA C A.

Proof Suppose that PA C A ` CA. Then, for some n, Arn C A ` CA. We may
assume that A 2 †nC3. It follows that Arn C A ` �A;n�A;n? ! �A;n?. Hence,
by Löb’s theorem, Arn C A ` �A;n?. We may conclude that PA C A ` ?. Quod
non.

Suppose that PA C A ` :CA. Then, for some n, Arn C A ` :CA. We may
assume that A 2 †nC3. We find, using Lemma 3.4,

Arn C A ` 9x � n .�A;x�A;x? ^ ÞA;x>/:

But then Arn C A ` ÞA;n>, contradicting the second incompleteness theorem.
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We put F.A; B/ WD A _ .C:A^B ^ B/. We note that this is defined for any arith-
metical sentences A and B . Moreover, we always have A .PA F.A; B/ .PA A _ B .
By Lemma 3.5, F is extensional. By Lemma 3.6, we have that, if A ’PA B , then
A ’PA F.A; B/ ’PA B .

This concludes the proof of Theorem 3.1. We note that F is p-time in A and B .

Remark 3.7 We can put
F0.A; B/ WD A _ .C:A^B ^ B/ and F1.A; B/ WD A _ .:C:A^B ^ B/;

and then construct an infinite .PA-antichain between A and B by considering
DA;B;0 WD F0.A; B/; DA;B;1 WD F0

�
A; F1.A; B/

�
;

DA;B;2 WD F0

�
A; F1

�
A; F1.A; B/

��
; : : :

The mapping H W A; B; n 7! DA;B;n need not be p-time, but since this mapping is
elementary we can represent it in PA. Since the DA;B;n have complexity (in the sense
of the arithmetical hierarchy) bounded by the maximum of 2, the complexity of A and
that of B—say the complexity is k.A; B/—we can, using efficient numerals, replace
DA;B;n by EA;B;n WD Truek.A;B/.H.A; B; n//. If we use a reasonable version of the
definition of Truek , the mapping A; B; n 7! EA;B;n becomes p-time. (Note that we
do not need to worry about the length of the verifications of the usual properties of
the Truek . We are only interested in the size of the formulas.)

Our proof can be immediately adapted to any essentially reflexive theory—like ZF:
all the ingredients of the construction of C are also present in such a theory.

Let C ı
A WD 8x .�A;x�A;x? ! �A;x?/. Note that C ı

A is �2 over I†1 because
it is I†1-provably equivalent to ÞA> _ 9x .�A;xC1? ^ ÞA;x ÞA;x >/.

Let us consider the relationship between C ı
A and con.PA C A/.

Proposition 3.8 We have PA C con.PA C A/ ` C ı
A.

Proof Suppose that A is †nC3. We reason in PA C con.PA C A/. Suppose that
�A;x�A;x?. Then �A;max¹xC1;nº? and, hence, �A?. Quod non. We may conclude
: �A;x�A;x?, and, a fortiori, C ı

A.

Since, as we will show in Section 5, C ı
A is an Orey sentence of PACA and, provided

that PACA is consistent, con.PACA/ is not an Orey sentence, CA is strictly between
A C con.PA C A/ and A over PA. In other words, C ı

A is a reflection principle that is
strictly between con.PA C A/ and > over PA C A.

Theorem 3.1 generalizes to theories containing R thanks to the following theorem.

Theorem 3.9 (Pour-El and Kripke [14, Theorem 2]) The Lindenbaum sentence
algebras of all recursively enumerable, consistent theories that interpret R are effec-
tively isomorphic.

For us, “effective isomorphism” means a recursive function from sentences of one
theory to those of the other theory that, through provable equivalence, quotients down
to an isomorphism between the two Lindenbaum algebras. The functions constructed
in [14], however, possess further nice properties.

Pulling the density function of Theorem 3.1 off LPA back to LT along an effective
isomorphism LT ! LPA, we obtain the following.

Corollary 3.10 The Lindenbaum sentence algebras of all recursively enumerable
consistent theories that interpret R enjoy uniform density.
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It is seen from the proof of [14, Theorem 2] that the isomorphisms of Theorem 3.9
together with their inverses can be given by elementary functions (i.e., ones from
Grzegorczyk class E3).

Accordingly, we are only able to claim elementarity rather than polynomial time
for the second-hand density functions obtained via (the intended proof of ) Corol-
lary 3.10. Our proof also forfeits the ability to have uniform density achieved by just
mixing in an appropriate �2-sentence.

4 Orderings of †n-Sentences and Precomplete Lattices

We address the question of uniform density for restricted classes of formulas in a
somewhat more general setting.

