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BCK is not Structurally Complete

Tomasz Kowalski

Abstract We exhibit a simple inference rule, which is admissible but not deriv-
able in BCK, proving that BCK is not structurally complete. The argument is
proof-theoretical.

1 Introduction

By a logic we mean a set of formulae closed under a consequence operation given by
some axioms and structural inference rules. An inference rule of the form

˛1; : : : ; ˛n

ˇ

is derivable in a logic L if ˇ 2 C.¹˛1; : : : ; ˛nº/, where C is the consequence opera-
tion ofL. An inference rule is admissible if �.˛1/; : : : ; �.˛n/ 2 L implies �.ˇ/ 2 L
for every substitution � . Admissibility is often informally expressed by saying that
adjoining an admissible rule to the consequence operation of L does not change the
set of theorems. A logic L is structurally complete if every rule admissible in L is
also derivable in L.

The notion of structural completeness was isolated by Pogorzelski in [7], and after
a few decades of dormancy is undergoing a revival. For example, Olson, Raftery,
and van Alten [6] deal with substructural logics without contraction, and Cintula and
Metcalfe [2] investigate structural completeness in fuzzy logics. A number of general
results have been proved and the question of structural completeness settled for many
important logics. A notable exception to this is BCK, a logic of pure implication and
one of the senior members of the family of substructural logics. BCK, whose name
derives from a connection to combinators B , C , andK (see e.g., Curry, Hindley, and
Seldin [3]), is typically defined by the following axioms:

(B) .' !  /! ..�! '/! .�!  //,
(C) .' ! . ! �//! . ! .' ! �//,
(K) ' ! . ! '/,
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and the sole inference rule
'; ' !  

 

of modus ponens. Observe that .˛ ! ˛/ ! .ˇ ! ˇ/ is a theorem of BCK, so the
truth constant 1 is definable, for example, by putting 1 D x ! x for a distinguished
variable x. The usual algebraic semantics for BCK, introduced in Iseki [4], is the
quasivariety of BCK-algebras, with the following base of quasi-identities:

1. x ! 1 D 1,
2. 1! x D x,
3. .x ! y/! ..y ! z/! .x ! z// D 1,
4. x ! .y ! z/ D y ! .x ! z/,
5. x ! y D 1 D y ! x implies x D y.

The quasivariety of BCK-algebras forms an equivalent quasivariety semantics (see
Blok and Pigozzi [1]) for BCK. The question of structural completeness of BCK was
mentioned as open in [6].

2 Gentzen Calculus for BCK

From a proof-theoretical perspective, a particularly handy presentation of BCK em-
ploys a Gentzen-style sequent system. Sequents are pairs � ) ˛, with � a multiset
of terms, ˛ a term, and) the separator. Terms are formulae of BCK. Out of several
versions of sequent calculus for BCK, we choose the following: initial sequents

�; x) x;

where x is a variable, and logical inference rules
� ) ˛ �; ˇ) 


�;�; ˛ ! ˇ) 

.!)/,

�; ˛) ˇ

� ) ˛ ! ˇ
.)!/.

It can be shown by induction on complexity of ˛ that the sequent �; ˛ ) ˛ is
provable for any multiset of terms � and any term ˛. Structural rules of cut and
weakening

� ) ˛ �; ˛) ˇ

�;�) ˇ
, � ) ˛

ˇ; � ) ˛

are not in the official stock of rules. The next lemma justifies this choice.

Lemma 2.1 Cut and weakening are eliminable in BCK. The rule .)!/ is invert-
ible in BCK.

Eliminability here means that whenever the upper sequents are provable, the lower
sequent is provable as well. Invertibility means that swapping the lower and upper
sequents in ()!) results in an eliminable rule. It follows that a sequent � ) ˛ is
provable if and only if the sequent �; ˛n; : : : ; ˛1 ) ˛0 is provable, where

˛ D ˛n ! .˛n�1 ! � � � ! .˛1 ! ˛0/ � � � /

and ˛0 is a variable or the constant 1. Clearly, each BCK term ˛ is of the above form.
We will use a shorthand notation ˛1˛2 � � �˛n ! ˛0, where the antecedent is thought
of as a multiset of terms. For a multiset � of terms and a term ' we will simply
write � ! ', and, by extension, for multisets � and � we will write �� ! ' for
�! .� ! '/.
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The next lemma states three further properties of a Gentzen-style system for BCK
that will be used later without notice. All three are well known to hold in BCK, and
can be easily proved using Lemma 2.1, so we leave the proofs to the reader.

