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Classical Negation and Game-Theoretical Semantics

Tero Tulenheimo

Abstract Typical applications of Hintikka’s game-theoretical semantics (GTS)
give rise to semantic attributes—truth, falsity—expressible in the †11-fragment
of second-order logic. Actually a much more general notion of semantic attribute
is motivated by strategic considerations. When identifying such a generalization,
the notion of classical negation plays a crucial role. We study two languages, L1
andL2, in both of which two negation signs are available: + and �. The latter is
the usual GTS negation which transposes the players’ roles, while the former will
be interpreted via the notion of mode. Logic L1 extends independence-friendly
(IF) logic; + behaves as classical negation in L1. Logic L2 extends L1, and
it is shown to capture the †21-fragment of third-order logic. Consequently the
classical negation remains inexpressible in L2.

1 Introduction

In game-theoretical semantics (GTS), which Hintikka originally formulated in [7],
satisfaction conditions for formulas of first-order logic are formulated by associating
a two-player zero-sum game G.';M; 
/ between players I and II with every for-
mula ', relevant model M, and assignment 
 and defining ' to be satisfied in M by

 if there exists a winning strategy, w.s. for short, for player II in game G.';M; 
/.
The details of the definition of these semantic games can be phrased in a variety of
ways, for example as follows.

We restrict attention to regular formulas, that is, formulas in which no two nested
quantifiers carry the same variable and in which no variable appears both free and
bound (for this terminology, see Caicedo, Dechesne, and Janssen [2]). Here and
henceforth, if M is a model,M is its domain. We denote the empty assignment by �.
Positions in semantic games are quadruples . ;M; �; �/, where  is a subformula
of '; � is an assignment; and � is a bijective function of type ¹V;Fº ! ¹I; IIº, termed
a role distribution. Here V (verifier) and F (falsifier) are two roles. Henceforth
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we write �0 for the role distribution satisfying �0.V/ D II and �0.F/ D I . The
initial position of game G.';M; 
/ is .';M; 
; �0/. Suppose, then, that position
. ;M; �; �/ has been reached. If ı 2 ¹_;^º and  D .�1 ı �2/, the next position
is .�i ;M; �; �/. The term �i is chosen by player �.V/ if ı D _ and by player �.F/
if ı D ^. If Q 2 ¹9;8º and  D Qx� , the next position is .�;M; x 7! b; �/,
where b 2 M is chosen by �.V/ if Q D 9 and by �.F/ if Q D 8. If  D � � ,
the next position is .�;M; �; ��/, where �� is the transposition of �, that is, a map
satisfying ��.V/ D �.F/ and ��.F/ D �.V/. If  is atomic, there are no further
moves. If the sequence of positions from the initial position to the current position
is . 0;M; �0; �0/; : : : ; . n;M; �n; �n/, this sequence induces an assignment 
 via
the components �i ¤ �. If  n is atomic and M; 
 ˆ  n, then �.V/ wins, else �.F/
wins.1 A strategy of player j 2 ¹I; IIº is a tuple of strategy functions, one for each
operator token for which the player must make a move. A strategy function yields
a move for the corresponding operator token, depending on the adversary’s earlier
moves. It can be shown, if the axiom of choice is assumed, that a first-order formula
' is satisfied in a structure .M; 
/ according to the standard Tarskian semantics if
and only if there exists a w.s. for player II in G.';M; 
/ (see Hodges [14, p. 94]).

GTS is useful in connection with certain extensions of first-order logic. While
strategy functions of a given player in first-order semantic games may take as argu-
ments any earlier moves of the adversary, in independence-friendly logic (IF logic,
here denoted LIF) there is a syntactic mechanism available for indicating that for
specified operator tokens only some of the adversary’s earlier moves are available
as arguments (for LIF, see Hintikka [8]). The game rules for IF-logical games are
the same as those for first-order games; the difference lies at the level of strategies.
For example, if M is a model the domain of which consists of numbers 1 and 2 and
'0 WD 8x.9y=¹8xº/ x D y, there are 4 plays in game G.'0;M/, namely, .1; 1/,
.1; 2/, .2; 1/, and .2; 2/. The strategy function of player II for .9y=¹8xº/ must not
take for its argument the value player I has chosen for variable x; it must be a con-
stant. Since choosing neither 1 nor 2 as a value for y leads to a win for both possible
values of x, there is no w.s. for II in game G.�'0;M/, that is, '0 is not true in M.
On the other hand, neither is �'0 true in M. In order for there to exist a w.s. for II in
this game, it should be possible for II , in the role of falsifier, to choose a value a of
x so that for all values b of y that I can choose, we have a ¤ b. Since neither ' nor
�' is true in M, the negation � interpreted via the idea of switching roles does not
capture classical negation :: : is true precisely in those situations in which  is
not true. We will refer to � as dual negation and : as classical negation. We denote
first-order logic formulated using � as its negation symbol by LFO, while first-order
logic with : as its negation symbol is denoted by FO.

On various occasions Hintikka [8], [9], [10] has claimed that there cannot be a
game rule for classical negation. Since satisfaction conditions formulated in terms of
semantic games, as defined by Hintikka, are always expressible in the†11-fragment of
second-order logic .SO/, it is indeed impossible that semantic games hence formu-
lated could incorporate a rule for classical negation. (†11 is not closed under comple-
mentation.) We wish to show, however, that a game-theoretical analysis of classical
negation is possible. This is achieved by enriching the structure of game positions by
an additional component—to be termed a mode—and suitably interpreting the effect
of a mode on the strategy level. This approach for capturing classical negation has
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its limits; it applies only to certain languages (including LIF). These limits will be
identified. Related earlier research is discussed in Section 9.

In higher-order logics, we write � for logical equivalence and we use : to denote
negation. We write L � L0 to indicate that logic L can be translated into logic
L0; that is, for every ' 2 L there is  ' 2 L0 such that M; 
 ˆ ' if and only if
M; 
 ˆ  ' for all suitable models M and assignments 
 . Writing L < L0 means
that L � L0 but L0 — L, while L D L0 means that L � L0 and L0 � L. We
denote the empty tuple by . /. When it serves clarity, we use angle brackets to mark
a tuple: ha; b; ci means .a; b; c/. If X is a set, we write jX j for its cardinality. If
M is a model of vocabulary � with P 2 � , then PM stands for the interpretation of
P in M. We abbreviate .��1 _ �2/ by .�1 ! �2/ and ..�1 ! �2/ ^ .�2 ! �1//

by .�1 $ �2/. Further, we write .�1 � �2/ for .:�1 _ �2/ and .�1 �� �2/ for
..�1 � �2/ ^ .�2 � �1//. If f is a function of type A ! B and C � A, we write
f jC for the restriction of f to the set C . For later use, we define the notion of game
as follows.

Definition 1.1 (Game, play) A game between players I and II is a quintuple
.X; S; p0; c; u/, the components of which are as follows. X is a set and p0 2 X . The
elements of X are positions; p0 is the initial position. Further, S is function of type
X ! P .X/. If p 2 X , the set S.p/ is said to consist of the possible successors of p.
If the set S.p/ is empty, the position p is terminal. The component c, called a player
function, is defined on a subset of all nonterminal positions; its codomain is the set
¹I; IIº. If c is defined on p, the elements of S.p/ are considered to be resulting from
different moves available to player c.p/ at p. A play is any sequence .p0; : : : ; pn/
such that pn is terminal and piC1 2 S.pi / for all 0 � i < n. Any nonempty initial
segment of a play is a partial play. Finally, u is a utility function assigning to each
play exactly one of the tuples .win; loss/ or .loss;win/. If u.�/ D .win; loss/, we
say that I wins and II loses the play � , and if u.�/ D .loss;win/ we say that I loses
and II wins � .

2 First-Order Semantic Games Relativized to Modes

The existence of a w.s. for a given player is a strategic property of a game, but there
are other properties of interest. Insofar as it makes sense to reason in terms of the
class of strategies of a given player in the first place, we may pose questions pertain-
ing to all those strategies, as well as to the existence of a strategy with such-and-such
features. In particular, we may turn attention to the following property: for all strate-
gies g of player I in G.';M; 
/, there is a sequence of moves Eb of player II such
that II wins the play determined by g and Eb. We proceed to study a greater variety of
strategic properties than has been commonplace in connection with semantic games.

We will utilize semantic games whose positions are quintuples (rather than
quadruples as in first-order semantic games), consisting not only of a formula, a
model, an assignment, and a role distribution, but also a mode. We consider two
modes, to be labeled as C and �. On the play level the modes have a very modest
role, but at the strategic level they are of importance. The situation may be compared
with the case of LIF, where the independence indications have no effect whatsoever
at the play level, but they impose a constraint on strategies available to a given player.
The modes will be used for game-theoretically interpreting a unary connective de-
noted by + and considered as a negation symbol, to be termed mode negation. This
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connective, hence interpreted, will capture classical negation in connection with
certain logics.

Let us write L0 for the fragment of LFO consisting of formulas of the form
P1 � � �Pn �, where 1 � n < ! and � is a quantifier-free formula of a relational vocab-
ulary and every Pi is one of the symbols �, 8xi , and 9xi . The string P1 � � �Pn is the
prefix and � the matrix of the formula P1 � � �Pn �. Note that if Pi is a quantifier, the
variable it carries is xi . This syntactic restriction could be relaxed, but we stay with
it for simplicity. So 8x1�9x3R.x1; x3/ is a formula, but 8x1�9x2R.x1; x2/ is not.
By definition a (winning) strategy of player II in the semantic game G.';M; 
;C/

with ' 2 L0 is simply any (winning) strategy for II in semantic game G.';M; 
/,
and a (winning) strategy of player I in the semantic game G.';M; 
;�/ is any (win-
ning) strategy for I in semantic game G.';M; 
/. By contrast, a (winning) strategy
of II in G.';M; 
;�/ is any functional F which for every strategy f of I in se-
mantic game G.';M; 
/ yields a sequence of moves F.f / by II complying with
the game rules of G.';M; 
/ such that f and F.f / together determine a play of
that game (won by II); and a (winning) strategy of I in G.';M; 
;C/ is any func-
tional F which for every strategy f of II in G.';M; 
/ yields a sequence of moves
F.f / by I complying with the rules of G.';M; 
/ such that f and F.f / together
determine a play of that game (won by I). For L0, we define semantic games rela-
tivized to a role distribution as follows: G.';M; 
; �0; ?/ equals G.';M; 
; ?/, and
G.';M; 
; ��

0 ; ?/ equals G.�';M; 
; ?/.
Mode-relative semantic games for L0 are mode-invariant; the proof uses the well-

known property of determinacy of standard semantic games forL0. Mode invariance
fails for more general languages to be studied in this paper.

Fact 2.1 (Mode invariance for L0) For any L0-formula ', model M, assignment

 , and player j 2 ¹I; IIº, there is a w.s. for j in game G.';M; 
;C/ if and only if
there is a w.s. for j in game G.';M; 
;�/.

Proof We begin with the case j WD II . Suppose that there is a w.s., call it g, for
II in G.';M; 
;C/, but still there is no w.s. for II in G.';M; 
;�/. Hence there is
a strategy of player I in G.';M; 
/, call it f , such that for any sequence of moves
by II , it is I who wins the resulting play. So the play obtained when II applies g
and I applies f is won by both players, which is impossible. Conversely, suppose
that there is a w.s., call it F , for II in G.';M; 
;�/. Suppose for contradiction that
there is no w.s. for player II in G.';M; 
;C/. By determinacy of semantic games
for L0, there is a w.s., call it h, for I in G.';M; 
/. Hence in G.';M; 
/ the play
determined by the strategy h and the sequence of moves F.h/ is won by both players,
which again is impossible. We may reason similarly if j WD I .

3 Languages L1 and L2

We begin to investigate to which extent and how we can game-theoretically capture
classical negation in connection with certain extensions of L0. In addition to L0
with � as its negation sign, we define two further languages: L1 and L2. Their
formulas will have the general form P1 � � �Pn �, where 0 � n < ! and � is a
quantifier-free L0-formula, every Pi being one of the symbols �, +, .8xi=Wi /,
and .9xi=Wi /, given that Wi stands for a set of quantifiers Qkxk with 1 � k < i

and Qk 2 ¹8; 9º. The expressions .8xi=Wi / and .9xi=Wi / are called quantifiers.
If clarity so demands, they may be termed slashed quantifiers in contradistinction to
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the expressions 8xi and 9xi , which may then be referred to as plain quantifiers. Note
that the expressions Wi stand for sets of plain quantifiers, not slashed quantifiers. If
.Qxi=Wi / is a slashed quantifier, =Wi is its independence indication. If the setWi is
empty, we adopt the convention of writing 9xi for .9xi=Wi / and 8xi for .8xi=Wi /.

