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Positive Model Theory and Amalgamations

Mohammed Belkasmi

Abstract We continue the analysis of foundations of positive model theory as
introduced by Ben Yaacov and Poizat. The objects of this analysis are h-inductive
theories and their models, especially the “positively” existentially closed ones.
We analyze topological properties of spaces of types, introduce forms of quan-
tifier elimination, and characterize minimal completions of arbitrary h-inductive
theories. The main technical tools consist of various forms of amalgamations in
special classes of structures.

1 Introduction

Positive model theory is the study of h-inductive theories through their models, es-
pecially those that are existentially closed, and their type spaces using positive logic.
It was initiated by Ben Yaacov in [1], [2] following the line of research on universal
theories carried out by Shelah [10], Hrushovski [5], and Pillay [7]. In its current
form, positive model theory was introduced by Ben Yaacov and Poizat in [3]. In [8]
and [9], Poizat analyzed the topology of type spaces and introduced the notion of
positive elementary extension.

In this article, our ultimate goal is to refine the analysis of classes of structures
following the line of research of Ben Yaacov and Poizat. The principal subjects will
be universal extensions, topological properties of type spaces, quantifier elimination,
and connections of these with classes of structures. A recurrent theme will be amal-
gamation in various classes of structures. Frequently, these structures will be model
companions of an h-inductive theory or nonelementary classes. The amalgamation
analysis consists frequently in verifying that certain classes of models form amalga-
mation bases (Definition 7), a notion borrowed from Hodges [4] and Pillay [7].

The models of an h-inductive theory that are amalgamation bases are those that
best represent this theory. In our context, the positively existentially closed (pec
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for short) models are typical examples of this property. The analysis of quantifier
elimination will show that under additional hypotheses, this representational power
is shared by larger classes of models of an h-inductive theory: the h-maximal and the
positively existentially closed ones (Section 5). In general, these particular models
do not form elementary classes. We will see in a future work that the pec class is an
abstract elementary class in the sense of Shelah, which allows a comparison between
the two studies.

The article is organized as follows. In Section 2, after revising the foundations
of the subject, we will introduce the notion of universal extension that will be used
in verifying the existence of “large” models, in particular models whose classes al-
low amalgamation. Section 3 is devoted entirely to amalgamation in various classes
of models. In particular, we will prove a characterization in terms of universal ex-
tensions (Theorem 1). Section 4 contains a first application of the amalgamation
techniques developed in the third section, especially of those in Section 3.2: we will
analyze the preservation of topological properties of type spaces in substructures
and elementary extensions. In Section 5, we will analyze various aspects of quanti-
fier elimination. In particular, we will use the notion of a positive Robinson theory,
an h-inductive theory that allows a certain kind of quantifier elimination. In Sec-
tion 6, we will finish by studying completions of h-inductive theories. This will set
the foundations for the first steps of a work in preparation on positive stability and
simplicity.

2 Positive Model Theory

2.1 Basics Positive logic is a branch of first-order mathematical logic whose specific
property is not using negation. This restricts the available set of first-order formulas
to the set of the positive ones obtained from atomic formulas using _;^; 9 as logical
operators and quantifier, respectively. Eventually, a positive first-order formula is of
the form 9 Nyf . Nx; Ny/, where f . Nx; Ny/ is quantifier-free. The special symbol? denoting
the antilogy needs to be added. The rest of this section is devoted to recalling various
definitions and notions of positive logic. For further details, [3] is a sufficiently
complete reference.

As in the first-order logic with negation, a sentence is a formula without free
variables. A sentence is said to be h-universal if it is the negation of a positive
sentence, that is, if it is of the form :9 Nxf . Nx/, or equivalently, 8 Nx:f . Nx/, where
f . Nx/ is quantifier-free and positive. The conjunction of two h-universal sentences is
equivalent to an h-universal sentence. The same is true for their disjunction.

A sentence is said to be simple h-inductive if it can be written in the form
8 Nx
�
9 Nyf . Nx; Ny/ 9zg. Nx; Nz/

�
;

where f and g are quantifier-free and positive. In prenex normal form, such a sen-
tence is of the form

8 Nu9 Nv
�
:'. Nu/ _  . Nu; Nv/

�
;

where ' and  are quantifier-free and positive. It follows that the disjunction of two
simple h-inductive sentences is still simple h-inductive. An h-inductive sentence is a
finite conjunction of simple h-inductive sentences. The conjunction and disjunction
of two h-inductive sentences is still h-inductive.

A first-order theory is said to be h-inductive if it is formed by h-inductive sen-
tences. In the particular case when they are all h-universal, such a theory is called
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h-universal. The h-inductive theories are the objects of analysis of positive model
theory.

Let L be a first-order language, and letM andN be two L-structures. A mapping
fromM to N is a homomorphism if, for every tuple Nm extracted fromM ( Nm 2 M
for short) and for every atomic formula ', M ˆ '. Nm/ implies N ˆ '.h. Nm//. In
such a case,N is said to be a continuation ofM . A homomorphism is an embedding
whenever, for every atomic formula, ' M ˆ '. Nm/ if and only if N ˆ '.h. Nm//; it is
an immersion whenever Nm and h. Nm/ satisfy the same positive formulas.

A positive compactness theorem was proved by Ben Yaacov and Poizat, and we
will refer to its following form as “positive compactness.”

Fact 1 ([3, Corollaire 4]) An h-inductive theory is consistent if and only if every
finite subset of it is consistent.

A class of structures is said to be inductive if it is closed with respect to inductive lim-
its of homomorphisms. It is easy to verify that the class of models of an h-inductive
theory is inductive. Théorème 23 of [3] shows that this is indeed a characterization.

Fact 2 ([3, Théorème 23]) The class of models of a first-order theory is inductive
if and only if it is axiomatized by h-inductive sentences.

2.2 Positively existentially closed models The notion of pec models is fundamental
in positive model theory.

Definition 1 Let L be a first-order language. A member M of a class C of L-
structures is said to be positively existentially closed in C if every homomorphism
fromM into an element of C is an immersion.

The following fact will be used without mention together with Fact 2 to verify that
every model of an h-inductive theory has a pec continuation.

Fact 3 ([3, Théorème 1]) Every member of an inductive class of models has an
existentially closed continuation in the same class.

Definition 2 ([3]) Two h-inductive theories are said to be companions if they have
the same h-universal consequences.

Companionship of models is characterized using the notion of a pec model.

Fact 4 ([3, Lemme 7]) Two h-inductive theories are companions if and only if
they have the same pec models.

The analysis of h-inductive theories in [3] as well as Fact 2 above show that an h-
inductive theory T has a maximal companion, denoted T k and called the Kaiser
envelope of T ; it is the h-inductive theory of the pec models of T—equivalently, T k
is the set of all h-inductive sentences true in the pec models of T . At the opposite
extreme, T has a minimal companion, denoted T u, formed by its h-universal con-
sequences. When parameters from a certain set A are allowed, the notation will be
T u.A/ and T k.A/.

An h-inductive theory T is said to be model-complete if all its models are pec, in
other words, if the class of pec models is axiomatized by the Kaiser envelope T k. An
example of a model-complete theory is that of algebraically closed fields of a fixed
characteristic in the language of fields.
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Fact 5 ([3, Lemme 5]) Let T be an h-inductive theory, and let T u be its h-
universal consequences. Then a structure has a continuation that is a model of T
if and only if it is a model of T u.

It follows from this fact that every structure that has a pec continuation that is a model
of T is a model of T u.

Examples 1 Let L D ¹Rº, where R is a relation symbol and T the h-inductive
theory that states that R is an equivalence relation. Then T has a unique pec model
which is the model with a unique equivalence class consisting of a single element.