Lemma 2.2 Let �;� be multisets of terms, and let ˛; ˇ be terms. Then the fol-
lowing hold.

1. The sequent � ! ˛; � ) ˛ is provable.
2. If � � �, then the sequent � ! ˛) �! ˛ is provable.
3. If ˇ is a theorem, then the sequent ˇ� ! ˛) � ! ˛ is provable.

3 Split Terms in BCK

Split terms can be thought of as encoding cut-free proofs of provable sequents in
which they occur. The notion was introduced by the author in [5] for the logic BCI, a
close relative of BCK. In the first part of this section, we define split terms for BCK.
In the second part, we prove two lemmas whose import is that some special provable
sequents can be simplified by means of split terms.

Lemma 3.1 The sequent � ) v, where v is a variable and v … � , is provable
if and only if there exist a 
 D 
n
n�1 � � � 
1 ! 
0 2 � and a partition ¹�iº

n
iD1 of

� n ¹
º such that
1. 
0 D v,
2. for every i 2 ¹1; : : : ; nº there is a �i such that �i ) 
i is provable.

Proof Notice that only the forward direction is nontrivial. We proceed by induc-
tion on the length of the cut-free proof of � ) v. If this is an initial sequent, the
lemma holds vacuously. For the inductive step, the last rule in a cut-free proof of
� ) v must be

…) ˛ �; ˇ) v

� ) v

with ˛ ! ˇ 2 � and…;� D � n ¹˛ ! ˇº. Notice that v … �, because otherwise
� ) v would be an initial sequent. Arguing case by case, we will show that the
requirements of the lemma are satisfied. (1) If �;ˇ ) v is an initial sequent, then
ˇ D v and so � D …;�; ˛ ! v. Since … ) ˛ is provable, by weakening we
get …;� ) ˛ and thus ˛ ! ˇ satisfies the requirements. (2) If �;ˇ ) v is
not initial, the inductive hypothesis applies to �;ˇ ) v and thus there is a term
ı D ının�1 � � � ı1 ! v and a partition of .� [ ¹ˇº/ n ¹ıº into �1; : : : ; �n such that
the sequents �i ) ıi are provable. Now there are two further cases. (2.1) If ˇ D ı,
then ˛ ! ˇ satisfies all requirements of the lemma. (2.2) If ˇ ¤ ı and ˇ 2 �j

for some j 2 ¹1; : : : ; nº, then the sequent …;�j n ˇ; ˛ ! ˇ ) ıj is provable by
application of

…) ˛ �j ) ıj

…;�j n ¹ˇº; ˛ ! ˇ) ıj

.

Then, we obtain provable sequents
�1 ) ı1

:::
:::

�j�1 ) ıj�1

…;�j n ¹ˇº; ˛ ! ˇ) ıj
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�jC1 ) ıjC1

:::
:::

�n ) ın;

where

�1; : : : ; �j�1;…;�j n ¹ˇº; ˛ ! ˇ;�jC1; : : : ; �n D � n ¹ıº

and the requirements of the lemma are satisfied by ı. This ends the proof.

For a provable sequent � ) v, any term 
 satisfying the lemma above will be called
a split term. Such a 
 may not be unique, and so for a given sequent � ) v different
cases of split terms often need to be considered. To indicate a particular split term 
 ,
we will say that � ) v is provable with split term 
 , or that 
 splits in � ) v.

Now we move on to the simplification lemmas mentioned at the beginning of the
section. They deal with two different cases of a split term in a provable sequent of
the form �; ˛� ! x) x.

Lemma 3.2 Let � D ¹
1; : : : ; 
nº be a multiset of terms. Suppose that the sequent
�; ˛� ! x ) x is provable with split term 
1 D ˇ1 � � �ˇk ! x. Then, for some
� 0 � � n ¹
1º and some i 2 ¹1; : : : ; nº, the sequent ˛� 0 ! ˇi ) � 0 ! ˇi is
provable. Moreover, the sequent � 0 ! ˇi ) � ! x is also provable.