The polarity of expression Pi in the prefix P1 � � �Pn is positive if the total number
of negation signs in the string P1 � � �Pi�1 is even (occurrences of both + and �

counted), otherwise it is negative. The quantifiers appearing in prefixes of formulas
of the logics L1 and L2 are required to meet the following conditions.

� L2: Suppose Pi D .Qixi=Wi / and Pj D .Qjxj =Wj / and Qixi 2 Wj with
i < j . If Pi and Pj have the same polarity and Pi is an existential (universal)
quantifier, then Pj is a universal (existential) quantifier. If, again, Pi and Pj
have different polarities and Pi is an existential (universal) quantifier, then
also Pj is an existential (universal) quantifier.

� L1: We have the condition for L2 with the following additional requirement:
if Pi D .Qixi=Wi / and Pj D .Qjxj =Wj / and Qixi 2 Wj with i < j , then
between Pi and Pj no +-sign occurs in the prefix.

For example, if � and � are quantifier-free, then
+8x29x38x4

�
9x5=¹8x2º

�
+8x79x88x9

�
9x10=¹8x7º

�
�

is a formula of L1 (but not of L0), and
+8x29x38x4

�
9x5=¹8x2º

�
+8x79x88x9

�
9x10=¹8x7; 9x3; 9x5º

�
�

is a formula of L2 (but not of L1). Directly by definition, the sets of formulas of the
logics introduced thus far are related as follows: L0 ¨ L1 ¨ L2.

If P1 � � �Pn � is an L2-formula, any string Pi � � �Pn � with 1 � i � n C 1 is
its subformula. If Pi � � �Pn � is a subformula, the set Free1. / of its free atomic
variables consists of those variables xj appearing in � for which there is no quan-
tifier .Qjxj =Wj / in the string Pi � � �Pn. The set Free2. / of its free indepen-
dence variables consists of variables xj such that there is a quantifier .Qkxk=Wk/
in the string Pi � � �Pn and a quantifier Qjxj in Wk with j < i . For example, if
 WD .9x7=¹8x3º/R.x3; x5; x7/, then Free1. / D ¹x3; x5º and Free2. / D ¹x3º.
Note that Free2.'/ D ¿ for all ' 2 L2. Subformulas containing free independence
variables are not L2-formulas.

The fragment of L1 without + coincides, syntactically, with the fragment Lpr
IF

of LIF consisting of formulas with a prefix of slashed quantifiers followed by a
quantifier-free matrix formula. By Theorem 7.2, the negation + actually behaves
as classical negation in L1. In fact, then, formulas +� with � 2 L

pr
IF belong to what

Hintikka [8] has called extended IF logic. The whole logic L1 consists of formulas
in prenex form of the fully extended IF logic (to be denoted LFeIF) discussed in [10],
whereas L2 goes even beyond LFeIF.

4 Semantic Games Generalized

We associate a semantics withL2-formulas via a two-fold procedure. First, we define
correlated semantic games; then we explain how the semantic attributes of interest
are defined with reference to these games by using what we call metagames. Both
semantic games and metagames are games in the sense of Definition 1.1. We define
these games so that it will be absolutely clear what their corresponding components
are (set X of positions, successor function S , initial position p0, player function c,
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utility function u), although we do not explicitly phrase the definitions as definitions
of these five components.

Define a function .�/0 W ¹C;�º ! ¹C;�º by setting C0 D � and �0 D C. A sim-
ple assignment of variable xi to a value � , denoted x 7! �, is the map ¹.xi ; �/º. Re-
call that � stands for the empty assignment. For every L2-formula ' D P1 � � �Pn �,
suitable model M, assignment 
 W Free1.'/ ! M , and mode ? 2 ¹C;�º, we
associate a semantic game G.';M; 
; ?/ defined as follows.

1. The initial position is .';M; 
; �0; ?/.
2. If .� ;M; �; �; ?/ is a position, so is . ;M; �; ��; ?/.
3. If .+ ;M; �; �; ?/ is a position, so is . ;M; �; ��; ?0/.
4. If ..Qxi=Wi / ;M; �; �; ?/ is a position with Q 2 ¹8; 9º, and b 2 M , then
. ;M; xi 7! b; �; ?/ is a position. If Q D 8, player �.F/ chooses one such
position, else it is player �.V/ who chooses one such position.

5. If . ;M; �; �; ?/ is a position,  equals the matrix �, and the play which led
to this position is � D .. 0;M; �0; �0; ?0/; : : : ; . n;M; �n; �n; ?n//, then
player �.V/ wins the play � if M; �0; : : : ; �n ˆ  , else �.F/ wins.

For simplicity we let plays terminate with the matrix formula, although it may not
be atomic. Given that the �i are pairwise distinct variable assignments, the notation
M; �0; : : : ; �n ˆ  means that M; ı ˆ  in the usual sense of first-order logic, with
ı D

S
0�i�n �i . Note that in the above game rules, �0 D 
 . Viewed as sets, each �i

with i > 0 is either empty or a singleton.
Semantic games can be relativized to a role distribution by stipulating that

G.';M; 
; �0; ?/ equals G.';M; 
; ?/ and G.';M; 
; ��
0 ; ?/ equals G.�';M;


; ?/. If ' is a sentence, G.';M; ?/ equals G.';M; �; ?/. Note that independence
indications play no role in the game rules; they will become operative at the strategy
level. While the dual negation � acts exclusively on the role distribution (transpos-
ing it), the mode negation + acts also on the mode (changing it). The impact of the
modes will become manifest at the strategic level.

Recall that in Section 2 it was explained, for formulas ' of L0, what counts as
a winning strategy of a given player in a semantic game G.';M; 
; ?/. If ' 2 L0,
write M; 
 ˆ ' to indicate that there is a w.s. for player II in game G.';M; 
/.
We may observe that when applied to L0-formulas, the connective + captures the
classical negation.
Fact 4.1 Let ' 2 L0. For all suitable structures .M; 
/, there is a w.s. for player
II in game G.+';M; 
;C/ if and only if M; 
 6ˆ '.
Proof M; 
 6ˆ ' if and only if there is no w.s. for player II in G.';M; 
/ if and
only if for every strategy of II in G.';M; 
; �0;C/ there is a sequence of moves
of I such that I wins the resulting play if and only if .�/ for every strategy of I in
G.';M; 
; ��

0 ;C/ D G.';M; 
; ��
0/ there is a sequence of moves of II such that

II wins the resulting play if and only if there is a w.s. for II in G.';M; 
; ��
0 ;�/ if

and only if there is a w.s. for II in G.+';M; 
; �0;C/. The equivalence .�/ holds
because in L0, any strategy for II in G.�;N ; ı/ is a strategy for I in G.��;N ; ı/,
and vice versa.

5 Metagames

The strategic impact of a mode change with formulas discussed thus far (formulas of
L0 prefixed by +) has been that of effecting a switch between the attributes “there
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is a strategy for player II such that for all sequences of moves by player I : : :” and
“for all strategies of player I there is a sequence of moves by player II : : : .” It is
to be expected, then, that nested occurrences of + give rise to rather complicated
strategic properties. For instance, insofar as + is to capture classical negation, on
model M the formula +8x29x3 +8x49x5R.x2; x3; x4; x5/ should state that for
any function fx3

W M ! M there is a value a of x2 and a function gx5
W M ! M

such that for any value b of x4, we have: ha; f .a/; b; g.b/i 2 RM. The func-
tion gx5

may in principle depend on the function fx3
. Indeed, the sentence should

state the existence of functionals Fx2
W MM ! M and Fx5

W MM ! MM

such that for any function fx3
W M ! M and for any value b of x4, we have

hFx2
.fx3

/; fx3
.Fx2

.fx3
//; b; Fx5

.fx3
/.b/i 2 RM. How should the relevant at-

tributes be specified in connection with logics L1 and L2? We opt for explicating
this by using metagames. In terms of such metagames �.';M; 
; ?/, we may con-
veniently discuss strategic properties of the object games—the plain semantic games
G.';M; 
; ?/ with ' 2 Li with i WD 0; 1; 2.

For L0-formulas such metagames are extremely simple: in metagame �.';M;


;C/, first player II picks out, for each quantifier in the prefix for which it is his or
her turn to move, what would be a corresponding strategy function fi in semantic
game G.';M; 
/. Then player I picks out, for each quantifier in the prefix for which
it would be her or his turn to move in semantic game G.';M; 
/, an element aj
of M . Metagame �.';M; 
;�/ is played similarly, the difference being that it is
player I who picks out what would be strategy functions for him in semantic game
G.';M; 
/, whereafter player II selects what would be moves for her in semantic
game G.';M; 
/. In either case, if the choices are Ef and Ea and the play of the
semantic game G.';M; 
/ determined by Ef and Ea is won by player II , then player
II wins the play . Ef ; Ea/ of the metagame �.';M; 
; ?/, else player I wins the play.
There is no need to resort to the idea of metagame when explicating the notions of
strategy and winning strategy for mode-relativeL0-games; indeed these notions were
introduced for L0 already in Section 2. However, in order to formulate the semantics
of L2 we need a generalization, and such a generalization is conveniently devised at
the level of metagames. In the general case of L2-formulas, plays of the metagame
are structured as follows:

(tuple of functions ; tuple of moves), (tuple of functions ; tuple of moves),
: : : ; (tuple of functions ; tuple of moves).

There is a finite number of rounds (tuple of functions, tuple of moves), in each of
which first a finite number of functions are chosen, one by one, by one of the players
(these we call function moves)—whereafter a finite number of elements from the
domain are chosen, one by one, by the other player (element moves). The players
alternate in making moves in the sense that one of the players makes function moves
in the rounds with odd order position, and the other player in rounds with even order
position. Once metagames and the corresponding notions of strategy are defined,
we will declare that “strategy of player j in a semantic game G.';M; 
; ?/” means
“strategy of player j in a metagame �.';M; 
; ?/.”

We need some auxiliary notions in order to define the general concept of
metagame. If S1 � � �Sr is a string, any string Si � � �Sk with 1 � i � k � r is
its substring. The length of a string S1 � � �Sr equals r . Any string not containing the
symbol+ is+-free. A substring Si � � �Sk of a string S1 � � �Sr is maximally+-free
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if it is +-free and there is no +-free substring of S1 � � �Sr of length greater than
.k � i/C 1 having Si � � �Sk as its substring. A quantifier Pl in the prefix P1 � � �Pn
has existential force if the quantifier Pl is existential and its polarity is positive in the
prefix P1 � � �Pn, or Pl is universal and its polarity is negative in the prefix P1 � � �Pn.
The notion of a quantifier having universal force can be defined dually. Observe
that the notions of existential and universal force are purely syntactic. (This will
no longer be the case for the notions of the weak and strong force to be defined
in Section 6.) There are two types of objects that the players may choose in the
course of a metagame: elements of the domain and what we will call local strategy
functions. It will depend on the position which types of objects can be chosen. Some
further notions are needed to facilitate formulating the game rules for metagames.
Definition 5.1 (Barrier, local visibility) Let ' WD P1 � � �Pn � be an L2-formula.
Suppose that Pi is a quantifier. If the prefix P1 � � �Pi is not +-free, the backward
barrier of the quantifier Pi is the operator Pj with j < i such that Pj D + and
the string PjC1 � � �Pi is +-free. Similarly, if the suffix Pi � � �Pn is not +-free, the
forward barrier of Pi is the operator Pj with j > i such that Pj D + and the
string Pi � � �Pj�1 is +-free. That is, the backward (forward) barrier of Pi is the
+-sign closest to Pi on the left (right) if one exists. The operators close to Pi are
those in the string Pk � � �Pl with 1 � k � i � l � n, given that (Pk�1 is the
backward barrier of Pi or if none exists k D 1) and (PlC1 is the forward barrier
of Pi or if none exists l D n). If Pj is the backward barrier of Pi , the operators
in the string P1 � � �Pj�1 are far from Pi . If Pi D .Qxi=Wi / has existential force
in ', a quantifier Pk is said to be locally visible for Pi provided that the following
conditions are satisfied: k < i ; Pk is close to Pi ; Pk has universal force in '; and
Pk D .Q0xk=Wk/ with Q0xk … Wi . Derivatively, if Pi is a quantifier with existential
force in ', � D .p0; : : : ; pm�1/ is a partial play of a semantic game correlated with
', and the subformula component of the position pi�1 is Pi � � �Pn �, the assignment
locally visible at � equals 
 [ ı, where 
 is the assignment in p0 and ı is the union
of the simple assignments xj 7! bj in positions pj such that quantifier Pj is locally
visible for Pi . These simple assignments result from having assigned a value to
quantifier Pj at position pj�1. The notions of locally visible quantifier (assignment)
can be defined dually for quantifiers with universal force.
Definition 5.2 (Local strategy function, local strategy) Consider a semantic game
G.';M; 
; ?/ with ' WD O1 � � �On �. If Oi D .Qxi=Wi / and Oi has existential
force in ', a local strategy function for Oi is a function fi satisfying the following:
whenever � D .p0; : : : ; pi�1/ is a partial play of game G.';M; 
; ?/ and ı is the
assignment locally visible at � , the function fi is defined on the map ı and for some
b 2 M we have fi .ı/ D xi 7! b. That is, the local strategy function fi tells player II
which element b 2 M to assign to the variable xi ; the choice is allowed to depend on
the assignment locally visible at � and on nothing else. If Oj � � �Ok is a maximally
+-free string in of the prefix O1 � � �On, a local strategy for player II is a sequence
of local strategy functions, one for each Oi with j � i � k having existential force
in '. The notions of local strategy function and local strategy for player I can be
defined dually.
For any local strategy function f there are fixed variables xi1 ; : : : ; xinC1

such that
f takes assignments ¹.xi1 ; ai1/; : : : ; .xin ; ain/º as arguments and yields a simple
assignment ¹.xinC1

; ainC1
/º as its value. Without danger of confusion we may, then,
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view local strategy functions as functions mapping tuples of elements .ai1 ; : : : ; ain/
to elements ainC1

.
In semantic games for L0 and even forLIF all strategies are local strategies. Local

strategies encode strategic reasonings restricted to parts of plays during which the
negation + is not encountered. We will now define the notion of metagame, to
be used in explicating the notions of truth and falsity of L2-sentences. For every
formula ' D P1 � � �Pn � of L2, suitable structure .M; 
/, and mode ? 2 ¹C;�º, we
associate a metagame �.';M; 
; ?/ as follows.