Let L be the language with two relation symbols P and Q, and let T be the
h-universal theory ¹:9x; yP.x/ ^ Q.y/º. Then T has exactly two pec models:
¹Aº D ¹aº such that A ˆ P.a/ and B D ¹bº such that B ˆ Q.b/.

Let T be the h-inductive theory of algebraically closed fields of characteristic p
in the language L D ¹C;�; �;�1 ; 0; 1º. A model A of T is pec if and only if it is
algebraically closed. Thus, the Kaiser envelope of T is the theory of algebraically
closed fields of the same characteristic.

Since, in general, every structure that has a continuation which is a model of T is
a model of T u (Fact 5), every ring that has a continuation which is a pec model of
the theory of fields of characteristic p is a model of the h-universal theory of fields
of characteristic p. To illustrate, the ring of integers has this property. Since two
theories of fields of distinct characteristics have distinct pec models, the respective
h-universal theories determine the characteristics of the fields.

The following conclusion will be useful in various constructions that make use of
inductive limits.

Fact 6 ([3, Lemme 12]) The class of pec models of an h-inductive theory T is
inductive.

A recent result on pec structures has been proved by Almaz Kungozhin.

Fact 7 ([6]) Let L be a relational language, and let T be a finitely axiomatizable
h-universal theory. Then the class of pec models of T is elementary.

2.3 Type spaces As in every model-theoretic analysis, the notion of type is funda-
mental in positive model theory. The positive context forces the types under analysis
to consist of positive formulas and requires the following subtler definition.

Definition 3 ([3], [9, Section 3]) Let T be an h-inductive theory in a language L.
An n-type is a maximal set of positive formulas in n variables that is consistent with
T or with one of its companions.

An n-type with parameters inM is a maximal set of positive formulas in n vari-
ables with parameters inM , that is consistent with T .M/, equivalently with T k.M/.

It is worth emphasizing that one can also define a positive type as the set of positive
formulas satisfied by an element of a pec model of an h-inductive theory. This allows
us to characterize the pec models by the maximality of the sets of positive formulas
that tuples of their elements satisfy.

Fact 8 ([3, Lemme 13]) A model A of T is pec if and only if, for every Na 2 A, the
set of positive formulas satisfied by Na is a type.
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From this fact, one deduces that if A is pec and Na 2 A such that A ˆ :'. Na/,
where ' is a positive formula, then there exists  such that A ˆ  . Na/ and
T ` :9x.'. Nx/ ^  . Nx//.

Following the preceding line of thought, when A is a model of an h-inductive
theory T and Na 2 A, we note that FA. Na/ is the set of formulas satisfied by Na in A.
Thus, if A is not a pec model, FA. Na/ is not necessarily a type (a maximal set).

The usual notation is adopted to denote types. We denote by Sn.T / (resp.,
Sn.M/) the space of n-types of a theory T (resp., of the theory T .M/ with parame-
ters in M ). An n-type of Sn.T / (resp., of Sn.M/) has a realization in a pec model
of T (resp., in an elementary extension ofM ).

One defines on Sn.A/ a topology of which the basis of closed sets is the set of
Ff , where f ranges over the entire set of positive formulas, and

Ff D
®
p 2 Sn.A/

ˇ̌
p ` f

¯
:

The space of positive types is compact (quasicompact in somemathematical cultures)
by Fact 1, but it is not necessarily Hausdorff. In [9], Poizat analyzed consequences of
the lack of the Hausdorff property. In Section 4, we will concentrate on this problem
in a systematic way.

2.4 Positive elementary extensions The notion of elementary extension in positive
model theory was introduced and analyzed in [8].

Definition 4 ([8, Section 2]) Let M and N be two L-structures such that N is
a continuation of M . The structure N is an elementary extension of M if N is
a pec member of the class of models of the h-universal theory T u.M/ in the lan-
guage L.M/.

In [8], Poizat proves the following characterization of positive elementary extensions.

Fact 9 ([8, Lemme 1]) A continuation N ofM is an elementary extension of the
latter if and only if the following two conditions are satisfied:

1. M is immersed in N ;
2. for every Nb 2 N , and every positive existential L-formula f . Nx/ not satisfied

by Nb in N , there exists a positive existential formula g. Nx; Na/, with param-
eters Na 2 M , that is satisfied by Nb and contradictory with f . Nx/: the sen-
tence :.9 Nx; Ny; Nz/.f . Nx; Ny/ ^ g. Nx; Nz; Na// belongs to T u.M/, where f . Nx; Ny/
and g. Nx; Nz; Na/ are quantifier-free.

2.5 Universal extensions The notion of universal extension is reminiscent of univer-
sal objects in category theory. In our context, inductive limits of universal extensions
generalize the notion of saturation and are also relevant for relationships with abstract
elementary classes (see Section 6).

In this section, we will analyze properties of this notion, and in the next one, we
will obtain a characterization of structures that admit a universal extension. In an ar-
ticle in preparation, we will use this notion to obtain “monster models” in connection
with positive stability and simplicity.

Definition 5 Let A and B be models of an h-inductive theory T , and let h be a
homomorphism from A to B . The pair .B; h/ is said to be a universal extension of
A if, for every model C of T of cardinality at most jAj such that there is a homo-
morphism from A to C , there exists a homomorphism g from C to B such that the
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following diagram commutes:

C

g

��
A

h

//

f

??

B

Remark 1 Let .B; h/ be a universal extension ofA, and let g be a homomorphism
from B to a model C of T . Then .C; g ı h/ is also a universal extension of A. In
particular, A admits a universal extension .Be; h0/, where Be is a pec model of T .

The following lemma is a positive form of the descending Löwenheim–Skolem the-
orem. It is a slightly modified version of [3, Lemma 11].

Lemma 1 Let T be an h-inductive theory, let A be a model of T , and let B be a
subset of A. Then there exists a model B? of T of cardinality at most max.jBj; jLj/
that contains B and that is immersed in A.

Proof The proof is the same as that of [3, Lemma 11]. It suffices to note that the
structure B? obtained at the end of the construction in [3] is a model of T . In this
vein, suppose that

T ` 8 Nx
�
9 Ny'. Nx; Ny/! 9Nz . Nx; Nz/

�
:

If B? ˆ 9 Ny'. Na; Ny/, where Na 2 B?, then A ˆ 9 Ny'. Na; Ny/ and A ˆ 9Nz . Na; Nz/. One
then deduces from the construction of B? that B? ˆ 9Nz . Na; Nz/. Hence, B? ˆ T .

Definition 6 Let T be an h-inductive theory, and let ˛ be an ordinal. A univer-
sal chain of length ˛ of T is an inductive family of models ¹Ai W i < ˛º (resp.,
¹Ai W i � ˛º if ˛ is a successor ordinal) of T with a family of homomorphisms
¹fij W i � j < ˛º (resp., ¹fij W i � j < ˛º if ˛ is a successor ordinal) such that
for every ordinal ˇ < ˛, .AˇC1; fˇ;ˇC1/ is a universal extension of Aˇ , and that if
ˇ � ˛ is a limit ordinal, then Aˇ is the inductive limit of the Ai with i < ˇ, fiˇ
being defined as the canonical mapping from Ai into Aˇ .

Lemma 2 Let ¹Ai ; fij W i � j < ˛º be a universal chain of an h-inductive
theory T . Then for every limit ordinal i � ˛, Ai is a pec model of T . In this case, if
j � i , then fj i is the canonical mapping Aj to Ai for inductive limits, and .Ai ; fj i /
is a universal extension of Aj .