Proof Since 
1 D ˇ1 � � �ˇk ! x is split, after a harmless renumbering of

2; : : : ; 
n we get the following provable sequents:


2; : : : ; 
p; ˛� ! x) ˇ1

ƒ2 ) ˇ2

:::
:::

ƒk ) ˇk ;

where ƒ2; : : : ; ƒk D 
pC1; : : : ; 
n and 2 � p � n. Writing � in full, we have


2; : : : ; 
p; .ˇ1 � � �ˇk ! x/! .˛
2 � � � 
n ! x/) ˇ1I

therefore,

.ˇ1 � � �ˇk ! x/! .˛
2 � � � 
n ! x/) 
2 � � � 
p ! ˇ1 (1)

is provable. We will now show that

˛
2 � � � 
p ! ˇ1 ) .ˇ1 � � �ˇk ! x/! .˛
2 � � � 
n ! x/ (2)

is also provable. This is the case if and only if the sequent

˛; 
2; : : : ; 
n; ˇ1 � � �ˇk ! x; ˛
2 � � � 
p ! ˇ1 ) x (3)

is provable. Now, consider the following system of sequents:

˛; 
2; : : : ; 
p; ˛
2 � � � 
p ! ˇ1 ) ˇ1

ƒ2 ) ˇ2

:::
:::

ƒk ) ˇk ;



BCK is not Structurally Complete 201

where ƒ1; : : : ; ƒk are as before. Since all these are clearly provable, we get that (3)
is provable with split term 
1 D ˇ1 � � �ˇk ! x, and so (2) is provable. Applying cut
to (2) and (1) we obtain

˛
2 � � � 
p ! ˇ1 ) 
2 � � � 
p ! ˇ1;

which yields the desired conclusion, with � 0 D ¹
2; : : : ; 
pº. A parallel argument
shows that the sequent


1; : : : ; 
n; 
2 � � � 
p ! ˇ1 ) x

is provable with split term 
1. This proves the “moreover” part.

Lemma 3.3 Let � D ¹
1; : : : ; 
nº be a multiset of terms. Suppose that the sequent
�; ˛� ! x ) x is provable with split term ˛� ! x ) x and that ˛ is not a
theorem. Then, some 
 2 � is a theorem. Therefore, the sequent � 0; ˛� 0 ! x ) x

is provable, where � 0 D � n ¹
º.

Proof Since ˛� ! x is split, we have
ƒ1 ) ˛

ƒ2 ) 
1

:::
:::

ƒnC1 ) 
n

with ƒ1; : : : ; ƒnC1 D 
1; : : : ; 
n, so at least one ƒi must be empty. As ˛ is not a
theorem, i 2 ¹2; : : : ; nC 1º, and so 
i�1 is a theorem. Thus, we have the following
system of provable sequents:

ƒ1 ) ˛

ƒ2 ) 
1

:::
:::

ƒi�1 ) 
i�2

) 
i�1

ƒiC1 ) 
i

:::
:::

ƒnC1 ) 
n:

Putting 
 D 
i�1, we get that 
 is a theorem, as required. Consider the sequent
˛� ! x ) ˛� 0 ! x. Since � 0 D � n ¹
º � � , we get that ˛� 0 ! x ) ˛� ! x

is provable. As the sequent �; ˛� ! x ) x is provable by assumption, we apply
cut

˛� 0 ! x) ˛� ! x �; ˛� ! x) x

�; ˛� 0 ! x) x

and obtain that 
; � 0; ˛� 0 ! x ) x is provable. But 
 is provable, so another
application of cut

) 
 
; � 0; ˛� 0 ! x) x

� 0; ˛� 0 ! x) x

shows that the sequent � 0; ˛� 0 ! x) x is provable, as claimed.
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4 Structural Incompleteness

We now have all the tools we need to prove structural incompleteness of BCK. First
we will prove an auxiliary result that amounts to admissibility of a nonstandard,
disjunctive inference rule.

Lemma 4.1 Suppose that the sequent ˛ ! ˇ ) ˇ is provable. Then ˛ is a
theorem or ˇ is a theorem.

