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Baire Categoricity and †0
1
-Induction

Stephen G. Simpson

Abstract We investigate the reverse-mathematical status of a version of the
Baire category theorem known as BCT. In a 1993 paper Brown and Simpson
showed that BCT is provable in RCA0. We now show that BCT is equivalent to
RCA0 over RCA�0 .

Consider the following version of the Baire category theorem.

Definition 1 Let BCT be the statement that, in any complete separable metric
space, the intersection of any countable sequence of dense open sets is dense. Thus
BCT is essentially the usual statement of the Baire category theorem for complete
separable metric spaces.

The purpose of this paper is to prove a new result concerning the reverse-mathematical
status of BCT. From Brown and Simpson [1, Theorem 2.1] we already know that
BCT is provable in RCA0. Here, of course, RCA0 is the usual base theory for reverse
mathematics (see [5]), consisting of �01-comprehension plus †01-induction. We now
prove that BCT is logically equivalent to RCA0 over the weaker base theory RCA�0 .
The system RCA�0 was first introduced in Simpson and Smith [6]. Two recent papers
making use of RCA�0 are Simpson and Yokoyama [8] and Yokoyama [10].

In addition to BCT itself, we consider the following special case of BCT.

Definition 2 The Cantor space is the space ¹0; 1ºN of infinite sequences of 0’s
and 1’s. We endow ¹0; 1º with the discrete topology and ¹0; 1ºN with the product
topology. Let BCT.¹0; 1ºN/ be the statement that BCT holds for the Cantor space.

More precisely, let ¹0; 1º� be the set of finite sequences of 0’s and 1’s. For
� 2 ¹0; 1º� and X 2 ¹0; 1ºN, we write � � X to mean that � is an initial
segment of X . We also write J�K D ¹X 2 ¹0; 1ºN j � � Xº. Note that the sets J�K
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where � 2 ¹0; 1º� form a basis for the topology of ¹0; 1ºN. For �; � 2 ¹0; 1º�, we
write � � � to mean that � is a proper initial segment of � . We say thatD � ¹0; 1º�
is dense in ¹0; 1º� if for all � 2 ¹0; 1º� there exists � 2 D such that � � � . Thus
the dense open sets in ¹0; 1ºN are just the sets of the form JDK D

S
�2DJ�K, where

D is dense in ¹0; 1º�. We say that X 2 ¹0; 1ºN meets D if there exists � 2 D such
that � � X . Within RCA�0 let BCT.¹0; 1ºN/ be the statement that for all sequences
of dense sets Di � ¹0; 1º�, i 2 N, and all � 2 ¹0; 1º� there exists X 2 ¹0; 1ºN such
that � � X and X meetsDi for each i 2 N.

Theorem 1 The following are pairwise equivalent over RCA�0:
1. RCA0,
2. BCT,
3. BCT.¹0; 1ºN/,
4. for all finite sequences of dense sets Di � ¹0; 1º�, 1 � i � n, there exists
X 2 ¹0; 1ºN such that X meetsDi for each i D 1; : : : ; n.

Proof We reason in RCA�0 . The implication 1 ) 2 is already known (see [1,
Theorem 2.1]). The implications 2) 3 and 3) 4 are obvious.

It remains to prove 4) 1. For this purpose we use the following lemma from [8].
Within RCA�0 a set C � N is defined to be infinite if it is not finite, or equivalently,
it is unbounded, that is, 8n9c.n < c 2 C/.

Lemma 1 Over RCA�0 the following are equivalent:
1. RCA0,
2. each infinite subset of N includes arbitrarily large finite subsets.

Proof This is [8, Lemma 3.2].

We now prove 4) 1. Assume 4. By Lemma 1 it suffices to prove that each infinite
subset of N includes arbitrarily large finite subsets. Given an infinite set C � N, for
each i 2 N letDi be the set of strings in ¹0; 1º� of the form

�a
h1iah0; : : : ; 0„ ƒ‚ …

c

i
a
h1iah0; : : : ; 0„ ƒ‚ …

i

i
a
h1i; (1)

where c 2 C and c is greater than the length of � . The sequence of sets hDi j i 2 Ni
exists by�01- comprehension. Since C is infinite, eachDi is dense in ¹0; 1º�. Given
n 2 N, apply 4 to obtain X 2 ¹0; 1ºN such that X meets Di for each i D 1; : : : ; n.
By †01-bounding (see [6]) plus �01-comprehension, there exists a finite sequence of
strings �i , 1 � i � n, such that �i 2 Di and �i � X for each i D 1; : : : ; n. Consider
the finite sequence c1; : : : ; cn, where �i is as in (1) with c D ci . For i ¤ j , we have
�i ¤ �j ; hence �i � �j or �j � �i ; hence ci < cj or cj > ci ; hence ci ¤ cj . Thus
¹c1; : : : ; cnº is a finite subset of C of cardinality n.

Theorem 2 BCT is not…0
1-conservative over RCA�0 .

Proof Recall from [5, Section X.4] and [6] that RCA�0 is RCA0 with †01-induction
weakened to †00-induction plus natural number exponentiation, that is, the assertion
thatmn exists for allm; n 2 N. It is known that RCA�0 is…0

2-equivalent to elementary
function arithmetic (see [6]) and hence is much weaker than RCA0, which is …0

2-
equivalent to primitive recursive arithmetic (see [5, Section IX.3]). Since primitive
recursive arithmetic proves the consistency of elementary function arithmetic (see,
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e.g., [4], [5, Theorems II.8.11, IX.3.16]), it follows that RCA0 is not…0
1-conservative

over RCA�0 . This fact together with Theorem 1 gives Theorem 2.

Remarks

1. Beyond RCA�0 one may consider even weaker base theories for reverse math-
ematics. In this direction there is the following result of Fernandes [2]: BCT
is …1

1-conservative over †b1-NIA C rb1 -CA. Note that †b1-NIA C rb1 -CA is
“feasible”; that is, it does not include natural number exponentiation.

2. Actually, Fernandes [2] showed that BCT is conservative over†b1-NIACrb1 -
CA not only for …1

1-sentences but also for sentences of the form .8X/.9

unique Y /ˆ, where ˆ is arithmetical. And Yamazaki [9] showed that …0
1-

BCT is conservative over RCA0 for this same class of sentences, which arose
previously in connection with Tanaka’s conjecture (see [7, Theorem 4.18]).

3. Our Theorems 1 and 2 were inspired by Fernandes [2, Proposition 1] and
Hirschfeldt, Shore, and Slaman [3, Theorem 4.3].
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