Proof Let Ai be a member of the universal chain with i a limit ordinal. We will
first show that Ai is a pec model of T . As Ai is an inductive limit of models of T ,
Ai is itself a model of T (see Fact 2). Let now f be a homomorphism from Ai to a
model B of T . Let us suppose that B ˆ '.f . Na//, where ' is a positive formula and
Na 2 Ai . Then there exists ˇ < i such that Na 2 Aˇ and Na D fˇ;i . Na/.

By Lemma 1, there exists B 0, a model of T generated by f ı fˇ;i .Aˇ / of cardi-
nality at most jAˇ j such that B 0 ˆ '.f ıfˇ;i . Na//. As .AˇC1; fˇ;ˇC1/ is a universal
extension of Aˇ , there exists an homomorphism h from B 0 into AˇC1 such that the
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following diagram commutes:

Aˇ
fˇ;i //

fˇ;ˇC1 ((

Ai
f // B 0

h

��

id // B

AˇC1

fˇC1;i

aa

As B 0 ˆ '.f .fˇ;i . Na/// and h ı f ı fˇ;i D fˇ;ˇC1, we conclude that AˇC1 ˆ
'.fˇ;ˇC1. Na//. By the definition of an inductive limit, fˇC1;i ı fˇ;ˇC1 D fˇ;i , and
soAi ˆ '. Na/, which implies that f is an immersion. Hence, Ai is a pec model of T .

We will now show that for every ˇ < i , .Ai ; fˇ;i / is a universal extension of Aˇ .
Let C be a model of T , let g be a homomorphism from Aˇ into C , and assume that
jC j � jAˇ j. As .AˇC1; fˇ;ˇC1/ is a universal extension of Aˇ , there exist f andH
such that the following diagram commutes:

C
f // AˇC1

h

��
Aˇ

fˇ;i

//

g

OO
fˇ;ˇC1

<<

Ai

We deduce from the commutativity of the diagram that fˇ;i D hıfˇ;ˇC1 D hıf ıg.
The conclusion follows.

3 Amalgamations

The possibility of amalgamating the structures in a given class allows a finer study
of it. This section continues the analysis of amalgamation techniques initiated in [3].
In Section 3.1, we will introduce and characterize the amalgamation bases following
[4] and [7].

The ability to amalgamate, being a property of “maximal” structures, is strongly
connected to the analysis of “maximal” h-inductive theories. Section 3.2 is devoted
to the analysis of amalgamation of models of the Kaiser envelope of an h-inductive
theory.

3.1 Amalgamation bases

Definition 7 Let T be an h-inductive theory. A model A of T is said to be an
amalgamation basis if, for every pair of models B and C of T such that there exist
homomorphisms f and g from A to B and C , respectively, there exist a modelD of
T and f 0, g0 homomorphisms such that the following diagram commutes:

A
f //

g

��

B

g0

��
C

f 0

// D

A theory is said to have the amalgamation property if each model of T is an amal-
gamation basis.
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Examples 2

� Let L be the relational language ¹P;Q;Rº, and let T be the h-universal
theory ¹:9x.Q.x/ ^R.x//º. Let A;B;C be the three models of T with the
following properties: A D ¹aº, B D ¹bº, C D ¹cº; we have

A ˆ P.a/; B ˆ P.b/ ^Q.b/; C ˆ P.c/ ^R.c/:

The applications that map a to b and a to c are homomorphisms from
A to B and from A to C , respectively. But because of the sentence
:9x.Q.x/ ^ R.x//, one cannot amalgamate B and C . Thus A is not
an amalgamation basis.
� A quick recipe to obtain amalgamation bases for an h-inductive theory is to
use Corollary 1 below. Indeed, the pec models of any h-inductive theory are
amalgamation bases.

As a reminder, we note that for a structure A, FA. Na/ is the set of positive formulas
satisfied by Na in A.

Lemma 3 Let T be an h-inductive theory, and let A be a model of T . Then the
following properties are equivalent:

1. A is an amalgamation basis;
2. for every Na 2 A, there exists a unique type in S.T / that contains FA. Na/.

Proof ((1)) (2)) Let Na 2 A. We suppose that there exist two distinct types p ¤ q
in S.T / that contain FA. Na/.

We first show that since p ` FA. Na/, there exist B a pec model of T and f a
homomorphism from A to B that maps Na to Nb that realizes p. In this vein, it suffices
to show that the family � D T [ DiagC.A/ [ p. Na/ is consistent. Let A0 be a model
of T that realizes p with Na0 and '. Na; Nm/ 2 DiagC.A/. Then 9 Ny'. Nx; Ny/ 2 FA. Na/,
so p ` 9 Ny'. Nx; Ny/. Hence there exists Nc0 in A0 such that A0 ˆ '. Na0; Nc0/, from which
follows that the family � is consistent. Let B 0 be a model of � , and let B be a pec
model of T that is a continuation of B 0. Then there is a homomorphism from A into
B and Nb, which is the image of Na in B that realizes p.

Similarly, there exist C a pec model of T and a homomorphism g from A to C
which maps Na to Nc, a realization of q. Since A has the amalgamation property, there
existsD a model of T such that the following diagram commutes:

A
f //

g

��

B

f 0

��
C

g0

// D

Thus f 0. Nb/ D g0. Nc/, and hence p D q, a contradiction.
((ii)) (i)) Let

A
f //

g

��

B

C

with A a model of T . Let B , C be pec models of T , and let f , g be homomorphisms
as in the diagram. Suppose that one cannot amalgamate f and g. This would mean
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that the following h-inductive theory is inconsistent:

T [ DiagC.A/ [
[
Na2A

FB
�
f . Na/

�
[

[
Na2A

FC
�
g. Na/

�
:

By positive compactness, there exists a finite fragment of this theory that is inconsis-
tent. It follows that there exists Na 2 A such that FB.f . Na// and FC .g. Na// (which are
types as B and C are pec models of T ) are contradictory. This contradicts hypothe-
sis (ii).

Theorem 1 Let A be a model of an h-inductive theory T . Then A has a universal
extension if and only if A is an amalgamation basis.

Proof Let us suppose that A has a universal extension .B; h/ and show that A is
an amalgamation basis. Let Ai ˆ T , i D 1; 2 be two continuations of A by the
homomorphisms fi . In order to verify the amalgamation property, it suffices to show
that the following family is consistent:

� D T [ DiagC.A1/ [ DiagC.A2/

by interpreting the parameters from A by the same symbols in A1 and A2.
We fix a subset T [ �1 [ �2, where the �i are finite subsets of DiagC.Ai / for

i D 1; 2. Let Nai be the parameters from Ai that are used in �i . By Lemma 1,
there exists a model Bi of T [ �i that contains A [ ¹Naiº and that has the same
cardinality as A. We will denote by gi the homomorphism from A into Bi defined
by gi .a/ D fi .a/ for every a 2 A. Then by definition of universal extensions, one
has the following diagram:

B1

h1
��

A
h

//

g1

>>

g2   

B

B2

h2

OO

This implies that B is a model of the set T [�1[�2. By positive compactness, � is
consistent. This proves the existence of the amalgamation being sought.

In order to prove the other implication, we assume that A is an amalgamation
basis. We will show that it has a universal extension. Let � be the family of all
pairs .M; f / withM a model of T of cardinality at most jAj such that there exists a
homomorphism f from A toM . By the axiom of choice, we may suppose that � is
well ordered. Its order type will be denoted by ˛.

We will construct an inductive family ¹Aˇ W ˇ � ˛º of models of T with a
coherent family of homomorphisms ¹hi;j W i � j � ˛º. The homomorphisms will
be indexed by pairs of ordinals up to ˛. The last member of the sequence, A˛ , will
be the universal extension that is being sought.