An r.e. lattice L is a pair of recursive functions _ and ^ defined on an r.e. subset
field L of ! together with an r.e. equivalence relation � on field L which is a congru-
ence for _ and ^ and such that the quotient is a lattice. If that lattice is Boolean, then
L is called an r.e. Boolean algebra and, as is easily seen, has a recursive negation
function. Lindenbaum sentence algebras of r.e. theories provide typical examples.

A density function for L is a function D W .field L/2 ! field L such that, if
a � b, then a � D.a; b/ � b, and D.a; b/ � a � b whenever a � b. The function
D is extensional (with respect to � or L) if � is a congruence for D. The lattice
L is uniformly dense if it admits an effective extensional density function—note that
for LT this agrees with our earlier definition.

Montagna and Sorbi [11, Proposition 3.1(b)] extend Theorem 3.9 to all effectively
inseparable (e.i.) r.e. Boolean algebras, that is, algebras where the �-equivalence
classes of (Boolean) 0 and 1 are effectively inseparable within field L. Hence Corol-
lary 3.10 also holds for all e.i. r.e. Boolean algebras.

When the proof of Theorem 3.1 works for a theory T , it works equally well for the
sublattice †n=T of LT determined by †n-sentences provided that n > 1 because
D.a; b/ is a lattice polynomial in a, b, and a �2-sentence. In this section we handle
†1=T using a different approach which starts with the definition of a precomplete
numeration/equivalence.

A nontrivial equivalence relation � on an r.e. subset field � of ! is precomplete if
to every partial recursive f W ! ! field � there is a total recursive F W ! ! field �

that makes f total modulo �, that is, F.n/ � f .n/ whenever f .n/ converges. Re-
ducing f to a universal .field �/-valued partial recursive function, we see that an
index for F can be found effectively in one for f .

An r.e. lattice L is precomplete if its associated (r.e.) equivalence relation � is
(see [11, Section 2] or Selivanov [17, 4.4]). By - we denote the corresponding (r.e.)
preorder on field L.

Example 4.1 (Visser [23, 1.6.6]) †n=T is r.e. and precomplete whenever T is a
consistent r.e. extension of EA.

Hint The mapping that assigns to k the †n-sentence 9y .y D f . Nk/ ^ Truen.y//

makes f total modulo T -provable equivalence.

It is an open question whether †1=S1
2 or 9†b

1=S1
2 is precomplete (see [2] for defini-

tions of 9†b
1 and S1

2).
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Sentences of the form 9x T0.n; x/, where T0 is Kleene’s T-predicate for the 0-ary
case, form an example of a class � , such that �=S1

2 is r.e., precomplete, and is,
modulo S1

2-provability, a sublattice of LS1
2
.

Mutual interpretability for finitely axiomatized sequential theories is also r.e. pre-
complete, since the interpretability ordering on finitely axiomatized sequential theo-
ries (modulo mutual interpretability) is p-time anti-isomorphic to …1=EA. This uses
the Friedman characterization of interpretability between finitely axiomatized theo-
ries (see, e.g., [25, Theorem 3.6]). Thus, the lattice of finitely axiomatized sequential
interpretability degrees is (p-time) isomorphic to †1=EA.

The r.e. extensions of PA in the language of PA modulo interpretability give us
under an appropriate indexing an example of a precomplete numeration that is not
recursively enumerable.

Theorem 4.2 Any r.e. precomplete lattice is uniformly dense.

Note that the theorem needs neither distributivity nor boundedness.
Here is the plan: given a recursive F , we are going to craft a partial recursive f .

In other words, the construction below will effectively associate to an index e for F

an index c.e/ for f . An index t .c.e// for some F 0 making f total modulo � is then
effective in c.e/. By the second recursion theorem there is an e0 indexing the same
function as t .c.e0//. For that e0 we have F 0 ' F . We may therefore assume from
the outset that F makes f total modulo �.

Lastly, we put D.a; b/ D a _ .F.a; b/ ^ b/, which will be the desired extensional
density function for L.

We fix effective enumerations .�n/n2! and .-n/n2! of � and -, respectively,
that satisfy the following:

for each n 2 !, field �n D field -n is a finite nonempty subset of field L;
�n is an equivalence relation;
�n � �nC1 and -n � -nC1;
� D

S
n2! �n and - D

S
n2! -n.

Construction The construction of f proceeds in stages. The following happens
at Stage n.