Proof Induction on complexity of ˛ ! ˇ measured by the number of occurrences
of the connective. If there is a single occurrence, ˛ is a variable or the constant 1 and
so is ˇ. If any of them is 1, the claim holds, and if both are variables, ˛ ! ˇ ) ˇ

is not provable, so the claim holds as well. For the inductive step, we proceed by
contradiction. Suppose that there are ˛ and ˇ for which the claim fails, and that
˛ ! ˇ is the shortest such counterexample. Now, ˇ is � ! x for some multiset �
of terms and a variable x. Consider the sequent �; ˛� ! x ) x. By assumption it
is provable, so either it is initial or it has a split term. If it is initial, then x 2 � , but
then ˇ D � ! x is a theorem, contradicting the assumption. So �; ˛� ! x ) x

must have a split term, and we have two cases to consider.
Case 1. If ˛� ! x ) x is split, then, since ˛ is not a theorem, Lemma 3.3

applies and � 0; ˛� 0 ! x ) x is provable. Putting ˇ0 D � 0 ! x, we obtain that
˛ ! ˇ0 ) ˇ0 is provable, and ˛ ! ˇ0 is shorter than ˛ ! ˇ. Thus, by inductive
hypothesis, ˛ or ˇ0 is a theorem. But ˛ is not a theorem, therefore ˇ0 is. Now
ˇ0 D � 0 ! x and � 0 � � , so � 0 ! x ) � ! x is provable and thus � ! x D ˇ

is a theorem. This is a contradiction.
Case 2. If some 
 2 � is split, then Lemma 3.2 applies, and we obtain a provable

sequent ˛� 0 ! ˇi ) � 0 ! ˇi , where � 0 � � n ¹
º and 
 D ˇ1 � � �ˇk ! x. As in
the previous case, ˛ is not a theorem, so by inductive hypothesis we get that � 0 ! ˇi

is. Then, by the “moreover” part of Lemma 3.2 we get that � ! x D ˇ is a theorem,
which is a contradiction.

Theorem 4.2 The inference rule
.˛ ! ˇ/! ˇ

.ˇ ! ˛/! ˛

is admissible, but not derivable in BCK. Therefore BCK is not structurally complete.

Proof To show admissibility, suppose that .˛ ! ˇ/! ˇ is a theorem. Thus, the
sequent .˛ ! ˇ/ ) ˇ is provable. By Lemma 4.1 then, ˛ is a theorem or ˇ is a
theorem. In either case, .ˇ ! ˛/! ˛ is a theorem.

To prove nonderivability, consider the ¹!; 1º-reduct of the totally ordered three-
element Heyting algebra ¹0; a; 1º. Taking ˛ and ˇ to be variables, we define a
valuation v putting v.˛/ D a and v.ˇ/ D 0. Then, v.˛ ! ˇ/ D 0 and so
v..˛ ! ˇ/! ˇ/ D 1. But v.ˇ ! ˛/ D 1 and therefore of v..ˇ ! ˛/! ˛/ D 0.

5 An Algebraic Corollary

Admissible rules have a natural algebraic interpretation. Namely, a rule
˛1; : : : ; ˛n

ˇ
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is admissible in BCK if and only if the corresponding quasi-identity
˛1 D 1& � � �&˛n D 1 �! ˇ D 1

holds in the free BCK-algebra F.X/ on a countable set of generators X . If the rule is
derivable, the corresponding quasi-identity holds in every BCK-algebra. So, admis-
sible but nonderivable rules describe certain properties of the free BCK-algebra that
are not shared by all BCK-algebras. We will exhibit one such property here.

By a Heyting chain we mean a BCK-algebra H such thatH is linearly ordered by
the natural BCK ordering, and for all a; b 2 H we have a! b D b unless a � b. If
a Heyting chain H is finite, it is often called Hn with n > 0 being the cardinality of
H . The next lemma is obvious.

Lemma 5.1 Let H be a Heyting chain such that jH j > 2. Then H3 is a subalgebra
of H.

Theorem 4.2, phrased algebraically, says that for any s; t 2 F.X/ we have
.s ! t /! t D 1 implies .t ! s/! s D 1:

The result below is a corollary.

Theorem 5.2 No Heyting chain H is a subalgebra of F.X/.

Proof By Lemma 5.1 it suffices to prove that H3 is not a subalgebra of F.X/.
Suppose that H3 � F.X/. Then there are terms s; t 2 F.X/ with 1 > s > t

such that s ! t D t and t ! s D 1. Thus, .s ! t / ! t D 1 but
.t ! s/! s D 1! s D s ¤ 1, contradicting Theorem 4.2.
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