To start the construction, we set A0 D A, and h0;0 is defined as the identity
mapping. Since A is an amalgamation basis, there exist A1, a model of T , and two
homomorphisms h0;1 and g0 from A0 to A1 and fromM0 to A1, respectively, such
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that the following diagram commutes:

A
h0;0 //

f0

��

A0

h0;1

��
M0 g0

// A1

For the inductive step, we assume that the family ¹Aˇ W ˇ < 
 � ˛º with the
corresponding homomorphisms has been constructed. If 
 is a successor of the form
ˇ C 1, there exist a model A
 of T and homomorphisms hˇ;ˇC1 and gˇ such that
the following diagram commutes:

A
h0;ˇ //

fˇ

��

Aˇ

hˇ;ˇC1

��
Mˇ gˇ

// AˇC1

For every i � ˇ, we set hi;ˇC1 D hˇ;ˇC1 ı hi;ˇ . The coherence of the homomor-
phisms already constructed inductively implies that the new family is still coherent.
In other words, we continue to have an inductive family of models of T .

If 
 is a limit ordinal, then one definesA
 as the inductive limit of the already con-
structed inductive family. As for the new homomorphisms, for every i < 
 , hi;
 is
the natural mapping from Ai to A
 . The new family of models and homomorphisms
is also inductive.

The construction ends when ˛ is reached. By construction, either ˛ is a successor
and thus A˛ is constructed as in the inductive step for successors, or ˛ is a limit
ordinal and A˛ is the inductive limit of the family ¹Ai W i < ˛º.

To finish the proof, we show that .A˛; h0;˛/ is a universal extension of A. LetM
be a model of T of cardinality at most jAj such that there exists a homomorphism
f from A into M . By the definition of the family �, there exists ˇ � ˛ such that
.M; f / D .Mˇ ; fˇ /. If ˇ D ˛, then the identity mapping onA˛ suffices. Otherwise,
ˇ < ˛ and by construction, the following diagram is commutative:

A
h0;ˇ //

fˇ

��

Aˇ

hˇ;ˇC1

��
Mˇ gˇ

// AˇC1
hˇC1;˛

// A˛

The equalities h0;˛ D hˇC1;˛ ı hˇ;ˇC1 ı h0;ˇ D hˇC1;˛ ı gˇ ı fˇ that follow from
this diagram yield the desired conclusion.

3.2 Amalgamations in models of Kaiser envelopes In earlier works on positive
model theory, the existence of amalgamations is frequently analyzed in the context
of h-universal theories. Here, it will be necessary to extend the context to Kaiser
envelopes. To start, we will prove a slightly modified version of the so-called
“asymmetric amalgamation” of Ben Yaacov and Poizat in [3, Lemma 8].
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Lemma 4 Let A, B , C be L-structures, let g be an immersion from A into B ,
and let h be a homomorphism from A to C . Then, there exist a model D of T k.C /,
a homomorphism g0 from B to D, and an immersion h0 from C into D such that
g0 ı g D h0 ı h.
Proof We use the same symbols to name the elements of A in B and C . The proof
consists in showing that the set

T k.C / [ DiagC.B/
of sentences is consistent. In this vein, let f . Na; Nb/ be in DiagC.B/ with Na 2 A and
Nb 2 B . Then A ˆ 9 Nyf . Na; Ny/ since A is immersed in B . Hence, one can interpret Nb
by a tuple Nb0 2 A such that A ˆ f . Na; Nb0/. Thus, C ˆ f .h. Na/; h. Nb0//. The formula
obtained by replacing h. Na/ and h. Nb0/ by the corresponding constant symbols in the
language L.C/ belongs to T k.C /.

This lemma has the following corollary mentioned in [3] in a different form.
Corollary 1 The pec models of an h-inductive theory are amalgamation bases.
We deduce the following connection with universal extensions.
Corollary 2 Let Ae be a pec model of an h-inductive theory. Then Ae has a
universal extension .Be; i/, where Be is another pec model and i is an immersion
from Ae into Be .
Proof Since every pec model is an amalgamation basis, the corollary follows from
Theorem 1.

The following lemma and its corollary, fundamental for Section 4, are also of inde-
pendent interest.
Lemma 5 Let A be an L-structure, let B be a model of T k.A/, and let C be an
L-structure in which A is immersed. Then there exist a model D of T k.C / and two
immersions ' and  such that the following diagram commutes:

A
im //

im

��

B

'

��
C

 
// D

Proof We name the elements of A in B and C by the same symbols, and we note
L? as the enlarged language. The proof of the theorem consists in showing that the
following set of h-inductive sentences is consistent:

� D T k.C / [ T u.B/ [ DiagC.B/:
Let F D ¹�; f . Ň; Nb/;:9 Nyg. Ny; Nb/º be a finite subset of � where � 2 T k.C /,
f . Ň; Nb/ 2 DiagC.B/ and :9 Nyg. Ny; Nb/ 2 T u.B/. As B ˆ :9 Nyg. Ny; Nb/ and
B ˆ 9 Nxf . Nx; Nb/, we conclude that the h-inductive sentence

8Nz
�
9 Nxf . Nx; Nz/! 9 Nyg. Ny; Nz/

�
does not belong to T k.B/, and thus nor to T k.A/. This implies that one can find
Na 2 A such that A ˆ :9 Nyg. Ny; Na/ and A ˆ 9 Nxf . Nx; Na/. It follows that we can
interpret the sentences in A and thus in C , and hence conclude that � is consistent.
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Corollary 3 Let A be an L-structure, and let B be a model of T k.A/. Then every
model of T k.A/ is immersed in a model of T k.B/, and every model of T k.B/ is
immersed in a model of T k.A/.

4 Hausdorff-Type Spaces and Elementary Extensions

This section is devoted to the analysis of topological properties of spaces of positive
types of an h-inductive theory. The main theorem—answering a question of Poizat—
is concerned with the Hausdorff property of type spaces. Its proof depends heavily
on amalgamation techniques developed in earlier sections.

Definition 8 ([9, Section 3]) An h-inductive theory T (resp., a structure M ) is
said to be Hausdorff if and only if for every natural number n, the space Sn.T /
(resp., Sn.M/) is Hausdorff.

Such a definition would be useless if negation were in the language. But the ex-
clusion of negation, which makes the topology of Sn closer to the Zariski topology
in algebraic geometry, yields rapidly examples of h-inductive theories whose type
spaces are not Hausdorff (see the example after Lemma 6).

A natural question is the connection between the Hausdorff property of an h-
inductive theory and those of its individual models. This necessitates the analysis of
the preservation of the Hausdorff property when one goes to elementary extensions
or restrictions. An affirmative answer concerning the passage to elementary exten-
sions was proved by Poizat in [9]. The main result of this section gives an affirmative
answer for passage to elementary substructures.

We start with a technical notion introduced in [4, Section 8.5].

Definition 9 Let T be an h-inductive theory, and let ' be a positive formula.
The resultant of ', denoted by ResT .'/, is the set of positive formulas  such that
T ` :9x.'.x/ ^  .x//.

Lemma 6 Let T be an h-inductive theory, and let Sn.T / be its space of n-types.
Then Sn.T / is Hausdorff if and only if for every pair of distinct types p; q 2 Sn.T /,
there exist two positive formulas f and g such that p ` f , q ` g, and every formula
in ResT .f / is contradictory to every formula in ResT .g/.