(C1) Suppose that a; b 2 field �n and f .a; b/ has not yet been defined.
Let a0; b0 2 field �n be the minimal such that a0 �n a and b0 �n b. Put

f .a; b/ D F.a0; b0/ unless .a; b/ D .a0; b0/.
(C2) Suppose that a -n b, f .a; b/ has not yet been defined and a _ .F.a; b/ ^

b/ -n a.
Put f .a; b/ D b.

(C3) Suppose that a -n b, f .a; b/ has not yet been defined and b -n a _

.F.a; b/ ^ b/.
Put f .a; b/ D a.

Claim 1 If a - b, then a - D.a; b/ - b. In particular, a � b implies
a � D.a; b/ � b.

Proof This holds by virtue of the definition D.a; b/ D a_.F.a; b/^b/ regardless
of the value of F.a; b/. a

Claim 2 f .a; b/ is defined unless both a and b are minima of their respective
�-equivalence classes.
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Proof Clause (C1) takes care of this. a

Claim 3 If f .a; b/ is defined via clause (C2) or (C3), then a � b.

Proof Suppose that f .a; b/ is defined via clause (C2). We must then have a - b,
a _ .F.a; b/ ^ b/ - a, and F.a; b/ � f .a; b/ D b, so a _ b - a; hence a � b.

Clause (C3) is treated similarly. a

Claim 4 D is extensional with respect to �.

Proof That the �-equivalence class of D.a; b/ only depends on those of a and b

follows from Claim 1 for the case a � b. We may therefore assume a œ b. This
implies, by Claim 3, that the only way to define f .a0; b0/ for a0 � a and b0 � b is
via clause (C1).

Assume that a0 and b0 are the minima of the �-equivalence classes of a and b,
respectively. We show by induction on aCb that F.a; b/ � F.a0; b0/ for all a � a0

and b � b0. Suppose .a; b/ ¤ .a0; b0/. By Claim 2, f .a; b/ is defined—via
clause (C1). So f .a; b/ D F.a0; b0/ where a0 � a, b0 � b, and a0 C b0 < a C b.
Accordingly,

F.a; b/ � f .a; b/ D F.a0; b0/ � F.a0; b0/

with the last equivalence holding by the induction hypothesis. Thus, we may con-
clude that D.a; b/ � D.a0; b0/. a

Claim 5 If a � b, then a � D.a; b/ � b.

Proof In view of Claim 1 it will suffice to exclude the situations a � D.a; b/ and
D.a; b/ � b.

Suppose a � D.a; b/ D a _ .F.a; b/ ^ b/. Let a0, b0 be the minima of a’s
and b’s �-equivalence classes. Then a0, b0 also are minima of any �n-equivalence
classes they belong to. Thus clause (C1) cannot define f .a0; b0/. By Claim 3 neither
can (C2) nor (C3). Yet clause (C2) will sooner or later define f .a0; b0/ if nothing
else does, a contradiction.

D.a; b/ � b is outruled in a similar fashion. a

Claims 1, 4, and 5 amount to a proof of Theorem 4.2.

Corollary 4.3 For r.e. consistent T extending EA the lattice †n=T is uniformly
dense.

Remark 4.4 Using Truen.� � � / as in Remark 3.7, one can bring down to p-time the
complexity of any recursive function with values in †n=T . The density functions for
†n=T obtained through Theorem 4.2 however are already polynomial time because
in †n=T totalization works by substitution (see the hint to Example 4.1) as does, for
that matter, the second recursion theorem.

Corollary 4.5 The finitely axiomatized sequential theories are uniformly dense
with respect to the interpretability preordering C. The density function can be taken
to be p-time.

Open Question 4.6 Are †1=S1
2 and/or 9†b

1=S1
2 uniformly dense?

Harvey Friedman shows in his Tarski lectures that the interpretability preordering
on arbitrary finitely axiomatized theories of predicate logic has an effective density
function. Is this ordering uniformly dense?
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Open Question 4.7 Do Lindenbaum sentence algebras admit uniform density
functions that are monotone with respect to provable implication in (ideally) both
arguments? What about precomplete r.e. lattices?

5 Archaeology

In this section we provide assorted background material that makes our construction
of CA meaningful. We will sketch how the main ingredient of our formula CA, to
wit, the formula C ı

A WD 8x .�A;x�A;x? ! �A;x?/, can be viewed as either a
unique Rosser or Gödel fixed point. We first discuss the Rosser construction.

A standard way to produce independent sentences is the Rosser construction, in-
vented by J. Barkley Rosser. The original paper is Rosser [16]. Rosser’s construction
has some extra good properties. The construction is verifiable in PA, and, after some
careful inspection, even in EA.1 A second point is that Rosser’s argument works for
a very wide class of theories including the recursively enumerable extensions of the
Tarski–Mostowski–Robinson theory R. Finally, the sentence produced by his con-
struction, the Rosser sentence, is †1 or …1, more specifically, 9…b

1 or 8†b
1.