1. The initial position is .';M; 
; �0; ?/.
2. If .+Pi � � �Pn �;M; �; �; ?/ is a position, the next position is .Pi � � �Pn �;

M; �; ��; ?0/.
3a. If .Pi � � �Pn �, M; �; �; ?/ is a position and Pi � � �Pk with i � k � n is a

maximally +-free substring of Pi � � �Pn containing exactly r dual negation
symbols, the next position is�˝

.Pi1 ; : : : ; Pis /; .Pj1
; : : : ; Pjt

/
˛
PkC1 � � �Pn �;M; �; �r ; ?

�
;

where the Piy (resp., the Pjz
) are those quantifiers in the string Pi � � �Pk

that have existential (universal) force in ' and �r D � if r is even, whereas
�r D �� if r is odd.

3b. If .h. /; . /iPkC1 � � �Pn �;M; �; �; ?/ is a position, the next position is
.PkC1 � � �Pn �;M; �; �; ?/.

4a. If .h.Pir ; : : : ; Pis /; .Pj1
; : : : ; Pjt

/i+PkC1 � � �Pn �;M; �; �;C/ is a posi-
tion and r � s, player II chooses a local strategy function fir for Pir .
The next position is .h.PirC1

; : : : ; Pis /; .Pj1
; : : : ; Pjt

/i + PkC1 � � �Pn �,
M; xir 7! fir ; �;C/.

4b. If .h. /; .Pjr
; : : : ; Pjt

/i + PkC1 � � �Pn �;M; �; �;C/ is a position and
r � t , player I picks out an element bir 2 M . The next position is
.h. /; .PjrC1

; : : : ; Pjt
/i +PkC1 � � �Pn �;M; xir 7! bir ; �;C/.

4c. If .h.Pi1 ; : : : ; Pis /; .Pjr
; : : : ; Pjt

/i + PkC1 � � �Pn �;M; �; �;�/ is a po-
sition and r � t , player I chooses a local strategy function fir for Pir .
The next position is .h.Pi1 ; : : : ; Pis /; .PjrC1

; : : : ; Pjt
/i + PkC1 � � �Pn �,

M; xir 7! fir ; �;�/.
4d. If .h.Pir ; : : : ; Pis /; . /i + PkC1 � � �Pn �;M; �; �;�/ is a position and

r � s, player II picks out an element bir 2 M . The next position is
.h.PirC1

; : : : ; Pis /; . /i + PkC1 � � �Pn �;M; xir 7! bir ; �;�/.
5. If . ;M; �; �; ?/ is a position,  equals the matrix �, and the play that led

to this position is � D .. 0;M; �0; �0; ?0/; : : : ; . n;M; �n; �n, ?n//, then
player �.V/ wins the play � if M; �0; : : : ; �n ˆ  , else �.F/ wins.

Metagames relativized to a role distribution are defined by stipulating that �.';M;


; �0; ?/ equals �.';M; 
; ?/ and �.';M; 
; ��
0 ; ?/ equals �.�';M; 
; ?/. Further,

�.';M; ?/ equals �.';M; �; ?/. Note that in item (3a) either k D n or elsePkC1 D

+. Note also that in noninitial metagame positions there may appear simple assign-
ments �i whose values are functions. In item (5), the notation M; �0; : : : ; �n ˆ  

means M; ı ˆ  , where ı W Free1. / ! M is the assignment defined as fol-
lows: if �j D .xij 7! bij /, then ı.xij / D bij , while if �j D .xij 7! fij /

and � is the assignment locally visible at the partial play .. 0;M; �0; �0; ?0/; : : : ,
. j�1;M; �j�1; �j�1, ?j�1//, then ı.xij / D fij .�/.
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Remark Rule (3a) serves to group quantifiers of the string Pi � � �Pk�1 into
two subgroups according to whether they are of existential or universal force, by
introducing a pair of lists of quantifiers: h.Pi1 ; : : : ; Pis /; .Pj1

; : : : ; Pjt
/i. Rules

(4a)–(4d) explicate how such pairs of lists are processed, one quantifier at a
time, until both lists are empty. Thereafter rule (3b) applies and we are back
with a string of symbols without pairs of list indicators. Expressions such as
h.Pir ; : : : ; Pis /; .Pj1

; : : : ; Pjt
/i+PkC1 � � �Pn � are not formulas according to the

syntax of L2. We employ such auxiliary expressions in order to facilitate the formu-
lation of the game rules. Observe that no special rule is needed for dual negation in
metagames, since rule (3a) is so formulated that it takes into account the possible
occurrences of dual negations when forming the two lists of quantifiers and when
determining the role distribution �r . Finally note that rules (4a)–(4d) are formulated
in terms of players and not in terms of their roles. That is, for example, according to
rule (4a), it is player II who chooses a local strategy function for Pir , irrespective of
the role she or he happens to occupy in the corresponding object game when making
a move for the quantifier Pir .

6 Strategic Properties of Object Games

If ' is a sentence of logic L0, a strategy Ef is winning for player II in semantic game
G.';M/ if and only if making the initial moves Ef in metagame �.';M;C/ yields
a win to II against any sequence of elements thereafter chosen by player I . Similarly,
Eg is a w.s. for I in G.';M/ if and only if the initial moves Eg in �.';M;�/ yield a
win to I against any sequence of elements chosen by II . This observation will guide
our generalizations: for truth, we turn attention to the positive mode and player II ,
for falsity to the negative mode and player I .

Generally the existence of a w.s. for player II in metagame �.';M; 
;C/ cor-
responds to a certain rather complicated strategic property of the object game
G.';M; 
;C/. In connection with L1 the property takes the form

(there is a local strategy f1 chosen by player II such that for any tuple Ex1 of
elements chosen by I) (there is a local strategy f2 chosen by player I such that
for any tuple of elements Ex2 chosen by II) : : : .

Logic L2 introduces a further complication: those functionals that are utilized as
strategy functions of player II in the metagame may not be allowed to take for argu-
ments certain earlier moves by player I .

Consider a semantic gameG.';M; 
; ?/, where' D P1 � � �Pn � is anL2-formula.
Suppose that Pr is a quantifier with existential force in the prefix P1 � � �Pn. The
existential force of Pr is said to be weak in the semantic game G.';M; 
; ?/ if the
initial mode ? equals C and the number of +-signs in the substring P1 � � �Pr�1

is odd, or the initial mode ? equals � and the number of +-signs in the substring
P1 � � �Pr�1 is even. Its existential force is strong otherwise, that is, if the initial
mode ? equals C and the number of+-signs in the substring P1 � � �Pr�1 is even, or
the initial mode ? equals � and the number of +-signs in the substring P1 � � �Pr�1

is odd. Dually, a quantifier Pr is of strong (weak) universal force in G.';M; 
; ?/

if it is of universal force and either the initial mode is positive and Pr is preceded
by an odd (even) number of +-signs, or else the initial mode is negative and Pr is
preceded by an even (odd) number of +-signs. It should be noted that the notions
of weak and strong force are not purely syntactic; they are relative not only to a
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prefix but also to the initial mode. In metagames players make function moves for
quantifiers which are in the corresponding object game of strong force and element
moves for quantifiers which are of weak force in the corresponding object game. We
introduce a couple of auxiliary notions and then formulate the definition of strategy
function applicable in connection with metagames.

Definition 6.1 (Visibility) Let ' WD P1 � � �Pn � be an L2-formula. Suppose first
that Pi is a quantifier of existential force, and let Pj � � �Pl be the string of operators
close to Pi (j � i � l). A quantifier Pk is said to be visible for Pi if it satisfies the
following conditions: Pk is far from Pi (whence k < j ); Pk has universal force in
'; and xk … Wi . If Pi has strong force, no other quantifiers are visible for Pi . If,
again, Pi has weak force, also all those Pk are visible for Pi that are close to Pi and
have universal force relative to '. Derivatively, if Pr is a quantifier with existential
force in ', � D .p0; : : : ; pm�1/ is a partial play of a metagame correlated with '
and the expression h.Pr ; : : : ; Pis /; .Pj1

; : : : ; Pjt
/i appears in the position pm�1,

the assignment visible at � equals 
 [ ı, where 
 is the assignment in p0 and ı is
the union of those simple assignments xj 7! �j appearing in positions pj such that
quantifier Pj is visible for Pr . If Pj has strong universal force, the object �j is a
local strategy function, whereas if Pj has weak universal force, �j is an element of
the domain. The notions of visible quantifier and visible assignment can be defined
dually for quantifiers with universal force.

The notion of locally visible assignment—defined for semantic games—must not be
confused with the notion of visible assignment—defined for metagames. Also the
notions of locally visible quantifier and visible quantifier must be kept apart. In par-
ticular if Pi has strong existential force, none of the quantifiers locally visible for Pi
are visible for Pi . Note also that if Pi has weak existential force, all quantifiers close
to it are visible for Pi—including those that lie in its syntactic scope. In accordance
with the metagame rules, the adversary will have associated a local strategy function
with all those quantifiers before an element is assigned to Pi .

Definition 6.2 (Strategy in a metagame) Let ' D P1 � � �Pn � be an L2-formula.
If Pi is a quantifier of existential force, a strategy function of player II for Pi in
metagame �.';M; 
; ?/ is a function Fi satisfying the following. Whenever � D

.p0; : : : ; pi�1/ is a partial play of �.';M; 
; ?/ and the assignment visible at � is ı,
the function Fir is defined on ı and we have the following:

� if pi�1 D .h.Pir ; : : : ; Pis /; .Pj1
; : : : ; Pjt

/i ;M; �; �;C/ and Pir has strong
force, then Fir tells player II which local strategy function to pick; that is,
there is a local strategy function fir for Pir such that Fir .ı/ D fir ;

� if .h.Pir ; : : : ; Pis /; . /i ;M; �; �;�/ and Pir has weak force, then Fir tells
player II which element b 2 M to pick, that is, Fir .ı/ 2 M .

A strategy F for player II is a sequence of strategy functions, one strategy function
Fi for each quantifier Pi of existential force in the prefix. We say that player II has
used strategy F in a play .p0; : : : ; pm/ of game �.';M; 
; ?/ if the following two
conditions are met for all i � m:

� if pi�1 D .h.Pir ; : : : ; Pis /; .hPj1
; : : : ; Pjt

/i ;M; �; �;C/, and Pir has
strong force, and ıi�1 is the assignment visible to player II at .p0; : : : ; pi�1/,
thenpi D .h.PirC1

; : : : ; Pis /; .Pj1
; : : : ; Pjt

/i ;M,xir 7! Fir .ıi�1/; �;C/;
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� if pi�1 D .h.Pir ; : : : ; Pis /; . /i ;M; �; �;�/, and Pir has weak force,
and ıi�1 is the assignment visible to player II at .p0; : : : ; pi�1/, then
pi D .h.PirC1

; : : : ; Pis /; . /i ;M; xir 7! Fir .ıi�1/; �;�/.
The notions of strategy and using a strategy can be defined dually for player I . A strat-
egy is winning for player j if for all sequences of moves by his or her adversary, it
yields moves so that the resulting play is won by player j .