Proof Let Of and Og be two basic open sets in Sn.T /; in other words,
Of D ¹r 2 Sn.T / W r ° f º, and similarly Og D ¹r 2 Sn.T / W r ° gº.
Equivalently, Of D

S
h2ResT .f / Fh, where Fh is nothing but the closed set defined

by h, and similarly for Og . The topology on Sn.T / is Hausdorff if and only if there
exist f , g such that p ` f , q ` g and Of \ Og D ;. This is equivalent to the
conclusion of the lemma.

Before going any further, we will use this lemma to illustrate an example of a non-
Hausdorff theory. A slightly different version of this example was given at the end of
[3]. Let L D ¹Ri W i < !º be relational language. The h-inductive theory T assures
that for every i < !, ResT .Ri / contains all but finitely many of the Rj , j ¤ i .
Then, by Lemma 6, T is not Hausdorff.

In [3], the following characterization of the Hausdorff property of type spaces was
shown.
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Fact 10 ([3, Théorème 20]) The spaces of type of an h-inductive theory are Haus-
dorff if and only if one can amalgamate the homomorphisms between models of the
Kaiser envelope T k; that is, for any three modelsM1,M2, andM3 of T k, such that
there is a homomorphism f from M1 to M2 and a homomorphism g from M1 to
M3, there existM4 a model of T k and s, h homomorphisms such that the following
diagram commutes:

M1
f //

g

��

M2

s

��
M3

h

// M4

The following corollaries offer examples of Hausdorff h-inductive theories.

Corollary 4 Every model-complete h-inductive theory is Hausdorff.

Proof As T is model-complete, by definition its class of pec models is elementary
and axiomatized by T k. Consequently, every model of T k is pec. The conclusion
follows from Corollary 1 and Fact 10.

Corollary 5 An h-inductive theory that has the amalgamation property is Haus-
dorff.

Corollary 6 Let L be a relational language, and let T be a finitely axiomatizable
h-universal theory. Then T is Hausdorff.

Proof By Fact 7, T k is model-complete. The conclusion follows from Corollary 4.

We use this corollary to verify that an example in Kungozhin [6, Example 4] is a
Hausdorff theory. Let L be a language that contains a single relational predicate R,
and let T be the h-universal theory ¹:9xyR.x; y/ ^R.y; x/º. By Corollary 6, T is
Hausdorff.

We will now attack the question of preservation of Hausdorffness. In [9], Poizat
makes the following remark.

Fact 11 ([9, Section 3]) An elementary extension of a Hausdorff structure is also
Hausdorff.

The reverse implication was left as an open problem in [9]. Theorem 2 below answers
affirmatively this question. Amalgamation in classes of models of Kaiser envelopes
will be a major tool in the proof (see Lemma 5 and Corollary 3).

Theorem 2 An elementary substructure of a Hausdorff structure is Hausdorff.

Proof Let M be an elementary substructure of N . We assume that N is a Haus-
dorff structure. The main point of the proof will be to replace models of T k.M/

with models of T k.N / in order to be able to use the amalgamation property of the
latter and Fact 10.

Let M1, M2, M3 be three models of T k.M/, and let '2 (resp., '3) be a homo-
morphism fromM1 toM2 (resp., fromM1 toM3). By Corollary 3, there exists N1,
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a model of T k.N / such thatM1 is immersed in N1 and that the following diagram
commutes:

M
im //

im

��

M1

i1

��
N

im
// N1

AsM1 is immersed inN1, an application of the asymmetric amalgamation yields the
following commutative diagram:

M1
'2 //

i1

��

M2

i2
��

N1
'0
2

// M 0

withM 0 a model of T k.M2/, and thus a model of T k.M/. The following commu-
tative diagram illustrates this:

M
im //

im

��

M1

i1

��

'2 // M2

i2
��

N
i

// N1
'0
2

// M 0

On this diagram, one remarks that the mapping '02 ı i defined from N to M 0 is an
immersion because N is a pec model of T k.M/ andM 0 ˆ T k.M/, which implies
that M 0 is a model of T u.N /. This allows us to find a continuation N2 of M 0 that
is a pec model of T u.N / (Fact 3). Since it is pec, it is also a model of T k.N /. We
thus obtain the following commutative diagram:

M
im //

im

��

M1

i1

��

'2 // M2

i2
��

f2 ı i2

!!
N

i
// N1

'0
2

// M 0
f2

// N2

We repeat the same construction forM3 and obtain the following commutative dia-
gram:

M
im //

im

��

M1

i1

��

'3 // M3

i3
��

f3 ı i3

!!
N

i
// N1

'0
3

// M 00
f3

// N3
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where M 00 is a model of T k.M/, N3 is a model of T k.N /, and f3 is a homomor-
phism. We then have the following diagram:

M2
f2 ı i2 // N2

M1

'2

==

'3 !!

i1 // N1

f2 ı'
0
2

==

f3 ı'
0
3

!!
M3

f3 ı i3

// N3

The amalgamation in models of T k.N / (Fact 10) yields the following commutative
diagram:

N1
f2 ı'

0
2 //

f3 ı'
0
3

��

N2

 2
��

N3
 3

// N 0

where N 0 is a model of T k.N /, and thus of T k.M/ as well. It follows from this that
 2 ı f2 ı '

0
2 ı i1 D  3 ı f3 ı '

0
3 ı i1:

This implies that
 2 ı f2 ı i2 ı '2 D  3 ı f3 ı i3 ı '3:

The following commutative diagram illustrates this construction:

M2
f2 ı i2 // N2

 2

  
M1

'2

==

'3 !!

i1 // N1

f2 ı'
0
2

==

f3 ı'
0
3

!!

N 0

M3
f3 ı i3

// N3

 3

>>

Finally, we conclude with the following commutative diagram in the class of models
of T k.M/:

M1
'2 //

'3

��

M2

 2 ıf2 ı i2
��

M3
 3 ıf3 ı i3

// N 0

The theorem follows from Fact 10.

We end this section with an example that shows that the topology of a space of
types is too weak to determine all properties of an h-inductive theory. The theory in
question is Hausdorff, but the class of its pec models is not elementary.

Example 1 Let L be the relational language ¹Pi ; Ri W i < !º, and let T be the
h-universal theory
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:9x

�
Pi .x/^Pj .x/

�
;8x

�
Pi .x/_Ri .x/

�
;:9x

�
Pi .x/^Ri .x/

� ˇ̌
i ¤ j; i; j < !

¯
:

A pec model A of T has the following properties.
1. For every i < ! the h-inductive sentences 8x; y.Pi .x/ ^ Pi .y/! x D y/

belong to T k, because otherwise one can continue A into a model of T using
a homomorphism that maps x and y to the same image. Such a homomor-
phism would not be an immersion and this would keep A from being pec.

2. For every i < !, A ˆ 9xPi .x/. Indeed, if A satisfies the h-universal sen-
tence :9xPi .x/, then the mapping from A to A[¹bº where b realizes Pi .x/
is not an immersion although it is an embedding. Note that A [ ¹bº is also
a model of T . It follows that A is not a pec model. Thus, for every i < !,
A ˆ 9xPi .x/. In particular, A is necessarily infinite.

3. In addition to the sentences in T , A also satisfies the following h-inductive
sentences:®
9xPi .x/; 9xRi .x/;8xy

�
Pi .x/ ^ Pi .y/

�
! x D y

ˇ̌
i < !

¯
:

There exist exactly two pec models of T , namely, A D ¹ai j i < !º and
B D A [ ¹xº, with the following properties: for every i; j < ! and i ¤ j

A;B ˆ Pi .ai / ^Rj .ai / and B ˆ Ri .x/:

Now, it follows from the classical Löwenheim–Skolem theorem that the class of the
pec models of T is not elementary. Indeed, if it were, then for every cardinal � � @0,
there would exist a pec model of cardinality �.