Can we use the original Rosser construction to obtain independent sentences in
a uniform way? This does not look very promising: the sentences delivered by that
construction are quite sensitive to implementation details. For example, suppose
that we use a standard fixed point construction to obtain a Rosser sentence RA for
PA C A and a Rosser sentence RA0 for PA C A0. Suppose further that A and A0 are
PA-provably equivalent. Then, RA and RA0 need not be PA-provably equivalent. The
intensionality of the Rosser construction has, for example, been studied in Guaspari
and Solovay [4] and Voorbraak [29]. However, several variants of the Rosser con-
struction have been considered in the literature, and among these we find one that is
sufficiently uniform. This Rosser construction was introduced by Craig Smoryński.
As we will see, this Rosser construction can also be viewed as a Gödel construction.

Consider an r.e. extension T of PA in the same language. Let � WD .Tn/n2! be a
recursive sequence of theories so that I†1 proves that

1. for all n and k, if n < k, then Tn is a subtheory of Tk ;
2. the union of the Tn is T ;
3. for each n, TnC1 ` con.Tn/.

We need the following definitions:
�?

� B stands for 9x �Tx
B; note that �?

� B is provably equivalent to �T B .
Suppose that C and D are of the respective forms 9x C0.x/ and 9y D0.y/;
then

C < D WD 9x
�
C0.x/ ^ 8y � x :D0.y/

�
and

C � D WD 9x
�
C0.x/ ^ 8y < x :D0.y/

�
:

Note that �?
� B < �?

� C is I†1-provably equivalent to �T B ^ : .�?
� C � �?

� B/.
Thus, the formula �?

� B < �?C is �2 over I†1. The case is similar for
�?

� B � �?C .
The formula �?

� B < �?
� C is equivalent over PA to 9x .�Tx

B ^: �Tx
C /. It fol-

lows that the formula �?
� B < �?

� :B is equivalent to �?
� B < �?

� ? which coincides
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with the Feferman predicate for � defined as

4� A WD �?
� A < �?

� ?:

We note that, over EA, 4� A is equivalent to 9x .�Tx
A ^ ÞTx

>/.
The Feferman predicate was introduced by Solomon Feferman in his classical

paper [3]. The Feferman predicate is a sort of self-correcting provability predicate.
It is related to trial and error predicates as studied in Putnam [15] and Jeroslow [6].
Feferman’s aim in introducing it was not just the study of ways to escape the second
incompleteness theorem but also applications to the study of relative interpretability.

Here is the central insight. We write
� 5� A for :4� :A;
� U B V for: there is a relative interpretation of V in U .

See, for example, [21], [3], Lindström [8] and Visser [25] for basic definitions con-
cerning interpretations.

Theorem 5.1 We have .T C 5� A/ B .T C A/.

See [3] for the main ingredients of the proof. The basic idea of the result is that 5� A

is a consistency statement of T C A. We can use the Henkin construction to build
the desired interpretation.

We now consider the specialized sequences �A WD .Arn C A/n2! for the theories
PA C A. We simply write �?

A for �?
�A

, and so on.
By the Gödel fixed point lemma, we can find a sentence RA, such that

PA ` RA $ : .�?
ARA < �?

A:RA/:

Thus RA is a Rosser sentence for the �?
A. By our previous remarks, the sentence

RA is also a Gödel sentence for the Feferman predicate 4A, that is:

PA ` RA $ : 4ARA:

Smoryński investigates RA in his paper [19]. That paper was inspired by a study of a
variant of the Rosser construction in the context of set theory by Kenneth McAloon
[9].

Theorem 2.1 in [19] implies that RA is, up to provable equivalence, unique over
PA C A. By a minor addition to Smoryński’s argument, one can show that the map-
ping A 7! .A ^ RA/ preserves PA-provable equivalence. Shavrukov [18] shows that
uniqueness can fail under a choice of stratification sequence different from .Arn/n2! .

Smoryński also shows that RA is independent over PACA, provided that PACA

is consistent. As we will see, Smoryński’s Rosser sentence RA is (PAC A)-provably
equivalent to the sentence 8x .�A;x�A;x? ! �A;x?/. So the independence of RA

also follows from our Lemma 3.6.
Since the Feferman–Smoryński predicate explicates a notion of provability, it can

be studied modally. This study was taken up in Montagna [10], Visser [24], and
Shavrukov [18]. The latter paper studies the Feferman predicate over PA based on the
sequence Arn with conclusions translatable to the hierarchy Arn CA. Thus [18] con-
tains an alternative, modal, proof of the uniqueness of RA.