Similarly to the case of local strategy functions, in the case of strategy functions we
may ignore the fact that their arguments are assignments ¹.xi1 ; �i1/; : : : ; .xin ; �in/º

and their values are simple assignments ¹.xinC1
; �inC1

/º; we may simply treat them
as functions taking tuples .�i1 ; : : : ; �in/ as their arguments and yielding the object
�inC1

as their value.
The effect of independence indications =Wi that results from the definitions of

strategy and local strategy may be summarized as follows. If P1 � � �Pn � is a formula
and Pi D .Qixi=Wi / appears in the maximally +-free string Ph � � �Pk , let .Vi ; Ui /
be a partition of Wi such that quantifiers in Vi occur in the string P1 � � �Ph�1 (i.e.,
are far from Pi ), while those in Ui occur in the string Ph � � �Pk (i.e., are close to
Pi ). The set Vi regulates strategy functions for Pi in metagames but does not affect
the play level, while the set Ui regulates its local strategy functions and therefore
affects the play level in metagames. If Pi is of strong existential force, the quantifiers
in Ui determine the type of the local strategy functions for Pi . If, again, Pi is of
weak existential force, the quantifiers in Ui play no role whatsoever. It is obvious
they cannot have a role at the play level, since the move corresponding to Pi is an
element of the domain if Pi is of weak force. However, we do not wish quantifiers in
Ui to have a role at the strategy level either. That is, if Pi has weak existential force,
Pj is a quantifier of universal force close to Pi (i.e., h � j � k), and Qjxj 2 Wi ,
we wish the indicated independence vis-à-vis Qjxj to be vacuous. We take this
to be motivated by the behavior of LIF. Locally we are interested—in any given
maximally +-free string—in strategies of one player only, in analogy with the case
of LIF, in connection with which, considering the truth (falsity) of a sentence, only
independence indications of quantifiers with existential (universal) force matter, that
is, quantifiers of only one type are interpreted in terms of strategies and restrictions
imposed on them. As to the set Vi , it determines which earlier moves by the adversary
are allowed as arguments of the strategy function for Pi . If Pi has weak existential
force, among those earlier moves there are automatically in particular all moves that
the adversary has made for the quantifiers of strong universal force earlier in the
current maximally +-free string, among which there may well be quantifiers close
to Pi in the syntactic scope of Pi .

In order to have available the notion of (winning) strategy also in object games,
we stipulate the following.

Definition 6.3 (Strategy in an object game) Let ' be an L2-formula, and let
j 2 ¹I; IIº. We say that a tuple of functions F is a (winning) strategy for player
j in an object gameG.';M; 
; ?/ if F is a (winning) strategy for j in the metagame
�.';M; 
; ?/.

The semantic attributes we are interested in are defined as follows.

Definition 6.4 (Satisfaction, satisfaction equivalence) If ' 2 L2, j 2 ¹I; IIº,
and ? 2 ¹C;�º, we write M; 
 ˆ?

j ', if there exists a w.s. for player j in game
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G.';M; 
; ?/. If M; 
 ˆ
C
II ', we say that formula ' is satisfied in model M by

assignment 
 . If ' is a sentence satisfied in M by �, we say that it is true in M, sym-
bolically M ˆ

C
II '. If M; 
 ˆ�

I ', we speak of dissatisfaction and falsity. Formulas
'.x1; : : : ; xn/ and  .x1; : : : ; xn/ are satisfaction-equivalent if for all suitable struc-
tures .M; 
/, we have M; 
 ˆ

C
II ' if and only if M; 
 ˆ

C
II  . If ' and  are sen-

tences, we speak of truth equivalence. Formulas '.x1; : : : ; xn/ and  .x1; : : : ; xn/
are strongly equivalent if for all suitable .M; 
/, all j 2 ¹I; IIº, and all ? 2 ¹C;�º,
we have M; 
 ˆ?

j ' if and only if M; 
 ˆ?
j  .

In Sections 7 and 8, we will study the expressivity of the logics L1 and L2. The
notation L � L0 used when comparing the expressive powers of logics L and L0

was introduced at the end of Section 1 supposing that the satisfaction relation of both
logics is ˆ. When one of the logics is L1 or L2, it must be understood that the
intended satisfaction relation for that logic is ˆ

C
II .

The following interconnections of the relations just defined are immediate.2

Fact 6.5 Let ' 2 L2 be arbitrary. Then
(a) M; 
 ˆ

C
I ' if and only if M; 
 ˆ�

II �' if and only if M; 
 ˆ
C
II +',

(b) M; 
 ˆ�
I ' if and only if M; 
 ˆ

C
II �' if and only if M; 
 ˆ�

II +'.

We say that a formula ' is bivalent if either M; 
 ˆ
C
II ' or M; 
 ˆ�

I ', for all
suitable structures .M; 
/.
Observation 6.6 Not all negated formulas +' are bivalent. For example, let
 0 WD 8x.9y=¹8xº/ x D y, and let M0 be a model with at least two elements.
Then  0 is neither true nor false: neither M0 6ˆ

C
II  0 nor M0 6ˆ�

I  0. Yet ++ 0
is strongly equivalent to  0, so ++ 0 is a formula prefixed by + which is not
bivalent. In Theorem 7.2 we will see that for all L1-sentences ' and models M,
we have that +' is true in M if and only if ' is not true in M. By what was just
observed, the nontruth of +' does not in general imply its falsity.
Whenever P1 � � �Pn � is an L2-formula, let PC

1 � � �PC
n be the string defined as fol-

lows: PC

i D Pi if Pi is not a quantifier; PC

i D Qixi if Pi D .Qixi=Wi / is a
quantifier of weak universal force; PC

i D .Qixi=U 0
i / if Pi D .Qixi=Vi [ Ui / is

a quantifier of strong universal force and U 0
i D ¹Q W Q 2 Ui and Q is of existen-

tial forceº; PC

i D .Qixi=V 0
i / if Pi D .Qixi=Vi [ Ui / is of weak existential force

and V 0
i D ¹Q W Q 2 Vi and Q is of universal forceº; and PC

i D .Qixi=W 0
i / if

Pi D .Qixi=Wi / is of strong existential force and W 0
i D ¹Q W Q 2 Wi and Q is

of universal forceº; here the partition .Vi ; Ui / of Wi is defined as explained above.
We define the string P�

1 � � �P�
n in a dual fashion. The following fact is a direct

consequence of the semantics.
Fact 6.7 A formula P1 � � �Pn � of L2 is satisfied (resp., dissatisfied) in M by 
 if
and only if PC

1 � � �PC
n � is satisfied (resp., P�

1 � � �P�
n � is dissatisfied) in M by 
 .

If we writeL0
1 for the fragment of logicL1 whose formulas do not use the connective

+, then L0
1 D †11. For, L0

1 coincides not only syntactically but also semantically
with Lpr

IF , and by well-known results this fragment coincides with †11 (see [8]). Be-
fore proceeding to further expressivity issues, let us consider some examples. Below,
when no confusion is likely, we allow using in the syntax variables such as x, y, z,
and so on, requiring, however, that the formulas be regular in the sense mentioned in
the beginning of this paper.



482 Tero Tulenheimo

Example 6.8 (Logic L1) We claim that the L1-sentence

8t +8x8y
�
9z=¹8yº

��
9v=¹8xº

�
+

�
Œx D y $ z D v� ! t D z

�
;

call it ', is true in a model M if and only if the domain M is finite. Its truth
condition can be expressed by the …1

1-sentence 8t 8f 8g 9x 9y .Œx D y ��

f.x/ D g.y/� � t D f.x//. What this sentence states is that if t 2 M , f 2 MM

and g 2 MM are arbitrary, either f ¤ g (in which case there are a; b 2 M so
that a D b and f .a/ ¤ g.b/) or f D g but f is not injective (and so there are
a; b 2 M such that a ¤ b and f .a/ D g.b/) or else f D g and f is injective and
there is a 2 M so that t D f .a/. That is, the …1

1-sentence states that every injective
function of type M ! M is surjective, that is, that the domain M is finite. Let us
check directly in terms of the semantics of L1 that ' expresses the finiteness of the
domain.

First suppose that M is finite. Define a strategy .F8x ; F8y/ for player II in
metagame �.';M;C/ as follows. If a, f , and g are the choices of player I for 8t ,
.9z=¹8yº/, respectively, .9v=¹8xº/, let F8x.a; f; g/ D F8y.a; f; g/ D b if f ¤ g,
where b satisfies f .b/ ¤ g.b/; further let F8x.a; f; g/ D b0 and F8y.a; f; g/ D b00

if f D g but f is not injective, where b0; b00 with b0 ¤ b00 satisfy f .b0/ D g.b00/;
finally, if f D g and f is injective, choose the value of F8y.a; f; g/ in an arbitrary
fashion, and let F8x.a; f; g/ D e for the uniquely determined e such that f .e/ D a.
(Such a value e exists because M is finite.) Clearly the strategy .F8x ; F8y/ is win-
ning for II . Note that the values of the strategy functions F8x and F8y depend on
function choices of player I , and if f D g and f is injective, the value also depends
on the element choice of player I . Second, suppose M ˆ

C
II ', and let .F8x ; F8y/ be

a w.s. for II in metagame �.';M;C/. We show M to be finite. Let f W M ! M

be injective; let a 2 M be arbitrary. We must show that there is b 2 M such that
a D f .b/. Consider any play of the metagame where the choices of player I are, in
the order in which they are made, a, f , and f . Letting b WD F8x.a; f; f /, we have
a D f .b/, since .F8x ; F8y/ is a winning strategy.

Example 6.9 (Logic L2) Let  .A;B;C / be the L2-sentence

8t +8x8x0
�
9y=¹8x0

º
��

9y0=¹8xº
�
+

�
9v=¹8t; 9y0

º
��

9v0=¹8t; 9yº
���

A.t/ ^ B.y/ ^ B.y0/
�

!
�
x D x0

^ A.x/ ^ C.v/ ^ C.v0/

^
�
Œy ¤ y0

^ v ¤ v0� _ Œx D t ^ y D y0
^ v D v0�

���
:

We claim that whenever M is a (finite or infinite) model with each of the sets AM,
BM, CM nonempty, we have M ˆ

C
II  .A;B;C / if and only if jBMj

jAM j
� jCMj.

Left to right. Let .F8x ; F8x0 ; F9v; F9v0/ be a w.s. for player II in metagame
�. .A;B; C /;M;C/. Thus, there are functionals S and S 0 of type MM ! CM

with S D F9v and S 0 D F9v0 such that for all maps f and f 0 of type M ! BM,
either there is an element b D F8x D F8x0 in AM such that f .b/ ¤ f 0.b/ and
S.f / ¤ S 0.f 0/, or else for all c 2 AM we have f .c/ D f 0.c/ and S.f / D S 0.f 0/.
Fix an element d 2 CM, and for all g W AM ! BM, let hg be the map of type
M ! BM satisfying hg.a/ D g.a/ if a 2 AM, and hg.a/ D d otherwise.
Define maps T and T 0 of type .BM/A

M
! CM by setting T .g/ D S.hg/ and

T 0.g/ D S 0.hg/ for all maps g W AM ! BM. By the properties of S and S 0,
T D T 0 and this function is injective.
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Right to left. Suppose that there is an injective function T W .BM/A
M

! CM.
Define a strategy .F8x ; F8x0 ; F9v; F9v0/ for player II in metagame �. .A;B; C /;
M;C/ as follows. Suppose that a 2 M , f 2 MM , and f 0 2 MM are the choices
of player I for 8t , .9y=¹8x0º/, respectively, .9y0=¹8xº/. Let g D f jAM and
g0 D f 0jAM . We may suppose that the images of these maps are contained in BM,
for if they are not, there is c 2 M with .g [ g0/.c/ … BM such that by choosing c
as the common value of x and x0 player II wins the resulting play, no matter which
moves are made for 8t , 9v, and 9v0. Likewise we may suppose a 2 AM. Now, we
put F9v D F9v0 D S , where S W MBM

! M is a functional defined as follows:
S.h/ D T .hjAM /, for all h 2 MBM . Further, (1) if g D g0, we set F8x D F8x0 D a,
while (2) if g ¤ g0, we put F8x D F8x0 D b, where b is a fixed element satis-
fying g.b/ ¤ g0.b/. Let us check that player II wins the resulting play in both
cases. Consider case (1) first. The assignment ı induced by these moves satisfies
ı.t/ D ı.x/ D ı.x0/ D a; and ı.v/ D S.f / D T .g/ D T .g0/ D S.f 0/ D ı.v0/;
and ı.y/ D f .a/ D g.a/ D g0.a/ D ı.y0/ (because a 2 AM). Hence in
particular M; ı ˆ C.v/ ^ C.v0/ ^ x D t ^ y D y0 ^ v D v0. In case
(2), the induced assignment ı satisfies the following: ı.x/ D ı.x0/ D b;
and ı.v/ D S.f / D T .g/ ¤ T .g0/ D S.f 0/ (since T is injective); and
ı.y/ D f .b/ D g.b/ ¤ g0.b/ D ı.y0/ (because b 2 AM). Hence in particu-
lar M; ı ˆ C.v/ ^ C.v0/ ^ A.x/ ^ y ¤ y0 ^ v ¤ v0.