Finally, we will show that T is Hausdorff. By property (3) above of the pec models
of T , the Kaiser envelope T k associated to T contains the sentences mentioned
in (3). This implies that every model of T k is of the form ¹aj j j < !º [ C , where
C is a possibly empty set of points each of which satisfies Ri and none of which
satisfies Pi for every i < !.

The amalgamation in the class of models of T k is done by compressing the points
in C as follows. Let M1, M2, M3 be models of T k, and let f2 (resp., f3) be a
homomorphism fromM1 toM2 (resp., fromM1 toM3). SinceM1;M2;M3 ˆ T k,
there exist B1, B2, B3 such that Mi D ¹aj j j < !º [ Bi , and fi fixes pointwise
the set ¹aj j j < !º while fi .B1/ D Bi for i D 2; 3. To amalgamate one uses
the model N D ¹aj j j < !º [ ¹xº of T k and the homomorphisms gi .i D 2; 3/

that fix each aj and map the corresponding Bi onto x. The resulting diagram is
commutative:

M1
f2 //

f3

��

M2

g2

��
M3 g3

// N

The Hausdorff property now follows from Fact 10.
The theory T is an example of a Hausdorff theory whose pec models do not form

an elementary class.

5 Positive Robinson Theories and Quantifier Elimination

In this section, we will discuss quantifier elimination in the positive context. The
determination of positive types by their quantifier-free parts will play an important
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role. More generally, the “density” of the quantifier-free positive formulas within
the set of positive formulas satisfied by an element in an arbitrary model of an h-
inductive theory characterizes the general notion of elimination (Definition 13).

The characterizations of quantifier elimination vary according to the classes of
models and companion theories in question. In the case where the analysis is done
within the class of pec models, one deals with a positive Robinson theory, notion of
which precursors are in [5] and [1] (see in particular Lemmas 8 and 9 below). In the
general case, a similar analysis is carried out on all models of an h-inductive theory
(Definition 13), and the final characterization for the h-universal theories is obtained
using Theorem 3.

By definition, an embedding is an equivalence of quantifier-free types. Hence,
in the case of a theory that assigns heavier weight to its quantifier-free formulas, it
is natural that embeddings are closer to immersions than in general. This aspect of
elimination is described by the notions of an h-maximal model (Definition 10) and
of a weakly pec model (Definition 12).

Definition 10 ([6, Definition 4]) Let T be an h-inductive theory. A model A of
T is said to be h-maximal if every homomorphism from A to another model of T is
an embedding.

Lemma 7 The class of h-maximal models of an h-inductive theory is inductive.

Proof Let T be an h-inductive theory, let ˛ be a limit ordinal, and let ¹Mi Ifij j

i � j; i; j < ˛º be an inductive family of h-maximal models of T of which the
inductive limit will be denotedM .

We will show that M is h-maximal. Since M is an inductive limit of models of
T , M is model of T (Fact 2). Let N ˆ T , and let f be a homomorphism from
M to N . For every Nm 2 M , there exists i < ˛ such that Nm 2 Mi . Let hi be the
canonical homomorphism fromMi intoM , and suppose that N ˆ '.f . Nm//, where
' is a free positive formula. As Mi is h-maximal, the homomorphism f ı hi is an
embedding. But ' is a quantifier-free formula, thus Mi ˆ '. Nm/ and M ˆ '. Nm/.
Hence, f is an embedding.

We will denote by Tm the h-inductive theory of the h-maximal models of an h-
inductive theory T . Note that T u � Tm � T k.

Corollary 7 Let T be an h-inductive theory. The class of h-maximal models of T
is elementary if and only if it is axiomatized by Tm.

Proof Let T 0 denote the theory axiomatizing the h-maximal models of T . Then
M ˆ T 0 if and only ifM is h-maximal, and soM ˆ Tm. Hence, T 0 ` Tm. As for
the reverse implication, by Fact 2, T 0 is an h-inductive theory. Since Tm is the set
of h-inductive sentences that are true in all h-maximal models of T , one concludes
that Tm ` T 0.

Let A be a structure, and let Na 2 A. We will denote by tpsq. Na/ the set of positive
quantifier-free formulas satisfied by Na in A.

Definition 11 Let T be an h-inductive theory. The theory T is said to be positive
Robinson if it satisfies the following condition:

for any two pec models A and B of T , if Na 2 A, Nb 2 B and tpsq. Na/ �
tpsq. Nb/, then tp. Na/ D tp. Nb/.
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Remarks 1

1. This definition is equivalent to saying that in the pec models of a positive
Robinson theory, the types are entirely determined by their quantifier-free
parts.

2. An h-inductive theory is positive Robinson if and only if it has a companion
that has this property.

Example 2 The theory of fields of a given characteristic is a positive Robinson
theory because its maximal h-inductive companions have as models the algebraically
closed fields of the same characteristic.

Lemma 8 An h-inductive theory T is positive Robinson if and only if it satisfies
the following condition:

for every pec model A of T , for every quantifier-free positive formula '. Nx/,
and Na 2 A, A ˆ :'. Na/ if and only if there exists a quantifier-free positive
formula  . Nx/ such that A ˆ  . Na/ and T ` :9 Nx . Nx/ ^ '. Nx/.

Proof Let A be a pec model of T , and let Na 2 A. Let us suppose that A ˆ :'. Na/.
This implies that '. Nx/ does not belong to the type of Na. We first show that
T [ tpsq. Na/ [ ¹'. Na/º is inconsistent. If not, then there exist a pec model B
and Nb 2 B such that B ˆ '. Nb/ and tpsq. Na/ � tp.b/. Since T is positive Robinson,
tp. Na/ D tp. Nb/, which is a contradiction. It follows that there exists a finite subset
 . Nx/ of tpsq. Na/ such that T ` :9 Nx . Nx/ ^ '. Nx/.

For the reverse direction, we assume that for every positive formula ', Res' is
equivalent modulo T to a set of quantifier-free positive formulas. Let A and B be
two pec models of T , Na 2 A and Nb 2 B such that tpsq. Na/ � tpsq. Nb/. Let ' be
a positive formula such that A ˆ :'. Na/; then by hypothesis, there exists a positive
quantifier-free formula  . Nx/ such that A ˆ  . Na/ and T ` :9 Nx . Nx/ ^ '. Nx/. Since
tpsq. Na/ � tpsq. Nb/, B ˆ  . Nb/. This implies that B ˆ :'. Nb/. It follows that
tp. Nb/ � tp. Na/. By the maximality of positive types, we deduce that tp. Na/ D tp. Nb/.

Corollary 8 Let T be a positive Robinson theory, and letA be a model of T . Then
A is h-maximal if and only if it satisfies the following condition:

for every quantifier-free positive formula '. Nx/ and Na 2 A, A ˆ :'. Na/
if and only if there exists a quantifier-free positive formula  . Nx/ such that
A ˆ  . Na/ and T ` :9 Nx . Nx/ ^ '. Nx/.

Proof Let A be an h-maximal and B a pec model of T such that A embeds
in B . We assume that A ˆ :'. Na/. Thus, B ˆ :'. Na/. Since B is a pec
model, by Lemma 8 there exists  . Nx/ a quantifier-free positive formula such that
T ` :9 Nx . Nx/ ^ '. Nx/ and B ˆ  . Na/. This implies that A ˆ  . Na/. In the reverse
direction, every model of T that satisfies the condition above is h-maximal.

Lemma 9 Let T be a positive Robinson theory. Then the following conditions are
satisfied.