Recall that C ı
A WD 8x .�A;x�A;x? ! �A;x?/. We show that C ı

A is a Gödel
sentence for 4A.

Theorem 5.2 ([18, Exercise 2.7]) C ı
A is a Gödel sentence of 4A over PA C A.
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Proof We have, using Löb’s theorem in the third step,

PA C A ` 4AC ı
A ! 9x

�
�A;x8y .�A;y�A;y? ! �A;y?/ ^ ÞA;x>

�
! 9x

�
�A;x.�A;x�A;x? ! �A;x?/ ^ ÞA;x>

�
! 9x .�A;x�A;x? ^ ÞA;x>/

! :C ı
A:

We treat the other direction. Suppose A 2 †nC3. We work in PA C A. Suppose
:C ı

A, that is,
9x .�A;x�A;x? ^ ÞA;x>/:

Clearly, it follows that 9x .�A;x8y � x �A;y? ^ ÞA;x>/, and hence:

9x
�
�A;x8y � x .�A;y�A;y? ! �A;y?/ ^ ÞA;x>

�
: (i)

We note that we may assume that x � n, since for any standardly finite k,
�A;k�A;k? implies ?. Hence, by the fact that Arx C A proves †1-reflection
for Ary C A, for y < x, we find

9x
�
�A;x8y < x .�A;y�A;y? ! �A;y?/ ^ ÞA;x>

�
: (ii)

Combining (i) and (ii), we find

9x
�
�A;x8y .�A;y�A;y? ! �A;y?/ ^ ÞA;x>

�
: (iii)

Of course (iii) is 4AC ı
A.

Thus, we have shown that PA C A ` C ı
A $ : 4AC ı

A.

So, C ı
A is modulo PA-provable equivalence Smoryński’s Rosser sentence for PACA.

Open Question 5.3 Our proof of the extensionality of A 7! CA as well as that
of unprovability of CA go through, with minor modifications, for any stratification
sequence � for PA satisfying our conditions. The consistency of C ı

A with PA C A

is the only element of Theorem 3.1 that ostensibly depends on � D .Arn/n2! (or,
more generally, on the “fast-growing” property of � that each level proves enough
reflection for the previous ones).

This makes us wonder if there exists a consistent theory of the form PA C A

together with a stratification sequence � D .Tn/n2! such that PA C A refutes
8x .�A;Tx

�A;Tx
? ! �A;Tx

?/.
A similar question can be asked of Theorem 5.2.

We end this section by showing that C ı
A is an Orey sentence of PA C A.

Consider any theory T . A sentence O in the language of T is an Orey sentence of
T if T B .T C O/ and T B .T C :O/. Note that the negation of an Orey sentence
is an Orey sentence. An Orey sentence O of T is clearly independent of T . Neither
an Orey sentence nor its negation add interpretability strength to the given theory.

The idea of Orey sentences was introduced by Orey [13], who also provided the
first known Orey sentence for PA. There are many salient natural Orey sentences.
Two well-known examples are the parallel axiom over a suitable version of neutral
geometry and the continuum hypothesis over ZFC. For essentially reflexive sequen-
tial theories, the Gödel sentence of a Feferman predicate for the theory is an Orey
sentence—see below.

We will show that C ı
A is an Orey sentence of PA C A. This sentence is still meta-

mathematical and does involve coding, but it is, at least, self-reference-free. Since
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C ı
A is a Gödel sentence of 4A, the desired insight is immediate by the following

theorem. (This theorem was also proved in [24].)

Theorem 5.4 Consider a consistent theory T given by a sequence � satisfying the
conditions given above. Then any Gödel sentence of 4� is an Orey sentence for T .

Proof Let G be a Gödel sentence of 4� . We have
T C G ` T C 5� :G

B T C :G;

T C :G ` T C 4� G

` T C 5� G

B T C G:

In the second step of the second proof, we use T ` 4� :A ! : 4� A. Thus,
we have both .T C G/ B .T C G/, by the identity interpretation, and .T C :G/ B
.T C G/. So, using a disjunctive interpretation, we find T B .T C G/. Similarly,
T B .T C :G/.

Note

1. A modified argument even works in I�0 C �1. The basic idea of this argument is due to
Švejdar [20]. For the verification that Švejdar’s assumptions are fulfilled, see Verbrugge
and Visser [22].
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