Below we will use the following fact.

Fact 6.10 Every formula ' of L2 is strongly equivalent to a formula of L2 whose
prefix contains no �-sign.

Proof Let us first agree on the following notation. Suppose that W is a set of
plain quantifiers. If Qx 2 W , write W d

Qx for the result of replacing Qx in W by
its dual; otherwise let W d

Qx D W . (The dual of 9x is 8x, and vice versa.) If
.Q0x0=W / is a slashed quantifier, .Q0x0=W /dQx denotes .Q0x0=W d

Qx/. Given a prefix
P1 � � �Pn of an L2-formula, define a sequence of prefixes EPi recursively as follows.
Let EP0 WD P1 � � �Pn. If EPi WD O1 � � �Ok �OkC1 � � �Om and O1 � � �Ok is �-free,
define EPiC1 as follows depending on the symbol OkC1.

� If OkC1 D �, then EPiC1 WD O1 � � �OkOkC2 � � �Om.
� If OkC1 D +, then EPiC1 WD O1 � � �Ok + � OkC2 � � �Om.
� If OkC1 D .9x=W /, then EPiC1 WD O1 � � �Ok.8x=W / � O?

kC2
� � �O?m,

where O?j D Oj if Oj is one of the two negation symbols, whereas
O?j D Oj

d
9x if Oj is a quantifier (k C 2 � j � m). Similarly, if

OkC1 D .8x=W /, then EPiC1 WD O1 � � �Ok.9x=W / � O?
kC2

� � �O?m,
where O?j D Oj

d
8x if Oj if Oj is a quantifier, else O?j D Oj .

These rules apply until a prefix O1 � � �OrOrC1 is reached (in at most n steps) such
that O1 � � �Or is �-free. For example, the rules transform �8x.9y=¹8xº/R.x; y/

into 9x �.9y=¹9xº/R.x; y/, which is transformed into 9x.8y=¹9xº/�R.x; y/. It
is not difficult to verify that EPi� and EPiC1� are strongly equivalent for all quantifier-
free formulas �.
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7 L1 and Second-Order Logic

We prove that our semantics interprets + in L1 as classical negation, and we estab-
lish a strict upper bound to the expressivity of L1 as a fragment of SO. In the present
section we will restrict attention to L1-formulas whose prefix is �-free; by Fact 6.10
we may do so without loss of generality. We will use known results about the Henkin
quantifier logic L� (see Krynicki and Mostowski [19]).

A Henkin quantifier H Ex Ey is an expression of the form0B@8x11 : : : 8x1n1
9y1

:::
: : :

:::
:::

8xk1 : : : 8xknk
9yk

1CA ;
where k; ni � 1 for all i WD 1; : : : ; k and the xij and the yl are (object-language)
variables. Given a relational vocabulary � , the syntax of the logic L� is generated by
the following grammar:

R.x1; : : : ; xm/ j x1 D x2 j : j . _  / j . ^  / j 8x j 9x j H Ex Ey  ;

where R 2 � is m-ary, x and the xi are variables, Ey is a k-tuple of variables, and Ex

is a
Pk
iD1 ni -tuple of variables with n1; : : : ; nk � 1. We require that L�-formulas

be regular: one and the same variable never occurs in nested quantifiers (in par-
ticular not in nested Henkin quantifiers). The semantics of L� is obtained by
adding to the recursive clauses defining the satisfaction relation of FO the following
clause: M; 
 ˆ H Ex Ey if and only if there are functions fi W M ni ! M (with
1 � i � k) such that for all aij 2 M (with 1 � i � k, 1 � j � ni ) we have
M; ı Ef ;Ea

ˆ  , where ı Ef ;Ea
is the extension of 
 satisfying ı Ef ;Ea

.xij / D aij and
ı Ef ;Ea

.yi / D fi .a
i
1; : : : ; a

i
ni
/. Note that by this semantics, M; 
 ˆ :H Ex Ey : means

that for all functions fi W M ni ! M (with 1 � i � k) there are elements aij 2 M

(with 1 � i � k, 1 � j � ni ) such that M; ı Ef ;Ea
ˆ  . Write L�

C for the fragment of
L� consisting of formulas of the form H Ex Ey , where  is quantifier-free. Write L�

�

for the fragment of L� consisting of negations of L�
C-formulas. Enderton [4] and

Walkoe [22] showed that †11 D L�
C, whence …1

1 D L�
�. Enderton [4] proved that

L� � �12, while M. Mostowski [20] showed that the converse does not hold.
We proceed to prove that logic L1 can be translated into L�: for every ' 2 L1

there is  ' 2 L� such that M; 
 ˆ
C
II ' if and only if M; 
 ˆ  ' for all suitable

structures .M; 
/. Let us first agree on some notation. Suppose that EPEz;Ev is a
substring of the prefix of an L1-formula containing only quantifiers, the existential
quantifiers of EPEz;Ev being .9z1=Z1/; : : : ; .9zm=Zm/ and its universal quantifiers
8v1; : : : ;8vn, with Ez D z1 � � � zm and Ev D v1 � � � vn. For each 1 � l � m, let
Ul be the set of variables vj such that the quantifier 8vj precedes .9zl=Zl / in the
string EPEz;Ev but does not belong to the set Zl . There may well be variables vj with
vj 2 Ul \ Ul 0 for distinct l; l 0. For all 1 � l � m, let Vl WD ¹vlj W vj 2 Ulº.
Hence by syntactic criteria the sets of variables Vl and Vl 0 are disjoint when-
ever l; l 0 are distinct. For all 1 � j � n, let Ij WD ¹l W vj 2 Ulº. Write
�Œ EPEz;Ev� WD

V
1�j�n;l2Ij

vj D vlj . Let HŒ EPEz;Ev� be the Henkin quantifier H ĘEz,
where Ę D ˛11 ; : : : ; ˛

m
nm

is a tuple of metavariables with ˛l
l
; : : : ; ˛lnl

standing for
the variables in the set Vl ordered according to increasing subscripts. If � 2 L1 is
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quantifier-free, let �: be the result of replacing all occurrences of � in � by :. With
each L1-formula ', we associate L�-formulas 'C and '� to be termed the positive
and negative translation of ' into L�, respectively,

� �C D �: and �� D :�: if � is quantifier-free;
� if EPEz;Ev

EO� is an L1-formula such that EPEz;Ev is a string of quantifiers and EO is
either empty or begins with +, then
? . EPEz;Ev

EO�/C D HŒ EPEz;Ev�8v1 � � � 8vn.�Œ EPEz;Ev� � . EO�/C/,
? . EPEz;Ev

EO�/� D :HŒ EPEz;Ev�:9v1 � � � 9vn.�Œ EPEz;Ev� ^ . EO�/�/;
� .+'/C D '� and .+'/� D 'C.

Lemma 7.1 For all ' 2 L1 and all structures .M; 
/, we have M; 
 ˆ
C
II ' if and

only if M; 
 ˆ 'C and M; 
 ˆ�
II �' if and only if M; 
 ˆ '�. In particular, then,

L1 � L�.

Proof We prove the claim by induction on the number of +-signs in the prefix of
an L1-formula. For the base case of 0 +-signs, suppose that � 2 L1 is quantifier-
free. Note that syntactically � 2 LFO and �: 2 FO and �: 2 L�. By the interre-
lations of the semantics of the logics L1, LFO, FO, and L�, we have M; 
 ˆ

C
II � if

and only if � is satisfied in .M; 
/ according to the semantics of LFO if and only if
�: is satisfied in .M; 
/ according to the semantics of FO if and only if �C D �:

is satisfied in .M; 
/ according to the semantics of L�. Further, M; 
 ˆ�
II �� if and

only if (Fact 2.1) M; 
 ˆ
C
II �� if and only if �� is satisfied in .M; 
/ according to

the semantics of LFO if and only if �� D :�: is satisfied in .M; 
/ according to the
semantics of L�. Suppose, then, that the claim holds for formulas with n +-signs in
the prefix. Let ' be a formula with nC 1 +-signs. We distinguish two cases.

(1) Suppose ' D+  . We have M; 
 ˆ
C
II +  if and only if there is a

w.s. for player II in metagame �. ;M; 
; ��
0 ;�/ if and only if M; 
 ˆ�

II �  

if and only if (inductive hypothesis) M; 
 ˆ  �, where  � D .+  /C. Fur-
ther, M; 
 ˆ�

II �+  if and only if there is a w.s. for player II in metagame
�.+  ;M; 
; ��

0 ;�/ if and only if M; 
 ˆ
C
II  if and only if (ind. hyp.)

M; 
 ˆ  C, where  C D .+ /�.
(2) Suppose ' D EPEz;Ev

EO�, where EPEz;Ev is nonempty and EO is either empty or
begins with +. Consider first the positive translation. Assume M; 
 ˆ

C
II

EPEz;Ev
EO�.

Thus, there is a w.s. for II in metagame �. EPEz;Ev
EO�;M; 
;C/ which yields for

every existential quantifier .9zi=Wi / in EPEz;Ev a local strategy function fi such that
against any sequence of moves Ea by I for the universal quantifiers in EPEz;Ev , we
have M; ı ˆ

C
II

EO�, where ı is the extension of the assignment 
 determined
by Ef and Ea. By (1) we have M; ı ˆ . EO�/C. Given how the Henkin quanti-
fier HŒ EPEz;Ev� and the formula �Œ EPEz;Ev� are defined, the local strategy function for
.9zi=Wi / witnesses the existential quantifier 9zi (1 � i � m) in HŒ EPEz;Ev� so
that M; 
 ˆ HŒ EPEz;Ev�8v1 � � � 8vn.�Œ EPEz;Ev� � . EO�/C/. Conversely, if M; 
 ˆ

HŒ EPEz;Ev�8x1 � � � 8vn.�Œ EPEz;Ev� � . EO�/C/, let f1; : : : ; fm be the witnesses of
9z1; : : : ; 9zm in HŒ EPEz;Ev� yielding for all values aj 2 M of vj with 1 � j � n val-
ues of z1; : : : ; zm such that the assignment ı Ef ;Ea

extending 
 hence obtained satisfies
M; ı Ef ;Ea

ˆ . EO�/C. By (1) there is a w.s., call it F Ef ;Ea
, for II in �. EO�;M; ı Ef ;Ea

;C/.
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Define a strategy F 0 in �. EPEz;Ev
EO�;M; 
;C/ as follows: choose for each quantifier

.9zi=Wi / in the string EPEz;Ev the function fi , and for any tuple of values .a1; : : : ; an/
chosen for the universal quantifiers 8v1; : : : ;8vn in the string EPEz;Ev , from the position
. EO�;M; ı Ef ;Ea

; �0;C/ onwards use the strategy F Ef ;Ea
. Clearly F 0 is winning for II .

We must still check the claim concerning the negative translation. Assum-
ing M; 
 ˆ�

II � EPEz;Ev
EO�, there is a w.s., call it F , for player II in metagame

�. EPEz;Ev
EO�;M; 
; ��

0 ;�/. Against any sequence Ef of local strategy functions cho-
sen by player I for the existential quantifiers in EPEz;Ev , the strategy F determines a
value ai for each universal quantifier 8vi in EPEz;Ev such that M; ı ˆ�

II � EO�, where
ı is the extension of the assignment 
 determined by F and Ef . Thus, by (1) we
have M; ı ˆ . EO�/�. Given how the Henkin quantifier HŒ EPEz;Ev� and the formula
�Œ EPEz;Ev� are defined, we have M; 
 ˆ :HŒ EPEz;Ev�:9v1 � � � 9vn.�Œ EPEz;Ev� ^ . EO�/�/,
since whenever f1; : : : ; fn are functions chosen for the existential quantifiers in
HŒ EPEz;Ev� and a1; : : : ; an are the values assigned by the strategy F to the univer-
sal quantifiers 8v1; : : : ;8vn in EPEz;Ev , each existential quantifier 9vi is witnessed
by the value ai and each universal quantifier 8˛r

k
in HŒ EPEz;Ev� is witnessed by the

value aj if vlj is the variable for which the metavariable ˛r
k

stands. Conversely,
if M; 
 ˆ :HŒ EPEz;Ev�:9v1 � � � 9vn.�Œ EPEz;Ev� ^ . EO�/�/, let F be a map assigning
to any tuple .f1; : : : ; fm/ of functions corresponding to 9x1; : : : ; 9xm in HŒ EPEz;Ev�

values of the variables ˛11 ; : : : ; ˛mnm
; v1; : : : ; vn so that the resulting assignment ı

F; Ef

satisfies M; ı
F; Ef

ˆ .�Œ EPEz;Ev� ^ . EO�/�/. In particular, then, by item (1) we have
M; ı

F; Ef
ˆ�

II � EO�; that is, there is a w.s., call it F 0

Ef
, for player II in metagame

�. EO�;M; ı
F; Ef

; ��
0 ;�/. Clearly the strategy which consists of letting the map F

determine the moves for the universal quantifiers in the string EPEz;Ev against the ad-
versary’s moves Ef for the existential quantifiers therein, and thereafter using the
strategy F 0

Ef
, is a w.s. for player II in metagame �. EPEz;Ev

EO�;M; 
; ��
0 ;�/. Hence,

M; 
 ˆ�
II � EPEz;Ev

EO�.