1. Every model of T that embeds in a pec model of T is h-maximal.
2. The h-maximal models of T have the amalgamation property.
Moreover, if T is h-universal, then these two conditions are sufficient to conclude

that T is a positive Robinson theory.
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It is worth noting that the second condition of Lemma 9 shows that the h-maximal
models of a positive Robinson theory are amalgamation bases.

Proof Let A, B , C be three models of T such that there is an embedding i from
A into B and a homomorphism f from A into C , and B is a pec model. Let Ce be
a pec model of T such that there is a homomorphism j from C to Ce:

B

A

i

??

f ��
C

j
// Ce

For any Na 2 A,

tpsq. Na/ D tpsq
�
i. Na/

�
and tpsq. Na/ � tpsq

�
f . Na/

�
� tpsq

�
j ı f . Na/

�
:

Since T is a positive Robinson theory, B and Ce are pec models of T , and
tpsq.i. Na// � tpsq.j ı f . Na//, we conclude that tpsq.i. Na// D tpsq.j ı f . Na//.
It follows that tpsq. Na/ D tpsq.f . Na//, and thus f is an embedding.

We will now show the amalgamation property for h-maximal models. Let A, B ,
and C be h-maximal models of T with i and j embeddings from A into B and C ,
respectively. Let Be and Ce be pec models of T that are continuations of B and C ,
respectively. We then have the following diagram:

B
f // Be

A

i

??

j ��
C

g
// Ce

For every Na 2 A, tpsq. Na/ D tpsq.f ı i. Na// D tpsq.g ıj. Na//. Thus, Na has the same
type p in Be and Ce.

In order to complete the amalgamation argument, we will show using positive
compactness that T [DC.Be/[DC.Ce/ is consistent. Let '. Na; Nb/ 2 DC.Be/ and
 . Na; Nc/ 2 DC.Ce/, where Na is the tuple of parameters that belong to A. Then,
9y'.x; y/ and 9z .x; z/ belong to p. As a result, there exists Nc0 2 Ce such
that '. Na; Nc0/ ^  . Na; Nc/ 2 DC.Ce/, and the consistency follows. It follows that
T [ DC.Be/ [ DC.Ce/ has a model D that one can continue to an h-maximal
model of T (a pec model of T for example). The amalgamation property for the
h-maximal models follows.

Now, we assume that T is h-universal and that the two conditions in the statement
hold. We will prove that T is positive Robinson. LetA be a pec model of T , Na; Nb 2 A
such that tpsq. Na/ � tpsq. Nb/. Let h Nai be the substructure of A generated by Na. As
T is h-universal, h Nai ˆ T . Since the inclusion h Nai in A is an embedding, h Nai is an
h-maximal model of T by condition 1. Hence, the homomorphism f from h Nai into
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A that maps Na to Nb is an embedding. The amalgamation property of the h-maximal
models (condition 2) shows that there exists B that may be chosen to be a pec model
such that the following diagram commutes:

h Nai
i //

f

��

A

h

��
A

g
// B

Thus h. Na/ D g. Nb/. Note that, since A is a pec model, g, h are immersions. Hence,
Na and Nb have the same type.

Remark 2 If every model of T that embeds in a pec model is an h-maximal, then
every model of T that embeds in an h-maximal is an h-maximal.
Corollary 9 If T is a positive Robinson theory of which the class of h-maximal
models is elementary, then T is Hausdorff.
Proof As T is positive Robinson, its h-maximal models have the amalgamation
property; that is, they satisfy condition 2 of Lemma 9. Since the class of h-maximal
models is elementary, it is axiomatized by the h-inductive theory Tm (Corollary 7).
Let M1, M2, M3 be models of T k with f and g homomorphisms from M1 to M2

and M3, respectively. Since Tm � T k, these three models are h-maximal. As a
result, there exist a model N of Tm and a pec continuation M of N such that the
following diagram commutes:

M1
f //

g

��

M2

��
M3

// N // M

SinceM ˆ T k, the Hausdorff property of T follows from Fact 10.

In the rest of this section, we will extend the preceding discussion to all models of an
h-inductive theory. The notion of a weakly pec model and the property EQ will be
crucial.
Definition 12 Let T be an h-inductive theory. A model A of T is said to be
weakly pec if every embedding from A into a model of T is an immersion.
We first refine a notation already introduced. For an h-inductive theory T , a model
M of T , and Na 2 M , we will denote by fM . Na/ the set of quantifier-free positive
formulas satisfied by Na inM .
Definition 13 An h-inductive theory T is said to have the property EQ if it satis-
fies the following hypothesis:

for every pair of models A and B of T , Na 2 A and Nb 2 B , fA. Na/ D fB. Nb/ if
and only if FA. Na/ D FB. Nb/.

The property EQ will allow us to characterize the elimination of quantifiers in h-
universal theories. We start with a general lemma.
Lemma 10 If an h-inductive theory T has the property EQ, then every embedding
between models of T is an immersion. In particular, every model of T is weakly pec.
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Proof We assume that T has the property EQ. Let A and B be two models of T ,
let i be an embedding from A into B , and let Na 2 A. Then Na and i. Na/ satisfy the
same quantifier-free positive formulas. They satisfy the same positive formulas since
T has the property EQ. It follows that i is an immersion, and one concludes that
every model of T is weakly pec.

Corollary 10 If T is a theory having the property EQ, then every h-maximal
model of T is pec.

Corollary 11 If T is an h-universal theory having the property EQ, then T is a
positive Robinson theory.

Proof Since T has the property EQ, Lemma 10 shows that every embedding be-
tween models of T is an immersion. Subsequently, every model A of T that embeds
in a pec model of T is a pec model; it is in particular h-maximal.

By Corollary 10, every h-maximal model of T is pec. The amalgamation property
for h-maximal models follows from Corollary 1.

The conclusion of the corollary follows from Lemma 9.

Theorem 3 Let T be an h-universal theory. Then the following conditions are
equivalent:

1. T has the property EQ;
2. every model of T is weakly pec;
3. every positive formula is equivalent modulo T to a quantifier-free positive

formula.

Proof (1) 2) This is Lemma 10.
(2) 1) Let Na 2 A, Nb 2 B such that fA. Na/ D fB. Nb/, and h Nai is the substructure of

A generated by Na. Since T is h-universal, h Nai is a model of T . It embeds inA through
the inclusion mapping that we will denote by i and in B through the embedding that
maps Na onto Nb and that we will denote by j . By hypothesis 2, the embeddings i and
j are immersions. By asymmetric amalgamation (Lemma 4), there exist a model D
of T together with an immersion f and a homomorphism g that make the following
diagram commute:

h Nai
i //

j

��

A

f

��
B

g
// D

If B ˆ 9 Ny'. Nb; Ny/, where Nb D j. Na/, then B ˆ 9 Ny'.j. Na/; Ny/, and D ˆ 9 Ny'.g ı
j. Na/; Ny/. Since f is an immersion, A ˆ 9 Ny'.a; Ny/, thus FB. Nb/ � FA. Na/.

In order to show that FA. Na/ � FB. Nb/, one redoes the same argument on the
commutative diagram

h Nai
i //

j

��

A

f

��
B

g
// D

this time with g as an immersion.
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(3) 2) We assume 3. Then every embedding is an immersion; thus every model
of T is weakly pec.

The idea of the proof of (1) 3) is from [4, Lemma 8.4.8].
(1) 3) Let ' be a positive formula, and let � be the set of quantifier-free pos-

itive formulas  such that T ` ' !  . We will show that T [ �.x/ ` '.x/

in the language L [ ¹xº. Let B be a model of T [ �.x/. Let � be the set of
quantifier-free positive formulas � such that B ˆ :�.x/, and let T 0 be the theory
T [ ¹'.x/º [ ¹:�.x/ j � 2 �º.