We are in a position to see that in L1 the connective + captures classical negation.
Further, we see that L1 is strictly less expressive than the �12-fragment of SO. Note
that the positive translation 'C of an L1-formula ' is syntactically in †1

kC1
if the

number of +-signs in the prefix of ' equals k.

Theorem 7.2 Let ' 2 L1.
(a) For all suitable models M and assignments 
 , we have M; 
 ˆ

C
II +' if and

only if M; 
 6ˆ
C
II '.

(b) †11 […1
1 � L1 < �

1
2.

Proof We begin with item (a). First we prove the following claim: '� � :'C

for all ' 2 L1. If ' is quantifier-free, this is immediate: '� D :': D :'C.
Suppose inductively that the claim  � � : C holds for all L1-formulas  with n
+-signs in the prefix. Let ' be a formula with n C 1 +-signs. (1) If ' D + ,
then '� D .+  /� D  C. By the inductive hypothesis,  C � : �. And
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: � D :.+  /C D :'C. (2) If ' D EPEz;Ev
EO�, then '� D . EPEz;Ev

EO�/� D

:HŒ EPEz;Ev�:9v1 � � � 9vn.�Œ EPEz;Ev�^ . EO�/�/, whereHŒ EPEz;Ev� and �Œ EPEz;Ev� are as defined
in connection with the translations .�/C and .�/� before the statement of Lemma 7.1.
The formula :HŒ EPEz;Ev�:9v1 � � � 9vn.�Œ EPEz;Ev� ^ . EO�/�/ is, by the inductive hypoth-
esis, equivalent to the formula :HŒ EPEz;Ev�:9v1 � � � 9vn.�Œ EPEz;Ev� ^ :. EO�/C/, which
again is equivalent to :HŒ EPEz;Ev�8v1 � � � 8vn.�Œ EPEz;Ev� � . EO�/C/ D :. EPEz;Ev

EO�/C.
Having proven the claim, we have for an arbitrary L1-formula ' and any structure
.M; 
/: M; 
 ˆ

C
II +' if and only if (Lemma 7.1) M; 
 ˆ .+'/C if and only if

M; 
 ˆ '� if and only if (above claim) M; 
 ˆ :'C if and only if M; 
 6ˆ 'C if
and only if (Lemma 7.1) M; 
 6ˆ

C
II '.

Let us, then, move on to item (b). To see that †11 � L1, by the result of Enderton
and Walkoe it suffices to show that L�

C � L1. Given an L�
C-formula ' WD H Ex Ey�

with Ex D x11 � � � xknk
and Ey D y1 � � �yk , let  ' be the L1-formula

8x11 � � � 8xknk
.9y1=W1/ � � � .9yk=Wk/ �;

where Wi D ¹8x11 ; : : : ;8x
k
nk

º n ¹8xi1; : : : ;8x
i
ni

º for all 1 � i � k. Clearly we
have M; 
 ˆ ' if and only if M; 
 ˆ

C
II  ' for all suitable structures .M; 
/, and

we may conclude that †11 � L1. It follows that also …1
1 � L1. For, suppose that

� is a …1
1-formula. Since †11 D L�

C � L1, there is a formula � of L1 such that for
all suitable structures .M; 
/ we have M; 
 ˆ � if and only if M; 
 6ˆ

C
II � if and

only if (by item (a)) M; 
 ˆ
C
II +� . Since +� 2 L1, we may infer that …1

1 � L1.
Finally, since L� < �12 by the results of Enderton and M. Mostowski, and L1 � L�

by Lemma 7.1, it follows that L1 < �12.

8 The Place of L2 in Type Hierarchy

8.1 The negation + in L2 While in L1 our semantic framework assigns to + the
meaning of classical negation, this is not so in the larger context of L2.

Theorem 8.1 Let ' 2 L2. If M; 
 ˆ
C
II +', then M; 
 6ˆ

C
II '. However, the

converse does not hold in general.

Proof For the positive claim, note that if we had both M; 
 ˆ
C
II + ' and

M; 
 ˆ
C
II ', by Fact 6.5 we would have M; 
 ˆ�

II �' and M; 
 ˆ�
I �', which is

impossible: there cannot exist a w.s. for both players in metagame �.�';M; 
;�/.
Consider, then, the following L2-sentence, to be called  : 9x+.9y=¹9xº/ x D y.
Let M be a model of the empty vocabulary with jM j � 2. If we show that there
is no w.s. for II in either of the games �. ;M;C/ or �.� ;M;�/, the negative
claim follows. A strategy for II in metagame �. ;M;C/ is an element a 2 M

chosen for 9x. If I chooses the same element a for y, player I in the role of verifier
wins the resulting play. Thus, there is no w.s. for player II in �. ;M;C/. As to
metagame �.� ;M;�/, a strategy for II in this game is an element a 2 M chosen
for 9y. Let b be an element of M distinct from a. The play in which I in the role
of verifier chooses b for 9x and in which II using her or his strategy picks out a for
9y terminates, while I has the role of falsifier and is consequently won by I . We
conclude that there is no w.s. for player II in �.� ;M;�/ either.

By Theorem 8.1, we cannot express classical negation of each L2-formula ' in L2
by the formula +'. This of course does not yet prove that the classical negation
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of ' could not have a translation into L2; it only shows that the simple syntactic
operation of prefixing ' by+ does not provide one. However, below we see that for
its expressive power L2 equals †21. Given that †21 ¤ …2

1, we may then infer that the
classical negation of an arbitrary L2-formula ' is not expressible in L2 in the first
place.

8.2 Fragment †2
1

of third-order logic When a model M is clear from the context,
the elements of the domain M are termed first-order objects. If n � 0, let Fn be
the set of all functions of type M n ! M ; its elements are n-ary second-order ob-
jects. Let F WD

S
n<!Fn. If n;m; k � 0, let Fn;m;k be the set of all functions of

type F n �Mm ! Fk ; its elements are .n;m; k/-ary third-order objects. We write
F WD

S
n;m;k<!Fn;m;k . First-order objects are a degenerate case of second-order

objects, and second-order objects a degenerate case of third-order objects. In third-
order logic we have, in addition to individual variables, also n-ary second-order and
.n;m; k/-ary third-order function variables with n-ary second-order, respectively,
.n;m; k/-ary third-order objects as values, for all n;m; k � 0. Given a set V of
first-, second-, and third-order variables, the sets of first- and second-order terms are
defined recursively as follows.

� First-order variables are first-order terms, and second-order variables are
second-order terms.

� If s is an n-ary second-order term and t1; : : : ; tn are first-order terms, then
s.t1; : : : ; tn/ is a first-order term.

� If F is an .n;m; k/-ary third-order variable, s1; : : : ; sn are second-order
terms, and t1; : : : ; tm are first-order terms, then F.s1; : : : ; sn; t1; : : : ; tm/ is a
k-ary second-order term.

If � is a relational vocabulary, Vi is a set of variables of order i (with i WD 1; 2; 3),
and V D V1 [ V2 [ V3, then the syntax of third-order logic of vocabulary � over V ,
denoted TOŒ�; V �, is given by the following grammar:

' WWD a j :a j .' ^ '/ j .' _ '/ j 8x' j 9x' j 8f' j 9f' j 8F' j 9F';

where a is either a string R.t1; : : : ; tn/ for some positive integer n, n-ary relation
symbol R 2 � , and first-order terms t1; : : : ; tn over V , or else a is a string t D t0 for
first-order terms t; t0 over V ; x 2 V1; f 2 V2; and F 2 V3. If � is a variable of order
i , then 8� and 9� are quantifiers of order i .

Given functions ˛ W V1 ! M and ˇ W V2 ! F and 
 W V3 ! F such that
ˇ.fi / 2 Fn if fi is n-ary and 
.Fi / 2 Fn;m;k if Fi is .n;m; k/-ary, the function
˛ [ ˇ [ 
 is an assignment in M. If ı is an assignment, � is an Ea-ary object of
order i , and � is an Ea-ary variable of order i , we write ı.�=�/ for the assignment that
agrees with ı except that ı.�=�/.�/ D �. The definition of the satisfaction relation
M; ı ˆ ' uses the notion of value uı of a term u under assignment ı, specified for
first- and second-order terms as follows:

� xı D ı.x/ and fı D ı.f/,
� s.t1; : : : ; tn/ı D sı.tı1; : : : ; t

ı
n/,

� F.s1; : : : ; sn; t1; : : : ; tm/ı D ı.F/.sı1; : : : ; s
ı
n; t

ı
1; : : : ; t

ı
n/.

In particular, we define M; ı ˆ R.t1; : : : ; tn/ if and only if htı1; : : : ; t
ı
ni 2 RM;

M; ı ˆ 9f' if and only if M; ı.f=f / ˆ ' for some suitable f 2 F ; and
M; ı ˆ 9F' if and only if M; ı.F=F / ˆ ' for some suitable F 2 F.
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We define †21Œ�; V � as the fragment of TOŒ�; V � whose formulas are of the form
9F1 � � � 9Fn', where ' contains no third-order quantifiers. It is not difficult to see
that†21 is closed under disjunction and conjunction as well as first- and second-order
existential and universal quantification. Now, †21-formulas can be proven to admit
the following Skolem form.

Fact 8.2 Every †21-formula ' is equivalent to a formula  ' of the form
9F1 � � � 9Fn8f1 � � � 8fm8x1 � � � 8xk � , where � is quantifier-free, and ' and  ' have
the same free variables.

A straightforward way of obtaining the Skolem form is as follows. First write the
formula in negation normal form. Then eliminate in the resulting formula all oc-
currences of first- and second-order existential quantifiers, replacing the variables
each such quantifier binds by a suitable term F.f1; : : : ; fn; x1; : : : ; xm/; the third-
order variable F has the arity .n;m; k/, where k D 0 if the term replaces a first-order
variable, while if it replaces a second-order variable, k equals the arity of that vari-
able. Finally, the resulting formula is prefixed by the relevant third-order existential
quantifiers. The following specific assumptions can actually be made on formulas in
Skolem form.

Fact 8.3 For every ' 2 †21 there is a logically equivalent  2 †21 such that the
following hold.

(a) For every third-order variable F in  , there are pairwise distinct second-order
variables f1; : : : ; fm and pairwise distinct first-order variables x1; : : : ; xm;
y1; : : : ; yk such that in all its occurrences, F appears in the term F.f1; : : : ; fm;
x1; : : : ; xn/.y1; : : : ; yk/ with these same variables in the same order.

(b) For every second-order variable f in  which does not appear as an argument
of a third-order variable, there are fixed first-order variables y1; : : : ; yk such
that in all its occurrences, f appears in the term f.y1; : : : ; yk/ with these same
variables in the same order.

(c) All third-order variables in  are of arity .n;m; 0/ for some n;m � 0.

Proof By Fact 8.2 any †21-formula may be assumed to be of the form

9F1 � � � 9Fp8f1 � � � 8fq8x1 � � � 8xr �;

with � quantifier-free. For (a), we indicate suitable transformation rules which turn
formulas in Skolem form into equivalent formulas in Skolem form. We will use
. 1   2/ as an abbreviation of .neg. 1/ _  2/, where neg. 1/ is a negation
normal form of  1; recall that in third-order formulas the negation symbol : may
only appear in front of atomic formulas.

Claim (a.1) We may assume that third-order variables F appear only in ex-
pressions F.f1; : : : ; fm; x1; : : : ; xn/.xnC1; : : : ; xnCk/, where the fi are second-order
and the xj first-order variables. Namely, we may replace 8Eg 8Ey �ŒF.s1; : : : ; sm,
t1; : : : ; tn/.tnC1; : : : ; tnCk/� by the formula

8Eg 8f1 � � � 8fm 8Ey 8x1 � � � 8xnCk�
�  �

�
F.f1; : : : ; fn; x1; : : : ; xk/.xnC1; : : : ; xnCk/

��
;

where � equals .
V
1�i�m8 Ezi Œfi . Ezi / D si . Ezi /� ^

V
1�j�nCkxj D tj /. In this

formula there are still positive occurrences of first-order universal quantifiers in the
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antecedent of the implication (and therefore negative occurrences in the implication
itself). However, a formula of the form 8Eh8Ev .8xŒf.x/ D s.x/�   / is equivalent
to the formula 9F8Eh8Ev8u .u D F.Eh; Ev/ � Œf.u/ ¤ s.u/ _  �/, where u is a fresh
first-order variable. Similar equivalences can be used when the antecedent involves
a conjunction of formulas 8ExiŒfi .Exi/ D si .Exi/�, the Exi being tuples of any length.

Claim (a.2) We may assume that if an expression of the form F.f1; : : : ; fm;
x1; : : : ; xn/.xnC1; : : : ; xnCk/ appears in � , then the fi are pairwise distinct second-
order variables and the xj are pairwise distinct first-order variables. As to second-
order variables, if syntactically fi D fj with i < j , then let h be a fresh second-order
variable of the same arity as fi . We may, first, replace 8Eg 8Ey �ŒF.f1; : : : ; fm; Ex1/. Ex2/�

by the formula

8Eg 8Ey .8Ez
�
h.Ez/ D fi .Ez/

�
 �

�
F.f1; : : : ; fj�1; h; fjC1; : : : ; fm; Ex1/. Ex2/

�
:

The negative occurrences of the first-order universal quantifier can be eliminated as
explained in Claim (a.1). We can get rid of repetitions of first-order variables in the
expression F.f1; : : : ; fm; x1; : : : ; xn/.xnC1, : : : ; xnCk/ similarly, but without the need
to introduce third-order existential quantifiers.

Claim (a.3) We may assume that in any two first-order terms in � that contain a
given third-order variable F, the same string of second-order variables and the same
strings of first-order variables appear. For, if .Ef; Ex; Ey/ and .Ef 0; Ex0; Ey0/ are distinct
strings with Ef D f1 � � � fm, Ef 0 D f 0

1 � � � f 0
m, Ex D x1 � � � xn, Ex0 D x0

1 � � � x0
n, Ey D y1 � � � yk ,

Ey0 D y0
1 � � � y0

k, we may first introduce a new third-order variable F0 and replace
8Eg 8Ez �ŒF.Ef; Ex/.Ey/, F.Ef 0; Ex0/. Ey0/� by

9F0
8Eg 8Eh 8 Eh0 8Ez 8Eu 8 Eu0 8Ev 8 Ev0

�
�

�
F.Ef; Ex/.Ey/; F0.Ef 0; Ex0/. Ey0/

�
^ �

�
;

where � equals Œ.
V
1�i�m8 Ewi Œhi . Ewi / D h0

i. Ewi /� ^
V
1�i�nui D u0

i ^
V
1�i�kvi D

v0
i/  F.Eh; Eu/.Ev/ D F0. Eh0; Eu0/. Ev0/� and the arity of hi equals the arity of fi , the arity

of h0
i equals the arity of f 0

i , and the variables hi, h0
i, uj, u0

j, vl, v0
l are fresh. Then we

may again get rid of negative occurrences of first-order universal quantifiers in the
implication as in connection with Claim (a.1).

We have just proven item (a). Using similar equivalences we can prove item (b). For
item (c), if F0 is an .m; n C k; 0/-ary variable, formulas 9F8Ef Ex Ey �ŒF.Ef; Ex/.Ey/� and
9F08Ef Ex Ey �ŒF0.Ef; Ex; Ey/� are equivalent. Namely, if F is a witness of F, then F 0 defined
as follows is a witness of F0: F 0. Ef ; Ea; Eb/ D F. Ef ; Ea/.Eb/ for all suitable tuples Ef , Ea,
and Eb. Conversely, if F 0 is a witness of F0, for fixed Eh, Ec define first gEh;Ec

as the k-ary

second-order object satisfying gEh;Ec
.Eb/ D F 0.Eh; Ec; Eb/ for all suitable Eb; then define F

as follows: F. Ef ; Ea/ D g Ef ;Ea
for all suitable Ef , Ea.

8.3 From L2 to †2
1

We prove that logic L2 can be translated into †21.

Fact 8.4 There is a translation of L2 into †21.

Proof Let  WD P1 � � �Pn � be an L2-formula. By Fact 6.10 we may suppose
without loss of generality that the prefix contains no �-sign. Further, since we
are interested in the satisfaction conditions of  , by Fact 6.7 we may assume that
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P1 � � �Pn D PC
1 � � �PC

n . Write k for the number of +-signs in the prefix. If
k D 0,  is a formula of LIF and therefore trivially equivalent to a †21-formula.
If k > 0, there are strings EOi of quantifiers (with 0 � i � k C 1) such that
P1 � � �Pn D EO1 + EO2 � � � + EOk + EOkC1. Since any L2-formula ++  is
strongly equivalent to the formula  , we may assume that the strings EO2; : : : ; EOk
are nonempty. By contrast, the strings EO1 and EOkC1 may be empty.

� If i is odd, write Ai for the set of universal quantifiers of the string EOi . Let
8xs1 ; : : : ;8xsK be the list of all elements of

S
i Ai . In the relevant game,

player I chooses an element of the domain for each 8xsj .
� If i is even, write Bi for the set of existential quantifiers of the string EOi .

Player I chooses a local strategy function for each of these quantifiers. For
every .9xj =Wj / 2 Bi , introduce a term fj .xi1 ; : : : ; xiaj

/, where fj is an
aj -ary second-order variable and xi1 ; : : : ; xiaj

are those first-order variables
that are bound by a universal quantifier preceding the quantifier .9xj =Wj /
in the string EOi but not belonging to the set Wj . Let fj1

; : : : ; fjN
be the

list of all second-order function variables hence introduced by quantifiers
.9xj =Wj / 2

S
i Bi .

� If i is even, write Ci for the set of universal quantifiers of the string EOi .
Player II chooses an element of the domain for each of these quantifiers.
For every .8xj =Wj / 2 Ci , introduce a term Fj .fi1 ; : : : ; finj

; xr1 ; : : :, xrmj
/

satisfying the following conditions. First, fi1 ; : : : ; finj
are the second-order

function variables introduced for those existential quantifiers that (a) appear
in a string EOk with k � i for an even number k, and (b) do not belong
to the set Wj . Note that among them there are automatically all existential
quantifiers of the string EOi , also those coming syntactically after .8xj =Wj /.
Second, xr1 ; : : : ; xrmj

are the first-order variables bound by a universal quan-
tifier which (a) appears in a string EOk with k < i for an odd number k, but (b)
does not belong toWj . Let Ft1 ; : : : ;FtH be the list of all third-order function
variables thus introduced by quantifiers in

S
i Ci .

� If i is odd, write Di for the set of existential quantifiers of the string EOi .
Player II chooses a local strategy function for each of these quantifiers. For
every .9xj =Wj / 2 Di , introduce a term Fj .fi1 ; : : : ; finj

; xr1 ; : : :, xrmj
/ satis-

fying the following. First, fi1 ; : : : ; finj
are the second-order function variables

introduced for those existential quantifiers that (a) appear in a string EOk with
k < i for an even number k, and (b) do not belong to the set Wi . Second,
xr1 ; : : : ; xrmj

are the first-order variables that are bound by a universal quan-
tifier which (a) appears in a string EOk with k < i for an odd number k, but (b)
does not belong to the set Wj . Let Fk1

; : : : ;FkM
be the list of all third-order

function variables thus introduced by quantifiers in
S
i Di .

Let �� be the result of replacing in � every variable xj such that either .8xj =Wj / 2S
i Ci or .9xj =Wj / 2

S
i Di by the corresponding term Fj .fi1 ; : : : ; finj

;

xr1 ; : : : ; xrmj
/. Let �C be the result of first replacing in �� every variable xj

such that .9xj =Wj / 2
S
i Bi by the term fj .xi1 ; : : : ; xiaj / and then replacing

in the resulting string all occurrences of � by :. Let ' be the †21-formula
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9Ft1 � � � 9FtH 9Fk1
� � � 9FkM

8fj1
� � � 8fjN

8xs1 � � � 8xsK ˙ ��, where ˙�� D ��

if the number k is even, and ˙�� D :�� if k is odd. Now, given a model
M and an assignment 
 over the free variables of  , we clearly have that
.Ft1 ; : : : ; FtH ; Fk1

; : : : ; FkM
/ is a w.s. for II in metagame �.M;  ; 
;C/ if and

only if M; ı
 ˆ 8fj1
� � � 8fjN

8xs1 � � � ;8xsK ˙ ��, where ı
 is an extension of 

satisfying ı
 .Fi / D Fi for all i 2 ¹t1; : : : ; tH ; k1; : : : ; kM º.

8.4 From †2
1

to L2 We prove that conversely, †21 is translatable into L2.

Theorem 8.5 There is a translation of †21 into L2.

Proof Let  2 †21 be arbitrary. By Facts 8.2 and 8.3,  may be assumed to be of
the form 9F1 � � � 9Fn8f1 � � � 8fm8x1 � � � 8xk � , where the first-order terms satisfy the
conditions (a), (b), and (c) laid down in Fact 8.3, and � is quantifier-free. Let ' be
the L2-formula

8x1 � � � 8xk + 8y1 � � � 8yk.9z1=W1/ � � � .9zm=Wm/

+ .9t1=V1/ � � � .9tn=Vn/ .� ^ ��/;

where the sets Wi and Vl and the formulas � and �� are as follows. First, for
every second-order function variable fi in � , if xj1

; : : : ; xjri
are the pairwise dis-

tinct first-order variables such that all those occurrences of fi in � that do not oc-
cur as arguments of a third-order variable appear in the expression fi .xj1

; : : : ; xjri
/,

then let Xi WD ¹xj1
; : : : ; xjri

º. For every third-order function variable Fi in � ,
if fj1

; : : : ; fjsi
; xj 0

1
; : : : ; xj 0

s0
i

are the pairwise distinct variables such that all occur-

rences of Fi in � appear in the expression Fi .fj1
; : : : ; fjsi

; xj 0
1
; : : : ; xj 0

s0
i

/, then let

Yi WD ¹fj1
; : : : ; fjsi

º and Zi WD ¹xj 0
1
; : : : ; xj 0

s0
i

º. For all 1 � i � m and 1 � l � n,
we set

� Wi WD ¹8yj W 1 � j � k and xj … Xiº;
� Vl WD ¹9zj W 1 � j � m and fj … Ylº [ ¹8xj W 1 � j � k and xj … Zlº;
� � WD

V
1�i�kxi D yi ;

� �� is the result of first replacing in � , for all 1 � i � m and 1 � l � n,
every occurrence of the term fi .xj1

; : : : ; xjri
/ by the variable zi and every

occurrence of the term Fl .fj1
; : : : ; fjsl

; xj 0
1
; : : : ; xj 0

s0
l

/ by the variable tl , and

then replacing in the resulting string all occurrences of : by �.
Note that .� ^ ��/ is a quantifier-free formula which does not contain second- or
third-order variables. Indeed, it is a quantifier-free LFO-formula. Consequently
' is an L2-formula. Let, then, .M; 
/ be any suitable structure. If ı
 is an
extension of 
 providing witnesses for the existential quantifiers 9F1; : : : ; 9Fn so
that M; ı
 ˆ 8f1 � � � 8fm8x1 � � � 8xk � , then clearly the sequence .F8y1

; : : : ; F8yk
;

F9t1 ; : : : ; F9tn/ defined as follows is a w.s. for II in metagame �.M; ' ; 
;C/:
F8yj

assigns to yj the same value that player I has earlier assigned to xj , and
F9ti D ı
 .Fi /. Conversely, if F9t1 ; : : : ; F9tn are the strategy functions for the quan-
tifiers .9t1=V1/; : : : ; .9tn=Vn/ belonging to a w.s. for II in �.M; ' ; 
;C/, then
clearly M; ı
 ˆ 8f1 : : :8fm8x1 : : :8xk � , given that ı
 is the extension of 
 satis-
fying ı
 .Fi/ D F9ti .
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Corollary 8.6

(a) L2 D †21;
(b) classical negation is not expressible in L2.

Proof Item (a) is immediate from Fact 8.4 and Theorem 8.5. Item (b) follows by
the fact that †21 is not closed under complementation.

Extending LFO by allowing independence indications as in LIF yields a logic with
the expressive power of †11. Observe that by Corollary 8.6, liberalizing the slashing
conventions of L1 so as to obtain L2 yields an even more dramatic increase in ex-
pressive power: from a logic less expressive than�12, a logic is obtained that is more
expressive than the full second-order logic.

9 Conclusion

Let us say that a semantic game is of order 1, if all model-related entities with which
the players operate are individuals. Given a fragmentX of higher-order logic, we can
ask whether a logicLX can be found whose semantic games are of order 1 and which
has the same expressive power as X . It is not entirely trivial to find out whether for
a given X such a logic LX exists. It took for instance some effort to find out that the
fragment †21 of TO is of this kind.