Suppose towards a contradiction that T 0 is not consistent. Then there exists a
quantifier-free positive formula � such that T ` '.x/ ! �.x/. By the definition of
�, one concludes that � 2 �. Since B ˆ :�.x/, we reach a contradiction with the
fact that B is a model of �. Hence, T 0 is consistent.

Let A be a model of T 0, and let C be the substructure of A generated by the
constants in the language L [ ¹xº. So C embeds in A, and as T is h-universal,
C ˆ T . By Lemma 10, this embedding is an immersion.

On the other hand, the mapping j from C to B that maps every constant of L
onto itself and x onto x is a homomorphism. Indeed, suppose that C ˆ ˛.x; a/ and
B ˆ :˛.x; a/, with x; a constants of the language L [ ¹xº, and ˛ a quantifier-free
positive formula. The fact that B ˆ :˛.x; a/ implies that ˛.x; a/ 2 � . As a result,
C ˆ :˛.x; a/, which is a contradiction. Hence j is a homomorphism. We obtain
the following diagram:

A

C

im

>>

j   
B

where im is an immersion and j is a homomorphism. Since A ` '.x/, C ` '.x/,
and thus B ` '.x/. Hence, T [�.x/ ` '.x/.

The conclusion of the preceding paragraph and positive compactness imply that
there exists  2 � such that T `  ! '. By the definition of �, we conclude that
T ` ' $  .

6 Complete Theories

In this final section, we will propose a general notion of completeness for arbitrary h-
inductive theories. In [3] Ben Yaacov and Poizat introduced the notion of a complete
theory as the h-universal theory of a structure and showed that in the case of an h-
universal theory this notion is equivalent to the joint continuation property defined
below. In this section, we will pursue their approach and analyze completions of an
arbitrary h-inductive theory.

Definition 14 An h-inductive theory T is said to be complete if it has the joint
continuation property:

for any two models of T , there exists a third model C of T that is a continu-
ation of both A and B .
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Fact 12 ([3, Lemme 7]) An h-inductive theory is complete if and only if it has a
companion that is complete.

Lemma 11 An h-inductive theory that has a unique pec model is complete.

Proof Every model of T has a pec continuation. Since there is only one such, the
joint continuation condition is satisfied.

On the other hand, the following is an example of an incomplete h-inductive theory
in our sense.

Example 3 Let L be the relational language ¹Q;Rº, and let T be the h-universal
theory ¹:9x; yQ.x/ ^ R.y/º. The theory T is not complete since if A and B are
models of T such that A ˆ R.a/ and B ˆ Q.b/, then there does not exist a model
of T that is a continuation of A and B .

We will introduce a method to obtain and characterize minimal completions (Defini-
tion 15) of an arbitrary h-inductive theory. The fundamental ingredient is an equiv-
alence relation on the pec models of the theory in question. In this vein, let T be an
h-inductive theory, and let Ae and Be be pec models of T . Let < be the binary rela-
tion defined on the class of pec models of T by: Ae<Be if and only if there exists a
modelC of T that is a common continuation ofAe andBe. Note thatAe<Be is also
equivalent to saying that there exists a pec model Ce that is a common continuation
of Ae and Be.

Lemma 12 The relation < is an equivalence relation.

Proof It is easy to see that < is reflexive and symmetric. It remains therefore to
check the transitivity property. LetAe,Be, Ce be pec models of T such thatAe<Be
and Be<Ce. Then we have the following diagram:

Ae

��

Be
f

}}

g

!!

Ce

��
D1 D2

where D1 and D2 are models of T . Since Be is pec, f and g are immersions. By
asymmetric amalgamation,

A

��

Be
f

}}

g

!!

C

��
D1

!!

D2

}}
D

withD ˆ T . Thus, Ae<Ce, and it follows that < is an equivalence relation.

Let E denote an equivalence class of <. We define a subclass of models of T de-
noted �E :

�E D ¹A ˆ T W A has a continuation that is a member of Eº:
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Lemma 13 The members of E have the same h-universal theory.

Proof Let Ae and Be be in E . By definition, there exists a model C of T in which
Ae and Be are immersed (they are pec models of T ). Hence, if Be ˆ :9 Nx'. Nx/,
then C ˆ :9 Nx'. Nx/, and similarly for Ae. This implies that Ae and Be have the
same h-universal theory.

We will denote by T u.E/ the h-universal theory found in the preceding lemma.

Lemma 14 The class �E is axiomatized by the theory TE D T [ T u.E/.

Proof We will first show that all models of TE belong to �E . Let A be a model of
TE and Be in E . Then the family T 0

E
D TE [DiagC.A/[DiagC.Be/ is consistent.

For every formula 9 Nx'. Nx; Na/ 2 DiagC.A/, :9xy'.x; y/ does not belong to T u.E/
because A ˆ TE . Moreover, since Be belongs to E , T u.E/ is the h-universal theory
of Be by Lemma 13. One can thus find Nb 2 Be such that Be ˆ 9x'.x; Nb/. Hence,
T 0

E
is consistent, and one deduces from this that A and Be have a joint continuation

C that we may continue in a pec model Ce of T . It then follows that Be<Ce, and
thus Ce 2 E . Hence, A 2 �E .

As for the reverse implication, ifA 2 �E , then there existsAe 2 E , a continuation
of A, which forces that A ˆ TE . One concludes from this that �E is an elementary
class axiomatized by TE .

Corollary 12 The theory TE of Lemma 14 is complete.

Proof Let A and B be two models of TE . By Lemma 14, A, B 2 �E . By the
definition of �E , there exist two pec models Ae and Be of T in E that are continu-
ations of A and B , respectively. By the definition of E , Ae and Be have a common
continuation in E . The conclusion follows.

Corollary 13 The class �E is inductive.

Proof The conclusion follows from Fact 2 and Lemma 14.

Definition 15 Let T be an h-inductive theory. A theory T 0 is said to be a minimal
completion of T if T 0 is a complete theory that contains T and has as model a pec
model of T , and it is minimal with respect to these properties.

Corollary 14 The theory TE is a minimal completion of T . Moreover, there exists
a bijective correspondence between the equivalence classes of < and the minimal
completions of T .

Proof We start by verifying the first assertion. By Corollary 12, TE is complete.
Its pec models include the members of E . Finally, TE is minimal since it is exactly
T [ T u.E/.

Now, we prove the second assertion. We first define the correspondence. We asso-
ciate to each class E of< the theory TE . Clearly this is well defined and surjective by
the very definition of a minimal completion of an h-inductive theory (Definition 15).

We will next verify the injective property. The main step in the proof is to prove
that the pec members of �E are exactly the members of E . By definition, every
element of E is a pec model of T , thus it is a pec member of �E . As for the other
inclusion, let A be a pec member of �E that has as continuation a model B of T , and
let f be the witnessing homomorphism from A to B . By definition of �E , A has
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a continuation Ae that belongs to E . As E is contained in �E , the homomorphism
from A into Ae, say, g, is in fact an immersion. By asymmetric amalgamation, there
is a model C of T such that the following diagram commutes:

A
f //

g

��

B

g0

��
Ae

f 0

// C

Since g and f 0 are immersions, it follows that f is an immersion. Thus A 2 E .
This finishes the proof of the main step, from which the injectivity follows rapidly.
Indeed, if TE1 D TE2 , then �E1 D �E2 , and the main step shows that E1 D E2.
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