We provided a game-theoretical interpretation to the connective+, which yielded
to + the meaning of classical negation relative to logic L1. This was achieved by
enriching positions of semantic games by an additional component—a mode. The
import of + on the play level is actually the same as that of �. However, through
effecting a mode change, it has important repercussions at the strategy level. As
mentioned in Section 1, Hintikka has repeatedly claimed that classical negation does
not admit a game-theoretic interpretation. Our semantic games show that this claim
does not categorically hold if relatively small modifications in game rules are al-
lowed. Earlier a way of capturing classical negation using 3-player strategic games
was found by Figueira, Gorín, and Grimson [6] (see Section 9.3 below). Hintikka
could not object to our formulation of semantic games on the basis that we interpret
+ as acting on the strategy level. For, this is precisely how Hintikka himself has
interpreted the independence indications in LIF: they regulate the players’ strategies
but have no bearing at the play level. By contrast, the games used by Figueira, Gorín
and Grimson differ from Hintikka’s semantic games in several respects.

9.1 Hintikka’s subgame semantics The only way in which Hintikka has considered
it possible to deal with classical negation is via the following strategy-level rule with
a limited range of application: there is a w.s. for II in game G.:';M; 
/ if and
only if there is no w.s. for II in G.';M; 
/. He has usually limited attention to the
case where ' is a sentence, but in LFeIF (see [10]) he allows any formulas subject
to the condition that if .Qx=W / is a quantifier in the syntactic scope of an occur-
rence of :, then all quantifiers referred to via the set W are likewise in the syntac-
tic scope of this occurrence of :. Thus, formulas like 8x:.9y=¹8xº/R.x; y/ are
excluded. Apart from denoting the classical negation by : rather than by +, the
LFeIF-formulas in prenex form are exactly the formulas of L1. Hintikka rules out
the possibility of finding an interpretation to formulas not complying with the men-
tioned syntactic constraint—such as those in L2 n L1. In order to conceptualize the
use of the strategy-level rule for : in LFeIF, Hintikka [9], [10] resorts to the idea of
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semantic games with subgames (see Carlson and Hintikka [3], Hintikka and Kulas
[11]). Hintikka or his associates have not developed this notion in full formal detail,
but the basic idea is clear. In such games, the continuation of a given play may re-
quire having played an entire smaller “game” (a subgame), meaning that the players
have selected corresponding strategy functions. Hence there is, for example, a w.s.
for II in game G.:8x9y:9zR.x; y; z/;M/ if and only if II lacks a w.s. in subgame
G.8x9y:9zR.x; y; z/;M/. There would be a w.s. for II in the subgame if and only
if there was a map f W M ! M such that for all a 2 M , player II lacks a w.s. in
subgame G.9zR.x; y; z/;M; x 7! a; y 7! f .a//, that is, ha; f .a/; bi … RM for all
b 2 M . It is a part of the subgame semantics idea that the moves of player j in later
subgames are allowed to depend on the strategy functions chosen by j ’s adversary
in earlier subgames. We see that a w.s. for II in the sample game would be a pair
of functionals .Fx ; Fz/ such that if f W M ! M is a function determining a value
of y depending on a value of x, then Fx.f / is a value of x, and Fz.f / is a value
of z, and hFx.f /; f .Fx.f //; Fz.f /i 2 RM. Using the notion of mode, we were
able to formulate semantic games for L2 which on the play level involve sequences
of moves of the same kind as in plain first-order semantic games. What Hintikka
achieves with subgames, we achieve with metagames, used for singling out the sorts
of strategy-level attributes that we are interested in. Hintikka’s subgame semantics
for L1 agrees with the semantics we have assigned to this logic. Incidentally, we saw
in Theorem 7.2 that L1 < �12. This contradicts Hintikka’s argument in [10] to the
effect that LFeIF has the expressive power of full second-order logic. This may be
contrasted with the case of team logic (see Väänänen [21]), the result of extending
dependence logic with classical negation, which in fact has the expressive power of
SO (see Kontinen and Nurmi [17]).

9.2 Flattening and Hodges’s compositional semantics Hodges [12], [13] formulated
a compositional semantics to LIF by defining the relations M ˆt

X ' (X is a trump
for ' in M) and M ˆcot

X ' (X is a cotrump for ' in M) recursively on the structure
of LIF-subformulas '.3 Here X is a set of assignments, and ' may have arbitrary
free atomic or independence variables. Dual negation is interpreted via the clause
M ˆt

X �' if and only if M ˆcot
X '. Hodges’s semantics captures the game-theoretic

semantics for LIF: for every formula ' 2 LIF (by definition without free indepen-
dence variables), there is a w.s. for player II in G.';M; 
/ if and only if M ˆt

¹
º
'.

Hodges considered also an extended language having available the flattening opera-
tor # with the following semantics:

� M ˆt
X# ' if and only if X is nonempty and for every 
 2 X we have

M ˆt
¹
º
';

� M ˆcot
X # ' if and only if X is nonempty and for every 
 2 X we have

M 6ˆt
¹
º
'.

The idea behind the semantics of # is this. Independence indications impose uniform
choices to be made relative to a multitude of possible variable assignments. Thus, the
semantic effect of independence indications is void when the evaluation is relative to
a single assignment. If  is a subformula with free independence variables, let the
“flattening of  ” be the formula  f without free independence variables, obtained
from  by removing from its independence indications all quantifiers Qx with x
free. Whenever X0 is a singleton, we have M ˆt

X0
' if and only if M ˆt

X0
'f ,
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and M ˆcot
X0

' if and only if M ˆcot
X0

'f . Therefore the formulas #' and #'f

have the same trumps and the same cotrumps, and the semantic effect of applying
the flattening operator # is that the formula to which it is applied will be treated as
if it had no free independence variables. Hodges proposed to define : by stipulating
that :' means �#'.

Regarding “intuitions” on classical negation in the IF-logical setting, Hodges
actually agrees with Hintikka, who blocks at the outset syntactic contexts like
8x:.9y=W / with 8x 2 W . Hodges allows such contexts, but his semantics takes
care that independence indications crossing a classical negation sign are vacuous.
For example, M ˆt 8x:.8y=¹8xº/R.x; y/ if and only if for all a 2 M we
have M ˆt

¹x 7!aº
�#.8y=¹8xº/R.x; y/, that is, M ˆcot

¹x 7!aº
#.8y=¹8xº/R.x; y/,

that is, M 6ˆt
¹x 7!aº

.8y=¹8xº/R.x; y/, that is, M 6ˆt
¹x 7!aº

8yR.x; y/, that is,
M ˆt

¹x 7!aº
:8yR.x; y/. Thus, 8x:.8y=¹8xº/R.x; y/ and 8x:8yR.x; y/

are truth-equivalent on Hodges’s semantics. This is to be contrasted with our
treatment of L2 in which the independence indications crossing a +-sign have
a perfectly nonvacuous interpretation in the metagame setting. On our semantics
8x+.8y=¹8xº/R.x; y/ is actually truth-equivalent to 9y8x+R.x; y/.

9.3 Capturing classical negation game-theoretically Hodges [12] did not attempt to
phrase the semantics of # game-theoretically, and neither did he comment on the ex-
pressive power of the language obtained by having # available in the IF-like logic he
formulated. Both of these endeavors are undertaken by Figueira, Gorín, and Grimson
[5], [6]. Write L.#/ for the set of formulas obtained from LIF-formulas by allowing
arbitrary occurrences of # in the prefix. Observe that consequently formulas of L.#/
are in prenex form, they are regular, and they contain no free independence variables.
It follows from [6, Theorem 2] that L.#/ has the same expressive power as the logic
SL.#/ discussed by the mentioned authors, if we restrict attention to SL.#/-formulas
whose all free variables appear in atomic subformulas. In [5] Figueira, Gorín, and
Grimson associate with allL.#/-formulas and all models a 3-player game in strategic
form; their original motivation for defining such games was to find a semantic analy-
sis of IF-logical formulas avoiding certain problems related to renaming of variables
(see Janssen [16]). If the players are I , II , and III , then in each turn both players I and
II select functions reminiscent of local strategies in our metagames, whereafter player
III carries out a certain sort of evaluation. With k nested #-signs, there are k turns
in the correlated game. The authors show that for L.#/-formulas, Hodges’s com-
positional semantics and their game semantics coincide. In [6], the authors prove,
utilizing their game-theoretically formulated semantics, that L.#/ � �12. We may
note that actually L1 D L.#/: for every ' 2 L1 there is  ' 2 L.#/ such that
M; 
 ˆ

C
II ' if and only if M ˆt

¹
º
 ' ; and for every  2 L.#/ there is ' 2 L1

such that M ˆt
¹
º

 if and only if M; 
 ˆ
C
II ' . That L1 � L.#/ follows because

in L1 the connective + has the force of classical negation, and when applied to a
formula without free independence variables, the combination �# likewise has the
force of classical negation. By the semantics of � and by what is observed above
about flattening, any L.#/-formula  is satisfaction-equivalent to an L.#/-formula
 � in which independence indications do not cross a #-sign and in which � may
only occur immediately before # and in the matrix formula. Replacing in  � first all
occurrences of �# by + and then eliminating in the resulting string all occurrences
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of #, we obtain an L1-formula satisfaction-equivalent to  . Therefore L.#/ � L1.
This allows us to conclude, in view of Theorem 7.2, that actually L.#/ < �12.

The game-based semantics of [5] is interesting as a game-theoretical analysis of
Hodges’s compositional semantics and more generally in relation to problems due
to renaming of variables of IF-logical formulas. The games employed are relatively
far removed from Hintikka’s GTS: they involve more than two players, and the eval-
uation procedures carried out by player III are rather complicated. Our metagame
analysis has its own complications, but the games remain 2-player games. In the
context of L1 they provide a game-theoretical analysis of classical negation and offer
a way of reformulating Hintikka’s subgame notion, which precisely turns on the idea
that the strategy functions a player uses in later subgames may take as arguments
the adversary’s strategy functions in earlier subgames. When moving beyond L1,
the connective + no longer corresponds to classical negation. So, we have found a
game-theoretical conceptualization which makes sense in the context of the whole of
L2 but captures classical negation only in L1. Future research will help to assess the
general interest of the ideas used to define logic L2.

9.4 Negation as a model-theoretic operation Burgess [1] showed (in the equiv-
alent context of Henkin quantifier sentences) that for any mutually incompatible
LIF-sentences ' and  there is a sentence � such that ' and � are truth-equivalent
and so are and �� . Kontinen and Väänänen [18] generalized this result to arbitrary
formulas of dependence logic. As Burgess noted, it follows that the dual negation
fails to correspond to a semantic operation on classes of models: �� and �� 0 may
even be incompatible while � and � 0 are truth-equivalent. Because � may be elim-
inated from prefixes of L1-formulas, in this logic we need only model-theoretically
well-behaved connectives. However, in the context ofL2 the connective+ no longer
expresses a semantic operation. If, for example, ' WD 9x+.9y=¹9xº/R.x; y/ and
 WD 9x+9yR.x; y/, then ' and  are truth-equivalent (the independence indi-
cation only restricts strategies of player I), though the sentences +' and + are
not.

If we wanted to extend our framework so as to capture stronger fragments of
higher-order logic, we might consider introducing a hierarchy of modes in the games
and a hierarchy of negations +n in the syntax. The negation +n would be inter-
preted via “metagames of degree n,” in which depending on the mode one of the
players would select a tuple of “local strategy functions of degree n,” the adver-
sary responding by a tuple of local strategy functions of degree n� 1. Local strategy
functions of degree nwould be strategy functions simpliciter in metagames of degree
n � 1. We conjecture that with n negations, we would capture the †nC1

1 -fragment
of .n C 2/th-order logic and therefore obtain in particular the full expressivity of
.n C 1/th-order logic; here only one of the negations (i.e., +n) would be model-
theoretically ill-behaved. Developing this generalization is, however, left for another
occasion.

Notes

1. When positions are formulated as above, the component �i keeps track of the local
change, if any, in the overall variable assignment: after the initial position, �i is always
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empty or a singleton. In this way we avoid encoding in a position more information than
needed.

2. Unlike in L0 (and even in LIF), in L1 and L2 there being a w.s. for I in G.';M; 
;C/

is not equivalent to there being a w.s. for II in G.�';M; 
;C/.

3. Actually Hodges formulated the semantics to slash logic (see Hodges [15]), in which
quantifiers are of the form .Qx=V /, where V a set of variables (not quantifiers) and
variables in V may be “bound” by quantifiers of either force. His semantics can easily
be adapted to LIF. It suffices to redefine the equivalence relation among assignments
that is used to formulate the semantic clause for slashed existential quantifiers.
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